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We compute the vacuum metric generated by a generic rotating object in arbitrary dimensions up to third
post-Minkowskian order by computing the classical contribution of scattering amplitudes describing the
graviton emission by massive spin-1 particles up to two loops. The solution depends on the mass, angular
momenta, and on up to two parameters related to generic quadrupole moments. In D ¼ 4 spacetime
dimensions, we recover the vacuum Hartle-Thorne solution describing a generic spinning object to second
order in the angular momentum, of which the Kerr metric is a particular case obtained for a specific mass
quadrupole moment dictated by the uniqueness theorem. At the level of the effective action, the case of
minimal couplings corresponds to the Kerr black hole, while any other mass quadrupole moment requires
nonminimal couplings. In D > 4, the absence of black-hole uniqueness theorems implies that there are
multiple spinning black hole solutions with different topology. Using scattering amplitudes, we find a
generic solution depending on the mass, angular momenta, the mass quadrupole moment, and a new stress
quadrupole moment which does not exist in D ¼ 4. As special cases, we recover the Myers-Perry and the
single-angular-momentum black ring solutions, to third and first post-Minkowksian order, respectively.
Interestingly, at variance with the four-dimensional case, none of these solutions corresponds to the
minimal coupling in the effective action. This shows that, from the point of view of scattering amplitudes,
black holes are the “simplest” general relativity vacuum solutions only in D ¼ 4.

DOI: 10.1103/PhysRevD.109.124018

I. INTRODUCTION

Despite being nonrenormalizable, general relativity can
be treated as a consistent quantum field theory if viewed
as the leading-order, low-energy effective field theory
arising from a quantum theory of gravity. Specifically,
the Einstein-Hilbert action is considered as the initial term
in a higher-derivative expansion, where higher-order oper-
ators are suppressed at low energy through inverse powers
of the Planck mass. Within this view, the gravitational
interactions can be computed through the exchange of spin-
2 gravitons, giving rise to graviton vertices and matter
interactions order by order in a perturbative expansion in ℏ,
as in ordinary quantum field theories [1–7].
Remarkably, loop corrections in this expansion give rise

not only to Planck-suppressed quantum terms, but also to

entirely classical terms that survive in theℏ → 0 limit [7–15].
Specifically, the Schwarzschild metric at first order in a post-
Minkowskian (i.e., in powers of the gravitational couplingG)
expansion can be obtained from the scattering amplitude
of amassive scalar field emitting gravitons at tree level, while
next order post-Minkowskian corrections are obtained
by the classical contributions of each n-loop amplitude
containing graviton vertices [9].1 This result generalizes
to the case of charged and/or spinning geometries by
computing the scattering of particles with electric charge
and/or spin, reproducing thepost-Minkowskian expansion of
the Reissner-Nordstrom, Kerr, and Kerr-Newman metrics in
D ¼ 4 spacetime dimensions [9,17–19].
In a more recent development, a systematic method for

extracting the classical component of loop amplitudes
involving massive scalars interacting with gravitons in
any dimension was introduced in [12]. This procedure
not only demonstrates the agreement of these computations
with the earlier work of [20] at the second post-
Minkowskian order (see also [21,22]), but also reveals
that the Schwarzschild-Tangherlini metric [23] in generic
D dimensions at fourth order in the post-Minkowskian

*claudio.gambino@uniroma1.it
†paolo.pani@uniroma1.it
‡fabio.riccioni@roma1.infn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Recently, the authors of [16] managed to resum the post-
Minkowskian series and obtain the exact Schwarzschild solution.
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expansion emerges from gravitational scattering amplitudes
of massive scalars up to three loops [24].
In this paper we extend this program to the case of

spinning geometries both in D ¼ 4 and D > 4 dimensions.
The motivation for such computation is twofold. First, in
D ¼ 4, unlike the case of spherically symmetric spacetimes,
the absence of Birkhoff’s theorem in axisymmetry implies
that the vacuum region outside a spinning object is not
necessarily described by the Kerr geometry. Within a post-
Minkowskian expansion, the leading-order (linear) angular
momentum term is universal, but different spinning objects
may have different mass quadrupole moments [25–27].
Since the spin-induced quadrupole moment is quadratic in
the black-hole spin,2 in order to extend the analysis of [9] it is
necessary to perform computations up to quadratic order in
the angular momentum.We shall show that the computation
based on the scattering amplitudes provides the post-
Minkowskian expansion of the vacuum Hartle-Thorne
solution [25,26], which describes the spacetime of a generic
spinning object up to quadratic order in the spin. The Kerr
black hole is a particular case of this family, wherein themass
quadrupole moment is fixed by regularity at the horizon and
by the black-hole uniqueness theorem [28–35]. As we shall
discuss, at the level of the effective quantum field theory, the
Kerr black hole corresponds to the case of minimal cou-
plings, while any other choice of the quadrupole moment
requires nonminimal couplings in the action. The authors
of [36] proved that in D ¼ 4 the simplest massive S matrix,
defined as the term in the three-point amplitude which
behaves well in the UV, reproduces the Kerr metric in limit
in which the spin s → þ∞. Furthermore, the authors of [37]
proved that a spin-s field minimally coupled to gravity also
reproduces the dynamics of Kerr black holes, suggesting a
correspondence between the simplest massive S matrix and
the minimally coupled action in a quantum field theory
(QFT) description for generic spin s. In this sense, one can
interpret the minimality of the quantum field theory as the
scattering-amplitude counterpart of the celebrated black-hole
no-hair theorems in D ¼ 4 general relativity [30,32,33,35].
Our second motivation is that the black-hole uniqueness

theorems do not hold in D > 4 [38], and therefore also in
this case it is interesting to compute the metric obtained
from the scattering amplitudes and compare it with known
solutions. In particular, spinning black hole solutions in
D > 4 belong to different families and can have different
topologies [38]. Using scattering amplitudes, we find the
generic solution up to third post-Minkowskian order. This
solution depends on the mass (i.e., mass monopole
moment), angular momenta (i.e., current dipole moments),
mass quadrupole moment, and, interestingly, on a new
quadrupole moment parameter that we dub stress

quadrupole moment and is absent in D ¼ 4. For specific
choices of the parameters, we explicitly check that this
general solution reduces to the Myers-Perry black hole [39]
in D ¼ 5 up to third post-Minkowskian order, and to the
black ring [40] with single angular momentum inD ¼ 5 up
to first post-Minkowskian order. Remarkably, at variance
with the four-dimensional case, none of these solutions
corresponds to the minimal coupling in the effective action.
This provides strong evidence that black holes are not the
“simplest” solutions, from a scattering-amplitude viewpoint,
to higher-dimensional general relativity. A more fundamen-
tal explanation for this intriguing result may deserve further
investigation. We explicitly obtain the metric corresponding
to theminimal coupling up to third post-Minkowskian order,
which is then likely sourced by some matter configuration,
similarly to the D ¼ 4 Hartle-Thorne solution.
In order to obtain the above results we need to compute

the metric from the scattering amplitudes of a massive spin-
1 field up to the quadrupole order in a post-Minkowskian
expansion.We performed our computations up to two loops
(i.e., up to third post-Minkowskian order). The full result is
provided in the Supplemental Material [41].
Recently Ref. [42] worked out a generalization in D ¼ 5

of the Thorne formalism [43] for the multipole description
in D ¼ 4 general relativity. As we shall discuss in detail,
the generalization is based on constructing a suitable
coordinate system in which the multipole moments can
be read off the asymptotic behavior of the metric compo-
nents. Reference [42] identified the analog of the standard
mass and currentmultipolemoments defined byThorne [43]
which are related to the falloff of the temporal part of the
metric. While we agree with their identification of mass and
current moments, in anyD > 4 we prove the existence of a
new multipole moment associated with the asymptotic
behavior of the spatial part of the metric. For this reason
we call this a stress multipole moment, in analogy with the
mass and current moments. We expect that in D > 4 stress
multipole moments appear at any order starting from the
quadrupolar one, and we define a generalization in arbitrary
dimension of themultipole expansion á la Thorne, including
the new tower of stress moments. We show that the new
stress quadrupole moment is precisely associated to one of
the free parameters of our solution and is nonzero already for
the Myers-Perry metric.
The rest of the paper is organized as follows. In Sec. II

we review the general approach to compute the metric of a
rotating object from scattering amplitudes in arbitrary
dimensions. In Sec. III we explicitly apply this approach
to the scattering of massive spin-1 particles, obtaining the
post-Minkowskian metric up to two loops, including the
quadrupole moments quadratic in the object angular
momentum. This metric is given and discussed in
Sec. IV in arbitrary dimensions, with a specific focus on
the multipole moments in D ¼ 4 and D ¼ 5. In Sec. V we
show that the general solution recovers the cases of the

2Note that, in this paper, we occasionally refer to “spin” both
for the spin s of quantum fields and for the angular momentum J
of the compact object (e.g., a black hole).
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Hartle-Thorne vacuum metric in D ¼ 4 and the Myers-
Perry solution as well as the single-angular-momentum
black ring in D ¼ 5. Besides, we give an explicit expres-
sion for the “simplest” metric, i.e., the one associated with
the minimally coupled action, in any dimension. Some
details on the multipolar expansion and on these solutions
are given in various Appendixes. We conclude in Sec. VI
with a discussion and future prospects.
Wework in mostly negative signature with η00 ¼ þ1 and

in natural units, ℏ ¼ c ¼ 1, keeping G ≠ 1. The number of
spacetime dimensions isD ¼ dþ 1, and the Ricci tensor is
defined as Rμν ¼ Rα

μαν. Greek indices μ; ν;… ¼ 0; 1;…; d
are meant to be contracted either by gμν or ημν depending on
the context, while Latin indices i; j;… ¼ 1;…; d are
contracted with the Euclidean δij.

II. METRIC FROM AMPLITUDES

In this section we review the general approach to recover
the metric of a rotating object in arbitrary dimension from
scattering amplitudes describing the graviton emission by
massive spin-s particles [18,24]. Consider an action of a
generic massive spin-s field Φs coupled to gravity3

S ¼
Z

ddþ1x

�
−

2

κ2
ffiffiffiffiffiffi
−g

p
Rþ LmðΦs; gμνÞ

�
; ð1Þ

where κ2 ¼ 32πG. Expanding the metric in a post-
Minkowskian (PM) series as

gμν ¼ ημν þ κhμν ¼ ημν þ κ
Xþ∞

n¼1

hðnÞμν ; ð2Þ

in harmonic gauge the Einstein equations can be rewritten as

□hðnÞμν ðxÞ ¼ −
κ

2

�
Tðn−1Þ
μν ðxÞ − 1

d − 1
ημνTðn−1ÞðxÞ

�
; ð3Þ

where □ ¼ ∂μ∂νη
μν is the flat d’Alambertian operator

and T ¼ ημνTμν. In this expression Tð0Þ
μν ðxÞ is the actual

stress-energy tensor of the matter source, while TðnÞ
μν ðxÞ for

n > 0 contain graviton self-interaction terms. Then, moving
to momentum space, Eq. (3) becomes

hðnÞμν ðxÞ¼−
κ

2

Z
ddq⃗
ð2πÞd

eiq⃗·x⃗

q⃗2

�
Tðn−1Þ
μν ðqÞ− 1

d−1
ημνTðn−1ÞðqÞ

�
:

ð4Þ

The idea now is to compute the stress-energy tensor in
momentum space by means of three-point off shell scatter-
ing amplitudes describing the graviton emission from a
massive source in the classical limit. The quantization
procedure requires the introduction of a gauge-fixing term

LGF ¼
1

κ2
FλFσηλσ ð5Þ

in the Lagrangian, where Fλ is chosen as

Fλ ¼ ð1 − αÞκ∂μ
�
hμλ −

1

2
ημλh

�
þ αgμνΓλ

μν; ð6Þ

with h ¼ ημνhμν and where Γλ
μν are the Christoffel symbols.

This gauge choice allows us to move continuously from the
de Donder gauge (α ¼ 0) to the harmonic gauge (α ¼ 1)
keeping fixed the expression of the graviton propagator [22]

Pμν;ρσ ¼
1

2

�
ημρηνσ þ ημσηνρ −

2

d − 1
ημνηρσ

�
: ð7Þ

Considering a massive spin-s particle as the source of
gravitational field, the diagrams that contribute to the
classical limit are the ones in which cutting the internal
massive lines results in tree-level diagrams involving only
gravitons [12,20].
It is therefore possible to compute the classical gravi-

tational conserved current as

ð8Þ

3Notice that we are labeling the massive fields as one does for an object with the same index structure in d ¼ 3. In higher dimensions
more representations are allowed, but this will not be taken into account in our analysis.
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where ϵ ¼ 1 for boson sources and ϵ ¼ 0 for fermions,4 and
where q ¼ p1 − p2 is the transferred momentum. From
Eq. (8) it is clear that

P
n
i¼1 li ¼ q and the order of the PM

expansion (n) and the one of the loop series (l) are related
by n ¼ lþ 1. This can be directly seen from the form of
the loop integrals. Indeed, defining the l-loop “sunset”
master integral

JðlÞðq⃗2Þ¼
Z Yl

i¼1

dl⃗i

ð2πÞd
q⃗2

ðQl
i¼1 l⃗i

2Þðq⃗− l⃗1− � � �− l⃗lÞ2
; ð9Þ

as pointed out in [18,24], one can show that TðlÞ
μν ðqÞ ∝

JðlÞðq⃗2Þ, and the metric in the long-range expansion is given
by the Fourier transform

Z
ddq⃗
ð2πÞd

JðlÞðq⃗2Þ
q⃗2

eiq⃗·x⃗ ¼
�
ρðrÞ
4π

�
lþ1

; ð10Þ

with

ρðrÞ ¼ Γðd
2
− 1Þπ1−d=2
rd−2

: ð11Þ

Notice that we are using a set of Cartesian coordinates in
which x21 þ � � � þ x2d ¼ r2.

A. Spinning vertices

Starting from Eq. (8), we have to exploit the classical
limit in order to simplify the amplitude calculation. First of
all, since we are dealing with spinning particles, the
Feynman vertex

ð12Þ

will have, besides graviton indices μν, spin indices a and b,
depending on the particular representation of the particles.
In the amplitude (8), while the graviton is off shell, the
massive particles are on shell, meaning that in order to get
the stress-energy tensor we have to contract the amplitude
with the external polarizations of the particles. From the
vertex, at tree level one directly reads the amplitude as

−
iκ
2
ð2mÞϵTð0Þ

μν ðqÞδσσ0 ¼ ahp2; s; σ0jðτΦ2hÞa;bμν jp1; s; σib;
ð13Þ

where it is important to notice that since the source particle
can be either a fermion or a boson, the polarizations can be
described either by a tensor or a spinor, so a and b can be a
collection of Lorentz indices or spinor indices.
Following an approach based on Feynman diagrams [44],

which takes into account spin effects in gravity from the
classical limit of scattering amplitudes, we now show how to
obtain an explicit expression for the tree-level amplitude in
Eq. (13). To this aim, it is convenient to define

Pμ ¼ pμ
1 þ pμ

2

2
ð14Þ

so that

pμ
1 ¼ Pμ þ 1

2
qμ and pμ

2 ¼ Pμ −
1

2
qμ: ð15Þ

We are interested in the case in which the source is
stationary, meaning that q0 ¼ 0 and hence the energy is
conserved. Then, since p2

1 ¼ p2
2 ¼ m2, just by stationarity

one has thatPμ ¼ Euμ ¼ muμ þOðqÞ, whereuμ ¼ δμ0 is the
velocity of the source, and E is its energy. Following [13] to
schematically obtain the classical limit out of scattering
amplitude calculations, for a process involving a particle
with spin s and transferred momentum q, the algorithm is to
write the amplitude in terms of the spin tensor Sμν, and then
make the replacement

q → ℏq and S →
1

ℏ
S; ð16Þ

keeping only the terms Oðℏ0Þ, i.e., those that survive in the
limit ℏ → 0. Therefore, terms OðqnÞ with n > 0 are quan-
tum, while terms OððSqÞn) are classical. Crucially, the
presence of the spin compensates for the transferred
momentum and gives rise to classical terms with higher
powers in q. Notice that since the two external momenta are
equal up to the transferred momentum, using the results
in [36,44] it turns out that in the stationary limit we can
expand the polarization state as

jp2i ¼ jp1i þOðℏÞ; ð17Þ

and then define the dressed vertex

hp2;s;σ0jðτΦ2hÞμνjp1;s;σi
¼ hp1;s;σ0jðτΦ2hÞμνjp1;s;σiþOðℏÞ
¼ τ̂μνΦ2h

ðq;SÞδσσ0 þOðℏÞ; ð18Þ

where the spin-index structure is left understood.
Now, in order to extract such classical spin pieces, let us

consider a field in a particular representation of the Lorentz
group, satisfying the algebra

4This is due to the fact that bosons and fermions have a
different mass dimension; hence the normalization of the stress-
energy tensor is different.
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½Mμν;Mρσ� ¼−iðημρMνσ −ηνρMμσþηνσMμρ−ημσMνρÞ;
ð19Þ

with M the generators of the group. Considering then “in”
and “out” states of spin s and polarizations σ and σ0,
generalizing the argument in [44] to arbitrary dimension, in
the stationary limit we have

hp2;s;σ0jp1;s;σi¼hp1;s;σ0jp1;s;σi
þOðℏÞ¼CðsÞδσσ0 ;

hp2;s;σ0jMμνjp1;s;σi¼SμνCðsÞδσσ0 þOðℏ0Þ;

hp2;s;σ0j
1

2
fMμν;Mρσgjp1;s;σi¼SμνSρσCðsÞδσσ0 þOðℏ−1Þ;

ð20Þ
where f·; ·g stands for the anticommutator, the external
state can be either a fermion or a boson, CðsÞ is the
normalization of the states which depends on the particular
representation of the Lorentz group, and we now interpret
Sμν as the spin tensor of the classical source of the
gravitational field. It is important to observe that the
stationary limit defined above corresponds to the source
being in the rest frame; hence in this frame the temporal
part of the spin tensor vanishes, i.e., S0i ¼ 0.
Finally, we observe that for a massive particle with spin s

the dressed vertex contains powers up to 2s of the spin tensor.
Aswewill see, this implies that the resultingmetric describes
an object with only the first 2s multipoles turned on.

B. Loop amplitudes for any spin

We now want to discuss how, starting from the analysis
above, one can construct loop amplitudes in such a way that
the spin structure arising from the massive spin-s particles
is entirely given as a tensor dependence of the dressed
vertex. More specifically, in the classical limit the massive
line of Eq. (8) factorizes in the product of n dressed vertices
in such a way that the loop calculation is formally the one
of a scalar process. We will first discuss explicitly the one-
loop case, and then naturally extend it to all loops.
The contribution to the amplitude arising from the

massive line in Eq. (8) for n ¼ 2 is

hp2; s; σ0jðτΦ2hÞμνðlÞ
iPðp1 − lÞ

ðp1 − lÞ2 −m2 þ iε

× ðτΦ2hÞρλðq − lÞjp1; s; σi; ð21Þ
where P is the numerator of the matter propagator which
depends on the spin of the massive field. For a massive
spin-s particle, we can always rewrite the operator P in
terms of the sum of the polarization states as

Pðp1−lÞ¼ð2mÞ1−ϵ
X
σ00

jp1−l;s;σ00ihp1−l;s;σ00j: ð22Þ

Plugging this back in Eq. (21) we end up with

ið2mÞ1−ϵ
ðp1−lÞ2−m2þ iε

X
σ00

hp2;s;σ0jðτΦ2hÞμνðlÞjp1−l;s;σ00i

× hp1−l;s;σ00jðτΦ2hÞρλðq−lÞjp1;s;σi: ð23Þ

Finally, using the classical limit as in Eq. (17) we get

ið2mÞ1−ϵ
ðp1 − lÞ2 −m2 þ iε

X
σ00

hp1; s; σ0jðτΦ2hÞμνðlÞjp1; s; σ00i

× hp1; s; σ00jðτΦ2hÞρλðq − lÞjp1; s; σi þOðℏÞ; ð24Þ

from which we derive the expression written in terms of the
dressed vertices as

ið2mÞ1−ϵ
ðp1 − lÞ2 −m2 þ iε

τ̂μνΦ2hðl; SÞτ̂
ρλ
Φ2hðq − l; SÞδσσ0 : ð25Þ

To summarize, after this dressing procedure the classical
limit of a spinning three-point one-loop amplitude in the
stationary regime completely reduces to an amplitude in
which the spin contribution arises solely from the tensor
structure of the dressed vertex, up to a normalization factor
depending on whether one considers fermions or bosons.
This can be naturally generalized to any loop, which means
that we can use all the machinery of [18,24] in order to
write down the l-loop amplitude related to the stress-energy
tensor, which is

−
iκ
2
ð2mÞTðlÞ

μν ðqÞ ¼ ð−iÞlþ1

ðlþ 1Þ!
Z Yl

i¼1

ddl⃗i

ð2πÞd

×

Qlþ1
i¼1 τ̂

μiνi
Φ2h

ðli; SÞ
Qlþ1

i¼1Pμiνi;αiβiQlþ1
i¼1 l⃗i

2

×Mα1β1;…;μν; ð26Þ

where Mα1β1;…;αnβn;μν contains the sum over all the tree-
level graviton diagrams as shown in Eq. (8), and in our
signature l2

i ¼ −l⃗2
i , since it is possible to show that l0

i ¼ 0

in the classical and stationary limit.
From Eq. (26) we can systematically compute the stress-

energy tensor, and inserting it back into Eq. (4) we can read
off the metric at any PM order n. Since the dressed vertex
contains powers up to 2s in the spin tensor and an l-loop
amplitude contains n dressed vertices, as can be seen from
Eq. (26), this implies that the highest power of S in the
stress-energy tensor is 2ns. Hence, the resulting metric at
PM order n is expanded as

hðnÞμν ¼
X2ns
j¼0

hðn;jÞμν ; ð27Þ
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where j is the order of the expansion in powers of S.5 This
is consistent with the fact that all multipoles starting from
2sþ 1 order vanish.
What remains to be done in this procedure is to

determine the explicit expression of the dressed vertex
τ̂μν for a given spin-s field. In the next subsection we will
show as an example how the OðSÞ terms are derived
considering spin-1=2 spinors, while in the next section we
will construct the dressed vertex for a spin-1 field.

C. Spin-1=2 case

Here we review the work of [9], and we extend it to
arbitrary dimensions by employing the formalism dis-
cussed in the last section. Let us consider a massive
spin-1=2 particle as a source of gravitational field. Its
action reads as

S ¼
Z

d4xeψ̄ðieμaγaDμ −mÞψ ; ð28Þ

where gμν ¼ eaμeaν and

Dμψ ¼ ∂μψ þ 1

4
ωμabγ

abψ ; ð29Þ

with Mab ¼ i
2
γab generators of the Lorentz group in the

spin-1=2 representation, ωμab the spin connection, and a
and b flat indices.
The action in (28) gives rise to the trilinear interaction

vertex

τμν;αβ
ψ2h ðqÞ ¼ −

ik
2

�
1

4
γμðp1 þ p2Þν þ

1

4
γνðp1 þ p2Þμ

− ημν
�
i
2
ð=p1 þ =p2Þ −mÞ

�
αβ

; ð30Þ

which can be rewritten using the definition in (14) as

τμν;αβ
ψ2h

ðqÞ¼−
ik
2

�
1

2
γμPνþ1

2
γνPμ−ημνði=P−mÞ

�
αβ

; ð31Þ

where α and β are spinor indices. We now want to compute
the dressed vertex. Using the Dirac equations in momentum
space,

ūðp2; σ0Þð=P −mÞuðp1; σÞ ¼ 0; ð32Þ

where u and ū are the spinor polarizations, we obtain

τ̂μν
ψ2hðq;SÞδσσ0 ¼ ūðp2;σ0Þτμνψ2hðqÞuðp1;σÞ

¼−
iκ
2
ūðp2;σ0Þ

�
1

2
γμPνþ1

2
γνPμ

�
uðp1;σÞ;

ð33Þ

where we keep understood the spinor indices. Now, since
we are dealing with on shell massive states, we can simplify
the vertex by means of the Gordon identity, which reads as

ūðp2;σ0Þγμuðp1;σÞ¼ ūðp2;σ0Þ
�
1

m
Pμ−

i
m
Mμνqν

�
uðp1;σÞ;

ð34Þ

and finally we get

τ̂μν
ψ2hðq;SÞδσσ0 ¼−

iκ
2
ūðp2;σ0Þ

�
1

m
PμPν

−
i
2m

qλðMμλPνþMνλPμÞ
�
uðp1;σÞ: ð35Þ

Then, using the relations established in (20) with the
normalization Cð1=2Þ ¼ 1, we rewrite the dressed vertex
in terms of the classical spin tensor as

τ̂μν
ψ2h

ðq;SÞ¼−
iκ
2

�
1

m
PμPν−

i
2m

qλðSμλPνþSνλPμÞ
�
: ð36Þ

Finally, in the stationary limit in which Pμ ¼ mδμ0 þOðℏÞ,
the resulting vertex reads as

τ̂μν
ψ2h

ðq; SÞ ¼ −
iκ
2

�
mδμ0δ

ν
0 −

i
2
qλðSμλδν0 þ Sνλδμ0Þ

�
: ð37Þ

Notice that the dressed vertex defined above holds in
arbitrary dimensions since we have never used any explicit
representation of the gamma matrices.
From the vertex, it is now straightforward to obtain the

metric. At tree level, the stress-energy tensor reads as

Tμν
ð0ÞðqÞ¼

2i
κ
τ̂μν
ψ2h

ðq;SÞ¼mδμ0δ
ν
0−

i
2
qλðSμλδν0þSνλδμ0Þ; ð38Þ

and using Eqs. (4) and (10) we get for the scalar part of
the metric

hð1;0Þ00 ðrÞ ¼ −
4ðd − 2Þ
d − 1

GmρðrÞ;

hð1;0Þ0i ðrÞ ¼ 0;

hð1;0Þij ðrÞ ¼ −
4δij
d − 1

GmρðrÞ; ð39Þ

which is exactly the Schwarzschild-Tangherlini metric at
1PM, and for the dipole part we obtain

5For instance, hð1;1Þμν will be 1PM and linear in the spin, hð1;2Þμν

will be 1PM and quadratic in the spin, and so on.
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hð1;1Þ00 ðrÞ ¼ 0;

hð1;1Þ0i ðrÞ ¼ −
2ðd − 2ÞxkSik

r2
GρðrÞ;

hð1;1Þij ðrÞ ¼ 0: ð40Þ

Notice that while Greek indices are meant to be contracted
by the Minkowski metric, from now on repeated Latin
indices will indicate an Euclidean contraction. This means
in particular that there is no difference between upper and
lower Latin indices.
Finally, we know from general relativity that at dipole

order, the expansion in the far field limit is unique, and
therefore we expect the metric to be independent of any
arbitrary coefficients other than the spacetime mass and the
spin tensor. From an amplitude perspective, this means that
there are no additional nonminimal couplings that can
modify the classical vertex at dipole order. In the next
section we will consider a massive spin-1 field, and we will
construct the nonminimal effective action giving rise to the
most general vertex at quadrupole order. This analysis,
which can be extended to fields of arbitrary spin, will
consistently show that there are no nonminimal terms linear
in S that can modify the vertex.

III. SPIN-1 SCATTERING AMPLITUDES
IN ARBITRARY DIMENSION

In this section we will compute the metric arising from
the graviton emission by a massive spin-1 field. This

produces terms up to quadrupole order in the multipole
expansion of (27). We know from general relativity that
these are the first terms in the expansion that discriminate
between different solutions of the Einstein equation.
Therefore, from our amplitude perspective, we expect that
the dressed vertex will not be uniquely defined, corre-
sponding to the presence of nonminimal couplings in the
action. We will first compute the dressed vertex arising
from the minimally coupled action, and then we will
include the contribution of nonminimal couplings, resulting
in the most general stress-energy tensor up to quadrupole
order. Finally, we will compute the resulting metric up to
two loops.

A. Minimal vertex

Let us consider a massive spin-1 field minimally coupled
to gravity, also known as a Proca field:

Smin ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν þ 1

2
m2VμVμ

�
; ð41Þ

where Fμν ¼ ∂μVν − ∂νVμ is the usual antisymmetric
strength tensor. Our aim now is to compute the minimal
dressedvertex associated to the action (41). In order to do this,
consider the trilinear vertex associated to this action [45]:

εβðp2Þτμν;βαV2h;min
εαðp1Þ ¼ −

iκ
2

�
εðp1Þ · p2

�
pμ
1ε

νðp2Þ þ pν
1ε

μðp2Þ
�þ εðp2Þ · p1

�
pμ
2ε

νðp1Þ þ pν
2ε

μðp1Þ
�

− εðp1Þ · εðp2Þðpμ
1p

ν
2 þ pμ

2p
ν
1Þ − ðp1 · p2 −m2Þ�εðp1Þμεðp2Þν þ εðp2Þμεðp1Þν

�
þ ημν

�ðp1 · p2 −m2Þεðp1Þ · εðp2Þ − p1 · εðp2Þp2 · εðp1Þ
��
; ð42Þ

where εαðpÞ are the real polarization vectors satisfying the
transversality condition εðpÞ · p ¼ 0, due to the on shell-
ness of the massive states.
We now have to manipulate the above expression in

order to write it in terms of the Lorentz generators, which in
this particular representation take the form

Mμν;ρσ ¼ iðημρηνσ − ημσηνρÞ; ð43Þ

which holds in arbitrary dimensions. The strategy is to strip
off the polarization vectors from Eq. (42) and massage the
Lorentz structure in order to rewrite everything in terms of
Mμν;ρσ; qμ and Pμ. Up to terms proportional to pα

1 and pβ
2,

that vanish when contracted with the polarization vectors,
from Eq. (42) one thus obtains

εβðp2Þτμν;βαV2h;min
εαðp1Þ

¼ iκ
2
εβðp2Þ

�
ηαβ

�
2PμPν þ 1

2
ημνq2 −

1

2
qμqν

�

− iqλðPμMνλ;βα þ PνMμλ;βαÞ

− qρqσ
1

2
fMμρ;Mνσgβα

�
εαðp1Þ; ð44Þ

from which, employing the relations in (20) and the
definition in Eq. (18), the minimal dressed vertex in the
stationary limit reads as

τ̂μν
V2h;min

ðqÞ ¼ −
iκ
2
ð2m2δμ0δ

ν
0 − imqλðSμλδν0 þ Sνλδμ0Þ

− qλqσSμλSνσÞ; ð45Þ
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where we have normalized the polarization vectors as
Cð1Þ ¼ −1. We can see that the scalar and dipole terms
in Eq. (45), up to the normalization factor, exactly coincide
with Eq. (36), as expected from the fact that such terms are
uniquely fixed in the metric. The remaining terms are
OðS2Þ and constitute the quadrupole contribution for the
minimally coupled spin-1 field.

B. Nonminimal vertex

Once the dressed vertex associated to the Proca action is
computed, it is natural to consider what happens for a
nonminimally coupled theory. The effective action will be
constructed with several nonminimal terms with uncon-
strained couplings, that we expect to enter in the expression
of the general dressed vertex as unfixed numerical param-
eters. In general such effective action is more involved than
the minimally coupled one, and therefore the trilinear
vertex associated to it will be more complicated with
respect to (42). This means that carrying out the procedure
outlined in the last subsection to get the dressed vertex is
not viable.
Following the idea of [44], we can define a covariant

generalization of the spin tensor in order to build non-
minimal operators with an explicit spin dependency,
instead of stripping it out as we did in the last subsection.
To this end, we define Sμν, a well defined covariant
antisymmetric tensor, such that

Sμν
a;b ¼ Sμνδab þOðκÞ; ð46Þ

where a and b are the spin indices depending on the
representation of the field over which such operator acts.
Before constructing the nonminimal effective action,
we notice that since we are only interested in the long
range pieces of the metric, every local term can be
neglected. In particular, this means that at tree level we
can neglect terms that contain the squared modulus

of the transferred momentum, i.e., Tð0Þ
μν ðqÞ ¼ Oðjq⃗j2Þ,

since they lead to local terms in the metric. This
implies that also the dressed vertex is defined up to terms
τ̂μνðqÞ ¼ Oðjq⃗j2Þ.
Now we can construct the nonminimal effective

action as

Snonmin ¼
Z

dDx
ffiffiffiffiffiffi
−g

p ðK0RDμVαgαβDμVβ

þ K1 RVαðSμνSμνÞαβVβ

þ K2 Rμν VαðSμλSλ
νÞαβVβ

þ K3 RμνρσVαðSμνSρσÞαβVβ

þ K4 Rμνρσ DνVαðSμλSλ
σÞαβDσVβ

þ K5DνDσRμνρσVαðSμλSλ
σÞαβVβÞ: ð47Þ

It can be shown that every other term6 not included in
Eq. (47) is either Oðκ2Þ, local contributions to the metric,
or related to the terms above by symmetry properties of
the spin operator or the curvature tensor. In order to
extract from Eq. (47) a vertex that survives and does not
diverge in the classical limit, we must assign the correct
dependence on ℏ to the paramenters. While K1, K2, and
K3 are dimensionless parameters, K0, K4, and K5 have a
mass dimension M−2, and we observe that combining G
and m, there are only two ways to build such terms with a
positive integer power of the gravitational coupling,
namely

½1=m2� ¼ M−2 and

�
1

ℏ2
ðGmÞ 2

d−2

�
¼ M−2: ð48Þ

In particular, the second term leads to an integer power of
G only for d ¼ 3, 4.
By computing the vertex, one observes that for the term

proportional to K0, the leading contribution in the trans-
ferred momentum is Oðq2Þ, while for the one proportional
to K5 it is Oðq4S2Þ. According to Eq. (16), in order to get
a classical contribution from both terms we have to
compensate for the extra power of ℏ, and this implies
that both coefficients must be proportional to ðGmÞ 2

d−2.
On the other hand, the leading term proportional to K4

is Oðq2S2Þ, and therefore this parameter must be propor-
tional to 1=m2. To summarize, we can redefine the free
parameters in the action in terms of dimensionless
quantities as

K0 ¼
1

2
Ω1ðGmÞ 2

d−2; K1¼−
1

4
C1; K2¼−

1

2
C2;

K3 ¼
1−H1

8
; K4¼

H2

2m2
; K5 ¼Ω2ðGmÞ 2

d−2: ð49Þ

Explicitly, expanding (47) atOðκÞ, we obtain the dressed
vertex associated to the nonminimal effective action

τ̂μνV2h;nonminðqÞ ¼ −
iκ
2

	
−ðH1 − 1ÞqρqσSμρSνσ

þH2δ
μ
0δ

ν
0qρqσS

ρλSλσ þ C1SρσSρσqμqν

þ C2

�
ημνqρqσSρλSσλ

− qλðqμSλσSνσ þ qνSλσSμσÞ
�


; ð50Þ

as well as the “higher-loop” dressed vertex

6This includes higher curvature and higher derivative terms.
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ð51Þ

In particular, in d ¼ 3 a tree-level insertion of τ̂μνΦ2h;HL
contributes to 3PM, while in d ¼ 4 it contributes starting from 2PM.

Notice that the Ω1 piece in Eq. (51) exactly corresponds to the counterterm defined in [24].
Considering both the minimal and nonminimal action, the dressed vertex

τ̂μν
V2h

ðqÞ ¼ τ̂μν
V2h;min

ðqÞ þ τ̂μν
V2h;nonmin

ðqÞ

¼ −
iκ
2

	
2m2δμ0δ

ν
0 − imqλðSμλδν0 þ Sνλδμ0Þ −H1qλqσSμλSνσ þH2δ

μ
0δ

ν
0qρqσS

ρλSλσ

þ C1SρσSρσqμqν þ C2

�
ημνqρqσSρλSσλ − qλðqμSλσSνσ þ qνSλσSμσÞ

�
 ð52Þ

is associated to the stress-energy tensor of the matter
source, and describes the most general stationary rotating
matter distribution at second order in the angular momen-
tum, which is spherically symmetric in the nonrotating
limit. Since we have no free parameters in the scalar and
dipole terms (other than the mass and angular momentum),
such dressed vertex shows that at order OðSÞ the geometry
is uniquely defined, as we commented in Sec. II C.
Moreover, the dimensionless coefficients are normalized
in such a way that we recover the minimal dressed vertex in
Eq. (45) by setting

H1¼ 1; H2 ¼ 0; C1¼ 0; C2¼ 0: ð53Þ

Hereafter, we will refer to Eq. (53) as the minimal limit. As
we will show in detail, while the Ci coefficients are a gauge
artifact, the Hi coefficients are physical, in the sense that
they determine the multipole structure of the source. On the
other hand, the higher-loop dressed vertex in Eq. (51) does

not correspond to the stress-energy tensor Tð0Þ
μν of the matter

distribution. Indeed, we will see how it contributes only to
the renormalization of gauge-dependent singularities in the
metric that arise only in d ¼ 3, 4.
Finally, one can check that both dressed vertices are

conserved up to local terms, in the sense that qμτ̂
μν
V2h

¼
Oðjq⃗j2Þ and qμτ̂

μν
V2h;HL

¼ Oðjq⃗j2Þ, as they should be. This
fixes the relative coefficients of the terms proportional toC2

in Eq. (50), and does not allow for any other terms. In fact,
even neglecting the QFT underlying the dressed vertex, we
could have written the stress-energy tensor associated to
Eq. (50) just by constructing the most generic conserved
symmetric rank-2 tensor with the objects we have at our
disposal. This means that, without considering the field
interpretation of the matter source, this procedure can be
easily generalized to arbitrary multipoles to build metrics in

any dimensions at any order in the PM expansion. In this
sense, the results above are universal as far as terms up to
quadrupole order are concerned. Considering a field of spin
s, we expect that the nonminimal couplings will produce
exactly the same vertex as the spin-1 case at quadrupole
level. In other words, a spin-s field will give rise to the most
general vacuum metric generated by a rotating object with
multipoles up to 2s order, and with all the higher multipoles
vanishing.

C. Loop amplitudes

As already mentioned, the dressed vertex in Eq. (50) is

directly related to the stress-energy tensor Tð0Þ
μν ðqÞ of the

matter source, which through Eq. (4) leads to the metric at
1PM. In order to get higher-order terms, one has to
compute self-interaction contributions to the stress-energy
tensor, which are produced by the loop amplitudes in
Eq. (8). At the one-loop level the only diagram that
contributes is the one in Fig. 1, while at the two-loop

level the diagrams that contribute to Tð2Þ
μν ðqÞ are shown in

Fig. 2. The computation is performed following the
procedure outlined in Sec. II A.
The loop amplitudes exhibit infrared divergences for

specific values of d, and although in general the compu-

tation of hðnÞμν ðxÞ by means of the Fourier transform in
Eq. (4) smears them, they lead to singularities in the metric
in d ¼ 3 and d ¼ 4. These divergences have to be renor-
malized by the insertion of diagrams involving the higher-
loop vertex in Eq. (51) used as counterterms, depending on
the specific value of d as explained in the last subsection.
At 2PM the only dimension in which a singularity appears
in the metric is d ¼ 4, and the singularity is cured by the
tree-level insertion of τ̂μν

V2h;HL
. In this case, we can redefine

the coefficients in (51) as
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Ω1jd¼4 ¼
Ωrenorm

1

d − 4
þ Ωfree

1 ;

Ω2jd¼4 ¼
Ωrenorm

2

d − 4
þ Ωfree

2 ; ð54Þ

where Ωrenorm
i is the term that has to be fixed to cancel the

poles, and Ωfree
i is the remaining free parameter. Then,

within our conventions we have to fix

Ωrenorm
1 ¼ 1

9π
and Ωrenorm

2 ¼ H1 þ 2H2 − 1

60π
; ð55Þ

such that the metric is now finite in d ¼ 4 and some
logarithmic terms arise in the radial dependence of the
metric.
At the two-loop level, the metric is divergent in both

d ¼ 3 and d ¼ 4. As we already discussed, in d ¼ 4 the
3PM metric is renormalized by a one-loop insertion of the
higher-loop vertex, as in Fig. 3. Consistently, the param-
eters defined in Eq. (55) renormalize the 3PM metric in
d ¼ 4, and the final result is finite. In the d ¼ 3 case, the
metric is renormalized by a tree-level insertion of the
higher-loop vertex. However, even if the same renormal-
ization procedure that we carried out for d ¼ 4 can be
pursued, obtaining a result for every value of the gauge
parameter α, we notice that in d ¼ 3 the harmonic gauge
(α ¼ 1) naturally eliminates every pole, and the metric

becomes finite.7 We checked this explicitly up to two loops,
and to the best of our knowledge there is no principle for
which such gauge guarantees finiteness at every PM and
multipole orders. In fact in d ¼ 4 at one loop, one can
define a particular gauge choice (choosing a specific value

of α) in which hð2;0Þμν ðrÞ is finite, but hð2;2Þμν ðrÞ is not.
From the point of view of the Einstein equations, the

divergences discussed above are interpreted as a conse-
quence of the fact that, for a specific gauge choice,
imposing that the metric is a series expansion in powers
of ρðrÞ is not consistent. Similarly, the presence of the
free parameters Ωfree

i is interpreted as a redundancy of the
gauge defined in Eq. (6). In the next section we will
discuss in detail the properties of the metric and give its
full expression at 1PM. Although we have also managed
to perform such calculation up to two loops and for an
arbitrary value of α, higher orders in the PM expansion do
not give any more physical information than the leading
order, and since the full expressions are quite involved, we

only provide the analytic form of hð2Þμν ðrÞ and hð3Þμν ðrÞ in the
Supplemental Material [41].

IV. ROTATING METRICS
IN ANY DIMENSIONS

From Eq. (52), by considering the Fourier transform in
Eq. (4), we can compute the metric induced by the most
generic rotating matter distribution (which is spherically
symmetric in the nonrotating case) at quadrupole order at
1PM. At tree level we have already computed the metric up
to OðSÞ in Sec. II C, so we just need to determine the
quadrupole part, which reads as

FIG. 1. One-loop Feynman diagram that contributes to Tð1Þ
μν ðqÞ.

FIG. 2. Two-loop Feynman diagrams that contribute to Tð2Þ
μν ðqÞ.

FIG. 3. One-loop insertion of the higher-loop vertex that
renormalizes the 3PM metric in d ¼ 4.

7In this case the tree-level insertion of the higher-loop vertex
only adds two gauge redundancies to the metric.
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hð1;2Þ00 ðrÞ ¼ 2ðd − 2ÞðH2ðd − 2Þ þH1Þ
d − 1

r2Sk1k2S
k1k2 − dxk1xk2Sk1

k3Sk2k3
mr4

GρðrÞ;

hð1;2Þ0i ðrÞ ¼ 0;

hð1;2Þij ðrÞ ¼ −
2ðd − 2Þ

ðd − 1Þmr4

	
−C1ðd − 1ÞdxixjSk1k2Sk1k2 − r2ðd − 1Þð2C2 þH1ÞSikSjk

þ r2ðC1ðd − 1Þ þH1 −H2ÞSk1k2Sk1k2δij þ dC2ðd − 1Þxk1Sk1k2ðxjSik2 þ xiSjk2Þ
þ dxk1xk2

�ðd − 1ÞH1Sik1Sjk2 þ ðH2 −H1ÞSk1k3Sk2k3δij
�


GρðrÞ: ð56Þ

We notice that, at this level, the metric does not depend on
the gauge parameter α introduced in Eq. (6) since the
differences between the de Donder and the harmonic gauge
start to appear at 2PM in the expression of the self-
interacting graviton vertices.

A. Eliminating redundant parameters

In the last subsection we recovered the metric induced by
a rotating matter source at quadrupole order, which depends
on four free parameters. However, it can be shown that
some of these are gauge artifacts, which can be eliminated
by an infinitesimal coordinate transformation.
Let us restrict to the case of α ¼ 1 (harmonic gauge),

even though the same argument can be generalized.
Consider a generic infinitesimal coordinate transformation
x0μ ¼ xμ þ ξμðxÞ, such that the metric perturbation in the
new frame reads as

h0μν ¼ hμν − ð∂μξν þ ∂νξμÞ: ð57Þ
By definition, in the harmonic gauge

□xμ ¼ 0; ð58Þ
and if we want to make a coordinate transformation
preserving this gauge, we just have to impose

□x0μ ¼ 0 → □ξμ ¼ 0: ð59Þ
Moreover, in order to preserve stationarity the infinitesimal
shift ξμ must be time independent, and in addition we
choose it such that ξ0 ¼ 0, so that only the spatial
components of the metric are transformed. With these
choices, since in arbitrary dimension

□ρðrÞ ¼ 0; ð60Þ
the most generic harmonic shift is

ξi ¼
Xþ∞

l¼0

T i;Al∂Al
ρðrÞ; ð61Þ

where T is a generic constant tensor, and we will use
hereafter the shorthand notation Al ¼ a1 � � � al, with

∂Al
¼ ∂a1 � � � ∂al . Finally, since ξi must have the dimen-

sions of a length, at a certain order in the derivatives of the
harmonic function we have to define a dimensionful
quantity that compensates for the extra length dimensions.
The most generic harmonic function linear in G that

parametrizes a coordinate transformation at quadrupole
order inside the gauge reads as

ξi ¼ G
m
ðASikSkj þ BSlmSlmδijÞ∂jρðrÞ: ð62Þ

Choosing the dimensionless coefficients as

A ¼ 2C2 and B ¼ C1 ð63Þ

and computing Eq. (57) we will end up with a metric
independent of C1 and C2. This means that such coef-
ficients in Eq. (56) are only a gauge artifact, while H1 and
H2 are physical because there is no transformation inside
the gauge that can cancel them.
There are two additional shifts that can be defined at

higher PM order up to quadrupole terms. In particular, at
order OðS0Þ one can consider

ξi1 ¼ ðGmÞ d
d−2Ω̃1∂

iρðrÞ; ð64Þ

while at order OðS2Þ one gets

ξi2 ¼
1

m2
ðGmÞ d

d−2Ω̃2SlkSkm∂i∂l∂mρðrÞ: ð65Þ

From Eqs. (64) and (65) one can repeat the previous
argument and show that the coefficients Ω1 and Ω2 in
Eq. (51) are a gauge artifact.
In summary, besides the spacetime mass m and spin

tensor Sμν, the solution depends on two further physical
parameters, namely H1 and H2, while every other free
coefficient parametrizes a gauge redundancy. This means
that in the nonminimal action in Eq. (47) every term can be
reabsorbed by a coordinate transformation except for the
terms proportional to K3 and K4, which are physical and
are not associated with a gauge transformation. However, in
d ¼ 3 this is not the end of the story. Indeed, such a case is
special since we can write Sij ¼ ϵijkSk, where Sk is the
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angular momentum vector and ϵijk is the Levi-Civita
symbol. Replacing this relation inside the metric in d ¼
3 and fixing

A ¼ H2 −H1 and B ¼ −
1

2
H1; ð66Þ

we find that the entire metric depends on H1 and H2 only
through the combinationH1 þH2, showing that theD ¼ 4
metric effectively depends only on one extra parameter. The
physical interpretation of H1 and H2, as well as their
degeneracy in four dimensions, will be discussed in the
next subsection.

B. Multipole moments

Having identified the physical parameters of the solu-
tion, we now turn our attention to their physical interpre-
tation. The metric in Eq. (56), in which the coefficients H1

andH2 enter, is truncated at the leading quadrupole order in
a multipole expansion, and so it is natural to think that such
coefficients are associated with the quadrupole moment(s)
of the source.
The concept of multipole expansion in general relativity

has a long history, pioneered byGeroch andHansen [46–48],
who defined a multipole expansion in a gauge invariant
framework. Later, Thorne introduced the so-called asymp-
totically Cartesian mass centered (ACMC) coordinates, a
particular reference frame in which it is possible to unam-
biguously extract the multipole moments directly from
the asymptotic behavior of the metric [43]. Albeit not
gauge invariant, Thorne’s formalism is more intuitive,
and it can be shown that the two definitions of multipole
moments coincide [49].Whilemost of the knowledge on this
topic is limited to the D ¼ 4 case (see Refs. [50,51] for a
review), there have been attempts to generalize the multipole
expansion formalism toD ¼ 5 in the Geroch-Hansen frame-
work [52] and using theACMCcoordinates à laThorne [42].
Let us discuss the original formalism of Thorne [43],

which is also used in [42]. Considering the linearized
metric

gμν ¼ ημν þ κhð1Þμν þ � � � ; ð67Þ

which is nothing but Eq. (2) truncated at first order, and
defining the trace-reversed perturbation as

γμν ¼ κhð1Þμν −
κ

2
ημνhð1Þ; ð68Þ

the harmonic gauge condition and the Einstein equations
respectively are

∂
μγμν ¼ 0 and □γμν ¼ 0: ð69Þ

As we already noticed in Sec. IVA, we can build harmonic
functions in arbitrary dimensions at any order by means of
derivatives of the harmonic function ρðrÞ. In this frame-
work, the most generic solution of the linearized vacuum
Einstein equations can be written as

γ00 ¼
Xþ∞

l¼0

MAl
∂Al

ρðrÞ;

γ0i ¼
Xþ∞

l¼0

J i;Al
∂Al

ρðrÞ;

γij ¼
Xþ∞

l¼0

Gij;Al
∂Al

ρðrÞ; ð70Þ

where MAl
, J i;Al

, and Gij;Al
are generic constant tensors

which are completely symmetric and trace-free (STF) in the
indices Al, and following [42,43] we will denote these
indices as fAlgSTF; moreover, Gij;Al

is also symmetric with
respect to ij but not traceless, so in a shorthand notation we
express all these symmetries by writing GðijÞ;fAlgSTF . In
particular, in d spatial dimensions, these multipole tensors
are SOðdÞ tensors, and they can be decomposed in
irreducible representations of such rotation group. For
the moment, let us restrict to the quadrupole case
(l ¼ 2) and d ¼ 3 spatial dimensions. We can rewrite
the trace-reversed perturbation in terms of irreducible
representations as (see Appendix A)

γ00jd¼3
l¼2 ¼ Mfa1a2gSTF∂a1∂a2

�
1

r

�
;

γ0ijd¼3
l¼2 ¼ J ð1Þ

a1 ∂a1∂i

�
1

r

�
þ J ð2Þ

fia1a2gSTF∂a1∂a2

�
1

r

�
þ ϵia1a2J

ð3Þ
fa1a3gSTF∂a2∂a3

�
1

r

�
;

γijjd¼3
l¼2 ¼ δijG

ð1Þ
fa1a2gSTF∂a1∂a2

�
1

r

�
þ Gð2Þ

∂i∂j

�
1

r

�
þ Gð3Þ

fðija1gSTF∂jjÞ∂a1

�
1

r

�

þ Gð4Þ
fija1a2gSTF∂a1∂a2

�
1

r

�
þ ϵðija1a2G

ð5Þ
a1 ∂a2∂jjÞ

�
1

r

�
þ ϵðija1a2G

ð6Þ
fa1a3jjÞgSTF∂a2∂a3

�
1

r

�
; ð71Þ
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where all the tensors are constant and the superscripts are
just labeling the different tensors. Now imposing the
harmonic gauge condition in Eq. (69) one has to fix

J ð2Þ ¼ 0; Gð1Þ ¼−
1

2
Gð3Þ; Gð4Þ ¼ 0; Gð6Þ ¼ 0: ð72Þ

Moreover, as we did in the last subsection, we can define a
coordinate transformation inside the harmonic gauge where

γ0μν ¼ γμν − ∂μξν − ∂νξμ þ ημν∂
αξα: ð73Þ

We can exploit this gauge freedom to choose

ξ0 ¼ Jð1Þa1 ∂a1

�
1

r

�
;

ξi ¼ −Gð1Þ
ja1

∂a1

�
1

r

�
þ 1

2
ϵja1a2G

ð5Þ
a1 ∂a2

�
1

r

�
þ 1

2
Gð2Þ

∂j

�
1

r

�
;

ð74Þ
obtaining a trace-reversed perturbation that reads as

γ00jd¼3
l¼2 ¼ Mfa1a2gSTF∂a1∂a2

�
1

r

�
;

γ0ijd¼3
l¼2 ¼ ϵia1a2J

ð3Þ
fa1a3gSTF∂a2∂a3

�
1

r

�
;

γijjd¼3
l¼2 ¼ 0: ð75Þ

This argument can be generalized to arbitrary multipole
orders, exactly as in [43], and the final outcome is that in
d ¼ 3 there are two independent towers of multipole
tensors, namely the mass multipoles MfAlgSTF and the

current multipoles J ð3Þ
fAlgSTF , which are gauge invariant

within ACMC transformations.
Let us now discuss the quadrupolar case (l ¼ 2) but

in d ¼ 4. In this case we have to decompose the
perturbation in terms of SOð4Þ irreducible representations
and, besides STF tensors, there will appear two more
structures (see Appendix A for details). Following [42],
we will indicate as ASTF (antisymmetric and trace-free) a
tensor T fb1b2;AlgASTF, which is STF with respect to Al,
antisymmetric on the b’s, and trace-free with respect to all
indices. Furthermore, irreducible representations of
SOð4Þ lead to another kind of tensor (not recognized
in [42]) that we call RSTF (Riemann symmetric and
trace-free), and we indicate them as T fib1;jb2;AlgRSTF . They
have the same symmetries of the Riemann tensor for the
first four indices, are STF with respect to Al’s, and are
trace-free with respect to all indices. We can now express
the trace-reversed metric perturbation in terms of irre-
ducible representations as

γ00jd¼4
l¼2 ¼ Mfa1a2gSTF∂a1∂a2

�
1

πr2

�
;

γ0ijd¼4
l¼2 ¼ J ð1Þ

a1 ∂a1∂i

�
1

πr2

�
þ J ð2Þ

fia1a2gSTF∂a1∂a2

�
1

πr2

�
þ ϵib1b2a1J

ð3Þ
fb1b2;a2gASTF∂a1∂a2

�
1

πr2

�
;

γijjd¼4
l¼2 ¼ δijG

ð1Þ
fa1a2gSTF∂a1∂a2

�
1

πr2

�
þ Gð2Þ

∂i∂j

�
1

πr2

�
þ Gð3Þ

fðija1gSTF∂jjÞ∂a1

�
1

πr2

�

þ Gð4Þ
fija1a2gSTF∂a1∂a2

�
1

πr2

�
þ ϵðijb1b2a1G

ð5Þ
fb1b2gASTF∂a1∂jjÞ

�
1

πr2

�

þ ϵðijb1b2a1G
ð6Þ
fb1b2;a2jjÞgASTF∂a1∂a2

�
1

πr2

�
þ Gð7Þ

fib1;jb2gRSTF∂b1∂b2

�
1

πr2

�
: ð76Þ

Notice that Gð7Þ is not manifestly symmetric in ij since it
has a Riemann-like symmetry; however, once symmetrized
in b1b2 (due to the contraction with the derivatives), it
becomes symmetric also with respect to ij.
Comparing this result with the work in [42], one can

notice that in Eq. (76) there is an extra structure, namely
Gð7Þ. The existence of such a new tensor is very clear from a
group theory point of view (see Appendix A), in which by
counting the number of degrees of freedom one gets

#
h
Gð7Þ
fib1;jb2gRSTF þ Gð6Þ

fb1b2;a1a2gASTF

i
¼ 40; ð77Þ

conversely to what is discussed in [42], in which 40
components are assigned to Gð6Þ only.

As done previously for the d ¼ 3 case, after imposing the
harmonic gauge condition, we can find a suitable coor-
dinate transformation inside the gauge such that the
perturbation finally reads as

γ00jd¼4
l¼2 ¼ Mfa1a2gSTF∂a1∂a2

�
1

πr2

�
;

γ0ijd¼4
l¼2 ¼ ϵib1b2a1J

ð3Þ
fb1b2;a2gASTF∂a1∂a2

�
1

πr2

�
;

γijjd¼4
l¼2 ¼ Gð7Þ

fib1;jb2gRSTF∂b1∂b2

�
1

πr2

�
: ð78Þ
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Since now γij ≠ 0, we have an extra degree of freedom at
quadrupole order with respect to the d ¼ 3 case. This
argument can be generalized to arbitrary dimensions and to
any multipole order, showing the existence of a new tower

of independent multipole tensors Gð7Þ
fib1;jb2;AlgRSTF that we call

stress multipoles.8 To summarize, Eq. (78) shows that at
each multipole order the spacetime is characterized by
three independent multipole tensors, which however in the
case of D ¼ 4 reduce to two only, due to group theory
properties of SOð3Þ and the specific form of the Einstein
equations.
Inspired by the above argument and by the metric in

Eq. (56), we conjecture the possibility of defining an
ACMC coordinate system in arbitrary dimensions and
the existence of a new independent multipole tensor
associated with the spatial part of the metric. To this end
we give the generic expression of a stationary metric in
arbitrary dimensions expanded in a multipole series as

g00¼ 1−
4ðd−2Þ
d−1

GmρðrÞ

þ
Xþ∞

l¼1

2ðd−2Þ
d−1

GmρðrÞ
rl

MðlÞ
Al
NAl

þ�� � ;

g0i¼−2ðd−2ÞGmρðrÞ
r

�
1

m
Sik

xk
r

�

þ2ðd−2Þ
Xþ∞

l¼2

GmρðrÞ
rl

JðlÞi;Al
NAl

þ�� � ;

gij¼−δij−
4

d−1
GmρðrÞδij

þ
Xþ∞

l¼1

2ðd−2Þ
d−1

GmρðrÞ
rl

G̃ðlÞ
ij;Al

NAl
þ�� � ; ð79Þ

with NAl
¼ xa1 ���xal

rl
and where the ellipses stand for non-

gauge invariant contributions. Indeed, in order to assure
gauge invariance, it is important to define the quadrupole
tensors up to terms δaman ; δiam or δjam. Loosely speaking, in
Eq. (79) we are neglecting terms in which NAl

’s contract
some δ’s. Therefore, within a “generalized” ACMC coor-
dinate transformation in arbitrary dimensions, the expres-

sion written in Eq. (79) is conjectured to be invariant. MðlÞ
Al

are the standard mass multipoles, JðlÞAl
correspond to the so-

called current multipoles, and G̃ðlÞ
ij;Al

contain the new
multipole tensors that we have just discovered, whose
expression is

GðlÞ
ij;Al

¼ G̃ðlÞ
ij;Al

þ 1

2
δij

�
MðlÞ

Al
− G̃ðlÞ

kk;Al

�
; ð80Þ

as can be easily derived from the definition (68). Since the
latter multipoles are associated with the spatial part of the
metric, it is natural to dub them stress multipole moments.
It is important to notice that in Eq. (79) the explicit

dependence on G is included for dimensional reasons, and
that in general the multipole tensors themselves can have an
explicit dependence on the Newton constant. The formal-
ism described above is indeed completely general, and
takes into account also the possibility of having intrinsic,
i.e., not necessarily spin-induced, multipoles.9 In that case,
in addition to the mass and the angular momenta, a new
length scale is present, and it is always possible to rewrite it
in units of the fundamental scale Gm, thus introducing
extra powers of G in the multipolar expansion (an example
of this case is the black ring discussed in Sec. V C). In order
to consider such intrinsic multipoles in a bottom-up
approach, from the amplitude perspective one can consider
a nonminimal action that, instead of terms quadratic in the
spin tensor like in Eq. (47), contains new independent
tensors for each term, defined similarly to Eq. (46).
Let us now restrict to spin-induced multipole moments.

In the specific case in which the matter source is axis
symmetric,10 the mass and the new stress multipoles
contain only even orders of the spherical harmonics (even
l), while the current multipoles are formed only by odd
orders of them (odd l). The metric in Eq. (56) describes the
most generic stationary axis-symmetric matter configura-
tion at quadrupole order, and therefore, according to our
definitions, we can write the spin-induced mass and stress
quadrupoles of a generic rotating source in arbitrary
dimensions as

Mð2Þ
a1a2 ¼ −

1

m2
d
�
H1 þ ðd − 2ÞH2

�
Sa1kSa2

k; ð81Þ

Gð2Þ
ij;a1a2

¼ −
1

m2
dðd − 1ÞH1Sðija1SjjÞa2 : ð82Þ

It is now evident that the parameters H1 and H2 of our
generic solution are actually related to the mass quadrupole

moment Mð2Þ
a1a2 and to the new stress quadrupole moment

Gð2Þ
ij;a1a2

. In the next section we will show that this is indeed
the case for the Myers-Perry and black ring solutions,
which have a nonvanishing stress quadrupole moment.
In order to see the degeneracy that occurs in d ¼ 3 in a

“gauge invariant” way, we just need to rewrite the spin
tensor as a spin vector, and the result reads as

8The name is inspired by the fact that gij is induced by Tij,
which is the stress part of the matter source.

9This is the case, for example, of a static body deformed away
from spherical symmetry [27,53].

10In D ¼ 4 this corresponds to the usual symmetry along the
rotational axis; in D > 4 one can define a similar symmetry in
which every rotational axis can be exchanged.
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Mð2Þ
a1a2Na1a2 jd¼3 ¼

3

m2
ðH1 þH2ÞðS · xÞ2 þ � � � ; ð83Þ

G̃ð2Þ
ij;a1a2

Na1a2 jd¼3 ¼ δijM
ð2Þ
a1a2Na1a2 jd¼3 þ � � � ; ð84Þ

where again the ellipses indicate that the expressions are
equal up to terms that contain contraction of the coordinates

and some δ’s. Note that, only in this d ¼ 3 case, G̃ð2Þ
ij;a1a2

is

fixed in terms of Mð2Þ
a1a2 and therefore Gð2Þ

ij;a1a2
¼ 0. This

result generalizes to all orders in the multipole expansion.

V. PARTICULAR CASES

In this section we compare the metric obtained with our
amplitude-based approach to the PM expansion of known
vacuum solutions in D ≥ 4, and discuss their multipolar
structure. Wewill see that, inD ¼ 4, in order to reproduce a
specific solution at quadrupole order we only need to fix a
combination of H1 and H2, while in D ¼ 5 we have to fix
both of them independently, proving explicitly the exist-
ence of the stress multipole moment. Furthermore, we
define the “simplest” metric as the metric associated with a
minimally coupled theory. We put it in relation with
specific cases, proving that Kerr black holes are the
simplest solution in D ¼ 4, while Myers-Perry black holes
and black rings in D ¼ 5 are not.

A. Hartle-Thorne metric in D= 4

The Hartle-Thorne metric [25,26] is the metric induced
by the most generic rotating matter distribution in D ¼ 4
up to spin-induced quadrupole order. As shown in
Appendix B, we can rewrite the Hartle-Thorne metric in
harmonic coordinates in order to compare it with the
amplitude result. This transformation introduces some free
numerical coefficients due to gauge redundancies that can
be mapped to the free parameters of our solution. With such
an identification, up to 3PM, we have proved that the
Hartle-Thorne metric and the amplitude-based one match
exactly. Such comparison has been done in the special
frame in which the Hartle-Thorne metric is defined, namely
with the angular momentum aligned with the z axis. In
order to move to such frame, in terms of the spin tensor we
have to choose

Sij ¼

0
B@

0 J 0

−J 0 0

0 0 0

1
CA; ð85Þ

where J ≡ a=m can be identified with the physical angular
momentum of the spacetime through an expansion in the
far-field limit.
The temporal component of the Hartle-Thorne metric in

harmonic coordinates reads as

gHT00 ¼ 1−
2Gm
r

þa2Gmζ

r3

�
3
z2

r2
−1

�
þOðG2;a3Þ; ð86Þ

where ζ parametrizes the mass quadrupole.11 By setting

H1 þH2 ¼ ζ; ð87Þ

the amplitude-based metric fully reproduces the Hartle-
Thorne solution. Therefore, in agreement with Eq. (83),
only the combination H1 þH2 enters in the definition of
the mass quadrupole, and since the stress quadrupole is not
independent of it, as shown in Eq. (84), there is only
1 degree of freedom. Indeed, as previously discussed, one
can find a coordinate transformation such that the entire
metric depends on H1 and H2 only through the combina-
tion H1 þH2.
However, since the Hartle-Thorne metric describes the

most generic rotating object in D ¼ 4, it contains the case
in which such an object is a black hole. In this special
scenario, no-hair theorems in D ¼ 4 state that the only
vacuum solution with a regular horizon is the Kerr metric,
which has a well-defined tower of multipole moments only
determined by the mass and spin [47,48]. In the Hartle-
Thorne formalism, the Kerr metric corresponds to the
solution with ζ ¼ 1 and, in terms of Eq. (56), this means
that a Kerr black hole is reproduced by fixing

H1 þH2 ¼ 1: ð88Þ

From the amplitude perspective, this condition is satisfied
by an infinite number of nonminimally coupled theories,
since H1 and H2 can be chosen freely as long as the Kerr
condition in Eq. (88) is satisfied. This can be associated to
the degeneracy occurring in D ¼ 4, that reduces the
number of physical degrees of freedom to 1, still having
two independent free parameters. In addition to nonmini-
mal QFTs, the minimally coupled theory, that gives rise to
what we define the simplest metric,12 also satisfies the Kerr
condition. Thus, from the point of view of the effective
QFT, the scattering amplitude computation unveils that
the simplest vacuum solution in D ¼ 4 is the Kerr black
hole. This is analogous to what was shown in [18,24],
namely that there exists a reference frame in which the
Schwarzschild-Tangherlini metric is induced by the min-
imally coupled scalar action.

B. Myers-Perry black holes in D= 5

Let us now consider higher-dimensional solutions in
general relativity, and in particular Myers-Perry black holes
in D ¼ 5 [39]. First of all notice that in D ¼ 5 the number

11Owing to the axisymmetry, the quadrupole moment tensor is
defined by a single parameter.

12This name is inspired by the fact that a minimally coupled
theory is the simplest possible theory from a QFT perspective.
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of Casimir associated to the rotation group SOð4Þ is 2;
namely an object can rotate independently with respect to
two independent axes. This means that the Myers-Perry
metric in D ¼ 5 has two independent angular momenta,
and since the classical metric is written in terms of
ðx1; y1; x2; y2Þ coordinates, defined in such a way that
the plane ðxi; yiÞ is orthogonal to the angular momentum Ji,
we have to block diagonalize the spin tensor as

Sij ¼

0
BBBB@

0 J1 0 0

−J1 0 0 0

0 0 0 J2
0 0 −J2 0

1
CCCCA; ð89Þ

where the match between the physical angular momenta Ji
and the spin parameter of the Myers-Perry metric ai
[written in Eq. (C1)] is given by13

mai ¼
D − 2

2
Ji: ð90Þ

Hence, rewriting the metric in harmonic coordinates as
shown in Appendix C, and fixing the physical parameters
as

H1 ¼
3

8
and H2 ¼

15

16
; ð91Þ

this metric matches exactly with our solution obtained from
amplitudes up to the order of our expansion (3PM; we
believe this is true at all PM orders).
Furthermore, we can see that in this case the degrees of

freedom manifestly match, and H1 and H2 are independ-
ently fixed to a specific numerical value. From the
discussion of the previous sections, this corresponds to
having independent mass and stress multipole moments

Mð2Þ
a1a2

��MP
d¼4

¼ −
9

m2
Sa1kSa2

k; ð92Þ

Gð2Þ
ij;a1a2

��MP
d¼4

¼ −
9

2m2
Sðija1SjjÞa2 : ð93Þ

This also shows that, from a QFT point of view, the Myers-
Perry solution does not correspond to a minimally coupled
theory. From this perspective, unlike the Kerr black hole,
the Myers-Perry black hole is not the simplest vacuum
solution in general relativity for D ¼ 5; indeed Eq. (91)
does not coincide with the minimal limit in (53). Since the
Myers-Perry solution is the natural generalization of the
Kerr solution in arbitrary dimensions [38], one can con-
clude that, generally speaking, black holes are not the

simplest vacuum solutions in arbitrary dimensions from a
scattering amplitude perspective.
Finally, since when J1 ¼ J2 the full Myers-Perry

metric features an enhanced symmetry becoming cohomo-
geneity-1 [39], one can observe that, in terms of multipole
expansion, in the limit of equal angular momenta the mass
quadruple vanishes [42]. Explicitly, it is possible to see that

lim
J1→J2

Mð2Þ
a1a2

��MP
d¼4

Na1a2 ¼ 0; ð94Þ

while the stress quadrupole does not vanish. This is not
only true for the Myers-Perry metric [39], but actually for
the general metric obtained from the amplitudes for any odd
spacetime dimension D when all the angular momenta are
the same. This means that, in general,

lim
Ji→J

Mð2Þ
a1a2

��
d¼evenNa1a2 ¼ 0: ð95Þ

We interpret this as a generic property of the gravitational
field sourced by a spinning pointlike mass.

C. Black rings

As we already mentioned, in D > 4 Myers-Perry black
holes are not the only vacuum solutions with horizons. One
solution beyond the Myers-Perry black holes is the black
ring solution [54], which has ring topology at the horizon
(at variance with the Kerr and Myers-Perry solutions that
instead have spherical topology).
Let us consider for simplicity the case with only one

angular momentum, where S21 ¼ −S12 ¼ J are the only
nonvanishing components of the spin tensor. The original
solution is written in terms of three parameters ðR; ν; λÞ
with 0 < ν ≤ 1, which encode mass, spin, and shape of the
ring. As shown in Appendix D, we can replace R and ν in
favor of m and J, which are respectively the mass and the
spin of the solution. In terms of ðm; J; λÞ, we can write the
metric in harmonic coordinates in a PM expansion. For a
generic value of λ, the black ring solution has a naked
conical singularity unless

λ ¼ 2νðm; JÞ
1þ ν2ðm; JÞ ; ð96Þ

which in turn implies that mass and spin are not indepen-
dent. This condition also corresponds to the existence of
equilibrium solutions in the absence of external forces, and
sets a lower bound on the angular momentum. However, we
keep 0 < λ ≤ 1 as a free parameter, thus describing a
family of solutions, of which only one is free of naked
conical singularities for a given m and J. The Myers-Perry
solution is then recovered from the black ring if λ → 1,
keeping fixedm and J (this is outside the equilibrium curve
of the ring).13Notice that with respect to Appendix C a1 ¼ a and a2 ¼ b.
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With the aim of comparing the black ring metric with
Eq. (56), consider the quadrupole structure described
in (79). Both mass and stress quadrupole moments have
a dimension of a length squared (in ℏ ¼ c ¼ 1 units),
meaning that in D ¼ 5 they can be written in terms of
dimensionful quantities S2=m2 or Gm.14 If a new funda-
mental length scale Λ is present in the gravitational source,
schematically the intrinsic quadrupole reads as

Mð2Þ ∼ Λ ¼ σGm; ð97Þ

where σ is a dimensionless parameter. This means that, if
one writes Λ in units of Gm, such non-spin-induced
moment would enter at 2PM in the expansion of the
metric, even though it is associated with a tree-level
scattering amplitude. This is the case for the black ring
solution, which has a ring topology and hence a non-
vanishing intrinsic quadrupole moment even in the non-
spinning limit. However, since the amplitude-based
approach presented in this paper focuses on spin-induced
multipole moments, we cannot match the metric at the
quadrupole level including intrinsic moments. We restrict
in this case to 1PM order, in which only spin-induced
moments are present, and we expect to be able to fully
reconstruct the metric and its spin-induced multipoles.
Then, from the results of Appendix D, fixing the physical

parameters as

H1 ¼
3

4ð1þ λÞ ; H2 ¼
3ð6λ − 1Þ
8ð1þ λÞ ; ð98Þ

we have verified the agreement of the black ring metric

with the amplitude-based one, up to 1PM. Indeed, we can
easily check that for λ ¼ 1 we recover exactly the expected
coefficients H1 and H2 of the Myers-Perry solution in
Eq. (91). As in the Myers-Perry black holes, in Eq. (98) for
a given value of λ, the parameters H1 and H2 are
independently fixed, and so also black rings in D ¼ 5
have independent mass and stress quadrupole moments.
For completeness, their explicit expression is

Mð2Þ
a1a2

��BR
d¼4

¼ −
1

m2

18λ

1þ λ
Sa1kSa2

k þOðGmÞ; ð99Þ

Gð2Þ
ij;a1a2

��BR
d¼4

¼ −
1

m2

9

1þ λ
Sðija1SjjÞa2 þOðGmÞ; ð100Þ

where we are neglecting the intrinsic (i.e., non-spin-
induced) quadrupole moments. Given the extra parameter
λ (in addition to the mass and angular momentum), one
could check whether there exists a particular black ring
solution corresponding to the simplest metric generated by
the minimal vertex of the QFT. However, it is easy to verify
that there is no value of λ such that H1 ¼ 1 and H2 ¼ 0 at
the same time. This shows that all black ring solutions with
single angular momentum are generated by nonminimally
coupled theories from the scattering amplitude perspective.

D. The simplest metric in any
spacetime D dimensions

For completeness, we give here the explicit form of the
simplest solution in generic spacetime D dimensions,
obtained from the minimal vertex in (45) and correspond-
ing to H1 ¼ 1 and H2 ¼ 0:

hð1;2Þ00 ðrÞ ¼ 2ðD − 3Þ
D − 2

r2Sk1k2S
k1k2 − ðD − 1Þxk1xk2Sk1k3Sk2k3

mr4
GρðrÞ;

hð1;2Þ0i ðrÞ ¼ 0;

hð1;2Þij ðrÞ ¼ −
2ðD − 3Þ

ðD − 2Þmr4
�
−r2ðD − 2ÞSikSjk þ r2Sk1k2S

k1k2δij

þ ðD − 1Þxk1xk2ððD − 2ÞSik1Sjk2 − Sk1
k3Sk2k3δijÞ

�
GρðrÞ: ð101Þ

We stress again that the 1PM order contains all the physics
that we want to capture, and we consider only the quadru-
pole term because monopole and dipole moments are
uniquely fixed. In this regard the quadrupole moments
of this solution are

Mð2Þ
a1a2

��simplest ¼ −
D − 1

m2
Sa1kSa2

k; ð102Þ

Gð2Þ
ij;a1a2

��simplest ¼ −
ðD − 1ÞðD − 2Þ

m2
Sðija1SjjÞa2 : ð103Þ

As previously discussed, in D ¼ 4 this solution corre-
sponds to the Kerr metric. However, when considering
D ¼ 5, it does not match either the Myers-Perry metric or
the black ring with a single angular momentum. Since our
analysis shows that the minimal solution is not a black hole,
we leave it as an interesting open problem to identify
whether an exact solution exists that corresponds to this
metric, and possibly what is the matter content sourcing14We recall that in higher dimension ½Gm� ¼ LD−3.
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such solution, similarly to theHartle-Thornemetric inD ¼ 4.
Moreover, one could in principle still construct a black hole
solution whose spin-induced part of each multipole matches
the one of the simplestmetric.At tree level the theory is linear,
and this could be done by superimposing various solutions
and their corresponding moments. However, in general such
superposition is invalid beyond the linear level, so construct-
ing such solution (if it exists) is highly nontrivial.
Another interesting possibility is the existence of differ-

ent simplest solutions inD > 4. As we briefly mentioned in
Sec. II, when we refer to spin-s fields we are assuming a
completely symmetric and traceless field representation of
the Lorentz group, but in higher dimensions there are more
possible representations, and for example in D ¼ 5 we can
build an action that couples an antisymmetric field with
gravity. The minimal vertex associated to this theory could
be either equal to (45), thus suggesting the fundamental
nature of the simplest metric, or different, leading to an
another simplest solution that can be compared to Myers-
Perry or other black hole solutions. Likewise, one could
consider a theory for a minimally coupled field with spin
s > 1 and check whether the simplest metric is universal, at
least up to the quadrupole order.
Finally, it is important to stress that Eq. (52) (and therefore

the most generic metric in D dimensions) could also be
derived without the use of scattering amplitudes, but simply
by constructing the most generic stress-energy tensor com-
patible to its symmetries in momentum space. However,
having an underlying QFT allows us to identify the simplest
solution among the general family, and gives to us the
possibility to interpret black holes from a different point of
view.The fact that inD ¼ 4 the simplest solution corresponds
to the Kerr metric seems to resemble the no-hair theorem in a
QFT language, inwhich the absenceofhair corresponds to the
absence of extra coupling in the effective action. InD > 4 the
story is more complicated, and the absence of black hole
uniqueness theorems seems to spoil the connection between
simplestmetrics and black holes solutions, although ourwork
suggests further investigations along this line.

VI. CONCLUSIONS

In this work we computed the vacuum solution describ-
ing the metric of a generic rotating object in arbitrary
dimensions, up to spin-induced quadrupole order and
within a PM expansion. Our computation is based on
the classical contributions of scattering amplitudes describ-
ing the emission of gravitons out of massive spin-1 particles
and provides valuable insights into the nature of spinning
compact objects in arbitrary dimensions.
In the context of D ¼ 4 spacetime dimensions, our

computations have successfully recovered the PM expan-
sion of the well-known vacuum Hartle-Thorne solution,
describing the metric of a spinning compact object in
general relativity up to second order in the angular
momentum. The Kerr metric describing a spinning black

hole is a special case arising for a specific choice of the mass
quadrupole moment. At the level of the effective quantum
field theory, this choice corresponds to the case of a Proca
fieldminimally coupled to gravity. This reaffirms black holes
as the simplest solutions to general relativity in four
dimensions also from a scattering-amplitude perspective.
However, our investigation reveals that the situation is

different and richer in higher (D > 4) dimensions. Here,
through our scattering amplitude analysis up to two-loop
calculations, we have obtained the generic solution including
quadrupole-moment terms quadratic in the object’s angular
momentum. Interestingly, at variance with the D ¼ 4 case,
we have found that the solution depends on two quadrupole
moment parameters, namely the standard mass quadrupole
and a new stress quadrupole; the latter does not exist in
D ¼ 4 and was previously missed in the analysis of [42].
We have successfully identified and characterized different
D > 4 black-hole solutions, such as theMyers-Perry and the
black ring metrics, as particular cases obtained for specific
choices of the parameters of our general PM solution.
Notably, unlike the four-dimensional case, none of these
solutions corresponds to the choice of minimal couplings in
the effective action, highlighting that the nature of black
holes in higher dimensions is more intricate. In this direction
our work could be important to extend the analysis of four
and five-point classical gravitational scattering amplitudes
involving spinning bodies [55–61] to higher dimensions.
It would be interesting to assess whether this property is

somehow linked to the absence of a black-hole uniqueness
and no-hair theorem in higher-dimensional general rela-
tivity. Nevertheless, it is known that the Myers-Perry
solution is the unique stationary, nonextremal, asymptoti-
cally flat, vacuum black hole solution with spherical
topology [38,62], which are exactly the hypotheses behind
our simplest metric. This means that if the Myers-Perry
solution is not the simplest one, strictly speaking no other
solution can be within our framework. However, an
interesting follow-up is to understand whether the concept
of simplest metric is universal in D > 4; for example by
constructing the metric arising from a minimally coupled
theory other than Proca, in this case it could happen that
another simplest solution matches the Myers-Perry one.
Even though we focused on the case of solutions with

spin-induced multipole moments, it should be possible to
extend our framework to describe generically deformed
compact objects (an example being the black ring solution
that has intrinsic moments in addition to the spin-induced
ones), also featuring higher-order multipole moments or
moments that break the Kerr symmetries (e.g., current
quadrupoles, mass and stress octupoles that break the
equatorial symmetry, or generically moment tensors that
break the axisymmetry) [27,63–67].
Another interesting avenue of exploration would be to

identify the solution corresponding to the minimal coupling
inD > 4 at the full nonlinear level. Our results suggest that
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such a solution (if it exists) should be stellarlike, i.e., it
requires matter fields coupled to gravity, or perhaps it
corresponds to black holes with complex topology as those
obtained by “superimposing” different black hole solutions
using the inverse scattering method, as in the case of the
black saturn [68], multiring, or other [69,70], possibly yet
unknown, solutions [38]. The study of compact objects
other than black holes and their multipolar structure in
higher dimensions is seldom explored and worth inves-
tigating to address this question.
We conclude by highlighting that the discovery of stress

multipoles opens several interesting avenues for future
investigation, both at the phenomenological level and for
a more fundamental understanding of gravity. Although we
have shown that the stress moments do not exist in D ¼ 4
general relativity, it would be very interesting to assess
whether this happens also for other gravity theories. We
expect that other gravitational theories with more degrees of
freedom (e.g., massive gravity or generic metric theories
propagating up to six polarizations at the linearized level)
should indeed have nonvanishing stress multipoles. If this is
the case, it would be interesting to understand the phenom-
enology associated to these new moments. This might also
change the way in which we build stationary solutions
beyond general relativity or perform tests of exotic compact
objects (see, e.g., [71]). Furthermore, in higher dimensions
these considerations have to be taken into account already
within general relativity, potentially impacting the way in
which we look for new solutions and study their linearized
dynamics. For example, even for a spherical object the new
multipolemoments can be induced by an external tidal field,
giving rise to stress Love numbers, associated with tensor
perturbations of compact objects in D > 4 [72], which are
indeed absent in D ¼ 4 (see [73–75] for a discussion of the
tidal Love numbers in higher dimensions).
Finally, even though the stress multipoles could have been

found within a classical general relativity framework, con-
sidering scattering amplitudes was really key to identifying
their existence. In particular, we realized that working in
momentum space it is relatively easy to write down the most
generic stress-energy tensor at arbitrary high order in the
multipole expansion, at variance with working in position
space (the natural setting of general relativity), in which
deriving the most generic expression of Tμν would be more
andmore tedious as the order ofmultipoles increases. This is a
perfect example of how recovering classical gravity from
scattering amplitudes not only can give us insights on the
phenomenology, but can also opennewperspectives to deepen
our understanding of gravity at a more fundamental level.

Note added during proof. After the completion of this
work, we became aware of [76], which performs a multi-
pole expansion of the long-wavelength effective action for
radiative sources in higher dimensions. The authors find a
new set of Weyl-type moments, which coincide with the
stress moments of a stationary object defined in this work.
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APPENDIX A: QUADRUPOLE MOMENTS IN
FOUR AND FIVE SPACETIME DIMENSIONS

In this Appendix we perform in detail the decomposition
in irreducible SOðdÞ representations of the constant tensor
Gij;ab which enters the expansion in Eq. (70), and it is
relevant for the analysis of the quadrupole moments. As
observed in Sec. IV B, the tensor is symmetric in the indices
ij and ab, and it is also traceless in ab. We will consider
explicitly the five-dimensional case, but the same results
apply in any dimension D > 4. To highlight the difference
with the four-dimensional case, we will first quickly review
how the latter works, and then move to D ¼ 5.
In four dimensions the tensor Gij;ab belongs to the

ð5 ⊕ 1Þ ⊗ 5 of SOð3Þ. This decomposes in irreducible
representations as

ð5 ⊕ 1Þ ⊗ 5 ¼ 9 ⊕ 7 ⊕ 2 × 5 ⊕ 3 ⊕ 1; ðA1Þ

which correspond to symmetric traceless tensors with 4, 3,
2, 1, and 0 indices of SOð3Þ, respectively. It is straightfor-
ward to recognize these representations as those of the
tensors Gð4Þ, Gð6Þ, Gð1Þ, Gð3Þ, Gð5Þ, and Gð2Þ, respectively, that
appear in Eq. (71).
We can now move to five dimensions. In this case

the indices belong to SOð4Þ, which is isomorphic to
SUð2Þ × SUð2Þ. We can then label the representations in
terms of those of each of the two SUð2Þ’s, and in particular
the tensor Gij;ab belongs to ðð3; 3Þ ⊕ ð1; 1ÞÞ ⊗ ð3; 3Þ,
which decomposes in irreducible representations as

�ð3; 3Þ ⊕ ð1; 1Þ� ⊗ ð3; 3Þ
¼ ð5; 5Þ ⊕ ð5; 3Þ ⊕ ð3; 5Þ
⊕ ð5; 1Þ ⊕ ð1; 5Þ ⊕ 2 × ð3; 3Þ ⊕ ð3; 1Þ
⊕ ð1; 3Þ ⊕ ð1; 1Þ: ðA2Þ

We want to identify such representations with the index
structure and constraints of the tensors in Eq. (76). The
ð5; 5Þ representation corresponds to the four-index sym-
metric traceless tensor Gð4Þ, while the ð3; 3Þ’s correspond to
the two-index symmetric traceless tensors Gð1Þ and Gð3Þ, and
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the ð1; 1Þ is the singlet Gð2Þ. The ð3; 1Þ ⊕ ð1; 3Þ identifies
the antisymmetric tensor Gð5Þ. The remaining representa-
tions, namely ð5; 3Þ ⊕ ð3; 5Þ and ð5; 1Þ ⊕ ð1; 5Þ, corre-
spond to tensors with mixed symmetry.
The tensor Gð6Þ in the ð5; 3Þ ⊕ ð3; 5Þ is the one identified

in [42] as the ASTF tensor Hab;cd with four indices,
antisymmetric in the first two and symmetric traceless in
the last two. Such a tensor, being irreducible, satisfies the
additional constraints15

δbcGð6Þ
ab;cd ¼ 0 ϵabceGð6Þ

ab;cd ¼ 0: ðA3Þ

To show that these constraints lead to 30 surviving
components16 we can start by observing that the number
of components of the tensor before imposing the con-
straints is 6 × 9 ¼ 54. The first constraint in Eq. (A3)
removes 15 components, because both the indices a and d
can take any value, but the trace in ad of the constraint is
identically zero. The second constraint in Eq. (A3) removes
nine additional components. Indeed, given the previous

constraint, ϵabceGð6Þ
ab;cd is symmetric traceless in ed. The fact

that it is traceless is due to the symmetry in cd, while the
fact that it is symmetric can be seen using the Fierz identity

ϵ½abceGð6Þ
ab;c

d� ¼ 0; ðA4Þ

which implies that the antisymmetric part of ϵabceGð6Þ
ab;cd

vanishes identically. We are thus left with 54 − 15 − 9 ¼
30 components.
The tensor Gð7Þ in the ð5; 1Þ ⊕ ð1; 5Þ, which is missing

in [42], is antisymmetric in both the pairs ab and cd, which
makes in total 36 components. Besides, it satisfies the
constraints

δbcGð7Þ
ab;cd ¼ 0 ϵabceGð7Þ

ab;cd ¼ 0: ðA5Þ

Using arguments similar to the ones above, one can
show that the first constraint removes 16 components
and the second removes ten components, leaving in total
36 − 16 − 10 ¼ 10 components.
The analysis performed here in five dimensions can be

generalized to any D > 4, implying that only in four dimen-
sions one can choose a gauge such that γij ¼ 0 as in Eq. (75).

APPENDIX B: HARTLE-THORNE METRIC
IN HARMONIC COORDINATES

The most generic rotating object in D ¼ 4 is described
up to spin-induced quadrupole order by the Hartle-Thorne
metric, which is exact in G [25,26]. Given a spherical set of
coordinates ðt; r; θ;ϕÞ, the explicit expression of the metric
up to 3PM order is

gtt ¼ 1 −
2Gm
r

þ a2Gmζ
�
3 cosð2θÞ þ 1

�
2r3

þ a2G2m2
�ð3ζ − 2Þ cosð2θÞ þ ζ − 2

�
2r4

þ a2G3m3ð4ζ − 11Þ�3 cosð2θÞ þ 1
�

7r5
þOðG4; a3Þ;

gtϕ ¼ þ 2aGm sin2ðθÞ
r

þOðG4; a3Þ;

grr ¼ −1 −
2Gm
r

þ
�
a2Gmζð3 cosð2θÞ þ 1Þ�

2r3
−
4G2m2

r2
−
a2G2m2

�
−5ζ − 3ð5ζ − 8Þ cosð2θÞ þ 4

�
2r4

−
8G3m3

r3
−
a2G3m3

�
−60ζ − 9ð20ζ − 27Þ cosð2θÞ þ 25

�
7r5

þOðG4; a3Þ;

gθθ ¼ −r2 þ a2Gmζ
�
3 cosð2θÞ þ 1

�
2r

þ a2G2m2
�
5ζ − 1Þð3 cosð2θÞ þ 1

�
4r2

þ 18a2G3m3ðζ − 1Þ�3 cosð2θÞ þ 1
�

7r3
þOðG4; a3Þ;

gϕϕ ¼ −r2 sin2ðθÞ þ a2Gmζð3 cosð2θÞ þ 1Þ sin2ðθÞ
2r

þ
�
a2G2m2ð5ζ − 1Þð3 cosð2θÞ þ 1Þ sin2ðθÞ�a2

4r2

þ 18
�
a2G3m3ðζ − 1Þð3 cosð2θÞ þ 1Þ sin2ðθÞ�

7r3
þOðG4; a3Þ; ðB1Þ

15To avoid overburderning with notation, in this Appendix we leave the STF, ASTF, and RSTF notation implicit; for instance
Gð6Þ
ab;cd ≡ Gð6Þ

fab;cdgASTF and Gð7Þ
ab;cd ≡ Gð7Þ

fab;cdgRSTF .
16Note that [42] ascribes 40 components to this tensor. We believe this is a mistake. Indeed, the 40 components correspond to the 30

components of Gð6Þ plus the 10 components of the tensor Gð7Þ described below.
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where a ¼ J=m is the angular momentum per unit mass
and ζ is the quadrupole mass moment normalized such that
for ζ ¼ 1 we have the Kerr limit.
In order to compare such metric with the one derived by

scattering amplitudes, we have to impose the harmonic
gauge. The reason why this reference frame is particularly
suitable is twofold: on one hand this is a “universal gauge,”
in the sense that there exists a gauge fixing termat the level of
the action such that everymetric can be put in this frame, and
on the other hand it is classically defined by the covariant
d’Alambertian of the associated Cartesian coordinates,
which makes it possible to define the transformation on
both the original and the transformed metric. Defining the
spherical harmonic coordinates as ðT; R;Θ;ΦÞ, and the
associated Cartesian coordinates as

8><
>:

x ¼ R sinðΘÞ cosðΦÞ;
y ¼ R sinðΘÞ sinðΦÞ;
z ¼ R cosðΘÞ;

ðB2Þ

the equation that the metric in harmonic spherical coordi-
nates has to satisfy is

gμνDμ∂νðT; x; y; zÞ ¼ 0; ðB3Þ

where each coordinate is treated as a scalar. Noticing that the
metric in (B1) does not depend on the azimuthal angleϕ, we
can define a coordinate transformation as

T¼ t; R¼ rðR;ΘÞ; Θ¼ θðR;ΘÞ; Φ¼ϕ: ðB4Þ

We can now define an ansatz for the relation between the
two sets of coordinates as

rðR;ΘÞ¼R
XnPM
i¼0

�
Gm
R

�
i XbnPole=2c

j¼0

�
a
R

�
2jXj

k¼0

CðRÞi;2j;kP2kðcosΘÞ;

ðB5Þ

cos θðR;ΘÞ ¼ cosðΘÞ
�
1þ

XnPM
i¼0

�
Gm
R

�
i XbnPole=2c

j¼1

�
a
R

�
2j

×
Xj

k¼0

CðΘÞi;2j;kP2kðcosΘÞ
�
; ðB6Þ

where Pn are the Legendre polynomials and b·c stands for
the integer part. The ansatz is motivated as follows:
(1) In the limit in which R → þ∞ the two reference

frames must coincide, which implies CðRÞ0;0;0 ¼ 1.
(2) In the nonspinning limit (a → 0), the Schwarzschild

metric must be recovered, and so in (B6) for a ¼ 0
we have to impose θ ¼ Θ.

(3) In the original metric at a given spin power, the
order of the Legendre polynomials is always equal
or lower than the spin power itself; hence we
set k < j.

(4) Since we have to respect the time-reversal symmetry
in which t → −t and Φ → −Φ, only even powers of
the angular momentum are allowed.

Finally, performing the coordinate transformation and
imposing Eq. (B3), we end up with

CðRÞ0;0;0¼1; CðRÞ0;2;2¼0; CðRÞ0;2;0¼0; CðΘÞ0;2;2¼0; CðΘÞ0;2;0¼0;

CðRÞ1;0;0¼1; CðΘÞ1;2;2¼−CðRÞ1;2;2; CðΘÞ1;2;0¼CðRÞ1;2;0;

CðRÞ2;0;0¼0; CðΘÞ2;2;2¼
ζ−4

3
; CΘ2;2;0¼

4−ζ

3
;

CðRÞ2;2;2¼
7

3
; CðRÞ2;2;0¼−

1

3
;

CðΘÞ3;2;2¼
64

9
−CðRÞ1;2;2þ

2

3
CðRÞ3;2;2; CðΘÞ3;2;0¼−

64

9
þCðRÞ1;2;2−

2

3
CðRÞ3;2;2;

CðRÞ3;2;0¼
2

3
þ3

5
CðRÞ1;2;0: ðB7Þ

Once the coordinate transformation is fixed, we can find the
metric in harmonic gauge at the chosen perturbative order
by means of (B4). We notice that the coordinate trans-
formation has some gauge redundancies since there are
coefficients which are unfixed. At 1PM and 2PM the
redundancy is parametrized by two coefficients, namely

CðRÞ1;2;0 and C
ðRÞ
1;2;2. At 3PM a new redundancy arises by means

of the unfixed coefficients CðRÞ3;0;0 and CðRÞ3;2;2. While the full
3PM result is given in the Supplemental Material [41], at
1PM the explicit expression of the Hartle-Thorne metric in
harmonic gauge reads as

gtt ¼ 1 −
2Gm
R

þ a2Gmζð3 cosð2ΘÞ þ 1Þ
2R3

þOðG2; a3Þ;

gtΦ ¼ 2aGm sin2ðΘÞ
R

þOðG2; a3Þ;

gRR ¼ −1 −
2Gm
R

þ a2Gm
8CðRÞ1;2;0 þ ð3 cosð2ΘÞ þ 1Þðζ þ 2CðRÞ1;2;2Þ

2R3
þOðG2; a3Þ;
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gΘΘ ¼ −R2 − 2GmRþ a2Gm
ζð3 cosð2ΘÞ þ 1Þ þ CðRÞ1;2;2ð3 cosð2ΘÞ − 1Þ − 4CðRÞ1;2;0

2R
þOðG2; a3Þ;

gRΘ ¼ −
3Gma2 sin2ðΘÞCðRÞ1;2;2

4R2
þOðG2; a3Þ;

gΦΦ ¼ −R2 sin2ðΘÞ − 2GmR sin2ðΘÞ

þ a2Gm sin2ðΘÞ ζð3 cosð2ΘÞ þ 1Þ − 4CðRÞ1;2;0 þ 2CðRÞ1;2;2

2R
þOðG2; a3Þ; ðB8Þ

and moving to Cartesian coordinates such metric can be
directly compared with the amplitude-based one.
This perturbative approach to the harmonic coordinate

transformation can be compared directly with [77], in
which a similar procedure is described. Considering only
terms up to 3PM and spin-square orders, we find disagree-
ment with the number of gauge redundancies present in the
metric after the transformation. In particular at 1PMwe find
two free parameters, while in the mentioned work there is
only one present. Our result is also confirmed by the
amplitude approach, in which as we showed in Sec. VA
there are 2 gauge degrees of freedom coming from the
dressed vertex in D ¼ 4.

APPENDIX C: MYERS-PERRY
BLACK HOLES IN D= 5 IN
HARMONIC COORDINATES

Myers-Perry black holes are a class of stationary vacuum
solutions of general relativity built to be the generalization
of the Kerr metric in arbitrary dimensions [39]. In D ¼ 5
the metric reads as

ds2 ¼ dt2 −
μ

Σ
ðdtþ a sin2 θdϕ1 þ b cos2 θdϕ2Þ2

−
r2Σ

Π − μr2
dr2 − Σdθ2 − ðr2 þ a2Þ sin2 θdϕ2

1

− ðr2 þ b2Þ cos2 θdϕ2
2; ðC1Þ

where

Σ¼ r2þa2 cos2 θþb2 sin2 θ; Π¼ðr2þa2Þðr2þb2Þ;
ðC2Þ

and a and b are two independent angular momenta and

μ ¼ 16πGm
ðD − 2ÞΩD−2

ðC3Þ

with ΩD the surface of a D sphere. As we did in the
D ¼ 4 case, we can define a set of Cartesian harmonic
coordinates as

8>>>><
>>>>:

x1 ¼ R sinðΘÞ cosðΦ1Þ;
y1 ¼ R sinðΘÞ sinðΦ1Þ;
x2 ¼ R cosðΘÞ cosðΦ1Þ;
y2 ¼ R cosðΘÞ sinðΦ1Þ;

ðC4Þ

related to the original coordinates through

T¼ t; R¼ rðR;ΘÞ; Θ¼ θðR;ΘÞ;
Φ1¼ϕ1; Φ2¼ϕ2; ðC5Þ

and such that

gμνDμ∂νðT; x1; y1; x2; y2Þ ¼ 0: ðC6Þ

Motivated by the same reasons of Appendix B, the
ansatz for the perturbative coordinate transformation is the
following:

rðR;ΘÞ¼R
XnPM
i¼0

ðGmρðRÞÞi
XbnPole=2c

j¼0

Xj

k¼0

CðRÞi;2j;2k

��
a
R

�
2j
P2kðcosΘÞþ

�
b
R

�
2j
P2kðsinΘÞ

�

þR
XnPM
i¼2

ðGmρðRÞÞi logðmGρðRÞÞ
XbnPole=2c

j¼0

Xj

k¼0

Cðlog;RÞi;2j;2k

��
a
R

�
2j
P2kðcosΘÞþ

�
b
R

�
2j
P2kðsinΘÞ

�
;
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cosθðR;ΘÞ¼ cosθ
XnPM
i¼0

ðGmρðRÞÞi
XbnPole=2c

j¼0

Xj

k¼0

�
CðΘ;aÞi;2j;2k

�
a
R

�
2j
P2kðcosΘÞþCðΘ;bÞi;2j;2k

�
b
R

�
2j
P2kðsinΘÞ

�

þR
XnPM
i¼2

ðGmρðRÞÞi logðmGρðRÞÞ
XbnPole=2c

j¼0

Xj

k¼0

�
Cðlog;Θ;aÞi;2j;2k

�
a
R

�
2j
P2kðcosΘÞþCðlog;Θ;bÞi;2j;2k

�
b
R

�
2j
P2kðsinΘÞ

�
: ðC7Þ

Notice that differently from theD ¼ 4 case, here we have to
consider logarithmic pieces starting from 2PM. This is
consistent with the amplitude-based approach in which we
observe the presence of singularities in D ¼ 5 even in the
harmonic gauge, renormalized by the insertion of higher-
loop vertices giving rise to logarithmic terms. Moreover the
coordinate transformation in Eqs. (C7) takes into account
the symmetries of the original metric, such that the
symmetry a → b and Θ → Θþ π=2.
As we did in the Hartle-Thorne case, replacing Eq. (C7)

in the harmonic equation, one is able to fix the coefficients
of the coordinate transformation. In this case the equivalent
of Eq. (B7) for the Myers-Perry solution is way more
involved, and since there is no physical information in it,

we provide it in the Supplemental Material [41]. However,
it is worth mentioning that coherently to what we know
from the amplitude calculation, the coordinate transforma-
tion develops two independent gauge redundancies at
orders OðGa2Þ, and two more at orders OðG2a0Þ and
OðG2a2Þ. In particular the redundancies at 2PM are related
to the logarithmic terms and are the classical counterpart of
the higher-loop vertex in Eq. (51).
Finally, we report the 3PM Myers-Perry metric in

harmonic coordinates in the Supplemental Material [41],
giving here for the sake of clarity only the expression at

1PM in the case in which CðRÞ1;2;0 ¼ 0 and CðRÞ1;2;2 ¼ −2=9 such
that gRΘ ¼ 0, resulting in the simplified expression

gtt ¼ 1 −
8Gm
3πR2

þ 8Gmða2 − b2Þ cosð2ΘÞ
3πR4

þOðG2; a3Þ;

gtΦ1
¼ −

8aGm sin2ðΘÞ
3πR2

þOðG2; a3Þ;

gtΦ2
¼ −

8bGm cos2ðΘÞ
3πR2

þOðG2; a3Þ;

gRR ¼ −1 −
4Gm
3πR2

þ 4Gmða2 − b2Þ cosð2ΘÞ
3πR4

þOðG2; a3Þ;

gΘΘ ¼ −
4Gm
3π

− R2 þ 4Gm
9πR2

�
a2 þ b2 þ 3ða2 − b2Þ cosð2ΘÞ�þOðG2; a3Þ;

gΦ1Φ1
¼ −

4Gm sin2ðΘÞ
3π

− R2 sin2ðΘÞ − 2Gm sin2ðΘÞ
9πR2

�
a2 þ b2 − 3ð3a2 − b2Þ cosð2ΘÞ�þOðG2; a3Þ;

gΦ2Φ2
¼ −

4Gm cos2ðΘÞ
3π

− R2 cos2ðΘÞ − 2Gm cos2ðΘÞ
9πR2

�
a2 þ b2 − 3ða2 − 3b2Þ cosð2ΘÞ�þOðG2; a3Þ;

gΦ1Φ2
¼ −

2abGm sin2ð2ΘÞ
3πR2

þOðG2; a3Þ: ðC8Þ

To the best of our knowledge, there is no other derivation of the Myers-Perry metric in such coordinates in the literature to
be compared with Eq. (C8). However, moving to Cartesian coordinates, we can directly match it with the amplitude-based
metric, finding a perfect agreement up to the order of our calculation, i.e., 3PM. Even though all the physical information is
contained in the tree-level part of the metric, higher-order calculations are an important and nontrivial consistency check
that this approach passes perfectly.
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APPENDIX D: BLACK RINGS WITH
ONE ANGULAR MOMENTUM IN

HARMONIC COORDINATES

It is known that in D > 4 there is no black hole
uniqueness theorem, meaning that if one considers non-
spherical topologies, the Myers-Perry black hole is not the
only solution with a horizon. Black rings are indeed another
black hole solution in D ¼ 5 [40]. Limiting to the case of
one angular momentum along the φ1 direction, in the so-
called black ring coordinates ðx; y;φ1;φ2Þ the explicit
metric reads as [40]

ds2 ¼ −
AðyÞ
AðxÞ

�
dt − CR

1þ y
AðyÞ dφ1

�
2

þ R2

ðx − yÞ2 AðxÞ
�
−
BðyÞ
AðyÞ dφ

2
1 −

dy2

BðyÞ

þ dx2

BðxÞ þ
BðxÞ
AðxÞ dφ

2
2

�
; ðD1Þ

where

AðzÞ ¼ 1þ λz; BðzÞ ¼ ð1 − z2Þð1þ νzÞ;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞ 1þ λ

1 − λ

r
; ðD2Þ

and 0 < ν ≤ λ < 1 are dimensionless parameters, while R
is a dimensionful radius. To avoid naked conical singular-
ities in Eq. (D1), one needs to impose

λ ¼ 2ν

1þ ν2
; ðD3Þ

and since λ and ν are parameters related to the shape and
angular momentum of the ring, the physical interpretation
of such a condition is to require that the centrifugal force
exactly compensates the gravitational self-attraction.
Therefore, one can refer to Eq. (D3) as the equilibrium
condition. As explained in the main text, we will not
enforce such a condition, so the black ring solution is
described by three parameters.
Our goal now is to move from ring coordinates to

harmonic coordinates. In order to do so, we need an
intermediate step in which we simply consider asymptoti-
cally flat coordinates through the transformation [42]

x ¼ −
�
1 − λ

1 − ν

�
r2 − 2ð1−λ

1−νÞR2cos2ðθÞ
r2

;

y ¼ −
�
1 − λ

1 − ν

�
r2 þ 2ð1−λ

1−νÞR2sin2ðθÞ
r2

;

ðφ1;φ2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p

1 − ν
ðϕ1;ϕ2Þ; ðD4Þ

in which one may now express the metric in terms of the
coordinates ðt; r; θ;ϕ1;ϕ2Þ. Furthermore, it is convenient to
make the dependence on the mass m and the angular
momentum Jmanifest in the black ring metric. Considering
the asymptotic long-range behavior of the solution, the
mass monopole and the spin dipole, i.e., the mass and the
spin itself, respectively read as

m ¼ 3πR2

4G
; J ¼ πR3

2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − νÞð1þ λÞp
ð1 − νÞ2 : ðD5Þ

Keeping λ a free parameter, in the metric written in
asymptotically flat coordinates we can now replace
ðR; νÞ in favor of ðm; JÞ, having finally a metric described
by three independent parameters ðm; J; λÞ.
We can finally move to harmonic coordinates by con-

sidering the transformation (C5), that through the definition
of harmonic Cartesian coordinates in Eq. (C4) have to
satisfy the relation (C6). The ansatz for the harmonic
coordinate transformation is different from the Myers-
Perry one since the topology is more complicated.
Moreover, for the reasons explained in Sec. V C, we will
consider only terms up to 1PM and second order in the
spin, so that the coordinate transformation reads as17

rðR;ΘÞ ¼ R
X1
i¼0

�
GmρðRÞ�iX1

j¼0

X2
k¼0

CðRÞi;2j;2kðλÞ

×

�
a
R

�
2j
P2kðcosΘÞ þOðG2; a3Þ;

cos θðR;ΘÞ ¼ cos θ
X1
i¼0

�
GmρðRÞ�i X1

j¼0

X2
k¼0

CðΘÞi;2j;2kðλÞ

×

�
a
R

�
2j
P2kðcosΘÞ þOðG2; a3Þ; ðD6Þ

where now the coefficients that have to be fixed will be
functions of the free parameter λ. Notice that among all the
constraints to impose to this ansatz, we have to ensure that
the monopole term in the space part of the metric is
independent of λ, since it must carry only the information of
the physical mass. This extra constraint, which is not
a priori satisfied from Eq. (D6), fixes to two the total
number of gauge redundant parameters at 1PM, exactly as
the previous cases.
Finally, considering the explicit expression of Eq. (D6)

(reported in the Supplemental Material [41]), the black ring
metric in harmonic coordinates (in a suitable gauge), in
which we are neglecting quadrupoles that are not spin
induced, reads as

17Notice that at higher PM orders one should include loga-
rithmic pieces as in the D ¼ 5 Myers-Perry case.
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gtt ¼ 1 −
8Gm
3πR2

þ 12Gma2λ cosð2ΘÞ
πR4ð1þ λÞ þOðG2; a3Þ;

gtΦ1
¼ 4aGmsin2ðΘÞ

πR2
þOðG2; a3Þ;

gRR ¼ −1 −
4Gm
3πR2

þ 6Gma2λ cosð2ΘÞ
πR4ð1þ λÞ þOðG2; a3Þ;

gΘΘ ¼ −
4Gm
3π

− R2 þ 2Gma2
�
1þ 3λ cosð2ΘÞ�

πR2ð1þ λÞ þOðG2; a3Þ;

gΦ1Φ1
¼ −

4Gmsin2ðΘÞ
3π

− R2sin2ðΘÞ þGma2sin2ðΘÞ
πR2

�
−1þ 3ð1þ 3λÞ cosð2ΘÞ�þOðG2; a3Þ;

gΦ2Φ2
¼ −

4Gmcos2ðΘÞ
3π

− R2cos2ðΘÞ þ Gma2cos2ðΘÞ
πR2

�
−1þ 3ð−1þ 3λÞ cosð2ΘÞ�þOðG2; a3Þ: ðD7Þ

This metric can be now compared directly with the amplitude-based one, obtaining a perfect match up to the order we are
considering.
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