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The Galileon theory is a prototypical effective field theory that incorporates the Vainshtein screening
mechanism—a feature that arises in some extensions of general relativity, such as massive gravity.
The Vainshtein effect requires that the theory contain higher order derivative interactions, which results in
Galileons, and theories like them, failing to be technically well posed. While this is not a fundamental issue
when the theory is correctly treated as an effective field theory, it nevertheless poses significant practical
problems when numerically simulating this model. These problems can be tamed using a number of
different approaches: introducing an active low-pass filter and/or constructing a UV completion at the level
of the equations of motion, which controls the high momentum modes. These methods have been tested on
cubic Galileon interactions, and have been shown to reproduce the correct low-energy behavior. Here
we show how the numerical UV-completion method can be applied to quartic Galileon interactions, and
present the first simulations of the quartic Galileon model using this technique. We demonstrate that our
approach can probe physics in the regime of the effective field theory in which the quartic term dominates,
while successfully reproducing the known results for cubic interactions.
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I. INTRODUCTION

While general relativity (GR) has made myriad successful
predictions at many different scales, a number of deep
puzzles posed by contemporary cosmology have led to
great interest in the question of whether the theory might
admit robust modifications. The effective field theory
formalism has provided a particularly useful way of explor-
ing and categorizing such modifications, while ensuring that
GR is recovered in the local regimes where it has been so
stunningly successful. Modifications of gravity and general
models of dark energy and cosmic acceleration can be
characterized by the mechanisms through which they
reproduce local scale gravity—i.e., which screening mecha-
nism they employ. Of particular interest in this paper

are those theories that use the Vainshtein screening mecha-
nism [1] to suppress deviations from GR by screening out
the fifth-force on local scales [2–11]. There exists a range of
complicated theories which exhibit the Vainshtein mecha-
nism, but the Galileon [12], a model with a single real scalar
field, is the simplest example that encapsulates all the
essential features, and is known to arise naturally in the
decoupling limit of massive gravity theories [5–9,13–15].
Galileons include higher order derivative interaction

terms which give rise to the Vainshtein screening mecha-
nism [5–7] yet they have second order equations of motion.
Away from extremely special configurations, such as
spherically symmetric, static sources, Galileons are difficult
to describe analytically, precisely because of these non-
linear interactions. Hence, numerical investigations are
critical for understanding this model. Although such studies
are made easier by the second order nature of the equations
of motion, the effective theory of the Galileon nevertheless
remains not well posed; it has regimes in which the
equations of motion are nonhyperbolic. These regimes
arise when the nonlinear interactions are very large and the
effective field theory is no longer necessarily under control.
While this does not impact the theoretical underpinnings
of the model—it is entirely well behaved when properly
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interpreted as an effective field theory—in order to success-
fully describe the dynamics of the Galileon system,
numerical simulations need to avoid or mitigate these
unstable regions.
The cubic Galileon model was considered in [16] and

it was shown that by turning the nonlinear interactions on
slowly it was possible to mitigate any potential numerical
instabilities, and obtain a power spectrum which matched
the general scaling expectations of analytic estimates
[17–19]. This was significantly improved upon in [20]
where we considered the numerical evolution of the cubic
Galileon using three distinct methods. The first amounted
to low-pass filter combined with the slow turn off method
of [16]. The other two methods involved replacing the
Galileon theory with a system of auxiliary higher spin
fields that control the high frequency modes—a well-posed
(numerical) UV completion model. Motivated by the
origins of the Galileon as a massive spin 2 field, these addi-
tional spin fields propagate via either hyperbolic or para-
bolic equations of motion. The parabolic model is similar to
systems proposed in [21,22] that have been successfully
applied to simulating evolution within scalar-Gauss-Bonnet
gravity [23,24], k-essence [25–28], Horndeski gravity [29],
and other extensions to general relativity [30–32]. This
technique is predicated on the idea that the theory of
interest is a truncation of some larger theory that is well
behaved, and the problems arise from the truncation [23].
These approaches, often referred to as fixing the equations,
are based on the Müller-Israel-Stewart formulation [33–36],
in which the additional degrees of freedom obey their own
wave equations.
In our work on the cubic Galileon [20], we demonstrated

that the UV completion model asymptotically approaches
the original cubic Galileon theory in the low energy limit,
and argued that our numerical treatment correctly repro-
duces the dynamics of the Galileon in the IR regime.
It is worth emphasizing that the system provides a purely
numerical completion, as there is no known Lorentz in-
variant local and unitary UV completion of the Galileon,
and indeed there are suggestions that such a theory does not
exist [37]. We also compared the three different ways of
resolving the physics in the cubic Galileon model with
numerical integration techniques. All three models repro-
duced the same long wavelength physical processes up to
expected numerical errors.
In this paper we take the next important step to under-

standing the Vainshtein screening by including both cubic
and quartic Galileon interactions. This is by no means
straightforward since it is known that despite being
moderately successful for the cubic Galileon [16,17],
analytic attempts to describe the power radiated from a
rotating system completely fail in the case of the quartic
Galileon [19]. This occurs because the large multipoles are
not sufficiently suppressed. For this reason it has remained
unclear if the Vainshtein mechanism is even active for a

time-dependent system when the quartic Galileon is active.
In the present paper, we extend our successful discussion of
the cubic Galileon using a well-posed UV completion of
the equations of motion to account for quartic interactions.
We have chosen this numerical method in particular to
demonstrate its robustness in working with more complex
systems and because it is well posed and allows us to probe
further into the nonlinear regime than other methods. In a
companion paper we similarly extend the low-pass filter
method to the quartic case [38].

II. QUARTIC GALILEON

The Galileon is a real scalar field, π, which satisfies the
symmetry π → π þ bμxμ þ c, for constant parameters bμ
and c. The relevant action for the Galileon including both
cubic and quartic interactions [11,12,19] is1

S ¼
Z

d4x

�
−
3

4
ð∂πÞ2 − 1

4Λ3
3

ð∂πÞ2□π −
1

24Λ6
4

ð∂πÞ2

×
�ð□πÞ2 − ð∂∂πÞ2�þ 1

2MPl
πT

�
; ð1Þ

where Λ3 and Λ4 control the strengths of the nonlinear
couplings in the cubic and quartic terms, respectively, and
T is the trace of the stress energy tensor for the matter
content of the theory. The slightly unusual choice of
normalization is a reflection of how π emerges as the
helicity-zero mode in massive gravity theories where it
naturally couples to the trace of the stress energy momen-
tum tensor. This gives rise to a classical equation of motion,

□π þ 1

3Λ3
3

�ð□πÞ2 − ð∂μ∂νπÞ2
�þ 1

9Λ6
4

×
�ð□πÞ3 − 3□πð∂μ∂νπÞ2 þ 2ð∂μ∂νπÞ3

� ¼ T
3MPl

; ð2Þ

with ð∂μ∂νπÞ3 ≡ ð∂μ∂απÞð∂α∂νπÞð∂ν∂μπÞ. The most impor-
tant type of nonlinearity is controlled by the relative
magnitudes of 1=Λ3 and 1=Λ4. For a spherically symmet-
ric, time-independent source with T ¼ ρðrÞ, the Galileon
system is well studied [19,39,40], and the equation of
motion reduces to

1

r2
d
dr

�
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EðrÞ
r
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3Λ3
3

�
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r

�
2

þ 2

9Λ6
4

�
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�
3
��

¼ ρðrÞ
3MPl

;

ð3Þ

where EðrÞ≡ ∂π=∂r. We can integrate this to obtain a
solution of the form

1Throughout, we work in the mostly positive metric
convention.
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EðrÞ
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�
3

¼ MsðrÞ
12πMPl
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where

MsðrÞ ¼ 4π

Z
r

0

drr2ρðrÞ ð5Þ

is the mass contained within a finite radius when the density
is approximated as a function of r only. Well outside the
source we may take MsðrÞ ¼ Ms constant, without con-
sidering higher moments of ρ. This solution reveals two
important distances associated with the two scales: Λ3 and
Λ4. We define the Vainshtein radii of the source as the
radial locations at which the different nonlinear interaction
terms become important, given by

r�;3 ≡
�

Ms

16MPl

�
1=3 1

Λ3

; ð6Þ

r�;4 ≡
�

Ms

16MPl

�
1=3

�
Λ3

Λ4

�
3 1

Λ4

; ð7Þ

where r�;3 is the radius at which the cubic term is
approximately the same size as the kinetic term, and r�;4
is that at which the quartic term is approximately the same
size at the cubic term [19]. The Vainshtein radii define
the distances from the source at which the nonlinear inter-
action terms become important. It is worth noting that, for
astrophysical sources and cosmologically interesting cut-
offs, the Vainshtein radii are extremely large distances.
For more complicated sources, the Galileon system

has been studied both analytically and numerically (see,
e.g., [16–19,41–45]). Numerical challenges arise when
simulating realistic sources in this model—see for in-
stance [22,32]. Well-posed field theories describe physics
at IR energy scales that are decoupled from the UV modes
of the theory. However, truncated effective field theory
(EFT) expansions are generically not well posed. Although
not a fundamental issue (for example, there is no ambiguity
in inferring low energy S-matrix elements), this can create
a significant problem for the numerical evolution of the
classical system since the UV and IR modes might be
coupled to one another [46]. Furthermore, when the inter-
actions are higher derivative, as is generic, the evolution
may transfer energy from the IR into the UV modes leading
to unstable solutions. The question surrounding the well-
posedness problem, then, is if it is possible to manage the
UV modes without affecting the physics occurring in the
IR region.
In our previous paper [20], we introduced and verified

two classes of techniques which can accomplish this: using
a low-pass filter to dampen high frequency modes, and
introducing additional fields to implement a UV comple-
tion at the level of the equations of motion. Simulations

of the cubic Galileon involving each of these techniques
produced results that were both stable in evolution and
reproduced solutions consistent with analytical expectations.
In what follows we extend the second approach to the
Galileon system with both cubic and quartic interactions.

A. The numerical UV completion

Following [20] our goal is to introduce a numerical UV
completion which is designed to control the high energy
behavior and allow for more stable numerical evolution
than the original Galileon system. Note that this is not a true
UV completion, i.e., we do not require an action, rather this
is a device to regulate the numerical evolution. With this in
mind, we are allowed to introduce friction terms that mildly
break Lorentz invariance to help prevent the instabilities of
high kmodes [47]. Using the same technique as in the cubic
Galileon case [20], inspired by how the Galileon can arise
as the helicity zero mode of a spin 2 field within massive
gravity theories, we introduce an auxiliary massive spin 1
Aμ and a massive spin 2 Hμν field that satisfy damped
harmonic oscillator equations [8,9,48,49]. These new fields
replace the troublesome higher order derivative terms in the
Galileon equation of motion with functions of the Hμν

fields, thereby allowing us to control the derivative inter-
action terms that are the origin of the instability problems.
We first define auxiliary fields via

Aμ ≡ ∂μπ; ð8Þ

and

Hμν ≡ 1

2

�
∂μAν þ ∂μAν

�
: ð9Þ

We then promote the auxiliary fields to have their own
dynamics and, at the same time, trade the higher derivative
Galileon interactions for the lower derivative fields so that
the UV theory is described by the equations of motion:

π̈ ¼∇2πþ 1

3Λ3
3

�ðHν
νÞ2 −HμνHμν

�þ 1

9Λ6
4

×
�ðHν

νÞ3 − 3Hα
αHμνHμν þ 2ðHμνÞ3

�
−

T
3MPl

; ð10Þ

Äμ ¼ ∇2Aμ −
1

τ
∂0Aμ −M2

�
Aμ − ∂μπ

�
; ð11Þ

Ḧμν ¼ ∇2Hμν −
1

τ
∂0Hμν −M2

�
Hμν −

1

2

�
∂μAν þ ∂νAμ

��
:

ð12Þ

These equations have been constructed such that the
friction term ensures that the new propagating degrees of
freedom in Aμ andHμν decay on a time order of τ. As in the
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cubic case, we have now turned a single propagating field
into a total of 15 fields, all of which obey a form of the wave
equation. Importantly, the 14 additional degrees of freedom
should decay away on a time scale of order τ. The only
difference between this quartic Galileon system and the
cubic Galileon system considered in [20] is an additional
term in the equation of motion for the π field.
The terms on the right-hand side of (11) and (12) dictate

that solutions will asymptote at low energies (k;ω ≪ M)
to the definitions of Aμ and Hμν respectively, given in (8).
Additionally, the definitions of the auxiliary fields are
constraints on the boundary conditions of our numerical
system. In the low energy limit, it is clear to see that (10)
reduces exactly to (2), the equation of motion for the
Galileon that we started with. The addition of these fields
does not guarantee stability, however it does eliminate any
issues that arise from the derivative interaction terms. For
another way to write out this numerical UV completion—
one which makes the connection to the IR regime more
apparent—see [20].

III. NUMERICAL SIMULATIONS

The Galileon effective field theory poses several prob-
lems for numerical simulations due to its nonlinear nature,
coupled derivative interaction terms, and the many scales
of interest present in the system.2 Having shown in a
previous work that the full cubic system can be solved
numerically in a way that produces results which agree with
analytic expectations, we use here the most stable of our
methods to produce the simulations of the quartic Galileon
model. These numerical simulations are conducted using
GABE, a verified numerical program for simulating scalar
fields [51].3

To be concrete, we focus on the case when the source is
comprised of two rotating Gaussian-shaped mass-energy
distributions. This is a challenging example that is closely
related to physically relevant sources and also allows for
easy comparisons with our previous work with the cubic
system as well as with other numerical simulations [16]
and analytic expectations [17,18]. We parametrize the
system through two dimensionless quantities, α≡Ωr̄,
which describes the rotational speed of the system, and
β≡ r̄=r�;3, which relates the diameter of the sources to the
cubic Vainshtein radius as defined by Eq. (6), where r̄ is
the distance between the centers of the rotating Gaussians.
To fully constrain the system, we can use Kepler’s law
(a reasonable approximation for small velocities),

Ω2 ¼ Ms

8πM2
Plr̄

3
; ð13Þ

where Ms is the total mass of the system, to describe the
cubic nonlinear coupling term via

κcubic ¼
32

3
ffiffiffiffiffiffi
2π

p β−3α−1: ð14Þ

We choose β ¼ 0.05 and α ¼ 0.2 as our fiducial model,
which translates into a coupling strength κcubic ≈ 1.7 × 105.

A. Dimensionless units

For the simulation to be independent of the physical
parameters of this model, we rescale both our scalar field
and the spatial coordinates to yield dimensionless variables
(denoted with the subscript pr), defined by

πpr ¼ π

ffiffiffiffiffiffiffi
r̄
Ms

r
; xμ ¼ xμpr

r̄
2
; ð15Þ

where the rescaling of the spatial derivative clearly follows
from this latter definition. These allow us to rewrite the
equation of motion given in (2) as

□prπpr þ κcubic
�ð□prπprÞ2 −

�
∂
pr
μ ∂

pr
ν πpr

�
2
�

þ ξ6κ2cubic
�ð□prπprÞ3 − 3□prπpr

�
∂
pr
μ ∂

pr
ν πpr

�
2

þ 2
�
∂
pr
μ ∂

pr
ν πpr

�
3
� ¼ Jpr;

where we regularize the sources using Jpr,

Jpr ¼ A
�
e−ðr⃗

pr
þ ðtÞ=σprÞ2 þ e−ðr⃗

pr
− ðtÞ=σprÞ2�; ð16Þ

where ⃗rpr� ðtÞ ¼ ðxpr � cos ðΩprtprÞ; ypr � sin ðΩprtprÞ; zprÞ
and the constant

A≡ 2
ffiffiffi
2

p

3π

Ωr̄
σ3pr

ð17Þ

are chosen to ensure that the total mass of the system is
given by Ms ¼

R
d3xρ ¼ R

d3xT, as expected. Addition-
ally, we define the dimensionless quantities,

κcubic ¼
1

3Λ3
3

ffiffiffiffiffiffiffiffiffiffiffi
16Ms

r̄5

r
and ξ≡ Λ3

Λ4

; ð18Þ

which control the size of the nonlinear terms and the
strength of the quartic term relative to the cubic term,
respectively. In the limit ξ → 0, this system will reduce to
the cubic Galileon model. Additionally, the auxiliary spin
fields are rescaled according to

Aμ ¼
ffiffiffiffiffiffiffiffiffi
4Ms

r̄3

r
Aμ

pr; Hμν ¼
ffiffiffiffiffiffiffiffiffiffiffi
16Ms

r̄5

r
Hμν

pr: ð19Þ
2Other work has focused on singularities in the effective

metric of perturbations as a cause for numerical issues [50].
3http://cosmo.kenyon.edu/gabe.html.
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We investigate the quartic Galileon system, with these
sources, in a variety of regimes; we also define a fiducial
case for which the physical and numerical parameters
are: box size L ¼ 2.5r�;3 ¼ 50r̄, number of points along
the box N ¼ 384, and time step size dt ¼ β−1r̄=6400 ¼
0.003125r̄.

B. Analytic expectations

The analytic solution for a single Gaussian source is
determined by the polynomial equation,

r2EðrÞ þ 2rκcubicEðrÞ2 þ 2κ2cubicξ
6EðrÞ3 ¼ α

ffiffiffiffiffiffi
2

9π

r
; ð20Þ

where we define EðrÞ≡ ∂πpr=∂rpr. It is evident that as
ξ → 0 we recover the cubic system. For ξ > 0 there will be
three regions depending on which of the three terms Klein-
Gordon, cubic, and quartic dominates. We can solve this
analytically and determine the relative importance of each
of the three terms for a given value of ξ. Figure 1 depicts the
contribution of each of these terms to the equation of
motion for the π field for a given value of ξ ¼ 0.6 and a
single Gaussian source. It is clear that for ξ ¼ 0.6, the
binary system is well inside the region in which the quartic
Galileon dominates, namely the Vainshtein radius r�;4. For
this reason we expect our simulations to be substantively
different than those for the pure cubic Galileon ξ ¼ 0.

C. Boundary conditions

In each simulation, we use outgoing boundary condi-
tions, so that the physical processes inside the box are the
only sources to the fields. To isolate the system, we con-
struct a buffer of points inside the lattice at each boundary
where the field is no longer propagating according to its

equation of motion given in (10) but rather evolves using
outgoing boundary conditions. For the scalar π field—or
any interaction-less and massless field—this looks like

π̇ ¼ −
π

r
− ∂rπ: ð21Þ

Although this works well for the π field, problems arise for
the massive auxiliary fields. As in the cubic case, we
minimize those issues by enforcing a parabolic damped
constraint equation, given by

Ȧμ ¼ −C
�
Aμ − ∂μπ

� ð22Þ

Ḣμν ¼ −C
�
Hμν −

1

2

�
∂μAν þ ∂νAμ

��
; ð23Þ

where C is some parameter that determines the extent to
which the auxiliary fields are damped. For our simulations,
we set this constant by the decay scale for the auxiliary
fields, C ¼ M2

prτ, a parameter to which the simulations are
largely insensitive below a value of C ¼ τ × 104. These are
the same “damped” versions of the constraint equations
used in the cubic system [20], where we determined that
directly enforcing the constraint equations on the boundary
introduces large discontinuities that caused backreaction
into the box. In the low energy limit, we expect that
Aμ ∼ ∂μπ and Hμν ∼ ∂μ∂νπ, which would result in a zero
time derivative—and no backreaction.
As energy increases beyond the low energy limit, these

approximations no longer hold, and the time derivatives of
the auxiliary fields are no longer trivial. In that case, our
goal is to minimize the effect that the discontinuities have
on the system, and to enforce that the auxiliary fields
behave like derivatives of the π fields, so that disconti-
nuities do not disrupt the physical processes occurring at
low energies. The discontinuities appear because of the
contribution of the cubic terms to the equation of motion at
the edge of the box. At the boundary, we assume that the
cubic terms vanish, but as Fig. 1 depicts, there is still
around a 40% contribution at the boundary. At first glance,
one viable solution to this appears to be to make the box
bigger in order to allow the cubic contribution terms to
vanish more completely before reaching the boundary.
However, this significantly reduces the resolution of the
sources in the middle of the box. Hence, we enforce
damped constraint equations to mitigate backreaction from
the discontinuities and to maximize the spatial resolution of
the source.

D. Power calculations

To establish whether the Vainshtein mechanism is active
for a time-dependent rotating binary source with the quartic
interactions present, we can calculate the power emitted per
multipole. We calculate this in the same way as described
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FIG. 1. Analytic contribution of each of the Klein-Gordon
(solid black line), cubic (red dashed), and quartic (blue dot-
dashed) terms to the total π field for our fiducial model with
α ¼ 0.2, β ¼ 0.05 and ξ ¼ 0.6 illustrating the two distinct
Vainshtein screening regimes.
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in [20], by setting up a sphere of points, evaluating π, π̇,
and ∂rπ at those points, and then performing a trilinear
interpolation to project the field onto the spherical har-
monics. The sphere is set up using the HEALPIX

4 standard,
defined by a radius of r ¼ 22.5r̄ which is larger than the
Vainshtein radius, rv ¼ 20r̄, but smaller than half the size
of the box, Lhalf ¼ 25r̄. This method provides us with a
sphere of evenly spaced points (not necessarily at the lattice
point locations) which are used to decompose the field onto
spherical harmonics.
In [19], the authors analytically found that the power

in higher multipoles is suppressed and that the dominant
multipole was the quadrupole. This was confirmed by the
numerical simulations of [16,20]. By contrast in [17], it was
found that including a quartic interaction term greatly alters
the behavior of perturbations around a spherically sym-
metric, time dependent source rendering the approximate
perturbative treatment inadequate for calculating the radi-
ated power. Nevertheless some insight can be gained from
considering the form of the analytic radiated power which
should be valid when there is a large hierarchy between the
scales involved which consequently allows for the linear
treatment of perturbations from a static, spherically sym-
metric background solution. In this situation, the radiated
power for a given mode depends on m and l, derived in
Appendix A of [16], and is given by

Pl ¼ πΩpM2

12M2
Pl

Xl
m¼0

mð1þ ð−1ÞmÞu2lmðr̄=2ÞjYlmðπ=2; 0Þj2;

ð24Þ

where we have restricted ourselves to circular orbits in the
θ ¼ π=2 plane with equal mass objects, For l ¼ 0, we are
constrained to m ¼ 0, which causes the power to vanish, as
we expect for the monopole. For l ¼ 1, the two allowed
values for m also lead to zero power: l ¼ 1, m ¼ 0 is zero
because of the m contribution at leading order, l ¼ 1,
m ¼ 1 is zero because the ð1þ ð−1ÞmÞ term is also zero.
For l ¼ 2, the first nonvanishing power term, m ¼ 2 is the
sole contributor because m must be > 0, and it must be
even, so 1þ ð−1Þm ≠ 0. For l ¼ 3, the constraints on m
leave only the m ¼ 2 case as a possibility for nonzero
power. However, this is also zero because Yl¼3;m¼2ðπ=2; 0Þ
vanishes. Extrapolating, we expect that the only non-
vanishing power will arise in modes that have even l
(l ¼ 2n where n∈N) with contributions from m modes
that are also even and greater than zero.

E. Full auxiliary field method

In our previous work, we described two distinct numeri-
cal UV completions for simulating the cubic Galileon
model, both of which reproduced the long wavelength

behavior expected by analytic analysis. While each of these
had their own advantages and shortcomings, we have chosen
to employ the “full auxiliary field” method for simulating
the quartic system because it allows nonlinear interactions to
turn on sooner and generally requires less spatial resolution.
Our chosen UV completion is in program units,

□prπ
pr þ κ

�
Hμν

prH
pr
μν − ðHpr

ν
νÞ2

� ¼ f1ðtÞJpr; ð25Þ

□prA
pr
μ −

1

τ
∂
pr
t A

pr
μ −M2

prA
pr
μ ¼ −M2

pr∂
pr
μ πpr; ð26Þ

□prH
pr
μν −

1

τ
∂
pr
t H

pr
μν −M2

prH
pr
μν ¼ −

M2
pr

2

�
∂
pr
μ A

pr
ν þ ∂

pr
ν A

pr
μ
�
;

ð27Þ

whereMpr ¼ Mr̄=2 and f1ðtÞ is a window function given by

f1ðtprÞ ¼
1

2
tanh−1

�
1

10

	
tpr − 25


�þ 1

2
; ð28Þ

that ramps up from zero to unity. Using this system and the
relaxed numerical constraints as boundary conditions for
the auxiliary fields, we have been able to achieve numeri-
cally stable simulations of the quartic Galileon model.
An important check on the numerics is to first ensure

that the quartic simulations reproduce the cubic system
previously simulated by taking the limit ξ → 0 for a given
mass value. Figure 2 depicts the asymptotic approach of
the π field profile from the quartic system toward the field
profile of the cubic system, taken along a line in the equa-
torial plane of the system. We argued in [20] that the full
auxiliary field method reproduces the dynamics of the
cubic system in a way that matches analytic expectations—
here we validate the current method by comparing it to
previous cubic work [20].

FIG. 2. The π field profile along the x axis after the system has
reached stability using a mass value ofMpr ¼ 3 and an increasing
nonlinear quartic term, controlled by ξ. The cubic case (ξ ¼ 0) is
denoted by an solid black line, the ξ ¼ 0.4 a gray dashed line, and
ξ ¼ 0.6 a red dot-dashed line.4http://healpix.sourceforge.net.
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In addition, we have investigated the dynamics of this
quartic model by examining the multipole power in the
system radiated by the π field. Figure 3 depicts the period-
averaged power contained in each multipole for a single
value of ξ, the parameter controlling the relative strength
of the quartic term. The multipoles diminish in power as
the multipole number increases and only select even poles
(l ¼ 2n;m ¼ 2n, n∈N) have appreciable nonzero power,
with any power in odd multipoles arising from numerical
errors. Although these results match the analytic expect-
ations discussed in Sec. III D, we stress that for comparable
mass binary sources for which the orbit lies inside the
quartic region, the analytic approach breaks down. Our
result is hence nontrivial and matches the results of the low-
pass filter method in [38].
While the period-averaged power contained in each

multipole highlights the differences between the quartic
and cubic dominated systems, we can also study the effects
of varyingM for a fixed quartic strength, ξ. Figure 4 shows
how the final quadrupole power depends on the Mr̄ para-
meter. At Mr̄ ¼ 0, the only source for π is H2

μν, but Hμν

itself is unsourced. Therefore, any oscillations in Hμν will
decay away and, in the long time limit, π will approx-
imately satisfy the Klein-Gordon equation. For large M,
the power converges to a value that is insensitive to
increasing M further, indicating that the UV physics is
decoupled from the IR regime. Comparing Fig. 4 to the
analogous one for the cubic only system in [20], we see that
the final quadrupole power depends on the Mr̄ parameter
in a similar way, and we note that the same asymptotic
behavior is exhibited with higher resolution runs as was
noticed in the previous paper. In other words, in the
Mr̄ > 7 regime, the simulations approximate theMr̄ → ∞,
decoupled limit.

We also investigated the M − ξ phase space by examin-
ing the effect of increasing the ξ parameter for a single M
value on the period averaged quadrupole power. Figure 5
portrays the final quadrupole power for a fixed mass M
value. Here, increasing the ξ parameter from 0.0 to 0.7
encodes the progression from the cubic system to nonzero
quartic contribution regime, with the quartic term domi-
nating for ξ ≥ 0.6. This highlights how the power is
increasing as we turn on the quartic interaction.
In the full auxiliary field method, issues with the boun-

dary conditions meant that we were only able to simulate
the system up to a certainMr̄ parameter, for a low value of
ξ, the same limiting value that we found in our previous
work with the cubic system [20]. Instead of Mr̄ ¼ 10, the
cutoff for the cubic Galileon, here the cutoff is closer to
Mr̄ ≈ 7. As the quartic term contributes to the equation of
motion more and more (i.e., as ξ increases), the cutoff on

FIG. 3. Instantaneous and averaged power emitted in the
fiducial system with Mr̄ ¼ 3.76 and ξ ¼ 0.8 for the monopole
up to l ¼ 3 modes clearly demonstrating the dominance of the
quadrupole at late times. The monopole is denoted by a red,
dashed line, the dipole a black dashed line, the quadrupole a blue
solid line, and the l ¼ 3 pole a solid gray line. The dipole and
l ¼ 3 modes are both at machine zero.
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FIG. 4. Late-time quadrupole power emitted by the fiducial
system with a constant value of ξ ¼ 0.6 and changing M
parameter. The orange dots have 3843 resolution whereas the
blue dots have 5123 resolution, included so as to demonstrate the
asymptotic behavior noticed in the cubic system in [20].
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FIG. 5. Power contained in the quadrupole moment for the
fiducial system as a function of the quartic nonlinear coupling
strength ξ, with fixedM parameterMr̄ ¼ 6. We note the last point
ξ ¼ 0.7 reaches convergence although crashes soon after.

SIMULATING A NUMERICAL UV COMPLETION OF QUARTIC … PHYS. REV. D 109, 124021 (2024)

124021-7



Mr̄ decreases, because the cubic contribution at the edge
of the box also grows. For higher mass runs, the fiducial
model in the cubic system could stably evolve for several
orbits of the source, but eventually power seeped into the
higher frequency modes and caused the simulation to crash.
At the boundary, we calculate derivatives of the auxiliary
fields while assuming that the constraints are satisfied—a
good approximation given that the constraints are satisfied
exactly and we are far enough away from the source that
the π field is Klein-Gordon. Similarly to the cubic case, it
seems that these assumptions are violated for Mr̄ ≥ 5,
because the cubic terms are nonzero at the edge of the box.
We have tested the idea that this is a result of the boundary
conditions and not the model itself by increasing the spatial
resolution of our marginal caseMr̄ ¼ 7 to effectively move
the boundary further from the source, and found that our
simulations evolved longer. In principle, one should be able
to probe beyond the range presented here by increasing
spatial resolution and the number of points used in the finite
derivative equations, although this comes at the cost of
computational resources and time (we estimate that on the
20 core machine with 512 GB RAM memory capability,
these runs would take at least six months to reach stable
evolution).

IV. DISCUSSION

Galileon theories are an interesting class of effective field
theories which incorporate the Vainshtein screening mecha-
nism. This mechanism is realized through nonlinear higher
derivative interactions which become significant in the
region of a massive source. These theories are understood
as low energy effective field theories, and are typically not
regarded as fundamental beyond some cutoff energy scale.
At a practical level, the existence of nonlinear derivative
interactions means the classical equations of motion are
not well posed and this renders the numerical evolution
strongly sensitive to unstable UV modes. This pathology is
of no concern in S-matrix calculations where it is well
understood how to compute scattering amplitudes in the
low energy theory. However, it makes extracting physical
predictions from Galileon theories difficult. If we want to
study and analyze these EFTs numerically, we need a
system that regulates high momentum modes without
disrupting the low energy limit behavior. In our previous
work [20], we established two different approaches to
deal with this. One was to utilize a low-pass filter which
automatically switches off any pathological UV behavior.
The success of this approach is based on the independence
of the long wavelength physics to the precise filtering scale.
The second approach was to replace the original Galileon
system with a UV completion at the level of the equations
of motion, which does not itself have the same high energy
problems, but reproduces the same low energy physics.
In [20] we showed that both approaches can be successfully

used to reproduce the long wavelength behavior expected
by analytic analysis.
In the present work we extended the UV completion

approach to the quartic Galileon system, a system which
has proven intransigent to analytic approximations. The
low-pass filter method will be considered elsewhere [38],
which is less computationally expensive. The method
considered here, although slightly more computationally
expensive, allows us to probe further into the high M,
strong nonlinear regime. Moreover, this method is well
posed and thus avoids imposing arbitrary low pass filters,
as the method in [38] does. Related works [25,26,52] use
UV completions based on other screening mechanisms
considered [53–55]. In this work, we have introduced
auxiliary fields that describe new degrees of freedom
and obey damped wave equations that regulate the UV
behavior. These fields trade the nonlinear interaction terms
with algebraic functions, thereby making the entire system
formally well posed. We simulated a binary orbiting system
and showed that simulations using this technique are stable.
Using the same initial data and sources as our previous
paper, we demonstrated that the quartic Galileon simula-
tions replicate the previously verified cubic system. More-
over, we have been able to probe beyond the cubic regime
into quartic domination, and in doing so, uncovered the
power radiated by each multipole in a quartic domination
regime.
We encountered the same technical issue in the boundary

conditions of massive degrees of freedom which prevented
us from simulating large scales of M as we described
in [20]. While we balanced the limiting factors prohibiting
further investigations into larger scales (specifically the
need for spatial resolution of the source with violating the
assumption of negligible contributions to the equation of
motion at the boundary), this is a known issue in the treat-
ment of massive outgoing waves (see, for instance, [56]).
Hence, we expect that further treatment of this numerical
issue will allow us to probe into those larger regimes.
We have taken a technique developed and verified in [20]

and utilized it for a more generic, previously not-able-to-be
simulated effective field theory. Our hope is that this
demonstrates the utility of this technique for numerical
work investigating EFTs in general, for instance other
extensions to general relativity and perhaps even beyond
cosmology.
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