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We examined the output of a quantum Michelson interferometer incorporating the combined effects
of nonlinear optomechanical interaction and time-varying gravitational fields. Our findings indicate a
deviation from the standard relationship between the phase shift of the interferometer’s output and the
amplitude of gravitational waves. This deviation, a slight offset in direct proportionality, is associated
with the gravitational wave memory effect under the conventional settings of interferometer parameters.
Furthermore, the results suggest that consecutive gravitational wave memory, or the stochastic gravitational
wave memory background (SGWMB), contributes not only to the classical red noise spectrum but also to a
quantum red noise spectrum through this new mechanism. This leads to a novel quantum noise limit for
interferometers, which may be crucial for higher precision detection system. Our analysis potentially offers
a more accurate description of quantum interferometers responding to gravitational waves and applies to
other scenarios involving time-varying gravitational fields. It also provides insights and experimental
approaches for exploring how to unify the quantum effects of macroscopic objects and gravitation.
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I. INTRODUCTION

Memory effect refers to a physical phenomenon that the
spacetime structure cannot revert to its initial state after
the passage of gravitational waves [1–4], and is linked to
gravitational wave sources. The Minkowski spacetime
structure before the arrival of gravitational waves is distinct,
or supertranslated, from that after the emission of gravita-
tional waves near null infinity, causing the change of
metrological standard. Specifically, it implies that the relative
distance between two test objects cannot return to their initial
conditions after being influenced by gravitational waves.
This effect has not yet been experimentally confirmed [5–7].
However, it may be detectable in future generations of
interferometers [8], space-based gravitational wave observa-
tories [9], or pulsar timing array projects [10].
At the classical level, this phenomenon and the corre-

sponding response of a classical Michelson interferometer
are well studied. Whereas the expected enhancement in
measurement sensitivity in future ground-based gravita-
tional wave detectors approaches and even surpasses the
standard quantum limit (SQL) [11–14], the test masses and
light in an interferometer are all inherently quantum in
nature, necessitating a more comprehensive quantum mod-
eling of the interferometer. Furthermore, although the
classical Michelson interferometer has achieved significant

success in the detection of gravitational waves [15–17]
and then serves as a versatile tool for probing various
theories of gravitation and different frameworks that unify
quantum and gravity through astrophysical or cosmological
processes [18–23], the Michelson interferometer itself, in
the quantum level, can also serve as a testing bed guiding
quantum gravity [24–29]. The quantum description of
Michelson interferometer includes the appropriate incor-
poration of gravitational effects in the quantum evolution,
particularly the quantum coupling between the light,
mirrors, and gravitational waves, which may introduce
non-negligible correctional effects. Additionally, the inter-
action between quantum interferometers and gravity can
give rise to intricate macroscopic quantum phenomena,
such as complex entangled states in macroscopic mirrors
[30–34], thereby enlightening fundamental questions in
quantum mechanics.
The current research on quantum interferometers with

optomechanical coupling and time-varying gravitational
field, specifically the analysis of radiation-pressure quan-
tum noise and SQL, involves semiquantized discussions
and fully quantum ones. The former only quantize the light
while the radiation pressure is treated as a classical random
force acting on a classical mirror [35–37]. Full quantiza-
tion, on the other hand, treats both light and the mirror as
quantum entities, but requires linear-system operators and
applicable to linear measurement theory [38–40]. However,
in the general optomechanical coupling terms [41–43],*guozhk@amss.ac.cn
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such as â†â x̂, the powers of the canonical coordinates and
momentum exceed two, resulting in a nonlinear system.
The standard approach linearizes it under the phenomeno-
logical approximation â → hai þ δâ by retaining only
the first-order terms when the mean photon number is
extremely high. This method may overlook significant
physical effects that are relevant in high-precision mea-
surements and could not be suitable for cases with fewer
average photons. Therefore, we rigorously consider the
effects of the nonlinear optomechanical coupling and
incorporate the quantum effects brought about by time-
varying gravitational potentials derived from Bondi-
Metzner-Sachs (BMS) theory [44–46].
The aim of the present work is to understand the physical

implication of gravitational wave memory on a quantum
interferometer. At the same time, it is also hoped that the
study of this semiclassical interaction between gravity and
quantum system will shed light on our understanding on the
interface between general relativity and quantum mechan-
ics, as a humble, small step to enhance our understanding of
quantum gravity.
The structure of this paper is outlined as follows.

Section II will derive the time-varying Hamiltonian term
for the mirrors in the quantum interferometer due to the
gravitational tidal force induced by gravitational waves,
based on rigorous gravitational wave theory. The gravity-
mirror coupling and the optomechanical coupling will be
combined in Sec. III to derive the output results of the
quantum Michelson interferometer. In Sec. IV we discuss
an instance of correction to the output of an interferometer
and explore the novel quantum noise limits induced by a
stochastic gravitational wave memory background. We
conclude in Sec. V.

II. SETTING UP THE HAMILTONIAN
FORMALISM

In this section, we present the expression for the geodesic
deviation equation for testing mass in interferometers based
on BMS method with the Bondi-Sachs (BS) coordinate
ðu; r; θ;ϕÞ [4,47,48] and at the same time work out the tidal
force terms to be inserted into the interaction Hamiltonian.
Consider the spacetime generated by an isolated gravi-

tational source. As a gravitational wave detector is sta-
tioned far away spatially from the source and wait long
enough time for the gravitational waves of the source to be
detected. In the spacetime picture, the detection of gravi-
tational waves takes place at null infinity. The timelike
geodesics of the detectors intercepts the waves at null
infinity of the spacetime.
We assume that the orthogonal arms of the interferom-

eter are tangent to the wavefront of the gravitational wave
after 3þ 1 decomposition and use Newmann-Penrose (NP)
formalism [46,49] with the tetrad choice fla; na; ma; m̄ag
that the null complex vectors ma, m̄a are defined by
fma ¼ 1=

ffiffiffi
2

p ðxa1 þ ixa2Þ; m̄a ¼ 1=
ffiffiffi
2

p ðxa1 − ixa2Þg where xa1

and xa2 denote the unit orthogonal vectors of the two arms,
la is tangent to the null hypersurface propagating the Weyl
curvature, and the null vector na is defined through relation
τa ¼ 1=

ffiffiffi
2

p ðla þ naÞwhere τa is tangent to the geodesics of
the test masses.
We have obtained a null tetrad frame adapted to the

detector and the wavefront of gravitational waves. By
defining Za

1 ¼ Lxa1 , Z
a
2 ¼ Lxa2 where L denotes the initial

arm length of the interferometer and utilizing the above
NP tetrad, we decomposed the Jacobi geodesic deviation
equations, deriving approximate expressions from peeling-
off theorem [50,51] in the limit of r → ∞

d2Z1;2

dt2
¼ 1

m1;2
F1;2ðtÞ þO

�
1

r2

�
; ð1Þ

in which

F1;2ðtÞ≡ −i1;2
iLm1;2

2
ffiffiffi
2

p
r
½Ψ0

4ðtÞ � Ψ̄0
4ðtÞ�; ð2Þ

where Ψ0
4 is the transverse Weyl scalar at source, m1;2

denote the mass of the end mirrors of the northern and
eastern arms respectively, Z1;2 represent the nonzero com-
ponents of Za

1;2 oriented align with ∂θ and ∂ϕ respectively
and we have used notation t≡ u to denote Bondi time.
From the second-order temporal derivative in the equa-

tion of motion for a mirror, within a cavity of length L,
influenced solely by gravitation, we subsequently derive
the effective quantum Hamiltonian incorporating the
contributions of light, mirrors, and their optomechanical
interaction. Law developed an effective Hamiltonian
addressing the interaction between a moving mirror and
the electromagnetic field, but this model did not account
for gravitational influence [43]. While the combined effects
of static gravitation and optomechanical coupling have
been explored [26,27], analyses incorporating time-varying
gravitational forces remain unaddressed. Pang et al.
attempted to construct the composite quantum effects when
quantized gravitational waves are coupled with a moving
mirror and the light field [28]. The Newton-Schrödinger
equations can also introduce the gravitational energy of the
mirror into quantum Hamiltonian, whereas this approach is
subject to considerable controversy [52]. Given the many
unresolved issues surrounding the quantization of gravity,
we attempt to construct an effective Hamiltonian for the
optomechanical system under the influence of gravity in a
semiclassical manner, without considering the quantization
of the gravitational field but treating gravity as a classical
perturbation in the weak-field nonrelativistic limit. The
arrival of gravitational waves will bring about temporal
changes in the background gravitational field of the
interferometer’s mirrors, while ignoring the back-action
of the mirror on the background spacetime. Following the
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approach of Law, we still start from the equations of motion
to find the effective quantum Hamiltonian.
The existence of electromagnetic field in the cavity and a

specific potential field VðxÞ surrounding the mirror adds
terms − 1

m ∂VðxÞ=∂x and 1
2m ð∂Aðx; tÞ=∂xÞ2 on the right-

hand side of the Eq. (1) where Aðx; tÞ is the vector potential
of the cavity field. After canonical quantization and a series
of approximations, including small-displacement approxi-
mation and single-mode approximation, the effective
Hamiltonian is derived as shown

HðtÞ ¼ ℏωâ†âþ ℏωmb̂
†b̂ − ℏωmκâ†âðb̂† þ b̂Þ

− kFðtÞðb̂† þ b̂Þ; ð3Þ

exhibiting a time-varying nonlinear quantum system with
annihilation operators of photon a and mirror’s phonon b
and corresponding frequency ω and ωm, mirror’s mass m,
and coefficients k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2mωm

p
, κ≡ kω=ðωmLÞ.

Regarding the mirror’s displacement, there exists a
precise solution within the Heisenberg picture

x̂HðtÞ ¼ ke−iωmtb̂þ keiωmtb̂† þ ℏω
mLω2

m
â†âð1 − cosωmtÞ

þ 1

mωm

Z
t

0

dt0Fðt0Þ sin½ωmðt − t0Þ�: ð4Þ

However, the photon output from the interferometer, which
is our observable and of primary interest, poses a challenge
for the solution of photon variables âHðtÞ. This is due to the
nonlinear interaction between photon and mirror, rendering
an exact solution unattainable. Consequently, only approxi-
mate solutions are feasible, which will be the focus of the
following section.

III. QUANTUM MICHELSON INTERFEROMETER
IN TIME-VARYING GRAVITATIONAL FIELD

A schematic diagram of the single-photon quantum
Michelson interferometer setup is shown in Fig. 1. Two
optical cavities of length L are inserted in the north and east
arm of the interferometer respectively, each of which is
mounted with a movable end mirror bounded by a square
potential field generated from suspension systems or other
electromechanical devices. The mirrors are modeled as
harmonic oscillators in small-displacement approximation
with natural frequencies ω1, ω2, displacements x1, x2, mass
m1, m2 and annihilation operators b1, b2 respectively.
We assume x1;2 ≪ L, ω1;2 ≪ ω, where ω is the frequency
of the photon, leading to the optomechanical coupling
Hamiltonians ℏωx1;2a

†
1;2a1;2=L [41–43], in which a1;2 are

annihilation operators of the north and the east photon split
by the beam splitter respectively.
For simplicity, we define the notation of optomechanical

evolution Hamiltonian HOM1≡H01−ℏω1κ1a
†
1a1ðb†1þb1Þ

in which H01 ≡ ℏωa†1a1 þ ℏω1b
†
1b1 is the free evolution

term and κ1 ≡ ω
ω1L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2m1ω1

p
is a dimensionless optome-

chanical coupling coefficient. Hence the Hamiltonian
describing the north cavity system with moving mirror
and time-varying gravitational field is

H1ðtÞ ¼ HOM1 þH1tðtÞ; ð5Þ

where H1tðtÞ≡ −k1F1ðtÞðb†1 þ b1Þ and k1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2m1ω1

p
.

And by substituting subscripts 1 → 2 immediately gives
the Hamiltonian of the east cavityH2ðtÞ ¼ HOM2 þH2tðtÞ.
A single photon denoted by number state j1iW is emitted

from a quantum light source and then is split by a beam
splitter. In terms of step function

uðt1; t2Þ ¼
�
1; t1 < t < t2;

0; otherwise;
ð6Þ

we set the first splitting time is time zero and write the
Hamiltonian of north system

HN ¼ H01uð0; lÞ þH1uðl; lþ τs þ τ1Þ
þH01uðlþ τs þ τ1; 2lþ τs þ τ1Þ; ð7Þ

where l is the distance from the splitter to the cavity,
τs ¼ NL=c is the photon storage time in the cavity with
number of photon round trips N without gravitational
waves, and τ1;2 ≈ −i1;2 · iNL=ð2 ffiffiffi

2
p

rcÞ½σ0ðtÞ � σ̄0ðtÞ� are
small additions to storage time τs resulting from gravita-
tional waves and σ0 relates to the shear of the ðθ;ϕÞ sphere
in BS coordinate [4]. By similarly substituting the sub-
scripts 1 → 2, we obtain the expression for the east system
HE, and the same substitutions can be applied to the
following ones.

FIG. 1. Quantum Michelson interferometer in time-varying
gravitational field.
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The evolution operator for H01 is trivial U01ðtÞ ¼
exp ð−iωcta

†
1a1Þ exp ð−iω1tb

†
1b1Þ while that for HOM1 is

complicated [53]

UOM1ðtÞ ¼ e−iωta
†
1
a1eiA1ða†1a1Þ2ea

†
1
a1ðz1b†1−z�1b1Þe−iω1tb

†
1
b1 ; ð8Þ

in which A1 ≡ κ21ðω1t − sinω1tÞ and z1 ≡ κ1ð1 − e−iω1tÞ.
But H1ðtÞ is a Hamiltonian with explicit time-dependence,
differing from the cases in [26,27], and therefore the
accurate expression of its evolution operator is the time-
ordering form U1ðtÞ ¼ T̂ exp ði R t

0 dt
0H1ðt0Þ=ℏÞ, which is

hardly solved analytically. Fortunately the time-dependent
term H1tðtÞ in H1 can be regarded as perturbation quantity
because F1ðtÞ ∝ 1=r with the astronomical distance r from
gravitational wave source to the interferometer. So it is
reasonable to apply time-dependent perturbation analysis
for the time evolution of quantum states determined by H1.
We transform Schrödinger picture into interaction picture,
write down the Dyson series solution, and then obtain
the time-evolution operator of H1 at the first order
approximation

U1ðτs þ τ1Þ≡U1ðl; lþ τs þ τ1Þ

¼ UOM1ðτs þ τ1Þ −
i
ℏ
UOM1ðlþ τs þ τ1Þ

×
Z

lþτsþτ1

l
HI

1tðt0Þdt0U†
OM1ðlÞ; ð9Þ

where HI
1tðtÞ is the perturbation term expressed in inter-

action picture

HI
1tðtÞ≡ −k1F1ðtÞ½eiω1tb†1 þ e−iω1tb1

þ 2κ1ð1 − cosω1tÞa†1a1�; ð10Þ

derived from U†
OM1ðtÞH1tðtÞUOM1ðtÞ with the help of the

Baker-Campell-Hausdorff formula.
We now contemplate a scenario where the mirrors

initially reside in their ground states, denoted as j0i1j0i2,
and the south input of beam splitter is in a vacuum state,
represented by j0iS, culminating in the initial state of
photon-mirror system being jψi ¼ j0iSj1iW j0i1j0i2.
Based on the quantum model of beam splitter [54–56]
and by setting its type as J2 and balanced (50∶50)
θ ¼ −π=2, the initial quantum state transforms as follows
after the first splitting

jψi ¼ 1ffiffiffi
2

p ðj1iN j0iE þ j0iN j1iEÞj0i1j0i2: ð11Þ

From the photon state transformation formula Eq. (A2)
during the second beam splitting we derive the total
quantum state jψi Eq. (A3) after the second beam splitting
to the first order approximation of H1t and H2t.
Thus the expected photon count on the south side

hNSi≡ hψ jNSjψi or west side hNWi yields the southern
output or western output of the quantum interferometer,
respectively

hNS;Wi¼
1

2
∓1

2
e−

1
2
½jz1ðτsþτ1Þj2þjz2ðτsþτ2Þj2�cos ½ωðτ1−τ2ÞþA2ðτsþτ2Þ−A1ðτsþτ1Þ�

� 1

2ℏ
e−

1
2
½jz1ðτsþτ1Þj2þjz2ðτsþτ2Þj2�½k1M1ðτsþτ1Þ−k2M2ðτsþτ2Þ�sin½ωðτ1−τ2ÞþA2ðτsþτ2Þ−A1ðτsþτ1Þ�; ð12Þ

where ziðtÞ≡ κið1 − e−iωitÞ, jziðtÞj2 ¼ 2κ2i ð1 − cosωitÞ,
AiðtÞ≡ κ2i ðωit − sinωitÞ, MiðtÞ≡ 2Re½CiðtÞziðlþ tÞ� þ
2DiðtÞ ¼ 2κi

R
lþt
l Fiðt0Þ½1 − cosωiðlþ t − t0Þ�dt0, CiðtÞ≡R

lþt
l Fiðt0Þeiωit0dt0, DiðtÞ≡ κi

R
lþt
l Fiðt0Þð1 − cosωit0Þdt0,

i ¼ 1, 2, and jzi;Re½…� denote the coherent state with
complex number eigenvalue z and the real value of ½…�
respectively.
If we set the two mirrors to be identical, which means

ω1;2 ¼ ωm; k1;2 ¼ k; z1;2 ¼ z;

A1;2 ¼ A; κ1;2 ¼ κ; ð13Þ

and adjust the potential field VðxÞ of the mirrors, such as
suspended system, along with the arm length L and the
number of photon round trips N, to ensure that the product

of its natural frequency ωm and the storage time τs
constitutes a small quantity that the condition ωmτs ≪ 1
prevails, then the significant terms M1ðtÞ, M2ðtÞ in
Eqs. (12) can be simplified as

MiðtÞ ¼ κiω
2
i

Z
lþt

l
Fiðt0Þðt0 − t − lÞ2dt0

¼ 2κiω
2
i

Z
t

0

dt000
Z

t000

0

dt00
Z

lþt00

l
Fiðt0Þdt0; i ¼ 1; 2;

ð14Þ

where the second formula can be demonstrated to be
identical to the first through the application of integration
by parts twice. We further assume that τ1; τ2; F1ðtÞ
and F2ðtÞ are significantly smaller compared to τs.
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Consequently, the strict expressions Eqs. (12) can be reduced to the first-order approximation of Oððτ1 þ τ2Þ=τsÞ
(Appendix B), denoted as

hNS;Wi ≈
1

2
∓ 1

2
e−2κ

2½1−cosωmτsþωm
2
ðτ1þτ2Þ sinωmτs� cos fðτ1 − τ2Þ½ω − ωmκ

2ð1 − cosωmτsÞ�g

� ω

2mL
e−2κ

2½1−cosωmτsþωm
2
ðτ1þτ2Þ sinωmτs� sin fðτ1 − τ2Þ½ω − ωmκ

2ð1 − cosωmτsÞ�g

×
Z

τs

0

dt000
Z

t000

0

dt00
Z

lþt00

l
½F1ðt0Þ − F2ðt0Þ�dt0; ð15Þ

which are the primary findings of this paper. And the
findings express the measurement outputs from photon
detectors in a quantum interferometer conducted under
the condition ωmτs ≪ 1 and subjected to the influences
of a weak time-varying gravitational field, exemplified
by gravitational waves. The first two terms represent
quantum corrections arising from optomechanical cou-
pling, in contrast to the standard interferometer outputs
hNS;Wi ¼ 1=2 ∓ 1=2 cos½ωðτ1 − τ2Þ�. The third term sig-
nifies quantum corrections due to composite effects of
nonlinear optomechanical coupling and gravity-mirror
coupling. Compared to the results from the previous papers
with linear systems, an additional perturbative corrective
multiple integral term of the difference in Weyl tensors
has emerged and the differential displacement term τ1 − τ2
it multiplies is phase-shifted by exactly π=2 (cos½…� →
sin½…�) relative to the standard term, making this result
quite novel.
Most importantly, the multiple integral term, as defined,

represents the difference of gravitational wave memory
effects between the two arms if the duration of the
gravitational radiation is less than τs
Z

τs

0

dt000
Z

t000

0

dt00
Z

lþt00

l
½F1ðt0Þ − F2ðt0Þ�dt0

≈m
Z

lþτs

l
½Z1ðtÞ − Z2ðtÞ�dt −mτs½Z1ðlÞ − Z2ðlÞ�

−
m
2
τ2s ½Ż1ðlÞ − Ż2ðlÞ�

≈mLðzm1 − zm2 Þðτs − τeÞ; ð16Þ

where τe denotes the time t ¼ lþ τe at which the memory
effect has progressed to half its magnitude and zm1 ≡
1
L Z1ðtÞjlþτs

l , zm2 ≡ 1
L Z2ðtÞjlþτs

l are memory effects induced
by this gravitational wave event. In the second approximate
equation, we neglect the integrals of the oscillatory terms of
the gravitational waves, which are nearly zero, and retain
only the integral of the direct current term produced by the
memory effect. Additionally, we disregard the values from
the initial moments of the gravitational wave event,
including the initial arm length difference Z1ðlÞ − Z2ðlÞ
and the rate of change in arm length Ż1ðlÞ − Ż2ðlÞ at the
time t ¼ l. This indicates that the photon detection results

from the interferometer will have an added perturbation
correction term related to memory effect, superimposed on
the standard results, leading to one of the main discoveries
of this research.
Moreover, within the context of typical experimental

parameters for gravitational wave interferometers, the
condition κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω2=2mω3

mL2
p

≪ 1 generally holds true,
thereby allowing further simplification of the output results
Eqs. (15) to

hNS;Wi ≈
1

2
∓ 1

2
cosωðτ1 − τ2Þ �

ω

2
zdmτdm sinωðτ1 − τ2Þ;

ð17Þ

where zdm ≡ zm1 − zm2 represents the difference of memory
between the northern and eastern arms and τdm ≡ τs − τe
represents the time difference between the moment when
the memory effect reaches half its magnitude and the
instant when the photon exits the interferometer. It implies
that on top of the standard response relationship between
gravitational wave amplitude difference and interferometric
light intensity, there will be an added, π=2 out-of-phase,
minor correction term. The magnitude of the correction is
associated with the memory effects zdm of the gravitational
wave over a duration τs, the integration time for the
memory effect τdm, the frequency of the photon ω, and
the differential displacement τ1 − τ2.

IV. DISCUSSION

A. Modification of the proportional relationship
between output phase and strain difference

To elucidate the extent to which this correction impacts
the standard relation hNSi ¼ 1=2 − 1=2 cosωðτ1 − τ2Þ, we
substitute the following parameters that the frequency of
photon ω ¼ 282 THz · 2π, the arm length L ¼ 4 km, the
number of photon round trips N ¼ 150, the amplitude
strength of the gravitational waves jΔL=Lj ≈ 10−21, and
the frequency of the mirrors’ phonon ωm ¼ 1 Hz · 2π,
thereby fulfilling the conditions ωmτs ≈ 0.01 ≪ 1 and
κ ≈ 3.2 × 10−8 ≪ 1. We also assume that the difference
of memory is zdm ≈ 10−22, and the integration time for the
memory is τdm ≈ 1

2
τs. With these parameters, the expected
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photon count on the south side has the estimated numerical
expression given by

hNSi ≈
1

2
−
1

2
cosωðτ1 − τ2Þ þ 8.9 × 10−11 · sinωðτ1 − τ2Þ:

ð18Þ

Although the coefficient 8.9 × 10−11 of the correction
term appears exceedingly small, it has a significant, non-
negligible impact because for small values of τ1 − τ2,
sinωðτ1−τ2Þ approximates to the first power of ωðτ1−τ2Þ,
and 1 − cosωðτ1 − τ2Þ approximates to the second power of
ωðτ1 − τ2Þ, thereby rendering the whole correction term
consequential.
The response curve of the south-side photon detector is

shown in Fig. 2. The blue dotted curve represents the
standard response curve without considering the correction,
while the red solid line represents the response curve with
the correction. The x-axis represents different strength of
gravitational waves, and the y-axis represents the average
photon count on the south-side detector for single-photon
input. The standard data processing procedure for gravi-
tational wave detection involves converting the average
photon count to phase, and then converting the phase
to gravitational waves’ strain. This is reasonable in the
absence of a memory correction term. However, as we can
see in the figure, the correction induced by the memory
effect causes a slight shift to the standard cosine response
curve. The greater the magnitude of the gravitational
waves, the larger this deviation.
Due to the weak nature of the quadratic response curve,

which makes gravitational waves difficult to detect, experi-
mental homodyne readout schemes typically implement an

offset to the interferometer [57]. This adjustment converts
the response curve from a quadratic to a linear dependency,
significantly enhancing sensitivity. Numerically, this is
equivalent to adding a fixed initial phase, φ0, to the phase
component of the output result’s trigonometric functions.
Specifically, in Eq. (18) ωðτ1 − τ2Þ should be replaced with
ωðτ1 − τ2Þ þ φ0. To illustrate the impact of this offset,
we configured the interferometer with a fixed initial phase
of φ0 ≈ 2π × 10−3 rad and redrew the response curve, as
shown in Fig. 3. It depicts the response curves of the
interferometer influenced by a preset phase offset, where
the blue dotted line represents the standard response
curve, and the red solid line illustrates the response curve
with quantum gravity correction effects considered. It is
clear from the graph that setting a specific offset in the
interferometer indeed transforms the response curve from a
paraboliclike to a linearlike curve, optimizing the quadratic
dependence into a linear one, thereby enhancing the
response capability. However, deviations from the standard
response due to the correction remain. Importantly, the
magnitude of these corrections no longer increases with the
strength of the gravitational wave. And instead, there is a
small, constant shift across the curve. Mathematically, this
constant shift arises when the phase shift induced by the
offset, φ0, is much greater than the phase shift caused by the
gravitational waves, satisfying the condition ωðτ1 − τ2Þ ≪
φ0 ≪ 1. Under such circumstances, the expression
sin½ωðτ1−τ2Þþφ0�≈sinφ0þOð½ωðτ1−τ2Þ�Þ holds. There-
fore, when presetting a certain offset in the interferometer,
the output will still exhibit this correction effect.
For the more realistic response curves in quantum

scenario, if we still follow the standard procedure of

-1 -0.5 0 0.5 1
10-21

9.869560

9.869565

9.869570

9.869575

9.869580

9.869585 10-6

 Standard Response
 Response with Correction

FIG. 3. The response curves of the interferometer influenced by
a preset phase offset φ0 ≈ 2π × 10−3 rad. The quadratic relation-
ship is converted to a linear one, thereby significantly enhancing
sensitivity. The magnitude of the correction no longer increases
with the amplitude of the gravitational waves. Instead, it
approximates a constant shift.

-1 -0.5 0 0.5 1
10-21

0

1

2

3

4 10-18

 Standard Response
 Response with Correction

FIG. 2. Correction to the standard response in a quantum
Michelson interferometer arising from the combined effects of
nonlinear optomechanical coupling and time-varying gravity-
mirror coupling, in which hGW ≈ ðτ1 − τ2Þc=ðNLÞ represents the
typical strain of gravitational waves.
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converting the average photon count to phase and then to
gravitational waves’ strain, it would actually result in a
slight misjudgment of the gravitational waves’ strain. When
the duration of the gravitational wave event exceeds τs or
the conditions ωmτs ≪ 1 and κ ≪ 1 for approximation are
not satisfied, it is necessary to apply the more rigorous
results given in Eqs. (12) instead of the aforementioned
approximate expression.

B. Quantum noise limit induced
by consecutive memory

To illustrate the quantum disturbance inflicted on the
mirrors by the measured photons and the ensuing issues
related to the SQL, we postulate the detection of such
photon at the southern detector, resulting in the collapse of
state Eq. (A3) into an entangled state of mirrors

1

2
e−iωð2lþτsþτ1ÞeiA1 jz1e−iω1li1j0i2 −

1

2
e−iωð2lþτsþτ2ÞeiA2 j0i1jz2e−iω2li2

−
i
ℏ
1

2
fe−iωð2lþτsþτ1ÞeiA1fk1C1ðτs þ τ1Þe−iω1ð2lþτsþτ1Þb†1jz1e−iω1li1j0i2

þ k2C2ðτs þ τ1Þe−iω2ð2lþτsþτ1Þjz1e−iω1li1j1i2 þ k1½C�
1ðτs þ τ1Þeiω1ðlþτsþτ1Þz1 þM1�jz1e−iω1li1j0i2g

þ e−iωð2lþτsþτ2ÞeiA2fk2C2ðτs þ τ2Þe−iω2ð2lþτsþτ2Þj0i1b†2jz2e−iω1li2 þ k1C1ðτs þ τ2Þe−iω1ð2lþτsþτ2Þj1i1jz2e−iω2li2
þ k2½C�

2ðτs þ τ2Þeiω2ðlþτsþτ2Þz2 þM2�j0i1jz2e−iω2li2gg; ð19Þ

which will subsequently evolves according to the Hamil-
tonians ℏωib

†
i bi þ kiFiðtÞðb†i þ biÞ, i ¼ 1, 2, until the

entrance of the next photon into the optical cavity and
then evolves in accordance with Eq. (5). At this point,
however, the initial state of mirrors is no longer the ground
state as Eq. (11), but rather the evolved entangled state.
This transformation causes the subsequent average output
of photons of the interferometer to be influenced by the
previous photons, a phenomenon represents a quantum
back-action effect, diverging from the description of treat-
ing the coupling of light and mirrors as linearized radiation
pressure fluctuation exerted on the mirrors and solving the
equation of motion for the mirrors [37,40].
Generally, we posit that the initial quantum state of the

light field and the mirror is jαilightjβim where α and β denote
the eigenvalues of corresponding coherent states of light and
mirror, respectively. Then the average displacement of the
mirror, as induced by the combined effects of light and a
singular gravitational wave memory following Eq. (4), is

hxiðτsÞ¼2kjβjcos½ωmτs−argðβÞ�þℏωjαj2
mLω2

m
ð1−cosωmτsÞ

þ 1

mωm

Z
τs

0

dt0Fðt0Þsin½ωmðτs− t0Þ�; ð20Þ

in which argðβÞ refers to the argument of the complex
number β. We assume that the natural frequency of the
mirror is sufficiently low fulfilling ωmτs ≪ 1, thereby
closely resembling that of a free mirror, allowing us to
derive a free-mass approximate expression

hxiðτsÞ ¼ 2kjβj cos ½argðβÞ� þ ℏωjαj2τ2s
2mL

þ 1

m

Z
τs

0

dt0
Z

t0

0

Fðt00Þdt00; ð21Þ

in which the first term indicates the expected initial position
of the mirror, and the second term represents the displace-
ment of the mirror resulting from the momentum transfer of
expected jαj2 photons colliding N times, while the third term
corresponds to the displacement of the mirror attributed to
the displacement memory effect of gravitational waves,
which are analogous to the classical scenario.
We then focus on the impacts attributable to gravitational

wave memory. After n gravitational wave memory events,
the average displacement and the corresponding power
spectrum density (PSD) SðfÞ of the mirror become

hxi ¼
Xn
j¼1

Zm
j ; SdmðfÞ ¼ L2Q

f2
; ð22Þ

where Zm
j ≡ 1

m

R τs
0 dt0

R
lþt0
l FðjÞðt00Þdt00 denotes the displace-

ment memory effect resulting from the jth gravitational
wave event, the inverse square relationship of the power
spectrum originates from the classical Brownian motion
induced by multiple instances of random displacement
memory effects, and Q is a coefficient that is dependent
upon the astrophysical and cosmological context.
This corresponds to the background noise induced by
classical stochastic gravitational wave memory background
(SGWMB) [58].
However, for photons’ variables aN and aS, due to the

nonlinear interaction between the photon and mirror, no
exact solution is available. Consequently, the proportional
relationship between mirror displacement and the output
phase of the interferometer inevitably fails to hold. And it is
impossible to directly deduce the expression for the output
phase of the interfered photons from mirrors’ displacement
above. Instead, starting from the mean output of photon
numbers from a single gravitational wave event Eq. (17),
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we phenomenologically express the average number of
photon outputs following n instances of stochastic gravi-
tational wave memory events as

hNSi¼
1

2
−
1

2
cosðδϕðnÞÞþω

2
sinðδϕðnÞÞ

Xn
j¼1

zdmj τdmj ; ð23Þ

in which δϕðnÞ ≡ ωNL
c

P
n
j¼1 z

dm
j denotes the cumulative

phase change in the output light induced by the total
memory. The first two terms are the output of the traditional
stochastic memory effect and the third term describes a new
type of fundamental noise, specifically the measurement
noise formed by the interaction of the stochastic gravita-
tional wave memory background with the quantum objects
of the interferometer, constituting a fourth type of quantum
noise originated from the combined effects of quantum
mechanics and gravity, independent of the Heisenberg limit
of the mirrors, photon shot noise, and photon radiation
pressure noise, thus establishing a novel quantum noise
limit. This can be termed as the memory quantum noise
(MQN). In accordance with the conventional linear back-
projection method δhNSi ∼ δϕ ∼ δx [40], which correlates
mean photon number of the output with displacement, then
the displacement noise attributable to the memory effect
can be equivalently described as the additional noise of
hNsi with PSD

SMQNðfÞ ≈ ω4N2L2τ2s
16c2

Q2

f2
; ð24Þ

assuming that each τdmj is a random variable uniformly
distributed across the interval [0, τs]. The above equation
indicates that the interference caused by memory quantum
noise remains a red noise spectrum. It is pertinent to note that
these conclusions are preliminary. Due to the complexity
involved in accurately computing the effects of a nonlinear,
time-dependent Hamiltonian on photons under consecutive
memory effects, our discussion is qualitative rather than
based on rigorous computation. And also as our discussions
are predicated on quantum systems, this necessitates an
extremely low temperature for the mirrors, thereby imposing
stringent requirements on the experimental setup.

V. CONCLUSIONS

Our primary contribution is the calculation of the
detector output for a quantum Michelson interferometer
in the presence of both nonlinear optomechanical coupling
and time-varying gravity-mirror coupling. Due to the great
distance between the interferometer and the gravitational
source, we can treat the gravity-mirror coupling as a
perturbation and obtain the southern and western outputs
of the quantum interferometer given by Eqs. (12). Selecting
interferometer parameters such that ωmτs ≪ 1 and incor-
porating the approximation τ1; τ2 ≪ τs, we obtain the
approximate results as presented in Eqs. (15), which

include a perturbative correction term compared to the
optomechanical coupling results. Notably, this correction
term is related to the memory effect described by Eq. (16).
To clarify the extent to which our results modify

the standard detector output, we take the condition
κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω2=2mω3

mL2
p

≪ 1 that are typically satisfied for
interferometer parameters to further simplify the results to
Eqs. (17). Upon substituting a specific set of parameters, it
becomes evident that a notable, albeit modest, deviation
from the standard relation occurs. This indicates that the
data processing procedure of inferring instantaneous phase
from instantaneous light intensity and then inferring the
instantaneous amplitude of the gravitational waves is
inherently flawed at the theoretical quantum level. This
is a relatively novel example of how the gravitational wave
memory effect influences the output of gravitational wave
detectors. Besides, when the duration of each gravitational
wave is less than storage time τs and there is a continuous
influence of a large number of gravitational wave memory
effects on the interferometer, we derive a novel type of
quantum noise arising from the composite effect of
quantum mechanics and gravity. The PSD of this noise
remains red. Our findings could potentially provide a
reference of significance for the advancement of future
high-precision gravitational wave detectors and the field of
quantum gravity.
Experimentally, the aforementioned effects become sig-

nificant only when the mirrors’ quantum properties are
pronounced. The mirrors must be initially in their ground
states at the frequency ωm and other noise sources such as
gravity gradient noise, seismic noise, and suspension
thermal noise should not cause greater disturbances at this
frequency. Advancements in the preparation of macro-
scopic oscillators in quantum ground states [59–62] and the
latest advancements in single-photon sources [63,64] ren-
der the empirical examination of gravity-influenced fully
quantum interferometers feasible in the near future.
Relocating interferometers to space could also significantly
reduce gravity gradient noise and seismic noise, leaving
thermal noise as the primary concern [65]. Certainly, for
actual ground-based gravitational wave detection, which
utilizes Schnupp asymmetry and homodyne or heterodyne
readout schemes [57], the response of light power to
gravitational waves is much more complex and requires
further analysis. Moreover, investigating the entangled state
of macroscopic mirrors and its implications for founda-
tional inquiries in quantum mechanics, as well as consid-
ering the incident light in a coherent state, will be pivotal
in future research endeavors aimed at yielding more
pragmatically significant results. Additionally, our efforts
should be directed toward developing a comprehensive
depiction of a fully quantum interferometer exhibiting
general covariance under gravitational influence [28], with
the objective of examining the proper integration of
quantum mechanics with gravitation.
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APPENDIX A: QUANTUM STATE AFTER THE SECOND BEAM SPLITTING

For the states j1iN j0iEj0i1j0i2 and j0iN j1iEj0i1j0i2, the transformed states prior to the second beam splitting are as
follows respectively,

U01ðlÞU1ðτs þ τ1ÞU01ðlÞj1iN j0i1U02ðlÞU2ðτs þ τ2ÞU02ðlÞj0iEj0i2;
U01ðlÞU1ðτs þ τ1ÞU01ðlÞj0iN j0i1U02ðlÞU2ðτs þ τ2ÞU02ðlÞj1iEj0i2: ðA1Þ

From the photon state transformation formula during the second beam splitting

j1iN j0iE ⟶
BS 1ffiffiffi

2
p ðj0iSj1iW þ j1iSj0iWÞ;

j0iN j1iE ⟶
BS 1ffiffiffi

2
p ðj0iSj1iW − j1iSj0iWÞ; ðA2Þ

we derive the total quantum state after the second beam splitting to the first order approximation of H1t and H2t

jψi ¼ 1

2
e−iωð2lþτsþτ1ÞeiA1ðj0iSj1iW þ j1iSj0iWÞjz1e−iω1li1j0i2 þ

1

2
e−iωð2lþτsþτ2ÞeiA2ðj0iSj1iW − j1iSj0iWÞj0i1jz2e−iω2li2

−
i
ℏ
1

2
fe−iωð2lþτsþτ1ÞeiA1fk1C1ðτs þ τ1Þe−iω1ð2lþτsþτ1Þðj0iSj1iW þ j1iSj0iWÞb†1jz1e−iω1li1j0i2

þ k2C2ðτs þ τ1Þe−iω2ð2lþτsþτ1Þðj0iSj1iW þ j1iSj0iWÞjz1e−iω1li1j1i2
þ k1½C�

1ðτs þ τ1Þeiω1ðlþτsþτ1Þz1 þM1�ðj0iSj1iW þ j1iSj0iWÞjz1e−iω1li1j0i2g
− e−iωð2lþτsþτ2ÞeiA2fk2C2ðτs þ τ2Þe−iω2ð2lþτsþτ2Þðj0iSj1iW − j1iSj0iWÞj0i1b†2jz2e−iω2li2
þ k1C1ðτs þ τ2Þe−iω1ð2lþτsþτ2Þðj0iSj1iW − j1iSj0iWÞj1i1jz2e−iω2li2
þ k2½C�

2ðτs þ τ2Þeiω2ðlþτsþτ2Þz2 þM2�ðj0iSj1iW − j1iSj0iWÞj0i1jz2e−iω2li2gg; ðA3Þ

where A1;2 ≡ A1;2ðτs þ τ1;2Þ, z1;2 ≡ z1;2ðτs þ τ1;2Þ, M1;2 ≡M1;2ðτs þ τ1;2Þ.

APPENDIX B: FIRST-ORDER PERTURBATION APPROXIMATION

Generally, for any real constant A and a small quantity ε, we reduce the following trigonometric functions to the first
order of ε

cosAð1þ εÞ ≈ cosA − Aε sinA; ðB1Þ

sinAð1þ εÞ ≈ sinAþ Aε cosA: ðB2Þ

For the expressions cosωmðτs þ τiÞ ¼ cosωmτsð1þ τi=τsÞ, i ¼ 1, 2, since τi=τs is a small quantity, retaining up to the first
order gives

cosωmðτs þ τiÞ ≈ cosωmτs − ωmτi sinωmτs; i ¼ 1; 2: ðB3Þ

Similarly, we have

sinωmðτs þ τiÞ ≈ sinωmτs þ ωmτi cosωmτs; i ¼ 1; 2: ðB4Þ
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Thus we have the first-order perturbation expansion results related to ðτ1 þ τ2Þ=τs
2 − cosωmðτs þ τ1Þ − cosωmðτs þ τ2Þ ≈ 2 − 2 cosωmτs þ ωmðτ1 þ τ2Þ sinωmτs; ðB5Þ

ωmðτ2 − τ1Þ þ sinωmðτs þ τ1Þ − sinωmðτs þ τ2Þ ≈ ðτ1 − τ2Þ½ω − ωmκ
2ð1 − cosωmτsÞ�: ðB6Þ

Additionally, we have the equation

Z
τsþτ1

0

dt000
Z

t000

0

dt00
Z

lþt00

l
F1ðt0Þdt0 −

Z
τsþτ2

0

dt000
Z

t000

0

dt00
Z

lþt00

l
F2ðt0Þdt0

¼
Z

τs

0

dt000
Z

t000

0

dt00
Z

lþt00

l
½F1ðt0Þ−F2ðt0Þ�dt0 þ

Z
τsþτ1

τs

dt000
Z

t000

0

dt00
Z

lþt00

l
F1ðt0Þdt0 −

Z
τsþτ2

τs

dt000
Z

t000

0

dt00
Z

lþt00

l
F2ðt0Þdt0

≈
Z

τs

0

dt000
Z

t000

0

dt00
Z

lþt00

l
½F1ðt0Þ−F2ðt0Þ�dt0: ðB7Þ

Since F1, F2, τ1, τ2 are all small quantities relative to τs, the last two terms are second-order small quantities and can be
neglected.
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