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When gravitational waves pass near a gravitating object, they are deflected, or lensed. If the object is
massive, such that the wavelength of the waves is small compared to its gravitational size, lensed
gravitational wave events can be identified when multiple signals are detected at different times. However,
when the wavelength is long, wave-optics diffraction effects will be important, and a lensed event can be
identified by looking for frequency-dependent modulations to the gravitational waveform, without having
to associate multiple signals. For current ground-based gravitational wave detectors observing stellar-mass
binary compact object mergers, wave-optics effects are important for lenses with masses ≲1000M⊙.
Therefore, minihalos below this mass range could potentially be identified by lensing diffraction. The
challenge with analyzing these events is that the frequency-dependent lensing modulation, or the
amplification factor, is prohibitively expensive to compute for Bayesian parameter inference. In this
work, we use a novel time-domain method to construct interpolators of the amplification factor for the
Navarro-Frenk-White, generalized singular isothermal sphere and cored isothermal sphere lens models.
Using these interpolators, we perform Bayesian inference on gravitational wave signals lensed by
minihalos injected in mock detector noise, assuming current sensitivity of ground-based detectors. We find
that we could potentially identify an event when it is lensed by minihalos and extract the values of all lens
parameters in addition to the parameters of the GW source. All of the methods are implemented in
glworia [1], the accompanying open-source python package, and can be generalized to study lensed
signals detected by current and next-generation detectors.
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I. INTRODUCTION

Gravitational lensing is a pivotal concept in our under-
standing of the Universe [2,3]. Lensing occurs when a
massive celestial object, such as a galaxy or star, affects the
path of light, or (more comprehensively) any form of
radiation, such as electromagnetic (EM) waves or gravita-
tional waves (GWs). According to Einstein’s theory of
general relativity [4], the curvature of spacetime around the
massive object curves the path of the waves, leading to a
distorted perception of the source, or even to the observa-
tion of multiple images of the same source.
The lensing of EM waves has been an integral aspect of

astrophysical and cosmological research. Through the
study of EM lensing, scientists have successfully discov-
ered exoplanets orbiting distant stars [5], observed distant
objects that would otherwise be too faint to detect [6,7],
probed the nature of dark matter [8,9], and measured
cosmological parameters [10].
The first GW event, GW150914, was detected by the

LIGO gravitational wave detectors in 2015 [11]. The
radiation was produced by the merger of two distant black
holes (BHs), and it opened up an entirely new way of

observing and understanding the Universe [12]. Since then,
the LIGO and Virgo detectors have detected around a
hundred GW events, sourced by merging BHs and neutron
stars [13–15].
Similar to EM waves, GWs can also be lensed [16]. The

detection of lensed GWs could lead to significant advance-
ments in fundamental physics, astrophysics, and cosmology.
Most typical GW events are transients, and the lensing of
these events can be used to perform cosmography [17–22].
GW lensing can potentially be used to break the mass sheet
degeneracy, which affects EM lensing [23]. Tests of GR can
be performed using GW birefringence [24–26] or the GW
propagation speed [27,28]. If multiple images were
observed, we could potentially localize the host galaxy of
the GW source [29,30].
This paper is focused on exploring lensed GWs, with

special attention to wave optics effects. This refers to
the consideration of the wavelike behavior of the lensed
GWs, including diffraction and interference. These effects
become significant when the wavelength of the waves is
comparable to the gravitational length-scale GM=c2 of the
lensing substructure [31], where M is the (appropriately
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defined) mass of the lens, G is Newton’s constant, and c is
the speed of light. Wave optics effects can lead to
frequency-dependent modifications in the GW amplitude,
which can reveal critical information about the lens.
The science case of GW lensing is even richer when we

consider wave-optics effects.While in the geometrical optics
limit a lensed waveform is degenerate with an unlensed one
with a trivial magnification and phase shift (unless higher
harmonics are included [32], or when the BBH merger is
eccentric or precessing [33]), wave-optics effects are fre-
quency dependent, meaning that only a single signal is
required for a conclusive detection. Intermediate-mass BHs
could diffract GWs and leave an observable imprint on
detected signals [34,35], while primordial BHs, massive
compact halo objects (MACHOs) and other substructures
could also be identified in a similar fashion [36–43]. The
structure of low-mass halo lenses could be probed when
lensed events are detected by ground-based [44–46] and
space-based detectors [46–54]. Individual stars residing
in a galaxy could also introduce measurable GW lensing
effects [55–63].
The diffraction of GWs can be used to probe the

abundance of compact dark matter or dark matter sub-
halos. Primordial BHs (PBHs) with masses ≳20M⊙ are
severely constrained by observations of the cosmic micro-
wave background (CMB) [64] and by lensing of EM
sources [65–68]. GW lensing is not yet competitive in
this range [37], but future limits from LIGO-Virgo-
KAGRA [39] will likely be more stringent than the limits
from EM sources such as fast radio bursts [69]. In the
future, third-generation detectors will improve current
bounds by ∼4 orders of magnitude [70]. Other than
PBHs, many theories predict more diffuse low-mass dark
matter halos; ultralight bosonic field can produce solitonic
cores and compact axion structures [71,72], self-interacting
dark matter theories predict the gravitothermal collapse of
subhalos [73,74], and warm dark matter can form massive
prompt cusps [75,76]. Primordial magnetic fields could
also induce the formation of dark matter minihalos [77].
The fraction of dark matter that could be subhalos have been
constrained to be ≲10−2 for halos with mass ≲1M⊙ by EM
microlensing [78–80] while the constrains for masses
≳103M⊙ by consistency checks with the anisotropies of
the CMB are even more stringent [81].
Lensed GWs have been actively searched [82–86] with no

conclusive discoveries. These searches work mostly in the
geometrical optics regime,where differentGWevent triggers
are compared against each other to uncover lensed events
with multiple images arriving at different times [87–91].
Given a catalog of detected events, potential subthreshold
counterpart images are also being looked for [92–94]. The
rate of detecting strongly lensed pairs of GW signals in the
LIGO-Virgo-KAGRA detector network running at design
sensitivity has been forecast to range from once to a few tens
per year [95–98], with a lower limit of 10−5 yr−1 [99].

Lensing effects will also affect parameter estimation of both
individual events and GW populations [100–104].
While most lensing studies have focused on the geomet-

rical optics regime, there has been active research on wave
optics effects in the past decades. Femtolensing of gamma
ray bursts with diffraction has been considered [105,106],
but the finite size of the source [107] leads to poor con-
straints on the MACHO population [108]. Similar studies
have been undertaken for fast radio burst sources in the
geometrical optics limit [69,109,110] and with wave-
optics effects included [111–115], with the caveat that these
will be affected by scintillation. Pioneering work on GW
lensing with diffraction was also performed two decades
ago [31,116].
Other than searches for multiple-image lensing in the

geometrical optics regime, searches for diffracted GW
events have also been undertaken, where a single signal
could lead to a conclusive detection of lensing [34,117].
However, these studies assume point-mass lens profiles,
meaning that they are adequate for searching for GWs
lensed by PBHs or stars, but not for more diffuse lenses like
minihalos. The detection rate of GW signals diffracted by
small-mass halos depends significantly on the halo profile,
and could range from being close to zero to thousands per
year [46]. Nonetheless, analysis methods assuming diffuse
lens profiles will be needed in order to detect or constrain
the rates of these minihalo lensing events.
On the technical side, the field has recently made

significant progress in tackling the computational chal-
lenges of computing the wave-optics effects of lensing
for general lens profiles. The computation of wave-optics
effects requires solving a highly oscillatory Fresnel-
Kirchhoff integral, with analytic solutions only for simple
cases. A number of numerical approaches have been used to
solve the integral, including a direct quadrature-type inte-
gration, transforming the problem into a series of contour
integrals [58,118], and analytic continuation, i.e., Picard-
Lefschetz type methods [119–121]. Approximate methods
were also used to speed up calculations [48,116].
While we can compute the wave-optics effects with the

methods mentioned above, efficiency is also important.
When a GW signal is detected, one has to perform Bayesian
parameter estimation (PE) to extract the value of the
lensing-related parameters from the data. For this purpose,
the lensed waveform model has to be evaluated ∼Oð107Þ
times. For the point-mass lens case an analytic solution to
the amplification factor is known and can be efficiently
called, so PE can be performed [34,61,122]. However, for
other lens models the numerical evaluation of the ampli-
fication factor is prohibitively expensive for PE. To the best
of our knowledge, the only publicly available software
package capable of performing PE for lens models other
than the point mass and SIS lenses is the Gravelamps
package [123], where the amplification factor is computed
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by direct integration and interpolated over the frequency
and the impact parameter of the source.
In this work, we will focus on the detection of wave

optics effects in GWs lensed by minihalos and measured by
ground-based detectors. In the frequency band of ground-
based detectors, these effects are measurable for lens
masses of ∼1–1000M⊙. In this paper we introduce
glworia [1] (gravitational lensing in the wave optics
regime; interpolator for the amplification), a python
package for computing the amplification factor for arbitrary
spherically symmetric lens models with one lens parameter
l other than the (redshifted) mass of the lens MLz and the
(one-dimensional) impact parameter y of the source.1 The
amplification factors are then interpolated in the time
domain, and PE can be performed for the lens mass,
impact parameter, and the lens parameter.
In Sec. II we review the mathematics behind computing

the lensing amplification factor. In Sec. III we explain our
numerical implementation of the contour integration
method and how we construct the interpolation table for
the amplification factor. In Sec. IV we perform Bayesian
parameter estimation on mock lensing signals injected into
LIGO detector noise. In Sec. V we discuss the implications
of our results and potential directions of future work.

II. PRELIMINARIES

A. The lensing integral

The following derivation follows closely Ref. [2]. In this
work, we will use geometric units such that c ¼ G ¼ 1.
While we will study gravitational wave lensing with

wave-optics diffractive effects, it will still be useful to
inherit some terminology that is used in the geometrical-
optics regime. For example, while in the wave-optics limit
we might not see discrete images that are well resolved in
the sky or in the arrival time, we will still call the critical
points of the time delay function (arrival time) the
“images”. To further simplify notation, we will define
the “strong-lensing” regime to be the case when there are
multiple such images, i.e., there are additional critical
points other than the trivial minimum of the time delay,
and “weak-lensing” the case when there is only one image,
i.e., only the global minimum exists. Such a definition
might be different from other works in the literature,
especially in EM lensing.
The lensing effects observed will depend on the geom-

etry of the lensing setup. As shown in Fig. 1, we define ξ to
be the location of the lens in the lens plane and η to be that
of the source in the source plane, where both are defined
with respect to the optical axis, with both planes
perpendicular to the axis. We further define the angular

diameter distances DL between the lens and the observer,
DS between the source and the observer, and DLS between
the lens and the source. We will consider lenses with an
extent L much smaller than DL and DLS, i.e., use the thin-
lens approximation. Thus, we can assume that ξ ¼ jξj and
η ¼ jηj are much smaller than DL and DS.
When studying gravitational lensing, it is often conven-

ient to use a length-scale ξ0 that is related to an appropri-
ately defined mass of the lens. For example, for a point
mass lens with a redshifted mass MLz, ξ0 can be chosen to
be the radius of the critical curve on the lens plane (to be
discussed later), or the Einstein radius rE,

ξ0 ¼ rE ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DLDLS

ð1þ zLÞDS
MLz

s
: ð1Þ

For a point mass lens, the Einstein radius rE is the radius of
the critical curve, where the magnification of the image will
be formally infinite if the image lies on it. In fact, we can
use the same definition, Eq. (1), for any lens model. In this
way, defining either one of MLz or ξ0 fixes the other
quantity. This implies that the definition ofMLz could be as
arbitrary as that of ξ0, and it often is not the same as other
definitions of the mass of halos, e.g., the virial mass. It is
convenient to define x ¼ ξ=ξ0 and y ¼ ηDL=ξ0DS, the
dimensionless coordinate vectors on the lens plane and the
source plane.
The lensing affects induced gravitational waves includ-

ing diffraction effects can be derived from with the Fresnel-
Kirchhoff diffraction integral. A detailed derivation can be

FIG. 1. A sketch of the source-lens-observer setup. The source
plane and lens planes are the planes perpendicular to the optical
axis at the source and at the lens, respectively. The relevant
angular diameter distances areDL (from the observer to the lens),
DS (from the observer to the source), and DLS (from the lens to
the source). The displacement vector from the optical axis to the
source in the source plane is η; ξ is the coordinate vector in the
lens plane. Figure adapted from [57].

1In this work, we will call this a “one-parameter” lens model,
becauseMLz only affects the frequency scale of the computations
and y does not depend on the profile of the lens. We will also refer
to l (but not MLz) as the “lens parameter”.
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found in Ref. [2], and we will quote the results directly
below. For an unlensed gravitational waveform hðfÞ in
the frequency domain parametrized by the frequency f, the
presence of the lens would modify it to hLðfÞ through the
lensing amplification factor F̃ðfÞ,

hLðfÞ ¼ F̃ðfÞhðfÞ: ð2Þ

The amplification factor is a 2D integral over the lens plane
(see Appendix A for details),

FðwÞ ¼ w
2πi

Z
E
d2xeiwTðx;yÞ; ð3Þ

wherewe have defined the dimensionless angular frequency

w ¼ 2πð1þ zLÞ
DSξ

2
0

DLDLS
f; ð4Þ

so F̃ðfÞ ¼ FðwðfÞÞ, with zL being the redshift of the lens,
and the time-delay function

Tðx;yÞ≡ DSξ
2
0

DLDLS
ð1þzLÞ

�
1

2
jx−yj2−ψðxÞþϕmðyÞ

�
: ð5Þ

For a fixed source position y, Tðx; yÞ gives the time it takes
for a ray originating from the source to travel through the
pointxon the lens plane and arrive at the observer, andϕmðyÞ
is chosen such that the global minimum of Tðx; yÞ (i.e., the
time of arrival of the earliest ray orwave) is zero. The formof
the Fermat potential ψðxÞ depends on the lens model.

B. Time-domain integral

Assuming that the lens is spherically symmetric, the
integral in Eq. (3) can be transformed into a 1D integral and
evaluated numerically. However, the integral is highly
oscillatory, and it is nontrivial to compute when w is large,
e.g., w≳ 103. An alternative strategy, first proposed in
Ref. [118] and implemented in Refs. [43,56,58,121,124], is
to solve the integral in the time domain. Following
Ref. [118], we start by Fourier transforming the quantity
F̃=ðiωÞ,

ĨðτÞ ¼ 1

2π

Z
d2x

Z
dweiwðϕðx;yÞ−τÞ

¼
Z

d2xδðTðx; yÞ − τÞ ð6Þ

¼
X
k

I
γk

ds
j∇xTðxðτ; sÞ; yÞj

; ð7Þ

where δ is the Dirac delta function, ∇x is the gradient
operator with respect to the lens plane coordinates x, and
the summation in Eq. (7) is over all of the contours γk of

constant τ parametrized by s. Going from Eq. (6) to Eq. (7)
we have made use of the properties of delta functions.
In this form, Eq. (7) has a conceptually simple inter-

pretation. For a “contour ribbon” bounded by two contour
lines at fixed T ¼ τ and T ¼ τ þ dτ, the width of such a
ribbon at the parametrized point s is proportional to
1=j∇Tj. Thus, ĨðτÞ can be viewed as the lens-plane cross
sectional area of the rays that will arrive at the time τ.
Because each point on the lens plane should receive
approximately the same flux per unit area, if the source
were a pulse, ĨðτÞ would then be proportional to the power
received at time τ. For a signal that is continuous in time,
e.g., hðτÞ, the response is the convolution of hðτÞ with ĨðτÞ,
and the Fourier transform of the convolution is the
multiplication of the two components in the frequency
domain, as in Eq. (2). Note that Ĩ is the Fourier transform of
F̃=ðiωÞ, and the factor iω can be understood as the same
factor that appears when applying the Huygens-Fresnel
principle.
In this work, wewill solve the lensing integral in terms of

Eq. (7). We will discuss its numerical implementation in
Sec. III.

C. Geometrical optics limit

When w is large, the integral in Eq. (3) is dominated by
the stationary points of Tðx; yÞ, so we can use the stationary
phase approximation to obtain,

FgeomðfÞ ¼
X
j

ffiffiffiffiffiffiffi
jμjj

q
eiwTðxj;yÞ−iπnj ; ð8Þ

where the summation is over all of the stationary points
(image positions) of Tðx; yÞ. The Morse indices nj take the
values 0; 1

2
; 1, for minima, maxima, and saddle points of T,

respectively. The magnification μj of an image is given by

μ−1j ¼ det
�
HessxTðx; yÞjx¼xj

�
: ð9Þ

For spherically symmetric lenses, this is explicitly given by

μ−1j ¼
�
1 −

αðxÞ
x

��
1 −

dαðxÞ
dx

�
; ð10Þ

where x ¼ jxj, αðxÞ ¼ ∇ψðxÞ, and αðxÞ ¼ jαj.
It is evident from Eq. (10) that μj blows up when

αðxÞ=x ¼ 1 or dαðxÞ=dx ¼ 1. These are locations of fold
catastrophes. For spherically symmetric lenses, they are
circles in the lens plane and they are called “critical
curves”. If an image lies on a critical curve, the image
has an infinite magnification. The source position y and
image positions xj are related by the lens equation,

∇xTðxj; yÞ ¼ xj − y − αðxjÞ ¼ 0: ð11Þ
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Therefore, we can map the critical curves from the lens
plane back into the source plane to obtain the caustics of the
lens. For spherically symmetric lenses, these are circles in
the source plane with radius ycrit. For the lens profiles
considered in this work, when y < ycrit, there will be either
two or three images, depending on whether the profile is
cuspy, and when y > ycrit there will be only one image. The
case y ¼ ycrit corresponds to a fold catastrophe where two
of the images merge into one at infinite magnification.

D. Lens models

In this work, wewill be using three classes of lensmodels.
For simplicity, we will only consider models with a single
parameter l (in addition to the redshifted lens massMLz and
impact parameter y). These will include the Navarro-Frenk-
White (NFW) profile, the generalized singular isothermal
sphere (gSIS) profile, and the cored isothermal sphere (CIS)
profile. Wave optics lensing by the gSIS and CIS profiles
have been studied in detail in Refs. [43,121].

1. NFW profile

The density profile of an NFW lens is given by [125]

ρðrÞ ¼ ρ0
r=rsð1þ r=rsÞ2

; ð12Þ

where rs is a scale radius that determines where the lens
transitions from an r−1 dependence to an r−3 dependence,
and ρ0 is a normalization constant. We define the character-
istic convergence as

κ ¼ ρ0rs
Σcrit

; ð13Þ

where Σcrit ¼ DS=4πDLDLS. If we choose ξ0 ¼ rs, the
lensing potential can be calculated to be [126]

ψðxÞ¼

8>>><
>>>:

κ
2

��
ln x

2

�
2− ðarctanh

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
Þ2
�

if x≤ 1;

κ
2

��
ln x

2

�
2þðarctan

ffiffiffiffiffiffiffiffiffiffiffiffi
x2−1

p
Þ2
�

if x> 1:

ð14Þ

2. gSIS profile

The gSIS model is a generalization of the singular
isothermal sphere model (SIS), where the slope of the
profile is allowed to vary. The density profile for a gSIS
lens is given by

ρðrÞ ¼ ρ0

�
rs
r

�
kþ1

; ð15Þ

and the SIS profile is recovered by setting k ¼ 1 and fixing
the constants appropriately. By choosing

ξ0 ¼
�

2βk
2 − k

ρ0rs
Σcrit

�
1=k

rs; ð16Þ

where βk ¼
ffiffiffi
π

p
Γðk=2Þ=Γððkþ 1Þ=2Þ and Γ is the gamma

function, the lensing potential is

ψðxÞ ¼ x2−k

2 − k
: ð17Þ

When k > 1, the slope of the profile is steeper than the
SIS profile, i.e., matter is more concentrated. Analogous to
the point-mass lens model, there will always be two images
in this regime (a minimum and a saddle point in the time
delay function T), with a cusp in the function T at the center
of the lens (which is different from the point-mass lens
case, where there will be a pole). When k < 1, the profile is
broader than the SIS profile. There are three images when
the source is within the caustic and one image when it is
outside, similar to the NFW and CIS cases.

3. CIS profile

The CIS model (also called the NIS, nonsingular
isothermal sphere) is another modification of the SIS
model, where a core replaces the singular cusp at its center.
The density profile is given by [127]

ρðrÞ ¼ ρ0
r2c

r2 þ r2c
; ð18Þ

where rc is the characteristic radius of the core and ρ0 is a
normalization constant. Choosing the scale

ξ0 ¼
2πρ0r2c
Σcrit

; ð19Þ

the lensing potential is

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ x2

q
þ xc log

2xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ x2

p
þ xc

; ð20Þ

where xc ¼ rc=ξ0.

III. COMPUTING THE LENSING INTEGRAL

As discussed in Sec. II B, previous literature has shown
that the problem of computing the effect of lensing on a
GW signal can be reduced to computing contour integrals
on a set of contour lines of the time delay function Tðx; yÞ,
as in Eq. (7). For a fine enough array in time τ½n�, if the
contour integral Ĩ½n� ¼ Ĩðτ½n�Þ is computed, the frequency
domain amplification FðfÞ can be obtained by an inverse
discrete Fourier Transform (IDFT),

F½n� ¼ 2πif½n�IDFT½Ĩ½n��; ð21Þ
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where f½n� is the corresponding discrete Fourier Transform
(DFT) frequency vector, and we have assumed that the
elements of τ½n� are uniformly spaced in time.

A. Time-domain integral

The computation of Ĩ½n� requires summing over the
contribution from disjoint contours corresponding to the
same time τ. For the lens models considered, depending on
the topology of the time delay function Tðx; yÞ (i.e., the
number of critical points) and the value of τ, we have to
either consider only one contour loop, or sum over two of
them. For the case of weak lensing (where there is only one
critical point image, corresponding a minimum) there will
always be only one contour loop for any τ.
For all cases considered, there will be at most a

minimum, a saddle point, and a maximum of Tðx; yÞ.
For noncuspy profiles [those with a finite ρðrÞ at r ¼ 0],
when the impact parameter y < ycrit, there will be three
images (a minimum, a saddle point, and a maximum),
while when y > ycrit there will only be one image (a
minimum). However, when the profile is cuspy (e.g., for
the gSIS lens, or the SIS limit of the CIS lens) the
maximum is replaced by a cusp, so there will only be a
minimum and saddle point image for y < ycrit in this case.
In Fig. 2 we show the contour line topology for an NFW

lens in the strong-lensing regime (three images). Due to the

spherical symmetry of the lens profile, we can assume that
the source position lies on the horizontal axis, i.e.,
y ¼ ðy0; y1Þ ¼ ðy0; 0Þ. Then, the images will also lie on
the horizontal axis, and we can solve for their positions
with Newton’s method, or any 1D root-finding algorithm.
The contour lines for any constant τ will pass through the
horizontal axis twice. As shown in the top left panel of
Fig. 2, all of the blue and purple contour lines will pass
through the line between the minimum and maximum
images once, and the other contours will pass through the
line extending from the saddle point image to negative
spatial infinity once, meaning that we will be able to locate
a point on any contour line by using a 1D root-finding
algorithm. Once a point is located, we can trace out the
corresponding contour line by using the Runge-Kutta
method while performing the contour integral. The specif-
ics of our implementation are explained in Appendix B.
When Tmin < τ < Tsad or τ > Tmax, there is only one

contour loop (the blue loops for the former case, and the
green or red in the latter). However, if we follow the
evolution of the contour lines from low to high τ, at
τ ¼ Tsad the contour lines break into two, and they merge
back together at τ ¼ Tmax. Therefore, for Tsad < τ < Tmax,
we will have to sum over the two contour loops when
computing ĨðτÞ. As shown in the right panel of Fig. 2, Ĩ is
discontinuous at Tsad and Tmax. Between Tsad and Tmax, we

FIG. 2. Contours of the time delay function Tðx; yÞ and the time domain amplification factor ĨðtÞ. Top left: The contours levels of
Tðx; yÞ. The blue, black, and purple crosses label the minimum, saddle point, and maximum image positions, respectively. Contour lines
with different colors correspond to the circles of the same color in the right panel, and each color corresponds to a different segment of
ĨðtÞ where a different interpolation table will be constructed; see Sec. III C. Bottom left: A cross sectional view of the top-left panel at
x1 ¼ 0 (the gray dashed line), with the cross-sectional value of T plotted and image positions labeled. Right: The time domain
amplification Tðx; yÞ, obtained by integrating over the contours shown in the top-left panel. Each circle corresponds to an integration
over a contour of the same color shown in the top-left panel. The black dashed line is the summed contribution over all contours of that
particular value of τ. The vertical dashed lines label Tsad and Tmax, the time delays of the saddle point and maximum images.
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have to sum over the contributions of the orange and purple
contours to obtain the full ĨðτÞ, the black dashed line. For
the case of single-image weak lensing, there will always be
only one contour for every τ.
In Fig. 2, we do not use an array of τs that are uniformly

spaced. This is because ĨðτÞ varies faster in the vicinity of
an image, so it is better to use a finer resolution in τ close to
the arrival time of the images. Before performing the IDFT
we will interpolate the results back onto a uniform grid in τ.

B. Transforming to the frequency domain

To obtain the frequency-domain amplification FðwÞ, we
Fourier transform the derivative of ĨðτÞ. As ĨðτÞ is
computed on a discrete set of τ’s, we will need to resort
to a numerical differentiation scheme if we want to work
with the derivative directly. However, as only the Fourier
transform of the derivative is required, we can instead
multiply by a factor of iw after transforming ĨðτÞ to
compensate for the derivative.
From Fig. 2 it is apparent that ĨðτÞ does not tend to the

same limit as τ → �∞. In fact, Ĩ ¼ 0 for τ < 0, i.e., before
the signal has arrived (not shown in the figure), and Ĩ → 1 for
τ → ∞. The difference between the two limits would cause
spectral leakage in the Fourier transform. Away to mitigate
this effect is by using a windowing function [56,57], but we
found that subtracting a constant before Fourier transform-
ing as implemented in Ref. [128] gives more accurate
results. Explicitly, we perform the transformation,

FðwÞ ¼ iwIFT½ĨðτÞ� þ ffiffiffiffiffiffiffiffi
μmin

p
; ð22Þ

where μmin is the magnification of the minimum image, and
IFT denotes the inverse Fourier transform, which is per-
formed numerically as a discrete inverse Fourier transform.
In other implementations of the contour integration method,
e.g., in Refs. [43,58,118,121], the discontinuities attributed
to the saddle point andmaximum images are also removed in
a similarmanner, butwe find thatwe do not need to do that to
achieve satisfactory accuracy for our purposes.
In practice, we would like to target a wide range of MLz

spanning orders of magnitude, and the unlensed GWs also
span orders of magnitude in frequency. Therefore, we will
also have to compute FðwÞ over orders of magnitude in w.
As the frequency bins of DFT results are in linear scale, we
will have to patch together multiple results at different
orders of magnitude to efficiently compute FðwÞ over the
required range. We will divide our frequency space into
four domains, in ascending order in w. We first define Thigh

to be the latest time of occurrence of a significant feature
(peaks or kinks) in ĨðτÞ. Explicitly,

Thigh ¼
	
maxðTsad; TmaxÞ for strong lensing;

maxτ ĨðτÞ for weak lensing:
ð23Þ

In the first domain, we take FðwÞ ¼ 1, because FðwÞ → 1

and w → 0. In the second domain, we compute FðwÞ by
Fourier transforming ĨðτÞ over N equally spaced (interpo-
lated) sampling points with τ between 0 and 20Thigh. The
third domain is computed similarly to the second, but with
the higher bound of τ extended to minð2000Thigh; 1000Þ. In
the fourth domain, we use the geometrical optics approxi-
mation to compute FðwÞ, i.e., Eq. (8). Three transition
frequenciesw1, w2, w3 are required to define the boundaries
between the four domains in frequency space. We use the
lowest positive frequency within the DFT frequency bins as
w1, while we use w2 ¼ 2.5=Thigh and w3 ¼ 250=Thigh or
50=Thigh for strong lensing and weak lensing, respectively.
We need to use a lower value of w3 (i.e., transition to the
geometrical optics limit earlier) for weak lensing because
the phase is not recovered as accurately at high frequencies
with our full wave-optics calculations.
The above procedure works for any spherically sym-

metric lens model with a single image (minimum) or three
images (minimum, saddle, maximum). However, if the
center of the profile is a cusp, e.g., for the gSIS lens, the
central image will be replaced by a nonsmooth kink. This
only requires a minor modification of the procedure above,
because the topology of the contour lines still follows that
shown in the top left panel of Fig. 2. While the root-finding
algorithm will not be able to identify the kink at the center,
we can simply specify by hand that there is effectively an
“image” at the origin and the contour lines have morphol-
ogies similar to the case when the image was smooth. On
the other hand, we keep in mind that we should not include
the contribution of such an “image” when computing the
geometrical optics amplification, because it is not a true
image after all.
Using the above procedure, we can produce the fre-

quency domain amplification FðwÞ for the NFW, gSIS, and
CIS lenses, both in the case of single-image weak lensing
and multiple-image strong lensing, and the resulting time
domain and frequency domain amplifications are plotted in
Fig. 3. For the strong-lensing case, we always have to sum
over two contour lines when we are in the regime
Tsad < τ < Tmax, where Tmax is either the arrival time of
the maximum image or the corresponding time delay of the
kink at the origin, if it exists. The frequency domain
amplification is oscillatory in the high-frequency limit,
because it corresponds to interference of multiple images,
which can also be seen in Eq. (8). The amplification
oscillates at intermediate frequencies but approaches a
constant at high w, corresponding to

ffiffiffiffiffiffiffiffiffiffiffijμminj
p

. It is the
intermediate oscillations due to the wave-optics effects that
encode the information about the lens. If the wavelength is
short (hence the frequency is high) and wave-optics effects
are unimportant, the amplification is constant, so the
lensing effects will be completely degenerate with the
luminosity distance. Hence, wave-optics effects help us
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FIG. 3. Examples of amplification factors for the NFW (first two rows), gSIS (middle two rows), and CIS (bottom two rows) lens
models. The first row for each lens model corresponds to the strong-lensing case with multiple images, while the second row shows the
weak lensing case with a single image. We show the time-domain amplification ĨðτÞ (left column) as well as the magnitude (middle
column) and phase (right column) of the frequency domain amplification FðwÞ. Curves with different colors in the left column
correspond to different segments with a separate interpolation table (see Sec. III C), while the black dashed lines for the strong-lensing
cases are the values of ĨðτÞ summed over all contours at the same τ. The horizontal gray dashed lines in the middle and right columns
correspond to the transition frequencies where we patch together results in different frequency domains, with the highest frequency
domain using the geometrical optics results.
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identify lensed events, even when there is only a sin-
gle image.

C. Time-domain interpolation

The computation of the frequency-domain integral takes
Oð1Þ seconds on a GPU. While further optimizations could
improve the speed, this is still inadequate for performing full
Bayesian parameter estimation on detected GWevents. For
the spherically symmetric lens models considered in this
work, we only have to consider three parameters that are
related to the lensing setup; the redshifted lensmassMLz, the
source position y ¼ jyj, and the additional parameter that
characterizes the lens profile, i.e., κ for NFW, k for gSIS, and
xc for CIS (recall that we call such a lens parameter
collectively as l, where l∈ fκ; k; xcg depending on the lens
model of concern). The lens mass MLz only affects which
frequency range w ¼ 8πMLzf to use, given a frequency f.
Therefore, the problemof computing amplification factors is
essentially a 2D problem in parameter space with an addi-
tional dimension in frequency, so the dimension is low
enough that we can construct an interpolation table for
rapidly calling the results.
A challenge of building an interpolation table is that the

amplification factor is oscillatory in the frequency domain.
When performing parameter estimation, we might want our
prior range to span orders of magnitude in MLz, and when
MLz is large we will reach the high-w oscillatory regime.
This could require a lot of points in w when constructing
the interpolation table, which could become a bottleneck in
terms of speed and memory. However, as shown in Figs. 2
and 3, the amplification in the time domain is a piecewise
smooth and nonoscillatory function, while the transition
boundaries between the pieces are the image time delays,
which are easy to compute. Therefore, we can build an
interpolation table for ĨðτÞ, and we can perform a (relatively
computationally cheap) Fourier transform to obtain FðwÞ
every time we want to call the amplification factor.
To avoid the nonsmooth features in ĨðτÞ, we divide the

function into different pieces with boundaries related to the
image time delays. These different segments are plotted
with different colors in Figs. 2 and 3. For the multiple
image strong-lensing case, they correspond to sets of
contour lines with the same topology around the images,
with additional segments divided at different orders of
magnitude for τ to adjust the resolution in time. For
example, the blue segment corresponds to contour lines
with Tmin < τ < Tsad enclosing the minimum image, the
orange and purple segments correspond to those with
Tsad < τ < Tmax, with the purple one corresponding to
the contours immediately surrounding the maximum
image, and the green and red contours correspond to the
contours with τ > Tmax surrounding all of the images,
approximately larger and larger circles as τ → ∞. We
transition from the green to the red segment to adjust
the resolution of the interpolation nodes in time as τ

increases. For the weak-lensing case, while all of the
contours have the same morphology (they surround the
minimum image and become approximately circular as
τ → ∞ without ever breaking into multiple contours), we
still divide ĨðτÞ into segments because there could be a
rather sharp peak at an intermediate time (see, e.g., the
second panel on the left column of Fig. 3) and we also want
to change the resolution of the interpolation nodes when τ
increases by orders of magnitude. To avoid the potentially
sharp peak, we divide between the blue and orange seg-
ments at the location where ĨðτÞ attains a maximum value.
This location in time is nontrivial and has to be located
numerically. We then divide between the orange, green and
red segments approximately by the order of magnitude of τ.
An interpolation scheme works well because each seg-

ment and their boundaries (if defined appropriately) vary
smoothly with the lensing parameters l and y. The
interpolation will then proceed in two steps; interpolating
the values of the boundaries, and then interpolating ĨðτÞ
itself for each segment.
The interpolation procedure is slightly different between

the strong-lensing and weak-lensing cases because of the
difference in contour line topology. Therefore, we have to
divide the 2D lensing parameter space into these two regimes
when constructing the interpolation table. Such a division
can naturally be imposed by considering the caustic curves
ycritðlÞ, which depend on the lens parameter l. For y < ycrit
we are in the strong-lensing regime, and fory > ycrit we are in
the weak-lensing one. The critical regime y ≈ ycrit is patho-
logical because themagnification of the image(s) blows up to
infinity.While this does not happen in physical scenarios due
to the spatially finite nature of the source and diffraction
effects, the geometrical optics computations will be affected,
sowe cannot transition toEq. (8) in that limit. In principle,we
can include diffraction corrections to Eq. (8) in the critical
limit.However, given that the y ≈ ycrit region does not takeup
a significant portion of parameter space, we choose to defer
the treatment of this region to future work. In the current
work, wewill excise this region from the parameter space by
setting the prior probability to zero in the region when
performing parameter estimation.
In Fig. 4 we show the interpolation nodes in the 2D

parameter space of l and y for all three lens models
considered. We excised the shaded region close to the
caustic ycritðlÞ, and divided the whole parameter space into
a strong-lensing regime and a weak-lensing regime. We use
double the resolution in each dimension for the strong-
lensing case because the quantities to be interpolated tend
to vary more rapidly in that regime.

IV. BAYESIAN INFERENCE
OF THE LENSING PARAMETERS

Given an interpolation table for FðfÞ and a waveform
model for h̃ðfÞ, we can rapidly call the lensed waveform
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FIG. 4. The interpolation domains used for parameter estimation of the NFW (left), gSIS (middle), and CIS (right) lenses. Each circle
is a node for interpolation, where the time domain amplification and image time delays are computed. The blue, red, and green points
correspond to strong-lensing, critical, and weak-lensing points. We use double the resolution in each dimension within strong-lensing
regions. The gray regions are excision regions where we set the prior for parameter estimation to zero, because the results in those
regions are pathological due to diverging behaviors near the caustic.

FIG. 5. Parameter estimation results for the NFW lens in the strong (top row, one panel) and weak (bottom row, three panels) limit. For
κ ¼ 3.0 and y ¼ 3.0 (bottom right panel), the strong spike in the posterior at the upper bounds of κ and y is an artifact of prior
reweighting. The injected values are marked by the gray lines.
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h̃LðfÞ, and we can use standard sampling techniques to
infer the properties of detected lensed GW events. In this
work we perform an injection-recovery analysis with the
Bilby Bayesian inference package.
To test the observability of lensing effects, we perform

injection runs for both the strong- andweak-lensing cases for
all three lensmodels. For theweak-lensing cases,we perform
injections with different source positions y to determine the

critical value of y for which lensing is observable. For the
gSIS lens we also perform runs at the SIS limit (k ¼ 1)
between the weak- and strong-lensing regime.
For the NFW and CIS lenses, we perform one strong-

lensing run. For the gSIS lens, we perform multiple runs
(y∈ f1; 2; 3g) for the strong-lensing case because the
strong-lensing regime extends to arbitrary y as long as
k > 1. For the marginal k ¼ 1 case corresponding to

FIG. 6. Parameter estimation results for the gSIS lens in the strong (top row, three panels), marginal (middle row, two panels) and weak
(bottom row, three panels) lensing limit. The k ¼ 1.0 marginal cases (middle row) correspond to the SIS lens, where there are two
images and a central cusp on the lens plane. We skipped the k ¼ 1.0, y ¼ 1.0 case because the source lies on the caustic of the SIS lens.
The injected values are marked by the gray lines.
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injecting an SIS lens, we skip y ¼ 1 because it coincides
with the caustic at ycrit ¼ 1. We use y∈ f1; 2; 3g for the
weak-lensing case of all lenses to test themarginal value of y
for which lensing effects are detectable, even when there is
only a single image. For all runs, we use a lens mass
MLz ¼ 100M⊙, a source luminosity distance dL¼500Mpc,
and a BBH with nonspinning progenitors of equal mass
30þ 30M⊙ for simplicity, injected into the LIGO Hanford
and Livingston detector network at O4 design sensitivity,
with an unlensed network signal-to-noise ratio (SNR) ∼30.
We use the IMRPhenomXHM waveform model [129] and
include all intrinsic, extrinsic, and lensing parameters in our
analysis. More details of the injection run settings can be
found in Appendix D.
The results of all of the parameter estimation runs for the

NFW lens are shown in Fig. 5. While parameter estimation
is performed on all parameters, we only show the corner
plots of the lensing-related parameters for simplicity. The
full corner plots including the posterior distribution of all
other intrinsic and extrinsic parameters of the GW source
are available on the glworia GitHub repository [1]. For
the strong-lensing case, all of the lensing-related parame-
ters can be constrained, although there are degeneracies

between them. In the weak-lensing case, for y ¼ 1.0 the
parameter posteriors are informative, but for y ≥ 2.0 the
posterior for y rails significantly at the upper bound of
y ¼ 5.0. At a high y, the GWs are minimally affected by
lensing and the signal approaches an unlensed signal, so a
railing against the upper bound signifies nondetection of
lensing. Therefore, the posterior of y should be used as a
first check of whether we have measured the effects of
lensing. The results in Fig. 5 show that, at least for κ ¼ 3.0,
these effects cannot be measured if y≳ 2. For the cases
with higher degeneracy, y is often lower and MLz is often
higher for samples with a higher luminosity distance dL
(not shown in the plots). Such a degeneracy is expected
because in the geometrical optics approximation, the
reduction in the magnification has the same effect as a
higher luminosity distance, and can be compensated by a
lower y and a higher MLz.
Similar trends can be observed in the parameter estima-

tion results for the gSIS and CIS lenses shown in Figs. 6
and 7 respectively. For the gSIS lens, in the strong-lensing
limit the lensing effects can be measured up to y ¼ 2.0, but
only for y ¼ 1.0 in the weak-lensing limit. For the CIS lens,
the effects can also only be measured for y ¼ 1.0. However,

FIG. 7. Parameter estimation results for the CIS lens for strong (top row, one panel) and weak (bottom row, three panels) lensing. The
injected values are marked by the gray lines.
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when interpreting these results, note that the same impact
parameter y could correspond to different physical scales
when comparing between different lens models, or even
when comparing between realizations of the same lens
model with different values of l.
While the posterior of y is useful for determining

whether or not lensing is measured, the physical properties
of the lens are encoded in the lens mass and in the lens
parameter. Even if the posterior of y is informative, it does
not necessarily mean that the lens mass or lens parameter
will be well measured. For example, the slope k of the gSIS
lens is often poorly constrained (i.e., there is significant
railing at the lower or upper bounds) even if y is well-
constrained. The mass MLz of the lens is relatively better
constrained in all cases across lens models, although the
posterior often has support over orders of magnitudes
in MLz.
While the unlensed GW signal that we used has an SNR

of ∼30, the lensing effects could magnify the signal and
increase the SNR. For example, the strong-lensing results
could have an SNR≳ 70. In this regime, the Fisher
information matrix (FIM) can be used to estimate the
measurement uncertainties. Therefore, we can compare the
uncertainties in our PE results with the estimates in, e.g.,
Ref. [43]. For example, we find that the strong-lensing
result for the CIS lens (xc ¼ 0.02, y ¼ 0.3, top panel of
Fig. 7) agrees within a factor of a few with those
in Ref. [43].
Although we used an interpolation table to speed up the

evaluation of the lensing amplification factor, this calcu-
lation is still the bottleneck in computational cost when
compared to the evaluation of the unlensed waveform.
While performing the interpolation takes negligible time,
we need to use a very fine grid in time (with 216 points) to
ensure that the FFT results are accurate in the high-
frequency regime. Broadly speaking, a single likelihood
evaluation of a lensed model is a few times more expensive
than an unlensed (IMRPhenomXHM) one. Moreover,
assuming that there is only one lens parameter l (as is
the case for all lens models in this work), the lensed
waveform model will contain three additional parameters
(l, MLz, y), which increases the dimensionality and hence
the time it takes for the sampler to converge. Overall,
depending on whether the injected signal shows prominent
lensing features, using a lensed model could introduce as
high as an order of magnitude increase in the sam-
pling time.

V. DISCUSSION

In the previous section we have shown that, in principle,
diffraction lensing effects can be measured by current
ground-based GW detectors, as long as the impact param-
eter y is small enough, even in the weak-lensing limit where
there are no multiple images. The parameters l∈ fκ; k; xcg
characterizing the lens could also be constrained, meaning

that wave-optics lensing of GWs could be a unique probe of
the properties of minihalos.
Of course, whether we will observe these types of

lensing events depends on the abundance of minihalos in
the Universe and their properties (e.g., concentration). The
abundance of minihalos will directly affect the distribution
of impact parameters y of lensing events, and the distri-
butions of the lens massMLz and parameter l also affect the
probability of detecting measurable lensing events. In fact,
given an abundance of minihalos, we can estimate the
distribution of y, and from constraints on y we can also
constrain the abundance of minihalos.
However, note that there is no guarantee that the

parameter ranges that are covered by our injection analysis
or our prior distribution would fully encapsulate the
distribution of the parameters in nature. For example,
while we used NFW halo lenses with κ ¼ 3 and 8 as
illustrative examples, these correspond to a density ρs ≡
ρðrsÞ ∼ 105M⊙ pc−3 at the scale radius, or a concentration
parameter c200 ¼ R200=rs ∼ 104 (where R200 is the radius
within which the average density is 200 times the critical
density ρcrit of the Universe), which are higher than the
concentrations of the halos seen in cold dark matter (CDM)
cosmological simulations [130,131]. On the other hand,
extended dark matter objects are often parametrized as
NFW halos with high concentrations, for which ρs could
extend to ranges higher than 105M⊙ pc−3 [132,133].
Moreover, the concentration of halos in nature also depends
on the model of dark matter, and the translation between κ
and c200 depends on the geometry of the lensing setup, so a
large-scale comprehensive study has to be carried out in
order to cover the full parameter space. This is beyond the
scope of our work. Nonetheless, our methodology could be
straightforwardly generalized to other parts of parameter
space, e.g., to lower values of κ for the NFW lens, and we
might find that the impact parameter y required for
measurable lensing effects could be different in that case.
With this is mind, our work serves as a proof of principle. A
rigorous study of the full lens parameter space is an
interesting direction for future research.
In this work, we estimate the marginally measurable

impact parameter to be around y ∼ 1 in the weak-lensing
regime, at least for the lens models and values of the
lensing-related parameters we considered. With this infor-
mation, we can estimate the rate of detectable diffraction
lensing events given a population of lenses. To pinpoint the
marginal impact parameter for different lens models span-
ning a larger range of impact parameters, more injection
runs should be performed in the future. Our results can also
be used to calibrate Fisher information matrix estimates,
which are more scalable over multiple events than full
Bayesian parameter estimation. In principle, our methods
can be generalized to forecast the detectability of diffractive
lensing by space-based detectors, although the accuracy of
the amplification factor computation must be improved and
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the interpolation table must be pushed to higher impact
parameters.
All of the parameter estimation results in this paper are

obtained assuming the sensitivity curve of the fourth
observing run (O4) of the LIGO detectors. Therefore the
parameter estimation accuracy can be expected to improve
as the detector sensitivity improves in the future, or when
next-generation detectors will come online.
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APPENDIX A: DERIVATION OF THE
DIFFRACTION INTEGRAL

In this appendix, we will derive Eq. (3), the lensing
diffraction integral. We will be following Ref. [2] closely.
The spacetime metric of an isolated, slowly moving,

noncompact matter distribution is given by (neglecting the
expansion of the Universe for now)

ds2 ¼ ð1þ 2UÞc2dt2 − ð1 − 2UÞdx2; ðA1Þ

where U is the gravitational potential of the matter. On a
(future-directed) null curve, ds2 ¼ 0. The quantity n ¼
1 – 2U can be viewed as an effective refractive index of the
gravitational field. If a light pulse is emitted at t ¼ 0 at the
source, its arrival time at a stationary observer at fixed
spatial coordinates will be

t ¼
Z

ð1 − 2UÞdl

¼ l − 2

Z
Udl; ðA2Þ

to first order inU, where l is the overall Euclidean length of
the light travel path. Now consider light pulses that travel
from the source to the observer as in Fig. 1. Assuming that
ξ ¼ jξj and η ¼ jηj are much smaller than DL and DS, the

path length is

l ≈DLS þDL þ 1

2DLS
ðξ − ηÞ2 þ 1

2DL
ξ2: ðA3Þ

The potential U is linear in the mass distribution, so we can
derive a Green’s function to solve the integral in the second
term of Eq. (A2). For a point mass,U ¼ 4MG=rc2, and the
integral from the source S to the image position I on the
lens plane is

Z
I

S
Udl ¼ GM ln

ξ

2DLS
; ðA4Þ

where we neglect higher-order terms. The integral from the
lens plane to the observer is analogous, and the total
integral is

Z
Udl ¼ GM ln

ξ

ξ0
þ const; ðA5Þ

where ξ0 is an arbitrary constant which can be chosen as
convenient.
We will consider lenses with an extent L much smaller

than DL and DLS. In that case, the deflection of the ray
occurs mainly when it is close to the lens, so we can assume
that the light travel path consists of two straight line
segments with an abrupt change in direction on the lens
plane. Then, for a deflection angle α̂, if α̂L (the
perpendicular displacement of the ray when it is close to
the lens) is small compared to the length scale on which U
changes, the integral

R
Udl can be performed over the

unperturbed ray. As the integral for the point-mass case is a
function of ξ, which can be seen as an impact parameter, the
integral only depends on the perpendicular distance of the
mass elements to the ray, but not on their distribution along
the direction parallel to the ray. Therefore, we can project
the mass distribution on to the lens plane before integrating.
This is called the thin-lens approximation.
Exploiting the linearity of U with respect to mass

elements and employing the thin-lens approximation, we
can use Eq. (A5) to write,

ψ̂ðξÞ≡ 2

Z
Udl

¼ 4

Z
d2ξ0Σðξ0Þ ln

�jξ − ξ0j
ξ0

�
þ const; ðA6Þ

for a general lens distribution, where Σðξ0Þ is the density
profile projected onto the 2D lens plane. A ray originating
from η on the source plane, passing through ξ on the lens
plane and arriving at the observer would correspond to a
light travel time

t ¼ ð1þ zLÞϕðξ; ηÞ þ const; ðA7Þ
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where ϕðξ; ηÞ is the Fermat potential,

ϕðξ; ηÞ ¼ DLDS

2DLS

�
ξ
DL

−
η
DS

�
2

− ψ̂ðξÞ; ðA8Þ

and we have included a factor of ð1þ zLÞ to account for
cosmological redshift; see Ref. [2] for a detailed derivation.
It is convenient to define x ¼ ξ=ξ0 and y ¼ ηDL=ξ0DS,
which are the angular positions of ξ and η with respect to
the optical axis in the sky according to the observer,
normalized by ξ0. Then, the arrival time of a ray at the
observer can be rewritten as

Tðx;yÞ≡ DSξ
2
0

DLDLS
ð1þ zLÞ

�
1

2
jx− yj2−ψðxÞþϕmðyÞ

�
;

ðA9Þ

where ψðxÞ≡ ψ̂ðξ0xÞ, and ϕmðyÞ is chosen such that the
minimum value of Tðx; yÞ is zero.
In the eikonal approximation, the metric perturbation

corresponding to GWs can be written as

hμν ¼ Φeμν; ðA10Þ

where eμν is the polarization tensor of the GW, whose
change is of the order U in our case and can be assumed to
be constant. Then, the problem reduces to finding the scalar
function Φ, which satisfies the Helmholz equation in the
frequency domain,

ð∇2 þ ω2ÞΦ̃ ¼ 4ω2UΦ̃: ðA11Þ

Now, the field at the location of the observer could be
solved by the Fresnel-Kirchhoff diffraction integral
[Eq. (A14) below]. Because the integral only works if
the wave travels freely beyond the integration surface, we
need to define a surface E0 parallel to the lens plane but
closer to the observer, and assume that the rays do not
interact with the lens anymore after passing through E0. Let
the perpendicular distance between E0 and the observer be
D0

L. Then, applying the eikonal approximation, the phase of
the rays at E0 is

S ¼ ωðϕ̃ −D0
LÞ þ αðηÞ; ðA12Þ

where we used S ¼ ω
R
ndl, and αðηÞ is a constant that

does not depend on the location of the ray on the lens plane.
If DL −D0

L ≪ 1, the amplitude of the wave at E0 is
approximately the same as that at E. This is because the
alteration of amplitude (i.e., magnification) of the observed
wave is attributed to the focusing of the waves due to small-
angle scattering. The effect of focusing is only significant
over a long distance (i.e., when the waves are traveling from
E0 to the observer), but it has a negligible effect for the short
journey from E to E0. Thus, if the complex amplitude of the

wave without the lens is Ae−iαðηÞ (where α has been
included in the definition to simplify the calculations,
without loss of generality), the amplitude of the wave at
E0 will be

ΦE0 ðξ0Þ ¼ DSA
DLS

eiωðϕ̃−D0
LÞ: ðA13Þ

Then, plugging this into the Kirchhoff integral,

Φ̃O ¼ 1

4π

Z
E0
d2ξ0

�
ΦE0

∂

∂n

�
eiωD

0
L

D0
L

�
−
eiωD

0
L

D0
L

∂

∂n
ΦE0

�
; ðA14Þ

the lensing amplification factor F̃ ¼ Φ̃O=A at the observer
is (including the effects of cosmological redshift now, see
Ref. [2] for details)

F̃ ¼ ð1þ zLÞ
ω

2πi
DS

DLDLS

Z
E
d2ξeiωϕ̃ðξ;ηÞ ðA15Þ

¼ w
2πi

Z
E
d2xeiwT; ðA16Þ

where we have defined the dimensionless angular fre-
quency

w ¼ ð1þ zLÞ
DSξ

2
0

DLDLS
ω: ðA17Þ

In deriving Eq. (A15) we have used the thin lens approxi-
mation, neglected the derivatives of slowly varying func-
tions (i.e., we only keep the derivatives of the oscillatory
components with factors of eiωDL ), and taken the
limit E0 → E.

APPENDIX B: IMPLEMENTATION OF THE
NUMERICAL CONTOUR INTEGRATION

The computation of the lensing amplification factor
requires performing a contour integral over constant time
delay contour lines. Given a point on one of these contour
lines, we can perform the integration by going in steps
tangential to this line, which is perpendicular to the gradient
∇T. In our implementation, starting at a point xinit on a
contour at time delay T0, we use a fourth-order Runge-
Kutta method to trace the contour line by moving
perpendicular to ∇T, as shown in Algorithm 1. In the
algorithm, RK4ðfð·Þ; x; hÞ is the Runge-Kutta step con-
structor for the function fð·Þ at x with step size h. We
adaptively control the step size by the factor ρ. We use a
smaller ρ ¼ ρc when the contour line curves more acutely,
but we make sure that ρ is never less than ρr, the distance
from the current point on the contour to the origin, because
the contour lines could be an arbitrarily small circle around
the origin for some T0. Otherwise, we impose the bound
ρmin < ρ < ρmax to avoid using an overly small or large
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step. After the Runge-Kutta proposal step xprop, we perform
an additional adjustment step xadj to reduce the deviation of
the proposed point from the contour line. We then evaluate
the integrand at the midpoint of the full step.

APPENDIX C: ERROR ANALYSIS

In this appendix, we will estimate the errors of our
algorithm for computing and interpolating the amplifica-
tion factor FðwÞ. First and foremost, we test our algorithm

against known analytical results for the SIS lens. The
amplification factor for an SIS lens can be analytically
written as a series expansion in w [49,107,121]. In Fig. 8
we compare our results obtained via contour integration
with those from the series expansion. We define a measure
of the error by ΔF=

ffiffiffiffiffiffiffiffiffiffiffijμminj
p

, the absolute error normalized
by the magnification of the minimum image. We find that in
both the strong-lensing (y ¼ 0.2) and weak-lensing
(y ¼ 2.0) regimes, the error as defined above does not
exceed 10−2.
The computation of FðwÞ makes use of a Runge-Kutta

scheme with step size h for performing a contour integra-
tion over values of τ with resolution related to the number
of points N used in time. The numerical error of compu-
tation will then depend on h and N. In Fig. 9 we show the
convergence of the numerical results when reducing h and
increasingN for both strong lensing and weak lensing of an
NFW lens. The results exhibit approximately second-order
convergence for both h and N.

APPENDIX D: DETAILS
OF THE INJECTION RUNS

For all of the injection runs we use a redshifted lens
mass MLz ¼ 100M⊙. We use the IMRPhenomXHM BBH
merger waveform model to generate the (unlensed) non-
precessing and noneccentric gravitational waveforms. We
use an equal mass of m1 ¼ m2 ¼ 30M⊙ for both BH
progenitors, with zero spins (jχ 1j ¼ jχ 2j ¼ 0). For the
extrinsic parameters, we inject an inclination angle
θjn ¼ π=3, polarization angle ψ ¼ π=2, phase ϕ ¼ π=2,
geocentric time tg ¼ 1126259642.413, right ascension
α ¼ 1.375, and declination δ ¼ −1.2108. We use a sam-
pling rate of 2048 Hz and a minimum frequency of
fmin ¼ 20 Hz, and inject the signals into the two LIGO
detectors, both assuming design sensitivity Gaussian
noise. We use bilby’s implementation of the dynesty

FIG. 8. Comparison between our implementation of the contour integral method for computing the frequency domain amplification
factor versus analytical series expansion results for an SIS lens. Left: The colored lines are results computed with our contour integration
procedure, while the black dashed lines are the analytical results. Right: The error between the two methods, normalized by

ffiffiffiffiffiffiffiffiffiffiffijμminj
p

.

ALGORITHM 1. Contour integration.

Input: Initial point x0, step size h, ρmin, ρmax, time delay
function Tð·Þ

Output: Numerical integration result u
T⊥ð·Þ ← Rotθ¼π=2∇Tð·Þ
u ← 0
x ← x0
while not yet traced whole contour do
ρr ← jxj
ρc ← j∇TðxÞj=detðHessðTÞðxÞÞ; #Inverse of

contour
curvature

ρ ← max ½minðρmin; ρrÞ;minðρmax; ρr; ρcÞ�
Δxprop ← RK4ðT⊥ð·Þ; x; ρhÞ; #RK4 proposal
xprop ← xþ Δxprop
Tprop ← TðxpropÞ
Δxadj ←

∇TðxpropÞ
j∇TðxpropÞj2 ðTprop − T0Þ; #Adjust back

onto contour
xnew ← xprop þ Δxadj
Δx ← ðxnew − xÞ
xmid ← ðxnew þ xÞ=2
Δu ← jΔxj=j∇TðxmidÞj; #Integrand
u ← uþ Δu
x ← xnew

end
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sampler for nested sampling. For all of the intrinsic and
extrinsic parameters of the waveform, we use the standard
priors as implemented in bilby. For the lensing-related
parameters, we use uniform priors with MLz ∈ ð0.1; 2000Þ,
y∈ ð0.1; 5.0Þ, and κ∈ ð0.1; 10Þ for the NFW lens,
k∈ ð0.1; 1.9Þ for the gSIS lens, and xc ∈ ð0; 1Þ for the
CIS lens when sampling. When plotting the results in

the main text we reweight the prior of MLz into a
log-uniform prior. We use a uniform prior for all
lensing-related parameters when sampling to make sure
that the results will not be biased due to strong degen-
eracies. All of the settings files and scripts for submitting
the runs are publicly available on the glworia GitHub
repository [1].
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ĨðτÞ (right). The solid lines correspond to a strong-lensing scenario and the dashed lines correspond to a weak-lensing one. All results
show approximate second-order convergence. The curves all drop to zero at a certain w because we transition to the geometrical optics
approximation there.

PROBING MINIHALO LENSES WITH DIFFRACTED … PHYS. REV. D 109, 124020 (2024)

124020-17

https://github.com/mhycheung/glworia
https://github.com/mhycheung/glworia
https://github.com/mhycheung/glworia
https://doi.org/10.1088/0264-9381/27/23/233001
https://doi.org/10.1088/0264-9381/27/23/233001
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1086/420928
https://doi.org/10.1088/0004-637X/762/1/32
https://doi.org/10.1038/s41586-022-04449-y
https://doi.org/10.1086/381970
https://doi.org/10.1086/381970
https://doi.org/10.1086/383178
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1007/BF01810927
https://doi.org/10.1088/1361-6633/ab4fc5
https://doi.org/10.1088/0256-307X/39/11/119801
https://doi.org/10.1088/0256-307X/39/11/119801
https://doi.org/10.1111/j.1365-2966.2011.18895.x
https://doi.org/10.1111/j.1365-2966.2011.18895.x
https://doi.org/10.1038/s41467-017-01152-9
https://doi.org/10.1038/s41467-017-02135-6
https://doi.org/10.1038/s41467-017-02135-6
https://doi.org/10.1038/s41598-019-47616-4
https://doi.org/10.1103/PhysRevLett.130.261401
https://doi.org/10.1103/PhysRevLett.130.261401
https://doi.org/10.1103/PhysRevD.104.023503
https://doi.org/10.1103/PhysRevD.104.023503


[24] J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. D 102,
124048 (2020).

[25] Y.-F. Wang, S. M. Brown, L. Shao, and W. Zhao, Phys.
Rev. D 106, 084005 (2022).

[26] S. Goyal, A. Vijaykumar, J. M. Ezquiaga, and M.
Zumalacarregui, Phys. Rev. D 108, 024052 (2023).

[27] T. Baker andM. Trodden, Phys. Rev. D 95, 063512 (2017).
[28] T. E. Collett and D. Bacon, Phys. Rev. Lett. 118, 091101

(2017).
[29] O. A. Hannuksela, T. E. Collett, M. Çalışkan, and T. G. F.

Li, Mon. Not. R. Astron. Soc. 498, 3395 (2020).
[30] H. Yu, P. Zhang, and F.-Y. Wang, Mon. Not. R. Astron.

Soc. 497, 204 (2020).
[31] R. Takahashi and T. Nakamura, Astrophys. J. 595, 1039

(2003).
[32] J. M. Ezquiaga, D. E. Holz, W. Hu, M. Lagos, and R. M.

Wald, Phys. Rev. D 103, 064047 (2021).
[33] L. Dai and T. Venumadhav, arXiv:1702.04724.
[34] K.-H. Lai, O. A. Hannuksela, A. Herrera-Martín, J. M.

Diego, T. Broadhurst, and T. G. F. Li, Phys. Rev. D 98,
083005 (2018).

[35] J. Gais, K. K. Y. Ng, E. Seo, K.W. K. Wong, and T. G. F.
Li, Astrophys. J. Lett. 932, L4 (2022).

[36] A. Liu, I. C. F. Wong, S. H. W. Leong, A. More, O. A.
Hannuksela, and T. G. F. Li, Mon. Not. R. Astron. Soc.
525, 4149 (2023).

[37] S. Basak, A. Ganguly, K. Haris, S. Kapadia, A. K. Mehta,
and P. Ajith, Astrophys. J. Lett. 926, L28 (2022).

[38] A. K. Meena and J. S. Bagla, Mon. Not. R. Astron. Soc.
492, 1127 (2020).

[39] S. Jung and C. S. Shin, Phys. Rev. Lett. 122, 041103
(2019).

[40] J. M. Diego, Phys. Rev. D 101, 123512 (2020).
[41] J. Urrutia and V. Vaskonen, Mon. Not. R. Astron. Soc. 509,

1358 (2021).
[42] H. Zhou, Z. Li, K. Liao, and Z. Huang, Mon. Not. R.

Astron. Soc. 518, 149 (2022).
[43] G. Tambalo, M. Zumalacárregui, L. Dai, and M. H.-Y.

Cheung, Phys. Rev. D 108, 103529 (2023).
[44] L. Dai, S.-S. Li, B. Zackay, S. Mao, and Y. Lu, Phys. Rev.

D 98, 104029 (2018).
[45] M. Oguri and R. Takahashi, Astrophys. J. 901, 58 (2020).
[46] X. Guo and Y. Lu, Phys. Rev. D 106, 023018 (2022).
[47] M. Çalışkan, L. Ji, R. Cotesta, E. Berti, M. Kamionkowski,

and S. Marsat, Phys. Rev. D 107, 043029 (2023).
[48] S. Savastano, G. Tambalo, H. Villarrubia-Rojo, and M.

Zumalacarregui, Phys. Rev. D 108, 103532 (2023).
[49] M. Çalışkan, N. Anil Kumar, L. Ji, J. M. Ezquiaga, R.

Cotesta, E. Berti, and M. Kamionkowski, Phys. Rev. D
108, 123543 (2023).

[50] M. Sereno, A. Sesana, A. Bleuler, P. Jetzer, M. Volonteri,
and M. C. Begelman, Phys. Rev. Lett. 105, 251101 (2010).

[51] Z. Gao, X. Chen, Y.-M. Hu, J.-D. Zhang, and S.-J. Huang,
Mon. Not. R. Astron. Soc. 512, 1 (2022).

[52] H. G. Choi, C. Park, and S. Jung, Phys. Rev. D 104,
063001 (2021).

[53] P. Cremonese, D. F. Mota, and V. Salzano, Ann. Phys.
(Berlin) 535, 2300040 (2023).

[54] M. Fairbairn, J. Urrutia, and V. Vaskonen, J. Cosmol.
Astropart. Phys. 07 (2023) 007.

[55] P. Christian, S. Vitale, and A. Loeb, Phys. Rev. D 98,
103022 (2018).

[56] J. M. Diego, O. A. Hannuksela, P. L. Kelly, T. Broadhurst,
K. Kim, T. G. F. Li, G. F. Smoot, and G. Pagano, Astron.
Astrophys. 627, A130 (2019).

[57] M. H. Y. Cheung, J. Gais, O. A. Hannuksela, and T. G. F.
Li, Mon. Not. R. Astron. Soc. 503, 3326 (2021).

[58] A. Mishra, A. K. Meena, A. More, S. Bose, and J. S. Bagla,
Mon. Not. R. Astron. Soc. 508, 4869 (2021).

[59] A. G. Suvorov, Astrophys. J. 930, 13 (2022).
[60] A. K. Meena, A. Mishra, A. More, S. Bose, and J. S. Bagla,

Mon. Not. R. Astron. Soc. 517, 872 (2022).
[61] S. M. C. Yeung, M. H. Y. Cheung, E. Seo, J. A. J. Gais,

O. A. Hannuksela, and T. G. F. Li, Mon. Not. R. Astron.
Soc. 526, 2230 (2023).

[62] X. Shan, X. Chen, B. Hu, and R.-G. Cai, arXiv:2301
.06117.

[63] X. Shan, X. Chen, B. Hu, and G. Li, arXiv:2306.14796.
[64] P. D. Serpico, V. Poulin, D. Inman, and K. Kohri, Phys.

Rev. Res. 2, 023204 (2020).
[65] A. Esteban-Gutiérrez, E. Mediavilla, J. Jiménez-Vicente,

and J. A. Muñoz, Astrophys. J. 954, 172 (2023).
[66] T. Blaineau et al., Astron. Astrophys. 664, A106 (2022).
[67] M. Oguri, J. M. Diego, N. Kaiser, P. L. Kelly, and T.

Broadhurst, Phys. Rev. D 97, 023518 (2018).
[68] M. Zumalacarregui and U. Seljak, Phys. Rev. Lett. 121,

141101 (2018).
[69] J. B. Muñoz, E. D. Kovetz, L. Dai, and M. Kamionkowski,

Phys. Rev. Lett. 117, 091301 (2016).
[70] H. Gil Choi, S. Jung, P. Lu, and V. Takhistov, arXiv:2311

.17829.
[71] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys.

Rev. D 95, 043541 (2017).
[72] A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner, J. O.

Thompson, and K. Van Tilburg, Phys. Rev. D 101, 083014
(2020).

[73] D. Gilman, J. Bovy, T. Treu, A. Nierenberg, S. Birrer, A.
Benson, and O. Sameie, Mon. Not. R. Astron. Soc. 507,
2432 (2021).

[74] S. Adhikari et al., arXiv:2207.10638.
[75] M. S. Delos and S. D. M. White, Mon. Not. R. Astron. Soc.

518, 3509 (2022).
[76] M. S. Delos, Mon. Not. R. Astron. Soc. 522, L78

(2023).
[77] P. Ralegankar, Phys. Rev. Lett. 131, 231002 (2023).
[78] D. Croon, D. McKeen, and N. Raj, Phys. Rev. D 101,

083013 (2020).
[79] D. Croon, D. McKeen, N. Raj, and Z. Wang, Phys. Rev. D

102, 083021 (2020).
[80] M. Crispim Romão and D. Croon, arXiv:2402.00107.
[81] D. Croon and S. Sevillano Muñoz, arXiv:2403.13072.
[82] O. A. Hannuksela, K. Haris, K. K. Y. Ng, S. Kumar, A. K.

Mehta, D. Keitel, T. G. F. Li, and P. Ajith, Astrophys. J.
Lett. 874, L2 (2019).

[83] R. Abbott et al. (LIGO Scientific and VIRGO Collabora-
tions), Astrophys. J. 923, 14 (2021).

[84] R. Abbott et al. (LIGO Scientific, VIRGO, and KAGRA
Collaborations), arXiv:2304.08393.

[85] X. Liu, I. Magana Hernandez, and J. Creighton, Astrophys.
J. 908, 97 (2021).

CHEUNG, NG, ZUMALACÁRREGUI, and BERTI PHYS. REV. D 109, 124020 (2024)

124020-18

https://doi.org/10.1103/PhysRevD.102.124048
https://doi.org/10.1103/PhysRevD.102.124048
https://doi.org/10.1103/PhysRevD.106.084005
https://doi.org/10.1103/PhysRevD.106.084005
https://doi.org/10.1103/PhysRevD.108.024052
https://doi.org/10.1103/PhysRevD.95.063512
https://doi.org/10.1103/PhysRevLett.118.091101
https://doi.org/10.1103/PhysRevLett.118.091101
https://doi.org/10.1093/mnras/staa2577
https://doi.org/10.1093/mnras/staa1952
https://doi.org/10.1093/mnras/staa1952
https://doi.org/10.1086/377430
https://doi.org/10.1086/377430
https://doi.org/10.1103/PhysRevD.103.064047
https://arXiv.org/abs/1702.04724
https://doi.org/10.1103/PhysRevD.98.083005
https://doi.org/10.1103/PhysRevD.98.083005
https://doi.org/10.3847/2041-8213/ac7052
https://doi.org/10.1093/mnras/stad1302
https://doi.org/10.1093/mnras/stad1302
https://doi.org/10.3847/2041-8213/ac4dfa
https://doi.org/10.1093/mnras/stz3509
https://doi.org/10.1093/mnras/stz3509
https://doi.org/10.1103/PhysRevLett.122.041103
https://doi.org/10.1103/PhysRevLett.122.041103
https://doi.org/10.1103/PhysRevD.101.123512
https://doi.org/10.1093/mnras/stab3118
https://doi.org/10.1093/mnras/stab3118
https://doi.org/10.1093/mnras/stac2944
https://doi.org/10.1093/mnras/stac2944
https://doi.org/10.1103/PhysRevD.108.103529
https://doi.org/10.1103/PhysRevD.98.104029
https://doi.org/10.1103/PhysRevD.98.104029
https://doi.org/10.3847/1538-4357/abafab
https://doi.org/10.1103/PhysRevD.106.023018
https://doi.org/10.1103/PhysRevD.107.043029
https://doi.org/10.1103/PhysRevD.108.103532
https://doi.org/10.1103/PhysRevD.108.123543
https://doi.org/10.1103/PhysRevD.108.123543
https://doi.org/10.1103/PhysRevLett.105.251101
https://doi.org/10.1093/mnras/stac365
https://doi.org/10.1103/PhysRevD.104.063001
https://doi.org/10.1103/PhysRevD.104.063001
https://doi.org/10.1002/andp.202300040
https://doi.org/10.1002/andp.202300040
https://doi.org/10.1088/1475-7516/2023/07/007
https://doi.org/10.1088/1475-7516/2023/07/007
https://doi.org/10.1103/PhysRevD.98.103022
https://doi.org/10.1103/PhysRevD.98.103022
https://doi.org/10.1051/0004-6361/201935490
https://doi.org/10.1051/0004-6361/201935490
https://doi.org/10.1093/mnras/stab579
https://doi.org/10.1093/mnras/stab2875
https://doi.org/10.3847/1538-4357/ac5f45
https://doi.org/10.1093/mnras/stac2721
https://doi.org/10.1093/mnras/stad2772
https://doi.org/10.1093/mnras/stad2772
https://arXiv.org/abs/2301.06117
https://arXiv.org/abs/2301.06117
https://arXiv.org/abs/2306.14796
https://doi.org/10.1103/PhysRevResearch.2.023204
https://doi.org/10.1103/PhysRevResearch.2.023204
https://doi.org/10.3847/1538-4357/ace62f
https://doi.org/10.1051/0004-6361/202243430
https://doi.org/10.1103/PhysRevD.97.023518
https://doi.org/10.1103/PhysRevLett.121.141101
https://doi.org/10.1103/PhysRevLett.121.141101
https://doi.org/10.1103/PhysRevLett.117.091301
https://arXiv.org/abs/2311.17829
https://arXiv.org/abs/2311.17829
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.101.083014
https://doi.org/10.1103/PhysRevD.101.083014
https://doi.org/10.1093/mnras/stab2335
https://doi.org/10.1093/mnras/stab2335
https://arXiv.org/abs/2207.10638
https://doi.org/10.1093/mnras/stac3373
https://doi.org/10.1093/mnras/stac3373
https://doi.org/10.1093/mnrasl/slad043
https://doi.org/10.1093/mnrasl/slad043
https://doi.org/10.1103/PhysRevLett.131.231002
https://doi.org/10.1103/PhysRevD.101.083013
https://doi.org/10.1103/PhysRevD.101.083013
https://doi.org/10.1103/PhysRevD.102.083021
https://doi.org/10.1103/PhysRevD.102.083021
https://arXiv.org/abs/2402.00107
https://arXiv.org/abs/2403.13072
https://doi.org/10.3847/2041-8213/ab0c0f
https://doi.org/10.3847/2041-8213/ab0c0f
https://doi.org/10.3847/1538-4357/ac23db
https://arXiv.org/abs/2304.08393
https://doi.org/10.3847/1538-4357/abd7eb
https://doi.org/10.3847/1538-4357/abd7eb


[86] L. Dai, B. Zackay, T. Venumadhav, J. Roulet, and M.
Zaldarriaga, arXiv:2007.12709.

[87] K. Haris, A. K. Mehta, S. Kumar, T. Venumadhav, and P.
Ajith, arXiv:1807.07062.

[88] R. K. L. Lo and I. Magana Hernandez, Phys. Rev. D 107,
123015 (2023).

[89] J. Janquart, O. A. Hannuksela, K. Haris, and C. Van den
Broeck, in Proceedings of the 56th Rencontres de Moriond
on Gravitation (2022), arXiv:2203.06444.

[90] S. Ali, E. Stoikos, E. Meade, M. Kesden, and L. King,
Phys. Rev. D 107, 103023 (2023).

[91] J. M. Ezquiaga, W. Hu, and R. K. L. Lo, Phys. Rev. D 108,
103520 (2023).

[92] A. K. Y. Li, R. K. L. Lo, S. Sachdev, J. C. L. Chan, E. T.
Lin, T. G. F. Li, and A. J. Weinstein (LIGO Scientific and
Virgo Collaborations), Phys. Rev. D 107, 123014 (2023).

[93] A. K. Y. Li, J. C. L. Chan, H. Fong, A. H. Y. Chong, A. J.
Weinstein, and J. M. Ezquiaga, arXiv:2311.06416.

[94] C. McIsaac, D. Keitel, T. Collett, I. Harry, S. Mozzon, O.
Edy, and D. Bacon, Phys. Rev. D 102, 084031 (2020).

[95] K. K. Y. Ng, K. W. K.Wong, T. Broadhurst, and T. G. F. Li,
Phys. Rev. D 97, 023012 (2018).

[96] S.-S. Li, S. Mao, Y. Zhao, and Y. Lu, Mon. Not. R. Astron.
Soc. 476, 2220 (2018).

[97] F. Xu, J. M. Ezquiaga, and D. E. Holz, Astrophys. J. 929, 9
(2022).

[98] A. R. A. C. Wierda, E. Wempe, O. A. Hannuksela,
L. e. V. E. Koopmans, and C. Van Den Broeck, Astrophys.
J. 921, 154 (2021).

[99] G. P. Smith, M. Jauzac, J. Veitch, W.M. Farr, R. Massey,
and J. Richard, Mon. Not. R. Astron. Soc. 475, 3823
(2018).

[100] M. Oguri, Mon. Not. R. Astron. Soc. 480, 3842 (2018).
[101] Z. Cao, L.-F. Li, and Y. Wang, Phys. Rev. D 90, 062003

(2014).
[102] L. Dai, T. Venumadhav, and K. Sigurdson, Phys. Rev. D

95, 044011 (2017).
[103] G. Cusin and N. Tamanini, Mon. Not. R. Astron. Soc. 504,

3610 (2021).
[104] S. Mukherjee, T. Broadhurst, J. M. Diego, J. Silk, and G. F.

Smoot, Mon. Not. R. Astron. Soc. 506, 3751 (2021).
[105] A. Gould, Astrophys. J. Lett. 386, L5 (1992).
[106] A. Barnacka, J. F. Glicenstein, and R. Moderski, Phys.

Rev. D 86, 043001 (2012).
[107] N. Matsunaga and K. Yamamoto, J. Cosmol. Astropart.

Phys. 01 (2006) 023.
[108] A. Katz, J. Kopp, S. Sibiryakov, and W. Xue, J. Cosmol.

Astropart. Phys. 12 (2018) 005.

[109] L. Dai and W. Lu, Astrophys. J. 847, 19 (2017).
[110] R. Laha, Phys. Rev. D 102, 023016 (2020).
[111] Z. Zheng, E. O. Ofek, S. R. Kulkarni, J. D. Neill, and M.

Juric, Astrophys. J. 797, 71 (2014).
[112] D. Eichler, Astrophys. J. 850, 159 (2017).
[113] A. Katz, J. Kopp, S. Sibiryakov, and W. Xue, Mon. Not. R.

Astron. Soc. 496, 564 (2020).
[114] C. Leung et al., Phys. Rev. D 106, 043017 (2022).
[115] D. L. Jow, S. Foreman, U.-L. Pen, and W. Zhu, Mon. Not.

R. Astron. Soc. 497, 4956 (2020).
[116] R. Takahashi, Astron. Astrophys. 423, 787 (2004).
[117] K. Kim, J. Lee, O. A. Hannuksela, and T. G. F. Li, As-

trophys. J. 938, 157 (2022).
[118] A. Ulmer and J. Goodman, Astrophys. J. 442, 67(1995).
[119] J. Feldbrugge, U.-L. Pen, and N. Turok, Ann. Phys.

(Amsterdam) 451, 169255 (2023).
[120] D. L. Jow, U.-L. Pen, and J. Feldbrugge, Mon. Not. R.

Astron. Soc. 525, 2107 (2023).
[121] G. Tambalo, M. Zumalacárregui, L. Dai, and M. H.-Y.

Cheung, Phys. Rev. D 108, 043527 (2023).
[122] E. Seo, O. A. Hannuksela, and T. G. F. Li, Astrophys. J.

932, 50 (2022).
[123] M. Wright and M. Hendry, Astrophys. J. 935, 68 (2022).
[124] X. Shan, C. Wei, and B. Hu, Mon. Not. R. Astron. Soc.

508, 1253 (2021).
[125] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys.

J. 462, 563 (1996).
[126] M. Bartelmann, Astron. Astrophys. 313, 697 (1996),

https://ui.adsabs.harvard.edu/abs/1996A%26A...313.
.697B/abstract.

[127] G. Hinshaw and L. M. Krauss, Astrophys. J. 320, 468
(1987).

[128] X. Shan, G. Li, X. Chen, W. Zheng, and W. Zhao, Sci.
China Phys. Mech. Astron. 66, 239511 (2023).

[129] C. García-Quirós, M. Colleoni, S. Husa, H. Estellés, G.
Pratten, A. Ramos-Buades, M. Mateu-Lucena, and R.
Jaume, Phys. Rev. D 102, 064002 (2020).

[130] A. D. Ludlow, J. F. Navarro, R. E. Angulo, M. Boylan-
Kolchin, V. Springel, C. Frenk, and S. D. M. White, Mon.
Not. R. Astron. Soc. 441, 378 (2014).

[131] J. Wang, S. Bose, C. S. Frenk, L. Gao, A. Jenkins, V.
Springel, and S. D. M. White, Nature (London) 585, 39
(2020).

[132] K. Van Tilburg, A.-M. Taki, and N. Weiner, J. Cosmol.
Astropart. Phys. 07 (2018) 041.

[133] P. W. Graham and H. Ramani, arXiv:2404.01378.
[134] http://rockfish.jhu.edu.

PROBING MINIHALO LENSES WITH DIFFRACTED … PHYS. REV. D 109, 124020 (2024)

124020-19

https://arXiv.org/abs/2007.12709
https://arXiv.org/abs/1807.07062
https://doi.org/10.1103/PhysRevD.107.123015
https://doi.org/10.1103/PhysRevD.107.123015
https://arXiv.org/abs/2203.06444
https://doi.org/10.1103/PhysRevD.107.103023
https://doi.org/10.1103/PhysRevD.108.103520
https://doi.org/10.1103/PhysRevD.108.103520
https://doi.org/10.1103/PhysRevD.107.123014
https://arXiv.org/abs/2311.06416
https://doi.org/10.1103/PhysRevD.102.084031
https://doi.org/10.1103/PhysRevD.97.023012
https://doi.org/10.1093/mnras/sty411
https://doi.org/10.1093/mnras/sty411
https://doi.org/10.3847/1538-4357/ac58f8
https://doi.org/10.3847/1538-4357/ac58f8
https://doi.org/10.3847/1538-4357/ac1bb4
https://doi.org/10.3847/1538-4357/ac1bb4
https://doi.org/10.1093/mnras/sty031
https://doi.org/10.1093/mnras/sty031
https://doi.org/10.1093/mnras/sty2145
https://doi.org/10.1103/PhysRevD.90.062003
https://doi.org/10.1103/PhysRevD.90.062003
https://doi.org/10.1103/PhysRevD.95.044011
https://doi.org/10.1103/PhysRevD.95.044011
https://doi.org/10.1093/mnras/stab1130
https://doi.org/10.1093/mnras/stab1130
https://doi.org/10.1093/mnras/stab1980
https://doi.org/10.1086/186279
https://doi.org/10.1103/PhysRevD.86.043001
https://doi.org/10.1103/PhysRevD.86.043001
https://doi.org/10.1088/1475-7516/2006/01/023
https://doi.org/10.1088/1475-7516/2006/01/023
https://doi.org/10.1088/1475-7516/2018/12/005
https://doi.org/10.1088/1475-7516/2018/12/005
https://doi.org/10.3847/1538-4357/aa8873
https://doi.org/10.1103/PhysRevD.102.023016
https://doi.org/10.1088/0004-637X/797/1/71
https://doi.org/10.3847/1538-4357/aa8b70
https://doi.org/10.1093/mnras/staa1497
https://doi.org/10.1093/mnras/staa1497
https://doi.org/10.1103/PhysRevD.106.043017
https://doi.org/10.1093/mnras/staa2230
https://doi.org/10.1093/mnras/staa2230
https://doi.org/10.1051/0004-6361:20040212
https://doi.org/10.3847/1538-4357/ac92f3
https://doi.org/10.3847/1538-4357/ac92f3
https://doi.org/10.1086/175422
https://doi.org/10.1016/j.aop.2023.169255
https://doi.org/10.1016/j.aop.2023.169255
https://doi.org/10.1093/mnras/stad2332
https://doi.org/10.1093/mnras/stad2332
https://doi.org/10.1103/PhysRevD.108.043527
https://doi.org/10.3847/1538-4357/ac6dea
https://doi.org/10.3847/1538-4357/ac6dea
https://doi.org/10.3847/1538-4357/ac7ec2
https://doi.org/10.1093/mnras/stab2567
https://doi.org/10.1093/mnras/stab2567
https://doi.org/10.1086/177173
https://doi.org/10.1086/177173
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...313..697B/abstract
https://doi.org/10.1086/165564
https://doi.org/10.1086/165564
https://doi.org/10.1007/s11433-022-1985-3
https://doi.org/10.1007/s11433-022-1985-3
https://doi.org/10.1103/PhysRevD.102.064002
https://doi.org/10.1093/mnras/stu483
https://doi.org/10.1093/mnras/stu483
https://doi.org/10.1038/s41586-020-2642-9
https://doi.org/10.1038/s41586-020-2642-9
https://doi.org/10.1088/1475-7516/2018/07/041
https://doi.org/10.1088/1475-7516/2018/07/041
https://arXiv.org/abs/2404.01378
http://rockfish.jhu.edu
http://rockfish.jhu.edu
http://rockfish.jhu.edu
http://rockfish.jhu.edu

