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It is shown that the foundational axioms of modified Newtonian dynamics (MOND) alone predict a
strong correlation between a bulk measure of the baryonic surface density ΣB and the corresponding
dynamical one ΣD of an isolated, self-gravitating object, such as a galaxy. The correlation is
encapsulated by its high- and low-ΣB behaviors. For ΣB ≫ ΣM ≡ a0=2πG (ΣM being the critical
MOND surface density) one has ΣD ≈ ΣB. More specifically, their difference—which would be
interpreted as the contribution of dark matter—is Σp ¼ ΣD − ΣB ∼ ΣM ≪ ΣB. In the deep-MOND limit,

ΣB ≪ ΣM, one has ΣD ∼ ðΣMΣBÞ1=2. This is a primary prediction of MOND, shared by all theories that
embody its basic tenets. Sharper correlations, even strict algebraic relations, ΣDðΣBÞ, are predicted in
specific MOND theories, for specific classes of mass distribution—e.g., pure disks or spherical
systems—and for specific definitions of the surface densities. I proceed to discuss such tighter
correlations for the central surface densities of axisymmetric galactic systems, Σ0

B and Σ0
D. Past work

has demonstrated such relations for pure disks in the aquadratic Lagrangian and quasilinear MOND
theories. Here I consider them in broader classes of MOND theories. For most observed systems, Σ0

D

cannot be determined directly at present, but, in many cases, a good proxy for it is the acceleration
integral G≡ R

∞
0 grd ln r, where gr is the radial acceleration along the reflection-symmetry plane of a

system, such as a disk galaxy. G can be determined directly from the rotation curve. I discuss the extent
to which G is a good proxy for Σ0

D and how the relation between them depends on system geometry,
from pure disks, through disk-plus-bulge ones, to quasispherical systems.

DOI: 10.1103/PhysRevD.109.124016

I. INTRODUCTION

The modified Newtonian dynamics (MOND) program1

starts with the following basic tenets, which a MOND
theory is required to obey,2,3: (1) It introduces a new
constant, a0, with the dimensions of acceleration. (2) A
MOND theory should converge to standard dynamics in the
formal limit a0 → 0, namely, when all system attributes
with the dimensions of acceleration become much larger
than a0. (3) In the opposite, deep-MOND limit (hereafter
DML)—which is approached, formally, by taking a0 → ∞,
while G → 0, so that A0 ≡ Ga0 remains fixed—the theory
should become spacetime scale invariant. (See Refs. [8,9] for
details of this requirement and many of its consequences.)

One also requires that the theory does not involve dimen-
sionless constants that differ much from unity. This implies,
for example, that the transition from the DML to standard
dynamics occurs not only around a0, but also within a range
of order a0 around this value.
The specific MOND theories studied to date, which

embody the above tenets, were shown to predict a strong
correlation between the characteristic surface density of a
baryonic body and that of the putative—but fictitious, or
“phantom,” according to MOND—dark-matter halo. For
example, for an axisymmetric galactic system—such as a
disk galaxy—they predicts a strong correlation between the
central surface density—i.e., the column density along
the symmetry axis—of the baryonic body Σ0

B and that of
the phantom halo Σ0

P.
The essence of this central-surface-densities correlation

(hereafter CSDC) is captured by its two limits, according to
whether Σ0

B is smaller or larger than the critical MOND
surface density

ΣM ≡ a0
2πG

¼ 138ða0=1.2 × 10−8 cm s−2ÞM⊙ pc−2: ð1Þ

For “high-acceleration” systems with Σ0
B ≫ ΣM, it is

predicted that Σ0
P ∼ ΣM. For systems in the DML, with

Σ0
B ≪ ΣM, it is predicted that

1MOND accounts for the mass anomalies in the Universe, not
by invoking dark matter, but by an appropriate modification of
Newtonian dynamics and general relativity [1]. It is extensively
reviewed in Refs. [2–7].

2We also often consider theories that go beyond these tenets;
but as a start, we try to abide by them.

3MOND is defined by its basic tenets, from which follow a
large number of primary predictions. One can write various
theories that embody these basic axioms—and hence share the
primary predictions—but which can differ on what they predict
for secondary phenomena or on details of the primary predictions.
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Σ0
P ¼ ηðΣMΣ0

BÞ1=2; ð2Þ

with η ¼ Oð1Þ.4 The exact interpolation between the two
limits, and the exact value of η, depends on the specific
MOND theory and generally may depend also on the
specific mass distribution.5

The CSDC is sometimes plotted in terms of the total
“dynamical” central surface density, Σ0

D ¼ Σ0
B þ Σ0

P, which
is predicted to converge to Σ0

B for Σ0
B ≫ ΣM and to Σ0

P in
the DML.
As shown in Sec. IV, the MOND basic tenets alone—

without resort to a specific theory—predict such a corre-
lation between the baryonic and dynamical bulk surface
densities, such as the average one, or the surface density at
the half-mass radius. This makes such a correlation a
primary MOND prediction.
Instead, however, we concentrate here on the correla-

tions between central surface densities of axisymmetric
systems, as it emerges in specific MOND theories, for the
following reasons: (1) The correlation between bulk
surface densities, while it is more general, and not theory
dependent in following from only the basic tenets, is
not as tightly pinpointed as correlations between central
surface densities in specific theories. For example,
the aquadratic Lagrangian (AQUAL) [10] and the quasi-
linear MOND (QUMOND) [11] theories predict for
pure thin disks, an exact, algebraic relation (as opposed
to a mere correlation) between Σ0

B and Σ0
P (or Σ0

D), which
gives η ¼ 2 [12]. (2) The basic tenets, dealing only with
the two limits, are capable of informing us only on
the asymptotic branches of a CSDC, while specific
theories should predict its full extent. (3) Σ0

D is much
easier to estimate from observations than bulk, dynamical
surface densities—using, e.g., rotation-curve data (see
Sec. II A 1). (4) Σ0

D lends itself more easily to calculation
in a given theory because it requires the dynamical
density only along the symmetry axis, not everywhere
in the field.
Past observational studies relevant to the issue [13–16]—

which I shall describe in more detail in Sec. III—confirm
various aspects of the MOND prediction as elucidated in
Refs. [12,13,17–19].

All the relevant predictions to date were derived either
based on the naive algebraic relation between the MOND
and Newtonian accelerations (from Ref. [1]) or as they
follow in the two workhorse, modified-gravity (hereafter
MG) MOND theories, AQUAL and QUMOND.
My main aim in the present paper is to consider the

correlation as predicted in more general classes of MOND
theories. In particular, I will discuss the value of the
coefficient η in the different theories.
A secondary aim is to assess the procedure that we need

to use when estimating Σ0
D from the observed rotation curve

of a galaxy.
In Sec. II, I give the definitions of the various central

surface densities and describe ways to determine them
observationally, in particular, using rotation-curve data. I
defer the discussion of some history of the subject to
Sec. III. In Sec. IV, I show how a correlation between
baryonic and dynamical surface densities follows from the
basic tenets of MOND. In Sec. V, I describe the classes of
more general modified-gravity MOND theories that are
used in Sec. VI to study the CSDC. Section VII is a
summary.

II. DEFINITIONS AND PROCEDURES

In modified-gravity theories of nonrelativistic MOND,
the acceleration of test particles in a gravitational field of a
density ρðrÞ is given by a gradient of the MOND potential
ϕðrÞ,

̈r ¼ g ¼ −∇⃗ϕ: ð3Þ

Unlike the Newtonian potential ϕNðrÞ, which is the
solution of the Poisson equation ΔϕN ¼ 4πGρ and gives
rise to the Newtonian acceleration field gN , ϕ solves
some MOND equation that incorporates the basic tenets of
MOND.
The predicted MOND acceleration field g should be

identified with the observed acceleration field. So, one can
define a dynamical density distribution

ρD ≡ −ð4πGÞ−1∇⃗ · g: ð4Þ

This auxiliary density would be required in Newtonian
dynamics to reproduce the MOND gravitational field via
the Poisson equation. The difference,

ρpðrÞ ¼ ρDðrÞ − ρðrÞ; ð5Þ

is called the phantom density [20], which in the context of
a Newtonian interpretation of the observed (MOND)
acceleration field has to be attributed to the putative
dark matter.

4It is often stated that, because of the spacetime scale
invariance of the DML, G and a0 cannot appear separately in
DML relations, only the product A0 ¼ Ga0; this appears not to
be the case in Eq. (2) since ΣM ∝ a0=G. Note, however, that for
the statement to hold it is required that all system attributes in the
relation are normalized such that they have scaling dimensions
that match their ½t�½l�½m� dimensions. This is the case for Σ0

B, but
not for Σ0

P, which has dimensions of ml−2, but scaling dimen-
sions −1, not −2. If, instead, we write the relation for Σ0�

p ≡ GΣ0
P,

which has dimensions lt−2, indeed only A0 appears in the
relation.

5Detailed predictions find η between 2 for disks and ≈4 for
spheres.
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Some MOND results can be described, for convenience,
in terms of this phantom density. Some examples of such a
device can be found in Refs. [18,20,21].
Here, we are interested in the “central surface densities”

of the baryons, of the phantom mass, and the total,
dynamical one, Σ0

B;Σ0
P;Σ0

D, respectively, of an isolated
galactic system.6 This concept is relevant for an axisym-
metric object—such as an idealized disk galaxy or an
axisymmetric pressure-supported galaxy—and is defined
as the column density of the respective component along
the symmetry axis, taken as the z axis. It is called so since it
is the projected central surface density when the system is
viewed along the axis. We consider systems that are also
reflection symmetric about a plane perpendicular to the z
axis, taken as the x-y plane, which is many times a good
approximation. Then

Σ0
B ¼ 2

Z
∞

0

ρ0BðzÞdz ¼ −
1

2πG

Z
∞

0

∇⃗ · gNðzÞdz;

Σ0
D ¼ 2

Z
∞

0

ρ0DðzÞdz ¼ −
1

2πG

Z
∞

0

∇⃗ · gðzÞdz; ð6Þ

where superscript “0” on ρ indicates density on the z axis.

A. Determining the central surface densities

Σ0
B is directly measured—at least in principle and not

always easily—as the deprojected central surface density of
the baryons, with contributions from stars and gas, etc. Σ0

D
includes the contribution of phantom matter (by MOND) or
of dark matter (according to this paradigm). This cannot be
detected (in MOND) and has not been detected (as dark
matter); so, to measure Σ0

D we would need to map the
acceleration field in some cylindrical volume around the

symmetry axis, so ∇⃗ · g can be determined there.
In spherical systems, it is enough to measure the radial

acceleration profile, since we then have from Eq. (6)

Σ0
D ¼ 1

2πG

Z
∞

0

�
2gr
r

þdgr
dr

�
dr¼ 1

2πG

Z
∞

0

2gr
r
dr¼ κ

2πG
G;

ð7Þ

where

G≡
Z

∞

0

grd ln r; ð8Þ

and κ ¼ 2. Here and below I take inward accelerations gr to
be positive. The “acceleration integral” G, a certain average
of the radial acceleration, plays an important role in the
present context.

In deriving Eq. (7), I used grð∞Þ ¼ 0, and I also assumed
that grð0Þ ¼ 0, otherwise the integral diverges at least
logarithmically at the origin.7

G can be measured with various degrees of accuracy for
quasispherical systems, such as elliptical galaxies or galaxy
clusters, using methods detailed in the literature, such as
hot gas hydrostatics or weak lensing. Such systems tend,
however, to have Σ0

B ≫ ΣM and they would probe the “less
interesting” region of high accelerations.

1. Disk galaxies—using rotation curves

Our main concern here is with disk galaxies because they
offer the most extensive and most accurate sample for
studying the CSDC. As we shall see below, the predictions
made by modified-gravity MOND theories concern the
phantom and dynamical column densities along the sym-
metry axis. However, except perhaps for the Milky Way,8

where we can, in principle, use test particles away from the
plane to map the potential field (using, e.g., tidal streams;
see, for example, Ref. [22]), we can only measure in a
relatively robust way, at present, the acceleration field in the
plane of the disk, using rotation curves: grðrÞ ¼ V2ðrÞ=r.
In the framework of the dark-matter paradigm, one can

approximate the halo by a spherical model, determine its
structural parameters (e.g., its characteristic density and
size), and then calculate its Σ0

P. Or, one can determine Σ0
P

from Eq. (7) with κ ¼ 2, using the excess contribution to
the acceleration integral, over that of the baryons.
In MOND, however, the phantom body of a disk galaxy

is made of a phantom disk and a phantom bulge [23]. We
thus need a relation similar to (7) for more general mass
distributions with our assumed symmetry.
Relation (7) for a spherical system can, in fact, be

generalized to spheroids of arbitrary axes ratio q, having a
density distribution (in cylindrical coordinates)

ρðr; zÞ ¼ ρ̂

�
r2 þ z2

q2

�
: ð9Þ

I show in Appendix A 1 that if Σ0
D is the column density of

such a spheroid along the symmetry axis, and grðrÞ is the
acceleration in the x-y, symmetry plane, then relation (7)
holds with κ ¼ 1þ q. For a thin planar disk (q ¼ 0), we
have κ ¼ 1.
Since any surface-density distribution in a thin disk can

be written as a sum of infinitely flattened homoeoids (see,
e.g., Sec. 2.6-1 of Ref. [24]), relation (7) with κ ¼ 1 holds
for any thin disk. This reproduces, as a special case, the
relation found in Toomre [25] for thin disks.

6When the system is not isolated, in that it is falling in some
external field, the internal dynamics is modified due to the
MOND external-field effect.

7The acceleration does not vanish at the origin if the density
diverges at least as fast as 1=r there, in which case Σ0

D indeed
diverges.

8The Milky Way also has Σ0
B ≫ ΣM.
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As another example of mass models with controllable
degree of flatness, for Miyamoto-Nagai models, having a
potential field

ϕðr; zÞ ¼ −
MG

fr2 þ ½aþ ðz2 þ b2Þ1=2�2g1=2 ; ð10Þ

I derive in Appendix A 2

κ ¼ ð1þ λÞ2
Z

1

0

x3ð3þ λxÞdx
ð1þ λxÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ð11Þ

where λ ¼ a=b. As λ goes from 0 (Plummer sphere) to ∞
(Kuzmin disk), κ goes, monotonically, from 2 to 1.
Relations like Eq. (7) are based on the linear Poisson

equation, and their two sides are additive. It can thus be
combined linearly for any number of aligned components
with our symmetry; e.g., a disk-plus-sphere mass (whether
real or phantom).
To avoid possible confusion, note that when we discuss

such relations in the context of MOND (which is nonlinear)
they should always be understood to apply not to the
baryonic surface density of the system, but to the dynamical
density distribution predicted by MOND—baryonic plus
phantom. Hence, in the present context, such surface
densities are designated with a subscript “D.” Thus, such
relations are not additive with respect to the baryonic
components of the mass distribution. Given a baryonic
distribution, we first have to determine the MOND,
dynamical distribution, identify different components of
it, and then apply such relations.
For a system made of several components with differ-

ent κ values, the acceleration integral and the central
surface density are each the sum of contributions of the
different components G ¼ P

i Gi, Σ0
D ¼ P

i Σ0
Di. They are

related as in Eq. (7), with an effective coefficient κ̄,
which, however, depends on the relative contributions of
the components,

κ̄ ¼ G−1
X
i

κiGi ¼ Σ0
D

�X
i

Σ0
Di

κi

�−1
: ð12Þ

To determine κ̄ from the first expression in Eq. (12) we
would need to know the individual contributions to the
full rotation curve. The second expression is more useful,
as it requires only knowledge of the separate contribu-
tions to the central surface density, which is easier to
estimate. For example, a mass distribution that is a
combination of oblate spheroids (with 0 ≤ qi ≤ 1) has
1 ≤ κ̄ ≤ 2.
When testing MOND predictions, the contributions of

the different phantom components to Σ0
P, and hence to Σ0

D,
are predicted. So if we can estimate the κ values of the
components, we can get a good approximation of κ̄ from

the second equality in Eq. (12). For example, AQUAL and
QUMOND predict that in the DML, where Σ0

B ≪ ΣM,
Σ0
D ≈ Σ0

P picks up equal contributions from a phantom disk,
for which κ ≈ 1, and from an oblate spheroid, for which κ
should be between 1 and 2. Then, from Eq. (12), κ̄ should
be between 1 and 4=3. For example, the exact value of κ̄
predicted by AQUAL and QUMOND for a deep-MOND
Kuzmin disk is κ̄ ¼ 4=π [12] (see also Sec. VI B 1 below).9

Such accuracy in estimating κ̄ is good enough for testing
the MOND predictions, since, at present, G and Σ0

B them-
selves are not determined to better accuracy and because the
span in Σ0

B studied in existing galaxy samples—of several
orders of magnitude—is much larger than this uncertainty
factor in the predicted Σ0

B=G.
10

By employing Eq. (7), we turn a MOND prediction of a
Σ0
B − Σ0

P or Σ0
B − Σ0

D correlation to a Σ0
B − G one, with some

increase of the scatter due to the uncertainty in κ̄. The great
advantage of the latter is that it lends itself to testing, since
both quantities in it can be measured, unlike Σ0

P or Σ0
D

which are very difficult to measure directly.
Note that this prediction of the Σ0

B − G relation does not
follow from and is independent of the MOND prediction of
rotation curves. The latter requires a knowledge of the full
baryonic mass distribution and predicts the full rotation
curve. The former uses just one attribute of the mass
distribution Σ0

B and predicts from it one global attribute of
the rotation curve. We see already in the spherical case that
two systems can have the same baryon central surface
density, but different density distributions, and hence
different rotation curves, but they are predicted to have
approximately the same G.
Examples of other MOND predictions of global rotation-

curve characteristics from global baryonic properties are:
(1) The mass-asymptotic-speed relation MGa0 ¼ V4

∞,
which predicts the constant asymptotic rotational speed
V∞ of isolated bodies from their total baryonic mass M
[1]. (2)A prediction of themass-weighted, root-mean-square
rotational speed of an isolated galaxy that is fully in the deep-
MOND regime from its total mass: ð2=3ÞðMGa0Þ1=2 ¼
2πM−1

R
∞
0 rΣðrÞV2ðrÞdr [26].

9For such a Kuzmin disk, AQUAL and QUMOND
predict analytic expression for Σ0

D and G; see Sec. III A.
10It should be realized that such values of κ ∼ 1–2 apply for

most observed galaxy mass distributions of a disk plus an oblate-
to-spherical bulge. But for general mass distributions (with our
symmetry) there is no tight relation between Σ0

D and G, and the
justification of using κ ∼ 1 has to be checked individually. As
extreme counterexamples, for a very long cylinder of constant
density, the column density along the symmetry axis goes to
infinity as the length of the cylinder does, but G remains finite;
thus in this case κ → ∞. This is also true of a prolate spheroid
with q ≫ 1, for which κ ¼ 1þ q. On the other hand, for a
hollow, thin cylindrical shell, for which Σ0

D ¼ 0, G is finite and for
infinite length becomes 2πGΣs, where Σs is the surface density of
the thin shell; so κ ¼ 0.
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III. WHAT HAS BEEN DONE TO DATE

From the MOND vantage point, the first statement
relevant to our discussion was made when it was pointed
out in Ref. [17] that, according to MOND, the gravitational
acceleration produced by the fictitious dark matter cannot
much exceed a0. This can be stated, alternatively, as
“according to MOND, the central surface density of the
phantom halo cannot much exceed ΣM.” This follows from
relations such as Eq. (7), which shows that the character-
istic surface density in units of ΣM is some average over the
acceleration in units of a0. Reference [17] based their
derivation on either AQUAL or the algebraic formulation,
whereby μðg=a0Þg ¼ gN.
Induced by the prediction in Ref. [17], Ref. [13] then used

a sample of disk galaxies and fitted their rotation curves with
baryons plus a cored-isothermal-sphere, dark-matter halo. It
showed (in their Fig. 4) that the product of the “halo” central
density and its core radius is bounded by and concentrated
strongly near a value of≈102M⊙ pc−2 ≈ ΣM. This translates
into the maximum acceleration of the model halo being
somewhat below a0, in agreement with the prediction of
Ref. [17]. The product itself is approximately the central
surface density of the halo as defined in Eq. (6). So the
findings ofRef. [13] are tantamount to the distribution of halo
central surface densities of their galaxy sample, being
narrowly peaked near ≈ΣM. This sample was, however,
lacking galaxies deep in the MOND limit.
Other studies have found similar results, without noting

that these vindicate a MOND prediction. For example, like
Refs. [13,14] fitted rotation curves of a sample of disk
galaxies including a cored-isothermal-sphere halo model,
while Ref. [15] fitted another set of rotation curves with
Burkert model halos (which is also characterized by a
central density and a core radius). Both found, for their
samples, a distribution of the halo central surface densities
that is strongly peaked at a value of ≈140M⊙ pc ≈ ΣM.
On the theoretical side, using the algebraic relation

μðg=a0Þg ¼ gN , Ref. [18] calculated the phantom sur-
face-density profiles—in a plane perpendicular to the
axisymmetry axis—for a point mass, for two equal masses
of different separations, and for a thin rod of various lengths
[in units of their MOND radius, rM ¼ ðMG=a0Þ1=2]; all
these for different choices of μðxÞ. The corresponding
values of Σ0

P for all these models can be read from the
figures in Ref. [18] (given there in units of a0=G ¼ 2πΣM).
All the above results concern only the high-surface-

density end of the CSDC, predicted to give Σ0
P ¼ γΣM,

with γ ¼ Oð1Þ.
In Ref. [19], I considered the problem in some generality,

using AQUAL, with the observational results of
Refs. [13–15] in mind. As noted above, those studies
found a quasiuniversal value of Σ0

P ≈ ΣM for the galaxy
samples they employed, as MOND predicts for high-
acceleration systems (see Sec. IVA) below. However, I
noted that MOND does not predict a universal value of Σ0

P.

This is the case only for high-surface-density systems, but
for low-surface-density ones, one predicts a correlation of
the form Σ0

P ∝ ðΣMΣbÞ1=2, where Σb is some measure of the
average surface density (not the central surface density,
which I use in the present paper). The proportionality factor
was estimated to be of the order of a few and to depend on
the exact form of the interpolating function and on the exact
mass distribution. The apparent quasiuniversality was
attributed to the lack of truly low-surface-density galaxies
in the sample studied. It was shown, with a few examples of
such galaxies, that their values of Σ0

P indeed fall much
below ΣM, and are consistent with the MOND predictions
for the low-surface-density regime.
By far the most extensive observational study of the

correlation was described in Ref. [16] (see also
Ref. [27] for a study with a much smaller sample,
discussed in some detail in Ref. [16]). It shows the
correlation between two proxies of the baryonic and
dynamical central surface densities for 135 disk gal-
axies in the Spitzer photometry and accurate rotation
curves (SPARC) sample. The proxy for the baryonic
central surface density was the stellar value, which may
underestimate the baryonic value somewhat because of
the contribution of the galactic gas.11 The proxy for the
dynamical central surface density was the acceleration
integral, using Eq. (7), with κ ¼ 1 which, however, is
appropriate only for pure disks.
If one wishes to learn from the correlation about dark-

matter halos, then a value of κ nearer 2 would be more
appropriate in the low-Σ0

B region where the spheroidal halo
dominates. However, as we saw in Sec. II A 1, when testing
the MOND prediction, a value of κ between 1 and 4=3 is
more in order; in this case the study of Ref. [16] under-
estimates Σ0

D only a little.
While Ref. [16] plotted a measure of Σ0

D, MOND makes
the finer prediction, that of Σ0

P, which is harder to separate
from Σ0

D in the high-surface-density regime, because there
Σ0
P contributes very little to Σ0

D. It is, however, important to
test this prediction separately from the grosser prediction
of Σ0

D ≈ Σ0
B.

12

Next came a derivation of a universal Σ0
B − Σ0

D algebraic
relation for pure baryonic disks predicted by AQUAL and
QUMOND, which I describe next.

11In most cases, gas is extended and, even when im-
portant globally, contributes little at the center; however,
there are gas-dominated galaxies where the gas contribute
materially to Σ0

B.12In a related study, Ref. [28] used the SPARC sample with fits
for the separate contributions of the baryons and the phantom
components to the rotation curves to plot, separately, the phantom
acceleration vs the baryonic one. They find, indeed, that the
phantom acceleration achieves a maximum at a value ∼a0 as
predicted in Ref. [17].
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A. Predictions of AQUAL and QUMOND
for pure disks

In Ref. [12] I proved an exact result that holds in
AQUAL and QUMOND, stating that the central dynamical
surface density of a pure disk is a unique function of the
baryonic central surface density,

Σ0
D ¼ ΣMSðΣ0

B=ΣMÞ; SðYÞ ¼
Z

Y

0

νðY 0ÞdY 0; ð13Þ

and νðYÞ is the interpolating function of the respective
theory.13 The contributions to Σ0

D of the disk (baryonic plus
phantom) Σ0;disk

D and the bulge (all phantom) Σ0;sph
D are

Σ0;disk
D ¼ΣMνðYÞY; Σ0;sph

D ¼ΣM

Z
Y

0

½νðY 0Þ−νðYÞ�dY 0;

Y¼Σ0
B=ΣM: ð14Þ

ν has the asymptotes νðYÞ → Y−1=2 forY ≪ 1, andνðYÞ → 1
for Y ≫ 1.
In the high-central-surface-density limit Σ0

B ≫ ΣM, the
integral picks up most of the contribution from y ≫ 1, so
SðyÞ → y in this limit, hence, Σ0

D → Σ0
B. In the opposite

limit, the integrand is well approximated by Y−1=2, and we
have Σ0

D → 2ðΣMΣ0
BÞ1=2. It is also quite interesting to

consider the finer prediction for the separate contribution

Σ0
P of the phantom halo. Since Σ0

B ¼ ΣM

R Σ0
B=ΣM

0 dy, we
have

Σ0
P ¼ Σ0

D − Σ0
B ¼ ΣM

Z
Σ0
B=ΣM

0

½νðYÞ − 1�dY: ð15Þ

Solar System constraints imply that νðYÞ has to approach 1
fast as Y ≫ 1. So the asymptotic value of Σ0

P is
ΣM

R∞
0 ½νðYÞ − 1�dY, which should converge fast. The

integral is of order unity. For example, for the choice of
νðYÞ ¼ Y−1=2 for Y ≤ 1 and νðYÞ ¼ 1 for Y ≥ 1, we
get Σ0

P → 2ΣM.
In the DML branch of the relation (Σ0

B ≪ ΣM), we have
Σ0
D ¼ 2ðΣMΣ0

BÞ1=2 ≫ Σ0
B. We see from Eq. (14) that in this

limit half of the contribution to Σ0
D comes from Σ0;disk

D and
half from Σ0;sph

D .
Are these exact and universal (disk-independent) rela-

tions in AQUAL and QUMOND predicted in a wider range
of MG theories? It turns out that they are not quite, as we
shall see below.

IV. PREDICTIONS OF THE BASIC
TENETS ALONE

Now that we have the machinery in place and before we
consider more precise and detailed predictions of the
CSDC, I show how the basic tenets of MOND predict a
correlation between baryonic and dynamical surface den-
sities. This makes the correlation in its rough form a
primary prediction of MOND. Predictions of exact details
of the correlation, such as the values of the numerical
coefficients that appear, do depend, however, on the
specific theory, on the details of the mass distribution,
and on the concrete definition of the surface densities.
The basic tenets of MOND inform us in detail only on

the two limits of the theory, but not on the exact way in
which the interpolation between them occurs in various
theories and for different phenomena. As regards the
transition itself, because a0 is the only new dimensioned
constant, and we assume that no dimensionless parameters
appear that differ much from unity, the transition is
predicted to occur around a0, in acceleration, and within
a range of that order; viz. the asymptotic behaviors are
already good approximations below a0=q and above qa0,
for q=≫1. As a result, we can hope to derive from the basic
tenets alone only the asymptotic limits of a correlation, but be
assured that these limits apply—each in its own regime—
almost everywhere except for a region of order ΣM around
ΣB ¼ ΣM.
For the arguments here to hold, we need to apply them to

baryonic surface-density attributes ΣB that are a good
measure of the overall or average Newtonian acceleration
of the system, such as the average surface density, because
then ΣB=ΣM is a good indicator of whether we are in the
MOND or the Newtonian regime.

A. Newtonian limit

A system of mass M and characteristic size R, with
ΣB ∼M=πR2 ≫ ΣM, is well contained within its MOND
radius rM ¼ ðMG=a0Þ1=2; namely, R ≪ rM. Whichever
way we measure accelerations and whether we are dealing
with MG or modified-inertia (MI) theories, the acceler-
ations within ∼rM are predicted to be Newtonian.14 Hence,
the phantom density picks up contributions only from
r≳ rM. In this region we already have approximate
spherical symmetry and the average, or central, phantom
surface density Σp ∼ gðrMÞ=2πG ∼ ΣM, as can be seen,
e.g., from Eq. (7).

B. Deep-MOND limit

Consider a density distribution ρðrÞ such that the system
is fully in the deep-MOND regime. Generate from it a two-
parameter family of density distributions

13The interpolating function μðXÞ that appears in AQUAL is
represented here by νðYÞ defined such that if Y ¼ XμðXÞ, then
X ¼ YνðYÞ.

14In MI theories we have to assume that the orbits of the test-
particle probes do not take them far outside rM.
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ραλðrÞ ¼ αλ−3ρðλ−1rÞ; ð16Þ

whereby all sizes are stretched by a factor λ and all masses
are multiplied by a factor α. Scale invariance of the DML
and dimensional arguments imply [3,8] that all kinematic
accelerations a (which are the same as the MOND
gravitational accelerations g) that appear in solutions of
the theory for ρ, scale to α1=2λ−1a and α1=2λ−1g, respec-
tively, in the solutions for ραλ.

15 Masses scale as m → αm;
dynamical densities scale as ρDðrÞ → α1=2λ−2ρDðλ−1rÞ (not
as αλ−3 like ραλ itself). All dynamical surface densities scale
as ΣD → α1=2λ−1ΣD (at the appropriately scaled positions).
On the other hand, any baryonic surface density scales as
ΣB → αλ−2ΣB. Thus, with any definition of some ΣD and
ΣB, the dimensionless, mass-scaling-invariant, and mass-
invariant quantity (again, calculated at the scaled positions)

ηðλ; αÞ ¼ ΣD

ðΣMΣBÞ1=2
ð17Þ

is, in fact, independent of λ or α, as long as λ is not as small
or α is not as large, as to bring the system out of the DML.
To recapitulate this important result: It follows from the

basic tenets of MOND alone that, in any given MOND
theory that embody them, the DML value of η is constant
within any such two-parameter family of galaxies. For
example, all thin exponential (pure) disk galaxies in the
DML, or all DML galaxies described by a Plummer model,
etc., should have the same value of η.
This fact holds for any choice of ΣB and ΣM, even if they

are unrelated, for example, the dynamical central surface
density and the baryonic surface density at the radius
containing 90% of the projected mass. However, with
arbitrary choices of the two surface densities, η is not a
useful ratio to consider, because it could be very large or
very small and could depend very strongly on the family ραλ.
A similar statement is correct if we replace ΣD in the

nominator of η by any measure of the MOND (measured)
accelerations, such as G (or G=2πG if we want the ratio to
remain dimensionless) because they scale in the same way
as ΣD under the scaling of Eq. (16).
To proceed with the argument and produce a significant

correlation between the two quantities, encompassing all
density distributions, with η of order unity, we want to
choose the two surface densities so that they are physically

related; i.e., the dynamical and baryonic analogs of each
other. In particular, we choose their definition such that in
the Newtonian limit ΣD goes to ΣB—for instance, they can
be the central surface densities or the average surface
densities hΣDi and hΣBi. In this way we can also bring to
bear the second MOND tenet, that of the “correspondence
principle” in the Newtonian limit.
Given the generating density distribution ρðrÞ, there is a

demarcation line in the λ − α plane, α ∝ λ2, where
ΣB ¼ ΣM. Much above the line, the corresponding system
is Newtonian, and much below it, it is in the DML. In the
former region, η → ðΣB=ΣMÞ1=2, since we chose the def-
initions of ΣB and ΣD so that ΣD → ΣB in this limit. And, as
we saw, in the latter region η is some constant (for the
family). The essence of our argument is that the dimen-
sionless η cannot make a big jump when going from one
side to the other. So, the constant, DML value cannot be
very different from the extrapolation of the Newtonian η
values to the demarcation line. The latter extrapolate to
η ¼ 1 on the dividing line16; so the DML constant value
must be η ¼ Oð1Þ. This follows from the tenet saying that
the two limiting expressions of η hold approximately to
“factor of order unity,” down to the transition.
Since this has to hold for all choices of ρðrÞ, we have,

generally, η ¼ Oð1Þ in the DML for all bounded mass
distributions.
This establishes a general CSDC. Despite the impression

that such a predicted CSDC can be rather loose, with large
scatter, one has to note that the span of ΣB values to which
we apply it in practice can be several orders of magnitude;
so the predicted correlation would still be quite strong.
The arguments here and in Sec. IVA assume that the

ratio of the baryonic surface density we employ to ΣM is a
good measure of whether we are in the DML or the
Newtonian regime. This would be the case for global
measures of the surface density, such as hΣBi, or the surface
density at the half-mass radius. Beyond these general
arguments that use essentially only the basic tenets, but
predict a correlation with possibly large scatter, we would
like, if possible, to get more refined predictions, at a cost of
being, perhaps, less general, in being theory dependent, and
dependent on the exact definitions of the surface densities
involved. This leads us to consider the central surface
densities in the correlation because, as I said above, Σ0

D is
both easier to measure and to calculate in a given theory.
In many disk galaxies, Σ0

B is close to a global measure of
the surface density (e.g., for exponential disks), and for
these galaxies the above arguments apply to the central
surface densities, as well. However, in principle, Σ0

B
may be quite different from the average surface density
of the galaxy, and hence its ratio to ΣM is not a good

15To see this, note that the scale invariance of the DML implies
that only the combination A0 ¼ Ga0 can appear in a DML
expression for the MOND accelerations. A change of units must
leave any valid expression valid. Change the units of mass such
that the values of masses m → αm, the length units such that
l → λl, and the units of time so that t → λα−1=4t. Since the only
dimensioned constant of the theory, A0, remains unchanged
under this scaling, the scaled solutions satisfy the DML equations
with the correct value of A0. The kinematic accelerations then
indeed scale as α1=2λ−1.

16In specific examples that we have the actual value of η on the
dividing line is, in fact, somewhat larger than 1, and the DML
values of η vary roughly between 2 for disks and ∼4 for spheres.
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MOND-vs-Newtonian-dynamics indicator. For example,
consider a disk galaxy with a concentric, circular hole
around its center, whereby Σ0

B ¼ 0. This remains so all
along the above λ, α sequence; so the above argument does
not work in this case. Nonetheless, the exact relation (13)
holds for this case in AQUAL and QUMOND, and it
dictates that Σ0

D ¼ 0, as well, for all values of λ and α.17

This is a result that we could not have derived based on the
above general argument, but requires reference to the
specific theory.
With these caveats and subtleties in mind, I now proceed

to discuss the predictions of more concrete theories.

V. GENERALIZED THEORIES

In this section, I describe the classes and subclasses of
theories that I will use to generate predictions of a CSDC. I
shall consider in some detail only MG theories, with some
comments on the not-less-promising class of MI theories.
The reason for this preference it twofold. First, we do have
concrete, full-fledged, and self-consistent examples of MG
MOND theories, while we are still lacking such well-
developed MI theories. Second, as I explain in Sec. V C
below, the concept of phantom density, and hence of a
dynamical surface density, is not well defined inMI theories.
Nevertheless, we do have some general results for a

certain class of MI theories, which I discuss briefly in
Sec. V C.

A. General class of modified-gravity MOND theories

The class of MG MOND theories—more general than
AQUAL and QUMOND—that I consider here in some
more detail are governed by a Lagrangian density

L ¼ LG þ ρ

�
1

2
v2 − ϕ

�
; ð18Þ

whose gravitational part is

LG ¼ −
a20
4πG

F

�∇⃗ϕ

a0
;
∇⃗ψ1

a0
;
∇⃗ψ2

a0
;…

�
: ð19Þ

(Note that only the first derivatives of the potentials appear.)
They are a subclass of the more general theories described
in detail in Ref. [29].
Of the scalar potentials ϕ;ψ1;ψ2;…, which are the

gravitational degrees of freedom, only ϕ couples directly to

the matter density. Variation over the matter degrees of

freedom gives the equation of motion ̈r ¼ −∇⃗ϕ, identify-
ing ϕ as the MOND potential, which dictates accelerations
of test particles. F is a dimensionless function that depends

on the potentials through the scalar products ∇⃗ϕ · ∇⃗ψ i and

∇⃗ψ i · ∇⃗ψ j, for j ≥ i.
The field equations are

a20∇⃗ ·

�
∂F

∂∇⃗ϕ
�

¼ 4πGρ ¼ −∇⃗ · gN; ∇⃗ ·

�
∂F

∂∇⃗ψ i

�
¼ 0:

ð20Þ

A useful property of this general class of theories, which
I employ below, is that for one-dimensional systems, with
spherical, cylindrical, or plane symmetry, the MOND
acceleration g is a universal function of the Newtonian
acceleration gN—a function unique to the theory, but
independent of the specific one-dimensional symmetry
or the specific mass distribution. We thus have

g ¼ νðgN=a0ÞgN; gN ¼ −
GMðrÞr

r3
: ð21Þ

To see this, apply Gauss’s theorem to the field equations in
Eq. (20) for constant-r surfaces, where r is the coordinate
that underlies the one-dimensional symmetry. All the
acceleration-vector arguments of F are collinear and have
only an r component; so they can be replaced by

∇⃗ϕ → g ¼ jdϕ=drj, ∇⃗ψ i → gi ¼ jdψ i=drj, and all scalar
products can be replaced by products of the g’s. F then
becomes a function of χ ≡ g=a0 and χi ≡ gi=a0,
F ¼ F̂ðχ; χ1; χ2;…Þ, and the field equations become alge-
braic equations between χ; χi,

∂F̂
∂χ

ðχ; χ1; χ2;…Þ ¼ gN
a0

; ð22Þ

∂F̂
∂χi

ðχ; χ1; χ2;…Þ ¼ 0: ð23Þ

Equation (23) are used to solve for all the gi=a0 as
functions of g=a0, substituted in Eq. (22), which is then
inverted to give Eq. (21). The possibility to make all these
inversions is a necessary requirement from F, for the theory
to predict gravitational fields uniquely.18

Equation (21) defines the “one-dimensional interpolating
function” νðYÞ.
After some general results that follow for all the theories

in the class, I shall concentrate, for more detailed calcu-
lations, on a yet smaller subclass—the tripotential

17In this case, there is a region of negative phantom density
along the z axis [20], which results in Σ0

P vanishing. There is also
a region around the center where the acceleration integral G picks
negative contributions (the radial accelerations point outward).
The Newtonian rotation curve would then give G ¼ 0. But the
observed (MOND) rotation curve will generally give G ≠ 0. G is
then not useful for determining Σ0

D, since in this case the effective
κ̄ ¼ 0 in Eq. (12) is very different from unity.

18In AQUAL, for example, this is the requirement of ellipticity
of the field equations, which requires xμðxÞ to be monotonic.
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MOND (TRIMOND) theories discussed in Ref. [30].
While TRIMOND theories—with AQUAL and
QUMOND as special cases—form a subclass, with a
Lagrangian density of the type (19), the generalizations
of QUMOND presented in Ref. [31] are examples of MG
theories that are not of this type, because their Lagrangians
depend also on higher derivatives of the auxiliary poten-
tials. These latter theories do not predict the algebraic
relation (21) for one-dimensional systems.
Finally, as shown in Ref. [29], all the theories in this class

predict the DML virial relation for a self-gravitating,
isolated system of (pointlike) masses mp,

X
p

rp ·Kp ¼ −ð2=3ÞðGa0Þ1=2
��X

p

mp

�
3=2

−
X
p

m3=2
p

�
;

ð24Þ

where rp are the positions of the masses, and Kp are the
forces they are subject to. A special case is the deep-
MOND two-body force for arbitrary masses,

Kðm1; m2;lÞ ¼
2

3

ða0GÞ1=2
l

½ðm1 þm2Þ3=2 −m3=2
1 −m3=2

2 �
ð25Þ

(l is the distance between the masses). Another important
corollary is the DML mass-velocity-dispersion relation

σ2 ¼ 2

3
ðMGa0Þ1=2

�
1 −

X
p

ðmp=MÞ3=2
�
; ð26Þ

where σ2 ¼ M−1 P
p mpv2p (velocities are in the rest frame

of the center of mass), and M ¼ P
p mp is the total mass.

This reduces to σ4 ¼ 4
9
MGa0 for systems made of many

masses, with mp ≪ M.
In particular, all these theories predict the same value of

the Q parameter, defined in Ref. [26], which was proposed
as a possible discriminator between MOND theories.
After considering in Sec. VI some general prediction of

this class of theories, I derive more specific ones for the
TRIMOND subclass, which I now recap briefly.

B. TRIMOND recap

Following is a summary of the aspects and equations of
TRIMOND from Ref. [30] that we shall be needing here.
The TRIMOND Lagrangian density is

L ¼ −
1

8πG
½2∇⃗ϕ · ∇⃗ψ − a20F ðx; y; zÞ� þ ρ

�
1

2
v2 − ϕ

�
;

ð27Þ

where

x≡ ð∇⃗ψÞ2=a20; y≡ ð∇⃗φÞ2=a20; z¼ 2∇⃗ψ · ∇⃗φ=a20;
ð28Þ

and F is a dimensionless function satisfying the basic
tenets of MOND.
This is a special case of the Lagrangian density (19),

special in two important regards: (a) It involves only three
gravitational potentials. (b) The MOND potential ϕ couples
directly to only one of the auxiliary potentials ψ and that
linearly. This results in ψ being the Newtonian field and is
straightforwardly solved for. As a result, unlike the general
case, TRIMOND theories do not require solving coupled
equations.
Acceleration of test bodies is given by

̈ri ¼ −∇⃗ϕðriÞ; ð29Þ

where ϕ is the MOND gravitational potential. The first of
Eq. (20) becomes here

Δψ ¼ 4πGρ; ð30Þ

and the two additional field equations are

∇⃗ · ðF y∇⃗φÞ þ ∇⃗ · ðF z∇⃗ψÞ ¼ 0; ð31Þ

Δϕ ¼ ∇⃗ · ðF x∇⃗ψÞ þ ∇⃗ · ðF z∇⃗φÞ≡ 4πGρD; ð32Þ

where ρD is the dynamical density (baryonic plus phantom).
ψ thus equals the Newtonian potential and is solved for

from Eq. (30). It is then substituted in Eq. (31), which
becomes a nonlinear, second order equation in φ. Solving
for it and substituting both in the right-hand side of
Eq. (32), we get a Poisson equation for ϕ.
AQUAL is a special case with F x ¼ 0;F z ¼ ϵ, a

constant. QUMOND is a special case gotten for the choice
F y ¼ F z ¼ 0.
As a subclass of the above class of MG theories, for

systems with one-dimensional symmetry, TRIMOND the-
ories predict the algebraic relation (21) between the MOND
and Newtonian accelerations. In such cases, the field
equations (31) and (32) can be stripped of the divergences
and become algebraic (putting, here, a0 ¼ 1),

F yðg2N; g2φ; 2gNgφÞgφ þ F zðg2N; g2φ; 2gNgφÞgN ¼ 0; ð33Þ

from which gφ can be solved for as a function of gN . F has
to be such that the solution for gφ exists and is unique; the
ellipticity of Eq. (31) should ensure this. Equation (32)
gives, in the same vein,

g ¼ F xðg2N; g2φ; 2gNgφÞgN þ F zðg2N; g2φ; 2gNgφÞgφ: ð34Þ
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Substituting the gφ values gotten from Eq. (33), we then get
an equation of the form (21).
The Newtonian limit for a0 → 0 requires that in this limit

F z → ϵ, F y → ω, and F x → β, all constants, with

β − ϵ2=ω ¼ 1: ð35Þ

Scale invariance in the DML (discussed in detail in
Ref. [30]) requires that there is a scaling dimension α of φ,
such that in the DML F goes to some FDðx; y; zÞ that has
the property

FDðλ−4x; λ2α−2y; λα−3zÞ ¼ λ−3FDðx; y; zÞ: ð36Þ

It is then necessary and sufficient that the DML of F is of
the form

FDðx; y; zÞ ¼ x3=4FD½1; yxðα−1Þ=2; zxðα−3Þ=4�
≡ x3=4F̄D½yxðα−1Þ=2; zxðα−3Þ=4�: ð37Þ

Namely, the DML of TRIMOND requires one to specify a
function of two variables, compared with no such freedom
in the DML of AQUAL and QUMOND (see Sec. VI C 2 for
an explicit example).

C. Modified-inertia theories

MI MOND theories are defined in the following
restricted sense [32–35]: The force field (gravitational in
our applications) is assumed to be unmodified and is thus
Newtonian, with the potential ϕN . However, the equation of
motion of a test mass in this field is not the Newtonian

̈r ¼ gN ¼ −∇⃗ϕN , but has the form

A½rðtÞ; a0� ¼ −∇⃗ϕN; ð38Þ

where A—having the dimensions of acceleration—is a
functional of the body’s trajectory rðtÞ [as opposed to
a function of the local value of rðtÞ]. Reference [35] is a
review of such theories.
In such theories, a MOND acceleration field is not

defined. Different particles can have different accelerations
(̈r) at the same position in the field, depending on details of
their trajectories, as explained in detail in Ref. [35].19,20

Thus the notions of dynamical density and phantom density
do not exist, generally, and there is no well-defined sense in
speaking of the phantom central surface density.

However, in practice, any procedure that results in some
dynamical surface density, whether direct or indirect (e.g.,
using the acceleration integral G as a proxy), is based on
some measurements of accelerations. As explained in
Sec. IV, the general predictions of the basic tenets of
MOND then apply to MI theories as well.
Even beyond such a general prediction, we may be able

to make more specific predictions in some specific sit-
uations. A prominent case in point is the use of rotation
curves to determine the dynamical and phantom central
surface densities using the procedure described in Sec. II.
This procedure uses the measured accelerations on exactly
circular orbits, by measuring the radius r and orbital
velocity VðrÞ of these trajectories. Now, for such trajecto-
ries, the acceleration functional A½rðtÞ; a0� in Eq. (38)
must, in fact, be a function of r and V, and so, on
dimensional grounds, must be of the form

A½rðtÞ; a0� ¼
V2

r
μ

�
V2

ra0

�
; ð39Þ

where μðxÞ is universal for the theory.21 Thus, for
circular orbits22 in an axisymmetric body, such modi-
fied-inertia theories predict an algebraic relation between
the MOND centrifugal acceleration gc and the Newtonian,
gravitational acceleration gN , gcμðgc=a0Þ ¼ gN , which can
be inverted to read

gc ¼ gNνðgN=a0Þ; ð40Þ

identical with Eq. (21), which is valid for spherical systems
in all the modified-gravity theories considered above.
Thus, for such spherical systems, the modified-inertia

and the class of modified-gravity theories predict the
same distribution of dynamical density [for the same choice
of νðYÞ], provided we use rotation-curve data for the
determination.
For example, for the deep-MOND polytropes discussed

in Ref. [36], the modified-inertia theories predict the same
values of the coefficient η in Eq. (2) as the modified-gravity
theories.
For disk galaxies, relation (40) still holds for exact

circular orbits in the galactic plane, but it does not hold for
MG theories. Nevertheless, numerical calculations tell us
that AQUAL and QUMOND predict rotation curves for
typical galaxy models, such as an exponential disk, that do
not differ much from those gotten from this relation
[37,38]. This leads us to expect that, for such models,

19This is similar to what happens, e.g., in special relativity,
where different electrons have different accelerations at the same
position in an electric field, depending on their velocity vector.

20When there is a conserved momentum p in such a theory, ṗ is
the same for all particles at the same position and does define a
field; but this quantity is not proportional to ̈r, which is what we
measure directly.

21In Ref. [32], I showed how μðxÞ is derived from the action
underlying the theory, when there is one.

22In practice, the test particles in disks of galaxies have orbits
that depart from exact circular, such as by motions perpendicular
to the disk. This causes the predicted velocities to be somewhat
smaller than given by Eq. (39). This is particularly important in
the inner parts. See discussion of this in Ref. [34].
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the G integral predicted by MG and MI for the same pure-
disk distribution would not differ by more than a factor ∼2
(when a bulge is present, the difference is even smaller). So,
if one uses G as proxy for Σ0

D, then AQUAL and QUMOND
and MI would predict similar Σ0

D up to a factor ∼2 in the
DML (nearer the Newtonian regime the differences are
smaller).23

For example, Kuzmin disks, which I discuss in more
detail in Sec. VI B, lend themselves to analytic derivation of
the rotation curve in MI and in the class of theories
described in Sec. VA. The latter give results that coincide
with those of AQUAL and QUMOND for a Kuzmin disk,
for which we have in the DML [37],

gMG ¼ ðV2
∞=hÞu=ð1þ u2Þ; ð41Þ

where u ¼ r=h, and h is the scale length of the disk. While

gMI ¼ ðV2
∞=hÞu1=2=ð1þ u2Þ3=4: ð42Þ

These give GMG ¼ ðπ=2ÞðV2
∞=hÞ, while GMI ¼ ðV2

∞=hÞR π=2
0 ðsin θÞ−1=2dθ ¼ 2.62ðV2

∞=hÞ, some 70% higher.

VI. PREDICTIONS OF THE CORRELATION

Numerical calculations would be required to derive the
predictions concerning the CSDC for general disk-
plus-bulge systems in the general theories of Sec. VA.
Here, I give some analytic results for this class of theories
for spherical systems and for a class of disk-plus-bulge
mass models built on the same principle as the Kuzmin
disk. I also discuss some results for general pure-disk
systems.

A. Spherical systems

Consider first spherical systems. The algebraic relation
(21) between the MOND and Newtonian accelerations then
holds in the general class of MG theories described above,
and we have from Eq. (7)

Σ0
B

ΣM
¼ 2

Z
∞

0

YðrÞd ln r; Σ0
D

ΣM
¼ 2

R
∞
0 ν½YðrÞ�YðrÞd ln r;

Σ0
P

ΣM
¼ 2

Z
∞

0

fν½YðrÞ�−1gYðrÞd ln r; ð43Þ

where YðrÞ ¼ gNðrÞ=a0.
Another useful expression for Σ0

D in terms of the
baryonic density distribution is

Σ0
D ¼ −

1

2πG

Z
∞

0

∇⃗ · g dr ¼ −
1

2πG

Z
∞

0

∇⃗

· ½νðgN=a0ÞgN �dr ¼ 2

Z
∞

0

ν½YðrÞ�ρs

× ðrÞdr − ΣM

Z
∞

0

ðgN=a0Þ · ∇⃗νðgN=a0Þdr: ð44Þ

The second integral can be shown to vanish [with our
assumption that gNð0Þ ¼ 0], leaving us with

Σ0
D ¼ 2

Z
∞

0

ν½YðrÞ�ρsðrÞdr: ð45Þ

In the high-acceleration limit, Σ0
B ≫ ΣM, contribution to

the last integral in Eq. (43) comes from outside the mass, so
we can put YðrÞ ¼ MG=a0r2, where M is the total mass.
Changing variables to Y and noting that d ln r ¼ −d lnY=2,
we have in the limit

Σ0
P

ΣM
¼

Z
∞

0

½νðYÞ − 1�dY ¼ Oð1Þ ð46Þ

the same expression we found below Eq. (15) for pure disks
in AQUAL/QUMOND.
This result is universal—i.e., holds for any bounded

mass—for all the theories in the class, since the phantom
density picks up contribution only far from the mass, where
we can take the field as spherical.
In the opposite limit, Σ0

B ≪ ΣM, we have y ≪ 1 at all
radii; so, in the integral in the second of Eq. (43) we can put
νðYÞ ¼ Y−1=2. We then have Σ0

D → ηðΣMΣ0
BÞ1=2, with the

coefficient

η¼
ffiffiffi
2

p R∞
0 Y1=2ðrÞd ln r

½R∞
0 YðrÞd ln r�1=2 ¼

ffiffiffi
2

p R∞
0 M1=2ðrÞr−2dr

½R∞
0 MðrÞr−3dr�1=2 : ð47Þ

We see that η depends somewhat on the exact mass
distribution. It is independent, however, of the normalization
and of the overall length scale of the mass distribution, both
ofwhich dropout fromexpression (47), as long as they donot
take us outside the DML. This follows, generally, from basic
MOND tenets, as we saw in Sec. IV B.
For spherical systems, η is generally of order of a few.

For a homogeneous sphere η ¼ 2
ffiffiffi
3

p
≈ 3.46. In Ref. [36], I

calculated η for DML polytropes. Figure 11 there shows
that, for isotropic-velocity-dispersion polytropes of all
orders (which include isothermal spheres as a limiting
case), η varies only by a little: 2

ffiffiffi
3

p
≤ η ≤ 3.81.24 The

values of η are also shown for anisotropic DML polytropes,
for different values of the anisotropy parameter (Fig. 16
there). For Plummer spheres, one has η ≈ 3.71.

23We are speaking here of MI-MG similarity in predicting the
Σ0
B − G correlation, not the Σ0

B − Σ0
D correlation, which AQUAL

and QUMOND predict exactly.

24The largest value of η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π=

ffiffiffi
3

pq
≈ 3.81 is calculated for a

DML isothermal sphere.
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We see that spheres have η values 3–5, while disks tend
to have η ≈ 2.

B. Kuzmin-inspired disk-plus-bulge systems

I shall discuss the CSDC for pure disks in Sec. VI C.
Disk-plus-bulge systems are more difficult to treat
analytically.
We can, however, derive some exact results in the class

of theories described in Sec. VA for a family of disk-plus-
bulge mass distributions. Such exact results are important
anchors for some of our general discussion, even if they are
derived only for toy examples. The results for these mass
models are the same in all the theories in the class and are
expressed only in terms of their one-dimensional interpo-
lating function νðYÞ.
These models are constructed based on an idea that

generalizes the construction of the Kuzmin disk, as
described in Ref. [37].
I use these galaxy models here to test how well the

acceleration integral G actually measures the dynamical
central surface density Σ0

D and to examine the CSDC that
our MG theories predict for them.
To construct the baryonic models, start with a spherical

density distribution ρsðRÞ with accumulated mass MðRÞ.
For the models, the Newtonian potential above the x-y
symmetry plane is that of our spherical mass centered on
the z axis at z ¼ −h. The potential below the symmetry
plane is a reflection of the one above. The Newtonian
potential satisfies the Poisson equation outside the sym-
metry plane, with the (baryonic) density

ρBðr; zÞ ¼ ρsðRÞ; R ¼ ½r2 þ ðzþ hÞ2�1=2 ð48Þ

as a source (using cylindrical coordinates r, z); this density
distribution constitutes our model baryonic bulge.
The Newtonian acceleration field outside the disk is

gN ¼ −
GMðRÞ

R3
ðr; zþ hÞ: ð49Þ

The z component of gN just above the disk is

gþNzðrÞ ¼ −
GMðR̄Þh

R̄3
; R̄ ¼ ðr2 þ h2Þ1=2; ð50Þ

and just below the disk g−NzðrÞ ¼ −gþNzðrÞ. This jump
implies that, for the Poisson equation to be satisfied
everywhere, the mass distribution has to be supplemented
with a thin disk of (baryonic in our context) surface density

Σdisk
B ðrÞ ¼ −

1

2πG
gþNzðrÞ ¼

hMðR̄Þ
2πR̄3

: ð51Þ

If ρsðRÞ is nonincreasing, then so is Σdisk
B ðrÞ. The resulting

mass distribution is a disk and a bulge made of the two caps

of the mass distribution MðRÞ. Since we want the bulge
mass to be finite, Σdisk

B ðrÞ goes asymptotically to the
Kuzmin surface density Σdisk

B ðrÞ ∝ R̄−3. For example, for
a sphere of radius R0 and constant density ρ0, we get a disk
of constant surface density 2hρ0=3 up to r ¼ ðR2

0 − h2Þ1=2
and a Kuzmin disk beyond this, plus a constant-density
lenslike bulge.25 The Kuzmin disk is gotten when the whole
spherical mass is below the plane; namely, whenMðR > hÞ
is constant (e.g., for a point mass).
Despite the complexity of the MG theories described in

Sec. VA—they yield a system of many nonlinear, coupled
equations—and their generality, the MOND field equations
in Eq. (20) can be solved analytically for the above mass
models.
The mass distribution and the Newtonian field above the

plane are spherical with respect to the center at
r ¼ 0; z ¼ −h; so, as shown in Sec. VA, there is a solution
of the full MOND equations—the one-dimensional solu-

tion—whereby ∇⃗ϕ and the ∇⃗ψ i are all aligned with ∇⃗ϕN .
This solves the MOND equations above the symmetry
plane with ρB from Eq. (48) as source, and its reflection
solves them below the plane. All the vector fields being
radial from some point, they have a vanishing curl. Thus,
this MOND solution solves the field equations (20) with the
divergences stripped. Namely,

a20
∂F

∂∇⃗ϕ ¼ ∇⃗ϕN;
∂F

∂∇⃗ψ i

¼ 0; ð52Þ

which hold above and below the plane. But this means that
this solution also satisfies all the jump conditions across
the disk, dictated by Σdisk

B from Eq. (51),26 since the
Newtonian solution does. This establishes it as the
MOND solution of the problem.27

In particular, the MOND acceleration field above the
disk is

g ¼ −ν
�
GMðRÞ
a0R2

�
GMðRÞ

R3
ðr; zþ hÞ; ð53Þ

with νðYÞ the one-dimensional interpolating function of the
theory. The parallel component of g is continuous across the
disk. The jump in the perpendicular MOND field is inter-
preted as a dynamical surface density (baryonicþ phantom)

25If we start with the center of the sphere above the plane, we
end up with an hourglass-shaped bulge.

26The jump conditions from Eq. (20) are that the perpendicular
component of ∂F=∂∇⃗ψ i has to be continuous and that of
a20ð∂F=∂∇⃗ϕÞ has to be 2πGΣdisk

B .
27For this solution ∇⃗ψ i ¼ νið∇⃗ϕN j=a0Þ∇⃗ϕN , and in particular,

∇⃗ϕ ¼ νð∇⃗ϕN j=a0Þ∇⃗ϕN , with νðYÞ the one-dimensional inter-
polating function of the theory.
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Σdisk
D ðrÞ ¼ ν

�
GMðR̄Þ
a0R̄2

�
Σdisk
B ðrÞ: ð54Þ

The baryonic central surface density is

Σ0
B ¼ 2

Z
∞

h
ρsðz̄Þdz̄þ

MðhÞ
2πh2

¼ 1

π

Z
∞

h

Mðz̄Þ
z̄3

dz̄; ð55Þ

where the second equality is gotten by writing ρsðz̄Þ ¼
M0ðz̄Þ=4πz̄2 and integrating by parts.
The dynamical (MOND) central surface density picks up

a contribution Σ0;disk
D from the disk (baryonic plus phantom)

and one Σ0;sph
D from the bulge, with

Σ0;disk
D ¼ ν

�
GMðhÞ
a0h2

�
MðhÞ
2πh2

; ð56Þ

Σ0;sph
D ¼ −

1

2πG

Z
∞

0

∇⃗ ·

�
ν

�
GMðzþ hÞ
a0ðzþ hÞ2

�
gN

�
dz; ð57Þ

from which

Σ0;sph
D ¼ 2

Z
∞

0

ν

�
GMðzþ hÞ
a0ðzþ hÞ2

�
ρsðzþ hÞdzþ 1

2πG

×
Z

∞

0

gN
dν
dz

dz ð58Þ

(gN points to the origin along the z axis, and gN ¼ jgN j),
and after some manipulations (change of variables from z to
Y ¼ gN=a0 and integration by parts, with z̄ ¼ zþ h)

Σ0
D ¼ Σ0;disk

D þ Σ0;sph
D ¼ 2

Z
∞

h
ν

�
GMðz̄Þ
a0z̄2

�
ρsðz̄Þdz̄

þ ΣM

Z
gþNð0Þ=a0

0

νðYÞdY: ð59Þ

However, in the last integral, Y ¼ gNð0; zÞ=a0 ¼
GMðz̄Þ=a0z̄2. So, changing variables from Y to z̄,

dY ¼ dz̄

�
−2GMðz̄Þ

a0z̄3
þ 4πGρsðz̄Þ

a0

�
: ð60Þ

Putting all the above together we get

Σ0
D ¼ 1

π

Z
∞

h
ν

�
GMðz̄Þ
a0z̄2

�
Mðz̄Þ
z̄3

dz̄: ð61Þ

A pure Kuzmin disk is gotten when Mðz̄ ≥ hÞ ¼ Mk is
constant. Then, change variables in the integral to Y ¼
GMK=a0z̄2 to obtain

Σ0
D ¼ ΣM

Z
Σ0
B=ΣM

0

νðYÞdY ¼ ΣMSðΣ0
B=ΣMÞ: ð62Þ

This is the universal expression predicted by AQUAL/
QUMOND; here we see that it is predicted for Kuzmin
disks in the general class of MG theories.
The radial MOND acceleration in the plane of the disk is

grðrÞ ¼ gðR̄Þ r
R̄
¼ ν

�
GMðR̄Þ
a0R̄2

�
GMðR̄Þr

R̄3
; ð63Þ

from which we get the acceleration integral

G ¼
Z

∞

0

gðR̄Þ
R̄

dr ¼
Z

∞

h

gðR̄Þ
ðR̄2 − h2Þ1=2 dR̄: ð64Þ

For completeness, we can also calculate the value of G
for these models, with the MI expression, whereby the
accelerations are determined from rotational speeds of
exactly circular trajectories. In this case, the MOND radial
acceleration is related to the Newtonian radial acceleration
by gMI

r ¼ νðgNr =a0ÞgNr instead of gMG
r ¼ νðgN=a0ÞgNr (the

difference being that, in the former, the r component
appears in the argument of ν instead of the full
Newtonian acceleration in the latter). We are now equipped
to examine the correlations we are after.

1. The Σ0
D −G correlation

Using expression (61) for Σ0
D and expression (64) for G,

we get

κ¼ 2πGΣ0
D

G
¼ 2

Z
∞

h

gðR̄ÞdR̄
R̄

�Z
∞

h

gðR̄ÞdR̄
ðR̄2−h2Þ1=2

�−1
: ð65Þ

The two integrals differ only by the replacement of one
power of R̄ in one by ðR̄2 − h2Þ1=2 in the other. For h ¼ 0,
for which the model is spherical, we get κ ¼ 2 as expected.
For h > 0, the second integral is larger than the first
and k < 2.
For a Kuzmin disk, for which MðR̄ > hÞ ¼ MK con-

stant, we have

κ¼ 2

Z
∞

h
ν

�
GMK

a0R̄2

�
dR̄
R̄3

�Z
∞

h
ν

�
GMK

a0R̄2

�
dR̄

R̄2ðR̄2−h2Þ1=2
�−1

:

ð66Þ

In the Newtonian limit, ν≡ 1, one gets κ ¼ 1, as expected
from Toomre’s result. However, in MOND, the dynamical
mass acquires a phantom bulge, so we expect κ to be
between 1 and 2. Indeed, the ν factor in the integrands
increases with increasing values of R̄. This causes the value
of κ to increase over its value for ν ¼ 1. For example, in the
DML, where we can put νðYÞ ¼ Y−1=2, we get from
expression (66) κ ¼ 4=π.
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2. The Σ0
D −Σ0

B correlation

We have several expressions for the Σ0
D and the corre-

sponding ones for Σ0
B, gotten from them by putting

νðYÞ≡ 1. Such pairs can be used to asses the level of
the CSDC in our class of theories. All these theories
(including AQUAL and QUMOND) give the same results
for the Kuzmin-like, disk-plus-bulge mass models, when
expressed in terms of the one-dimensional interpolating
function νðYÞ.
Take, for example, the pair Σ0

B from Eq. (55) (second
equality) and Σ0

D from Eq. (61). As expected, there is no
universal functional relation between the two, as there is for
AQUAL and QUMOND for pure disks. We already saw
that for a spherical mass the correlation does depend on the
mass distribution.
As regards the asymptotes, the Newtonian limit takes the

form that it always does, Σ0
P ¼ Σ0

D − Σ0
B → αΣM, with α

depending only on the exact form of νðYÞ, as given in
Eq. (46). In the DML, we get the value of η≡
Σ0
D=ðΣMΣ0

BÞ1=2 from Eqs. (55) and (61),

η ¼
ffiffiffi
2

p R∞
h z̄−2M1=2ðz̄Þdz̄

½R∞
h z̄−3Mðz̄Þdz̄�1=2 : ð67Þ

As predicted by the basic tenets, we see that η does not
depend on the normalization ofM, nor on the characteristic
scale lengths of the mass distribution, as long as we scale
them and h by the same factor. For MðRÞ constant beyond
R ¼ h, we have the Kuzmin pure disk, and expression (67)
gives η ¼ 2. For h ¼ 0 we get the result for the spherical
case, Eq. (47). For AQUAL/QUMOND this is the value
that applies to all pure disks; here we derived it for a
Kuzmin disk in the general class of theories.

C. The CSDC for pure disks

We saw that AQUAL and QUMOND predict a universal
(i.e., disk independent) Σ0

B − Σ0
D relation for pure disks, the

relation hinging only on the ν interpolating function of
these theories. We also saw that the more general class of
MG theories predict the same relation, but only for Kuzmin
disks, in which the one-dimensional interpolating function
of the specific theory appears in the same way. A Kuzmin
disk is a mass model whose gravitational field is describ-
able, in some sense, in terms of a one-dimensional mass
model, so perhaps this is not so surprising. But, in the
general class of theories, it cannot be expected that a similar
strict algebraic relation holds for general pure disks and, in
particular, that only the one-dimensional interpolating
function will define a CSDC for such disks. What can
we, nevertheless, say about such a CSDC?
One general result that applies to all the theories in the

class discussed in Sec. VA is that there appears a phantom
disk, whose local surface density Σdisk

P depends only on the
local baryonic disk surface density Σdisk

B according to

Σdisk
P ¼

�
ν

�
Σdisk
B

ΣM

�
− 1

�
Σdisk
B ; ð68Þ

where νðYÞ is the one-dimensional interpolating function of
the theory, which is derived from Eqs. (22) and (23). This
results from the fact that the jump conditions of the MOND
and the Newtonian fields across a thin disk are related by
the one-dimensional behavior of the theory. Relation (68)
holds, in particular, for the relation between the central
surface densities Σ0;disk

P and Σdisk
B .28,29

There is no baryonic mass outside the disk, so there we
have the contribution to the dynamical, central surface
density from a phantom bulge

Σ0
DðoutÞ ¼

1

2πG

Z
∞

0þ
Δϕ dζ; ð69Þ

where ϕ is the MOND potential gotten by solving Eq. (20),
and the integration is along the z axis from ζ ¼ 0þ just
outside the disk. (Here and hereafter, I use ζ for the z
coordinate to avoid confusion with the above use of z as a
scalar variable in the TRIMOND Lagrangian.)
The formulation of the general Lagrangian is not specific

enough for me to derive further general results, relevant to
the CSDC; so I will confine myself to the subclass of
TRIMOND theories, where the MOND potential enters the
gravitational Lagrangian in a specific manner, as explained
in Sec. V B.

1. The pure-disk CSDC in TRIMOND

In TRIMOND theories, ϕ in Eq. (69) is to be determined
from the TRIMOND field equations (31) and (32). Given
that the Newtonian field ψ satisfies Δψ ¼ 0 outside the
disk, we can get from Eq. (31),

Δφ ¼ −ð∇⃗ψ · ∇⃗F z þ ∇⃗φ · ∇⃗F yÞ=F y: ð70Þ

Substituting in Eq. (32) we get an expression for Δϕ,

Δϕ ¼ ∇⃗ψ · ∇⃗F x þ ∇⃗φ · ∇⃗F z −
F z

F y

× ð∇⃗ψ · ∇⃗F z þ ∇⃗φ · ∇⃗F yÞ: ð71Þ

In the integrand in Eq. (69)Δϕ is needed only on the ζ axis,
where, from the symmetry, all the gradients are along the
axis, so we can write

28Such a phantom disk also occurs when there is a bulge
present.

29Note that this is a secondary prediction of MOND that holds
in this class of MG theories, but it does not follow from the basic
tenets. In Ref. [34], I showed that MI theories, for example, can
make rather different predictions here. In particular, the notion of
phantom disk is not defined in such theories.
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Σ0
DðoutÞ ¼

1

2πG

Z
∞

0þ
dζ

�
dF x

dζ
−
F z

F y

dF z

dζ

�
gN

þ
�
dF z

dζ
−
F z

F y

dF y

dζ

�
gφ: ð72Þ

This expression is useful because the integrand now
depends only on the accelerations on the ζ axis, since
all the second derivatives have disappeared. On the ζ axis,
F x, F y, F z are also functions of only gN and gφ.
Near the disk and far from it—more specifically, at ζ

values small and large compared with the central, character-
istic size of the disk—the gravitational field becomes one-
dimensional, so the algebraic relations (33) and (34) hold.
Had this been the case all along the ζ axis, we would have
gotten the same relation (involving the one-dimensional
interpolating function of the theory) between Σ0

D and Σ0
B as

we have for Kuzmin disks, where, indeed, the field outside
the disk is one dimensional. Thus, the deviation from such a
relation, and the dependence on the specific disk model,
result from the contribution of the intermediate region on
the ζ axis.
My aim here is, indeed, to demonstrate in more detail

why, in general, the relation between Σ0
D and Σ0

B for pure
disks is not universal, as in the special cases of AQUAL and
QUMOND. For this, it is enough to further confine
ourselves to TRIMOND theories in which F z ¼ ϵ is a
constant (AQUAL and QUMOND are such cases).
Equation (72) then reduces to

Σ0
DðoutÞ ¼

1

2πG

Z
∞

0þ

�
dF x

dζ
gN −

ϵ

F y

dF y

dζ
gφ

�
dζ: ð73Þ

The field configuration near the disk (e.g., at 0þ) is one
dimensional and the three accelerations are related there by
the one-dimensional relations (33) and (34) reduced to our
special case,

Fþ
y gþφ þ ϵgþN ¼ 0; ð74Þ

gþ ¼ Fþ
x g

þ
N þ ϵgþφ : ð75Þ

Since the only quantities that enter the integrand in
Eq. (73) are the acceleration values on the ζ axis, for a
given disk, we can think of one quantity in the integrand as
a function of any other. For example, along the ζ axis,
F xðζÞ can be treated as a function ν1ðYÞ, where Y ≡ gN (in
this section, again, we put a0 ¼ 1 for convenience). Strictly
speaking, this is only so if YðzÞ is monotonic from its value
gþN to 0 at infinity, because then YðζÞ can be inverted and
ζðYÞ givesF ½ζðYÞ�. There are disks for which this is not so;
e.g., for a disk with a hole at the center, gN vanishes at the
origin and at infinity. In this case we need to make the
treatment piecewise. But here, for the demonstration, we
deal with disks for which inversion is possible.

ν1½YðζÞ� is not universal for the given theory, like the
one-dimensional interpolating function, depending not
only on the disk model, but also on the value of Σ0

B relative
to ΣM; it is defined only on the ζ axis and only for argument
values between 0 and gþN .
Write, then, the integral of the first term in Eq. (73),

Z
∞

0þ

�
d
dζ

½Yν1ðYÞ� − ν1ðYÞ
dY
dζ

�
dζ

¼ −½Yν1ðYÞ�0þ þ
Z

Yð0þÞ

Yð∞Þ
ν1ðYÞdY

¼ −gþNν1ðgþNÞ þ
Z

gþN

0

ν1ðYÞdY: ð76Þ

In a similar vein, on the ζ axis, we can think of F y as a
function of gφðζÞ: FyðζÞ ¼ μ½gφðζÞ�. Then, if we denote

Y ¼ −ϵ−1XμðXÞ ð77Þ

and invert this relation, then ν2ðYÞ is defined such that

X ¼ ϵ−1Yν2ðYÞ: ð78Þ

Take the X derivative of Eq. (77) to get

−
ϵ

μ

dY
dX

− 1 ¼ Xμ0ðXÞ
μ

: ð79Þ

But, from Eqs. (77) and (78) we have

1=μ ¼ −ϵ−2ν2; ð80Þ

and the second integrand in Eq. (73) is ð−ϵX=μÞμ0ðdX=dζÞ.
Then, the second integral can be written as

−ϵXð0þÞ þ
Z

gþN

0

ν2ðYÞdY; ð81Þ

where we used the fact that at 0þ the one-dimensional
relations hold; so, for example, Yð0þÞ ¼
−ϵ−1XμðXÞð0þÞ ¼ gþN [from Eq. (74)]. All in all, we get

Σ0
DðoutÞ ¼

1

2πG

�
−Fþ

x g
þ
N − ϵXþ þ

Z
gþN

0

½ν1ðYÞ

þ ν2ðYÞ�dY
�
: ð82Þ

From Eq. (75) the first two terms give −ð2πGÞ−1gþ ¼
−Σ0

DðdiskÞ, which cancels with the contribution of the disk
to Σ0

D, to give (restoring a0)

Σ0
D ¼ ΣM

Z
Σ0
B=ΣM

0

ν�ðYÞdY ≡ ΣMS�ðΣ0
B=ΣMÞ; ð83Þ
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where ν�ðYÞ ¼ ν1ðYÞ þ ν2ðYÞ. This is similar in form to
the universal AQUAL/QUMOND relation (13), but here S�
is not universal. In fact, being too dependent on the model,
ν�ðYÞ is not very useful for calculations, as it is not known
beforehand for a given theory and model. I use this concept
here only to better bring out the differences from AQUAL
and QUMOND.
Indeed, in the above derivation, we encounter, in a sense,

a combination of AQUAL and QUMOND. Remember that
QUMOND is a special case with ϵ ¼ 0, so ν2 ¼ 0, and
ν� ¼ ν1 is then the interpolating function of QUMOND.
For AQUAL, F x ≡ 0; so, ν1 ¼ 0, and ν� ¼ ν2 is the
AQUAL, ν-type interpolating function.
Also, ν� here has the same asymptotic limits as ν. For

Y ≫ 1, the statement around Eq. (35), on the Newtonian
limit of TRIMOND, tells us that in this limit ν1 ¼ F x → β,
and from Eq. (80) and the definition of μ ¼ F y,
ν2 → −ϵ2=ω. So, by Eq. (35), ν1 þ ν2 → 1.

2. The deep-MOND limit of TRIMOND theories
with F z constant

I now describe in some detail the form that the DML
equations take for this subclass, also as an opportunity to
see how the DML in TRIMOND theories can differ from
that in AQUAL/QUMOND, the Lagrangian of which
involves a function of a single variable. The DML in
TRIMOND, whose Lagrangian involves generally a func-
tion of three variables, was discussed in Ref. [30].
The Lagrangian of the subclass I consider here involves a

function of two variables and has the form

F ðx; y; zÞ ¼ ϵzþ F̄ ðx; yÞ: ð84Þ

From the requirement of scale invariance in the DML,
expressed as Eq. (36), the DML of F has to be such that

ϵzþ F̄ ðx; yÞ ¼ λ3½ϵλα−3zþ F̄ ðλ−4x; λα−2yÞ�; ð85Þ

for some α (which is the scaling dimension of φ) and for
any λ > 0. This means that we have to take α ¼ 0, and the
DML of F̄ has to satisfy

F̄ ðx; yÞ ¼ λ3F̄ ðλ−4x; λ−2yÞ: ð86Þ

This implies that F̄ is of the form (taking λ ¼ x1=4)

F̄ ðx; yÞ ¼ x3=4Fðy=x1=2Þ: ð87Þ

Any choice of F would give a scale-invariant DML,
pending some consistency requirement, such as existence
and uniqueness of solutions. In contradistinction from
AQUAL and QUMOND, where the DML of the theory
is completely fixed by the requirement of scale invariance,
here one still needs to specify a function of one variable to
specify the theory’s DML (for general TRIMOND theories,

one is left with the choice of a function of two variables).
From Eq. (87) follows that, in the DML,

F x ¼
3

4
x−1=4F−

1

2
yx−3=4F0; F y ¼ x1=4F0; F z¼ ϵ:

ð88Þ

The standard choice of the normalization of a0 is such that,
asymptotically far from a mass, we have g ¼ ffiffiffiffiffiffiffiffiffiffi

a0gN
p

. This
normalization still has to be imposed, as follows: In the
spherical case, which is relevant to this, we use the
algebraic relation (33), which reads here

F0ðqÞq1=2 þ ϵ ¼ 0; q≡ yx−1=2: ð89Þ

This implies that in a one-dimensional, DML system,
y ¼ q0x1=2, where q0 is the solution of Eq. (89). Thus,
for the theory to be consistent, F0ðqÞ has to be such that this
equation has a solution and that the solution is unique.
The second one-dimensional equation (34) then tells us

that

g ¼ 3

4
½Fðq0Þ − 2q0F0ðq0Þ�g1=2N : ð90Þ

We want to choose the still-free additive constant to F, so
that in this case g ¼ g1=2N (a0 ¼ 1).
In summary, in constructing such a theory, we chooseF up

to an additive constant and a value of ϵ. Then, Eq. (89)
determines q0, and Eq. (90) determines the additive constant.
While, from their definition, ν1ðYÞ and ν2ðYÞ, and hence

ν�ðYÞ, scale as Y−1=2 for Y → 0, the proportionality
constant depends on the disk model. While in AQUAL/
QUMOND, the canonical normalization of a0 determines
the DML normalization νðYÞ ¼ Y−1=2, here it does
not determine that of the DML of ν� and hence of the
value of η.

VII. SUMMARY

The CSDC is a correlation between the dynamical
central surface density Σ0

D of an axisymmetric and
plane-symmetric galactic system and the baryonic central
surface density Σ0

B. Various versions of the CSDC emerge
from various MOND starting points.
I have emphasized, in the first place, that the notions of

dynamical density and dynamical surface density are
defined only in modified-gravity theories. In these, the
Newtonian potential is modified into a MOND potential,
from which one can define a dynamical density: the density
that would source the MOND potential in a Poisson
equation. In modified-inertia versions of MOND there is
no gravitational potential defined, and so no dynamical
density is defined. However, since in actual tests one uses
proxies for the dynamical surface density, and these may be
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well defined in MI theories, the CSDC may emerge in the
MI context in some circumstances.
I showed that from MOND’s defining tenets alone

follows a CSDC in a basic form: The underlying tenets
pertain to the behavior of the theory at high and low
accelerations, but do not specify the interpolation scheme
between these behaviors, and how it takes place in different
phenomena.30 So, they can predict only the high- and low-
surface-density ends of the CSDC.
At the high end, Σ0

B ≫ ΣM, where ΣM is the MOND
critical surface density, it is predicted that the phantom
surface density Σ0

P ≡ Σ0
D − Σ0

B → γΣM, with γ ¼ Oð1Þ that
depends on the theory, but not on the system, because in
this limit the contribution to Σ0

P comes from far outside the
system, where it can be thought of as a point mass, whose
structure is immaterial here.
At the other end, Σ0

B ≪ ΣM, it is predicted that
Σ0
D ¼ ηðΣMΣ0

BÞ1=2, with η ¼ Oð1Þ that does not depend
on the mass or overall size of the system, but that can
depend on dimensionless attributes of the system, such
as whether we have a sphere, a pure disk, or a combination,
or generally on ratios of scale-length attributes of the
system.
This makes a rough CSDC, as described above, a

primary prediction of MOND that is shared by all
MOND theories that embody the basic axioms.
Specific MOND theories can predict more con-

strained forms of a CSDC, especially if we also
consider specific system geometries. For example, the
AQUAL and QUMOND theories predict for pure disks
a universal (disk-independent), tight algebraic relation
Σ0
DðΣ0

BÞ.
As other examples, I considered the detailed pre-

dictions of a large class of modified-gravity theories
that include AQUAL, QUMOND, and TRIMOND as
special cases. They all coincide in their predictions for
one-dimensional systems, such as spherical systems or
near-disk dynamics. Such predictions then hinge
only on the so-called one-dimensional interpolating
function—a function of the Newtonian acceleration of
the system.
Importantly, though, and in contradistinction from the

special cases of AQUAL and QUMOND, these theories
do not predict a universal relation for pure disks, with
the exception of the Kuzmin disk for which they all
make the same prediction of a tight algebraic CSDC. In
particular, the value of η that describes the low-Σ0

B limit
can depend somewhat on the exact disk model and on
the exact theory. Such details of the CSDC are thus
secondary MOND predictions, as they do not follow
from the basic tenets alone.

APPENDIX: RELATION BETWEEN Σ0
D

AND THE ACCELERATION INTEGRAL
G FOR SOME MASS MODELS

Here I derive the relation between central surface
density and the acceleration integral for some mass
models. To avoid confusion, note that, because this
relation is linear and is derived on the basis of
Newtonian dynamics, these models model not the bar-
yonic mass distribution of the galaxy, but its MOND,
dynamical mass distribution (baryonic plus phantom).
Hence these surface densities are designated with a sub-
script D. For example, a pure baryonic disk has both a disk
and a spheroidal (“bulge”) component of dynamical mass,
so the Miyamoto-Nagai models below represent this
compound distribution.

1. Spheroids

Consider a thin spherical shell of radius rs and surface
density Σs, so its mass is Ms ¼ 4πr2sΣs. The (Newtonian)
acceleration vanishes inside the shell, and outside it is
gðrÞ ¼ GMs=r2. Its central surface density is 2Σs, and the
acceleration integral is

G≡
Z

∞

0

g d ln r ¼ GMs

2r2s
¼ 2πGΣs; ðA1Þ

so it has κ ¼ 2, as expected.
Contracting or expanding the shell by a factor q along

the z axis, we get a homoeoid thin shell, which still
produces zero acceleration inside it. The acceleration along
the equator, a distance r > rs from the center is gðrÞ ¼
Σsfðq; rs; rÞ, but on dimensional grounds it has to be of the
form

gðrÞ ¼ 4πGΣsf̂ðq; r=rsÞ: ðA2Þ

The acceleration integral is thus

G ¼ 4πGΣs

Z
∞

rs

f̂ðq; r=rsÞd ln r ¼ 4πGΣs

×
Z

∞

1

f̂ðq; xÞd ln x≡ 4πGΣs=κðqÞ: ðA3Þ

We see then that, for this shell, κ defined in Eq. (7) is κðqÞ,
which depends only on q.
Because of the additivity of the central surface density

and of G, the same relation holds for any spheroid of r-
independent oblateness factor q.
Clearly, κðqÞ is a decreasing function of q: the smaller q

is, the nearer the shell elements are to a point on the
external equator and, in addition, the larger the radial
component is. So, G increases with decreasing q, but Σ0

D is
independent of q, so κ decreases.

30The only assumption about the interpolation is that it occurs
within a range of order a0 around a0, so that the theory does not
involve dimensionless constants ≫ 1 or ≪ 1.
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To get an explicit expression for kðqÞ, start from
Eq. (2-91) in Ref. [24] (somewhat paraphrased), which
gives the acceleration in the midplane for an axisym-
metric spheroid, of density distribution (in cylindrical
coordinates r, z)

ρðr; zÞ ¼ ρ̂ðyÞ; y≡
�
r2 þ z2

q2

�
1=2

; ðA4Þ

as

gðrÞ ¼ 4πGq
r

Z
r

0

ρ̂ðyÞy2dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − e2y2

p ; e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
: ðA5Þ

The acceleration integral is then

G ¼ 4πGq
Z

∞

0

dr
r2

Z
r

0

ρ̂ðyÞy2dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − e2y2

p ; ðA6Þ

which after some rearrangement and changing the order
of the integration gives

G¼ 4πGq
Z

1

0

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e2x2

p
Z

∞

0

ρ̂ðuÞdu¼ 4πGq
1þq

Z
∞

0

ρ̂ðuÞdu:

ðA7Þ

The central surface density is

Σ0
D ¼ 2

Z
∞

0

ρð0; zÞdz ¼ 2q
Z

∞

0

ρ̂ðuÞdu: ðA8Þ

Putting the two together we get from the definition of κ,
Eq. (7),

κðqÞ ¼ 1þ q: ðA9Þ

2. Miyamoto-Nagai models

For Miyamoto-Nagai models the potential field is

ϕðr; zÞ ¼ −
MG

fr2 þ ½aþ ðz2 þ b2Þ1=2�2g1=2 : ðA10Þ

So, in the symmetry plane grðr; 0Þ ¼ MGr=½r2 þ ðaþ
bÞ2Þ�3=2 yielding

G ¼ MG
ðaþ bÞ2 : ðA11Þ

The source density along the z axis is (e.g., Ref. [24])

ρð0;zÞ¼
�
Mb2

4π

�
aþ3ðz2þb2Þ1=2

½aþðz2þb2Þ1=2�3ðz2þb2Þ3=2 ; ðA12Þ

and the expression for Σ0
D can be brought to the form

Σ0
D ¼

�
M

2πb2

�Z
1

0

x3ð3þ λxÞdx
ð1þ λxÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ðA13Þ

from which

κ ¼ ð1þ λÞ2
Z

1

0

x3ð3þ λxÞdx
ð1þ λxÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ðA14Þ

where λ ¼ a=b. As λ goes from 0 (Plummer sphere) to ∞
(Kuzmin disk), κ goes, monotonically, from 2 to 1.

[1] M. Milgrom, A modification of the Newtonian dynamics as
a possible alternative to the hidden mass hypothesis, As-
trophys. J. 270, 365 (1983).

[2] B. Famaey and S. S. McGaugh, Modified Newtonian
dynamics (MOND): Observational phenomenology and
relativistic extensions, Living Rev. Relativity 15, 10
(2012).

[3] M. Milgrom, The MOND paradigm of modified dynamics,
Scholarpedia 9, 31410 (2014), http://www.scholarpedia.org/
article/The_MOND_paradigm_of_modified_dynamics.

[4] M. Milgrom, MOND vs dark matter in light of historical
parallels, Stud. Hist. Phil. Mod. Phys. 71, 170 (2020).

[5] S. McGaugh, Predictions and outcomes for the dynamics of
rotating galaxies, Galaxies 8, 35 (2020).

[6] D. Merritt, A Philosophical Approach to MOND: Assessing
the Milgromian Research Program in Cosmology

(Cambridge University Press, Cambridge, England,
2020), 10.1017/9781108610926.

[7] I. Banik and H. S. Zhao, From galactic bars to the Hubble
tension—weighing up the astrophysical evidence for Mil-
gromian gravity, Symmetry 14, 1331 (2022).

[8] M. Milgrom, The MOND limit from spacetime scale
invariance, Astrophys. J. 698, 1630 (2009).

[9] M. Milgrom, MOND laws of galactic dynamics, Mon. Not.
R. Astron. Soc. 437, 2531 (2014).

[10] J. Bekenstein and M. Milgrom, Does the missing mass
problem signal the breakdown of Newtonian gravity?,
Astrophys. J. 286, 7 (1984).

[11] M. Milgrom, Quasi-linear formulation of MOND, Mon.
Not. R. Astron. Soc. 403, 886 (2010).

[12] M. Milgrom, Universal modified Newtonian dynamics
relation between the baryonic and “dynamical” central

MORDEHAI MILGROM PHYS. REV. D 109, 124016 (2024)

124016-18

https://doi.org/10.1086/161130
https://doi.org/10.1086/161130
https://doi.org/10.12942/lrr-2012-10
https://doi.org/10.12942/lrr-2012-10
http://www.scholarpedia.org/article/The_MOND_paradigm_of_modified_dynamics
http://www.scholarpedia.org/article/The_MOND_paradigm_of_modified_dynamics
http://www.scholarpedia.org/article/The_MOND_paradigm_of_modified_dynamics
http://www.scholarpedia.org/article/The_MOND_paradigm_of_modified_dynamics
https://doi.org/10.1016/j.shpsb.2020.02.004
https://doi.org/10.3390/galaxies8020035
https://doi.org/10.1017/9781108610926
https://doi.org/10.3390/sym14071331
https://doi.org/10.1088/0004-637X/698/2/1630
https://doi.org/10.1093/mnras/stt2066
https://doi.org/10.1093/mnras/stt2066
https://doi.org/10.1086/162570
https://doi.org/10.1111/j.1365-2966.2009.16184.x
https://doi.org/10.1111/j.1365-2966.2009.16184.x


surface densities of disk galaxies, Phys. Rev. Lett. 117,
141101 (2016).

[13] M. Milgrom and R. H. Sanders, MOND predictions of halo
phenomenology in disk galaxies, Mon. Not. R. Astron. Soc.
357, 45 (2005).

[14] M. Spano et al., GHASP: An Hα kinematic survey of spiral
and irregular galaxies—V, Dark matter distribution in 36
nearby spiral galaxies, Mon. Not. R. Astron. Soc. 383, 297
(2008).

[15] F. Donato, G. Gentile, P. Salucci, C. Frigerio Martins, M. I.
Wilkinson, G. Gilmore, E. K. Grebel, A. Koch, and R.
Wyse, A constant dark matter halo surface density in
galaxies, Mon. Not. R. Astron. Soc. 397, 1169 (2009).

[16] F. Lelli, S. S. McGaugh, J. M. Schombert, and M. S.
Pawlowski, The relation between stellar and dynamical
surface densities in the central regions of disk galaxies,
Astrophys. J. Lett. 827, L19 (2016).

[17] R. Brada and M. Milgrom, The modified Newtonian dynam-
ics predicts an absolute maximum to the acceleration pro-
duced by “dark halos”, Astrophys. J. Lett. 512, L17 (1999).

[18] M. Milgrom and R. H. Sanders, Rings and shells of “dark
matter” as MOND artifacts, Astrophys. J. 678, 131 (2008).

[19] M. Milgrom, The central surface density of “dark haloes”
predicted by MOND, Mon. Not. R. Astron. Soc. 398, 1023
(2009).

[20] M. Milgrom, Can the hidden mass be negative?, Astrophys.
J. 306, 9 (1986).

[21] P. A. Oria et al., The phantom dark matter halos of the local
volume in the context of modified Newtonian dynamics,
Astrophys. J. 923, 68 (2021).

[22] R. Ibata et al., Charting the Galactic acceleration field II. A
global mass model of the Milky Way from the STREAM-
FINDER Atlas of stellar streams detected in Gaia DR3,
arXiv:2311.17202.

[23] M. Milgrom, The shape of “dark matter” haloes of disk
galaxies according to MOND, Mon. Not. R. Astron. Soc.
326, 1261 (2001).

[24] J. Binney and S. Tremaine, Galactic Dynamics (Princeton
University Press, Princeton, NJ, 1987), https://ui.adsabs
.harvard.edu/abs/1987gady.book.....B/abstract.

[25] A. Toomre, On the distribution of matter within highly
flattened galaxies, Astrophys. J. 138, 385 (1963).

[26] M. Milgrom, Global Deep-MOND parameter as a theory
discriminant, Phys. Rev. Lett. 109, 251103 (2012).

[27] R. A. Swaters, M. A. Bershady, T. P. K. Martinsson, K. B.
Westfall, D. R. Andersen, and M. A.W. Verheijen, The link
between light and mass in late-type spiral galaxy disks,
Astrophys. J. Lett. 797, L28 (2014).

[28] Y. Tian and CM. Ko, Halo acceleration relation, Mon. Not.
R. Astron. Soc. 488, L41 (2019).

[29] M. Milgrom, General virial theorem for modified-gravity
MOND, Phys. Rev. D 89, 024016 (2014).

[30] M. Milgrom, Tripotential MOND theories, Phys. Rev. D
108, 063009 (2023).

[31] M. Milgrom, Generalizations of quasilinear MOND
(QUMOND), Phys. Rev. D 108, 084005 (2023).

[32] M. Milgrom, Dynamics with a nonstandard inertia-accel-
eration relation: An alternative to dark matter in galactic
systems, Ann. Phys. (N.Y.) 229, 384 (1994).

[33] M. Milgrom, The modified dynamics as a vacuum effect,
Phys. Lett. A 253, 273 (1999).

[34] M. Milgrom, Models of modified-inertia formulation of
MOND, Phys. Rev. D 106, 064060 (2022).

[35] M. Milgrom, MOND as manifestation of modified inertia,
arXiv:2310.14334.

[36] M. Milgrom, Deep-MOND polytropes, Phys. Rev. D 103,
044043 (2021).

[37] R. Brada and M. Milgrom, Exact solutions and approx-
imations of MOND fields of disk galaxies, Mon. Not. R.
Astron. Soc. 276, 453 (1995).

[38] KH. Chae, Distinguishing dark matter, modified gravity,
and modified inertia with the inner and outer parts of
galactic rotation curves, Astrophys. J. 941, 55 (2022).

CENTRAL-SURFACE-DENSITIES CORRELATION IN GENERAL … PHYS. REV. D 109, 124016 (2024)

124016-19

https://doi.org/10.1103/PhysRevLett.117.141101
https://doi.org/10.1103/PhysRevLett.117.141101
https://doi.org/10.1111/j.1365-2966.2004.08578.x
https://doi.org/10.1111/j.1365-2966.2004.08578.x
https://doi.org/10.1111/j.1365-2966.2007.12545.x
https://doi.org/10.1111/j.1365-2966.2007.12545.x
https://doi.org/10.1111/j.1365-2966.2009.15004.x
https://doi.org/10.3847/2041-8205/827/1/L19
https://doi.org/10.1086/311871
https://doi.org/10.1086/529119
https://doi.org/10.1111/j.1365-2966.2009.15255.x
https://doi.org/10.1111/j.1365-2966.2009.15255.x
https://doi.org/10.1086/164314
https://doi.org/10.1086/164314
https://doi.org/10.3847/1538-4357/ac273d
https://arXiv.org/abs/2311.17202
https://doi.org/10.1111/j.1365-2966.2001.04653.x
https://doi.org/10.1111/j.1365-2966.2001.04653.x
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://ui.adsabs.harvard.edu/abs/1987gady.book.....B/abstract
https://doi.org/10.1086/147653
https://doi.org/10.1103/PhysRevLett.109.251103
https://doi.org/10.1088/2041-8205/797/2/L28
https://doi.org/10.1093/mnrasl/slz095
https://doi.org/10.1093/mnrasl/slz095
https://doi.org/10.1103/PhysRevD.89.024016
https://doi.org/10.1103/PhysRevD.108.063009
https://doi.org/10.1103/PhysRevD.108.063009
https://doi.org/10.1103/PhysRevD.108.084005
https://doi.org/10.1006/aphy.1994.1012
https://doi.org/10.1016/S0375-9601(99)00077-8
https://doi.org/10.1103/PhysRevD.106.064060
https://arXiv.org/abs/2310.14334
https://doi.org/10.1103/PhysRevD.103.044043
https://doi.org/10.1103/PhysRevD.103.044043
https://doi.org/10.1093/mnras/276.2.453
https://doi.org/10.1093/mnras/276.2.453
https://doi.org/10.3847/1538-4357/ac93fc

