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The superradiant stability of asymptotically flat D-dimensional nonextremal Reissner-Nordstrom black
holes under charged massive scalar perturbation is analytically studied. In previous works, it was proved
that there are no black hole bombs for five- and six-dimensional nonextremal Reissner-Nordstrom black
holes against charged massive scalar perturbation. In this work, we extend the previous discussions to the
D-dimensional case (D > 7) and find that the same conclusion holds in arbitrary higher dimensional case.
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I. INTRODUCTION

Black holes are important objects in both theoretical and
observational physics. Linear (in)stability analysis of black
holes plays an important role in many topics, such as the
(in)stability of black hole solutions, the black hole ring-
down phase after binary merger and astrophysics [1-3].
When a charged rotating black hole is scattered off by a
charged bosonic field, the electromagnetic or (and) the
rotational energy of the black hole may be extracted by the
external field under certain conditions. This phenomenon is
called superradiance [4-6]. In order to trigger the super-
radiance, the angular frequency @ of the scattered field
should satisfy the following superradiance condition:

w <mQH+e(DH, (1)

where e and m are the charge and azimuthal number of the
bosonic wave mode, Q is the angular velocity of the black
hole horizon and @y is the electromagnetic potential of the
black hole horizon. The superradiant scattering was studied
a long time ago [7-12] and has broad applications in
various areas of physics (for a comprehensive review, see
Ref. [4]). If there is a “mirror” between the black hole
horizon and spatial infinity, the amplified perturbation will
be scattered back and forth between the “mirror” and black
hole horizon, and this will lead to the superradiant
instability of the system. This is the so-called black hole
bomb mechanism [13-16].

The superradiant (in)stability of four-dimensional rotat-
ing Kerr black holes under massive scalar or vector
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perturbation has been studied in [17-31]. Rotating or
charged black holes with certain asymptotically curved
space are proved to be superradiantly unstable under
massless or massive bosonic perturbation [32—43], where
the asymptotically curved geometries provide natural
mirror-like boundary conditions. The four-dimensional
asymptotically flat extremal or nonextremal Reissner-
Nordstrom (RN) black hole has proved superradiantly
stable against charged massive scalar perturbation [44—49].
The argument is that the two conditions for the possible
superradiant instability of the system, (i) existence of a
trapping potential well outside the black hole horizon and
(ii) superradiant amplification of the trapped modes, cannot
be satisfied simultaneously in the RN black hole and scalar
perturbation system [44,46].

The linear stability of higher dimensional black holes has
also been studied in the literature (for an incomplete list, see
Refs. [50-60]). In Ref. [52], the asymptotically flat RN
black holes in D = 5,6,..,11 are shown to be stable by
studying the time-domain evolution of the massless scalar
perturbation with a numerical method. In Ref. [53], the
authors provided numerical evidence that asymptotically
flat extremal RN black holes are stable for arbitrary D
under massless perturbation.

Recently, an analytical method based on the Descartes’
rule of signs has been used to study the superradiant
stability of higher dimensional RN black holes under
charged massive scalar perturbation [61-63]. It proved
that there is no black hole bombs for five- and six-
dimensional (non)extremal RN black holes under charged
massive scalar perturbations and the system is super-
radiantly stable. It is also found that the above conclusion
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still holds for the D-dimensional extremal RN black hole
case [64].

In this work, we will use the above mentioned analytical
method to study the superradiant stability of D-dimensional
(D >7) nonextremal RN black hole against charged
massive scalar perturbation. We show that there is no
potential well for the effective potential experienced by the
scalar perturbation. The conditions for the possible black
hole bomb cannot be satisfied simultaneously, so there is no
black hole bomb for the D-dimensional nonextremal RN
black hole and charged massive scalar perturbation system.

The paper is organized as follows: In Sec. II, we present
the description of the model and the asymptotic analysis of
boundary conditions. In Sec. III, the effective potential of
the radial equation of motion is given, and the asymptotic
behaviors of the effective potential at the horizon and
spatial infinity are discussed. In Sec. IV, we give a brief
description of the proof of our main result that there is no
potential well outside the black hole horizon for the
superradiant bound modes. The details of the proof are
in the Appendix. The final section is devoted to the
summary.

II. MODEL DESCRIPTION

In this section, we present the model in which we
are interested, i.e. a D-dimensional nonextremal RN
black hole against charged massive scalar perturbation.
The metric of the D-dimensional nonextremal RN black
hole [61,62,65] is

2 2 dr’ 2102
ds* = —f(r)dt +m+rdQD_2. (2)

The function f(r) reads

2m q°

f(r)zl—rp—_ff‘m’ (3)

where the parameters m and ¢ are related with the
Arnowitt-Deser-Misner mass M and electric charge Q of
the RN black hole,

8
(D —2)Vol(5P72) M.
8
17" /2(D —2)(D = 3)Vol(sP2) e

4)

Here Vol(SP-2) =27"7 /T(25!) is the volume of unit
(D —2) sphere. dQ3,_, is the common line element of a

(D — 2)-dimensional unit sphere S°~2 and can be written as
D=3 D=2

A3, =do% ,+ Y [] sin*0)de2.  (5)
i=1 j=it1

where the ranges of the angular coordinates are taken as
0,€0,z](i=2,....,.D-2),0,€]0,2z]. The inner and
outer horizons of this RN black hole are

ry = <m +/m? - qz) 1/(0-3) (6)

The event horizon of the black hole is located at r;, = r,.
We introduce two symbols u, v, defined as u = r2‘3,
v = rP=3. It is obvious that we have the following two
equalities:

u+v=">2m, uv = q-°. (7)
The electromagnetic field outside the black hole horizon is
described by the following 1-form vector

D-2 ¢ q
A=y e T g o) g (8
\/2(D =3) 23 D=3 (®)

The equation of motion for a charged massive scalar
perturbation in this D-dimensional nonextremal black hole
background is governed by the covariant Klein-Gordon
equation

(D,D* = u?)¢p =0, ©)

where D, =V, — ieA, is the covariant derivative and u, e
are the mass and charge of the scalar field, respectively.
Since the RN black hole is stationary, the solution of the
above equation with definite angular frequency can be
written as

d(t,r,0;) = e R(r)O(0;). (10)

The angular eigenfunctions ©(6;) are (D — 2)-dimensional

scalar spherical harmonics and the corresponding eigen-

values are given by —I(I + D —3), (1 =0, 1,2, ..) [66-70].
The radial equation of motion is described by

d dR

dr( dr) tU 0, ( )
where
A= rP2 (),
U= (w+ eA,)2r2P=2 — (14 D - 3)rP~*A — j2rP2A.

(12)

The physical boundary conditions needed here are
purely ingoing wave at the outer horizon and exceptionally
decaying wave at spatial infinity, which means we discuss
the quasibound states. Thus, the asymptotic solution of the
radial equation (11) at the outer horizon is
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. y P2(w-w,) Re(w) < p. (17)
rlggR(ﬁN(r_rh) ", O':<D_h3)(rD—3_ D—3)’ (13)
n h —
where III. EFFECTIVE POTENTIAL AND ITS
ASYMPTOTIC BEHAVIORS
w, = ed, = cp % (14) In order to analyze the superradiant stability of the RN
" black hole and scalar perturbation system, we define a new

radial function y = A!/2R, then the radial equation of

is the critical i fi @, is the electri . . . . .
is the critical superradiance frequency and ® is the electric motion (11) can be written as a Schrodinger-like equation

potential of the outer horizon of the RN black hole.

The asymptotic solution of the radial equation (11) at the gy
spatial infinity is d_"z’ + (@ = V)y =0, (18)
r
. -2 S i,
rl}inooR (r)~r, *e o (15) where V is the effective potential, which is the main object

we will discuss. The explicit expression for the effective
The superradiance condition and the bound state condition  potential V is V = w® + f% and
are, respectively, :
eq Ay = 4r*(r*P=5 —2mrP=3 + ¢2)?, (19)
RC(CU) < e(I)h :CDﬁv (16)
ry
|

By = 4(p* — 0*)r*P710 + (21 + D = 2)(2L + D — 4)r*P=12 — 8(mp?* — cpeqw)r’P~’
—4m(24 + (D —4)(D = 2))r*P=0 + 4¢>(u* — c}e?)r?P~*
—2(2m? = ¢*?(2%; +3(D = 4)(D = 2) +2))r*P= —4mg*(D — 4)(D = 2)rP3 + ¢* (D - 4)(D -2), (20)

where A, = I(I+ D - 3).

A. Asymptotic behaviors of the effective potential
Defining D, = D*> — 6D + 8 = (D —2)(D — 4), the derivative of effective potential V reads

C(r)

’ .
Vi(r) = 253(P0=3) Z2mpP3 § 2)3 (21)
C(r) = agr®® 4 alr3P=13 4 a3 1 gl 4P=10 4 g, pHD=3)
+ a4 3P + a3’ P 4 @b PP 4 a, 2P gy P+ ay, (22)
where

ag =44+ Dy, ds = 4(D = 3)(cpeqw + mu* — 2ma?),
as = 2m[(2D - 14)),[ - 3D1},
a, = —4(D = 3)2m*u* = 2cpmeqw + ¢* (U — 20 + che?)],
ay = —[4m>((2D — 10)2, + (D — 2)(D? — 9D + 21)) + ¢*((4D — 20)2, — (D — 2)(4D* = 21D + 24))].
ay = 12(D = 3)(mp® = cpequ)q®,  dy = 4(D =3)(cpe’ —p?)q",
az = [8m? +4mq*((3D —13)4, = 5(D = 2)(D — 4) = 2)],
a, = (D —4)g*[(4D?* — 12D + 12)m? — (44, + 4D* — 27D + 42)4?),
a; = —6(D = 2)(D — 4)mq*, ay= (D =2)(D—4)q°. (23)
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When D > 7, the effective potential V and its derivative
V'(r) have the following asymptotic behaviors,

r—ry, V-—o-—oo,
r— 400, V—>/¢2,
2l+D-2)(2I+D -4
r—+oo, V’(r)—>—( i UClhs )<O. (24)

273

From the above asymptotic behaviors, we conclude that the
effective potential V(r) has at least one maximum outside
the event horizon r;, and there is no potential well near the
spatial infinity. In the next section, we will prove that in fact
there is no potential well between the event horizon and
spatial infinity for superradiant bound states by analyzing
the derivative of the effective potential V.

IV. FURTHER ANALYSIS OF THE EFFECTIVE
POTENTIAL V

In this section, we show that there is only one extreme for
the effective potential outside the RN black hole horizon by
analyzing the real roots of the derivative of the effective
potential. Explicitly, it is shown that only one real root
exists for the following equation:

V'(r) =0, (25)

when r > r;,. Since we are interested in the real roots of
V'(r), we just consider the numerator of V', i.e. C(r),
which is a polynomial of r.

Making a change of variable from r to z = r — ry,, C(7r)
is changed to a polynomial of z, C(z + r;,), which can be
expanded as

6D-18

Z biz'. (26)

After the change of variables, a real root for C(r) = 0 with
r > ry, corresponds to a positive real root for C(z 4 r,) =0
with z > 0. In order to analyze the number of positive real
roots for C(z + r,) = 0, we will use a method based on
Descartes’ rule of signs, i.e. we will consider the sign
changes of the sequence of the following coefficients:

Clz+r,) =

b6D—18’b6D—19’b6D—20’ "'vavblvbO‘ (27)

Remember that u = r?=3, v = r?= and they satisfy
u+v=2muv=q> u,v w111 be often used in the later
discussion. The constant term in C(z + r;,) is
by = ag + arry > + a0 + ayriP Tt + asnP

PP 4 agriP12 gl D10 4 g S0l

+ alryP=13 + qgrfP-18, (28)

Plugging Eq. (23) into the above equation, we can obtain
by = —(D = 3)u*(u—v)
X [(D =3)*(u—v)? +4ri(cpeq — uw)*] < 0. (29)

Itis easy to see that ag = D + 44; > 0. Considering the
two conditions, Egs. (16) and (17), it is also easy to prove

as = 4(D - 3)(cpeqw + my* — 2maw*) > 0. (30)
So we can immediately obtain that
bep_13 = ag > 0,

_ 6D—19
bep-19 = asCep_igrn > 0,

cey

SD—12,.D—6
bsp_1» = agCop_igry ¢ > 0,

_ ~5D=13,D-5
bsp_13 = asCop_13r), > +as >0,

— SD—14 _.D—4 S5D—14
b5D—14 == a6C6D 18rh —l—a5C5D 13rh > 0 (31)

Let us see the coefficient b, (4D —9 <k <5D — 19),
which is

_ ko roD-18-k kL rSD-13-k
by = agCqp_yg. +a5Csp_y37
+asCypy_ 5P (32)
The term involving a5 is positive. Next, we prove the sum
of the left two terms are also positive. This sum can be
written as

k 6D—18—k ko SD-15-k
asCep_157 +asC5p_ 575,

Cé 18
5D-15
C16(D 18)
CSD 15
Ck
Vo 18)]. (33)
5D-15

The A; term in the sum is obviously positive when D > 7.
Since

= Ck, 5P~ k[Dl(—3(u+U)+u

+ 4 <2(D —7)(u+v)+4u

Cépis  6D—186D—19 6D —18—k+1
" 5D-155D—-16 5D—-15—k+1

6\ k 6\ 19

> (=] > (= > 31 34

5 -6 o

and 31u > 6u > 3(u + v), the D; term in the above sum is
also positive. So we have

k
CSD— 15

by>0, (4D-9<k<5D—15).  (35)
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The signs of the other coefficients are not so easy to prove
as the above. Then, we will compare the signs of two
adjacent coefficients. For example, since byp_g > 0, when
bsp_19 > 0, we have

sign(byp-g) = sign(bsp_io)

and when byp_;y < 0, we have

sign(byp—o) > sign(bap_10)-
Thus, we have

sign(b,.1) > sign(b,). (p =4D —10). (36)
In fact, it is hard to find certain features of sign relations
between adjacent coefficients by directly computing their
difference. However, it is found that, after properly normal-
izing the coefficients with positive factors, we can obtain a
feature of the sign relations of the coefficients. With the
results in Egs. (36), (A8), (B8), (B12), (C12), (C20), (D10),
(D21), (E6), (E11), (F9), (F7), (G6) and (G7), we prove that
sign(b,,,) >sign(b,), (1< p<4D-10). (37)
Together with the results that by <0 and by >0
4D -9 <k<6D-18), we find that the sign change
for the sequence (b6D—18’ b6D—19’ b6D—207 . bz, blv b()) is
always 1. According to Descartes’ rule of signs, there is at
most one positive real root to the equation C(z + r;,) = 0;
i.e. there is at most one extreme for the effective potential
outside the horizon r,. And, we already know that there is
at least one maximum for the effective potential from the
asymptotic analysis of the effective potential. Thus, there is
only a potential barrier outside the event horizon and no
potential well exists for the superradiant bound modes.

V. SUMMARY

In this work, superradiant stability of D-dimensional
(D > 7) nonextremal RN black hole under charged massive
scalar perturbation is studied analytically. Based on the

|

6D—18—

. » 5D—15—
b, =asCep_57),

p P
+asCsp_ 57,

) 5D—13—
+asCsp_151),

P P
+a,Cyp_1o1y,

P ! P 4D—-10—
+a,Cuyp 107

4D—12—

3D-7—
P ay CgD—7 Ty

asymptotic analysis of the effective potential V(r) experi-
enced by the scalar perturbation, it is known that there is at
least one maximum for the effective potential outside the
black hole event horizon. Then we analyze the numerator of
the derivative of the effective potential C(z + r;,), which is
a polynomial of z = r — r;,. We find that

by<0, b,>04D-9<k<6D-18). (38)

We also prove that

sign(b,,) > sign(b,) (1 <p<4D-10). (39)
So the sign change in the following sequence of the real
coefficients of C(z + ry,),

,bp+1,b ..,bl,b(), (40)

bep-18: bep-19; --- P

is always 1. Then according to Descartes’ rule of signs, we
know there is at most 1 positive root for the equation C(z +
ry) =0 [i.e. V/(r) =0 when r > r},]. Thus, there is only
one maximum for the effective potential and there is no
potential well outside the horizon for the superradiant
bound modes. Namely, there is no black hole bomb for
D-dimensional nonextremal RN black hole against charged
massive scalar perturbation.
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APPENDIX A: sign(b,,,) > sign(b,), 0 <p <D -4
A frequently used identity in the proof is

m+1:n_m m

pr =22y, (A1)

When 0 < p < D — 3, the coefficient b, of z” in Eq. (26) is

P P 3D-9—
+a3C5p g7

P ! P 2D—4—p
+a,Cop 4ty ;

14 P 2D—6-p p D-3-p
+ax Cop 67y, +a,Cp_31)

_ D 6P 5P 4P 3D 2P p
=r,"(agu®Cep_y3 + asw’ Csp, 5+ agu*Cyp_yp + asu’ Cypy g + auChp o+ auCp ;)

—p+2. 2¢ 1 3P 72D / 4 1 P
+ 1, u (asu CSp 5 + aqut Clyy o+ ayuClyy, o+ asChy, ),

6 5

_ P iP —p+2. 2 1 j=2 P

=T Za;u Cip—zy 1w "0 Z“/” Cip-3)+2°
i=1 j=2

14

_ P} -p+2 21
=r, A, +r," "uB,.
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The normalized coefficient is defined as

p A B, AL AR BY BR
b, = rhb =Lt =+ ”+rh ( (1? —w2)+_—">, (AS)
fp fp fp f[) fp fP
where A% is the coefficient of 4, in A, AR denotes the remaining terms in A ,, BY is the coefficient of (4> — @?) in B, BX
denotes the remaining terms in B, and
Fp=ulu+0)C5_ 5+ (2 +0*)Clp_yo = 30(u+ v)Cp_; + 20°Chp_y,
A; = 2u*2u*C¢p_ys + (D = Tu(u + v)C5p_y5 = (D = 5) (0 + 4uv + v*)Clp_y,
+ (3D = 13)v(u+ v)C5p_g = (2D = 8)0*Ch;, ).
/3’5 =u’((D =2)(D = )’ Cep_y5 = 3(D = 2)(D = 4)u* (u + v)C4p_ s
+ u((4D? — 29D? + 66D — 48)uv — (D* — 11D? + 39D — 42)(u + v)2)Clp_ 5
+ (u+ v)((u+ v)> =2(5D* = 30D + 42)uv)Ch;
+ (D —=4)v((D*>=3D +3)(u + v)* — (4D* = 27D + 42)uv)Ch) ¢
=3(D=2)(D —4)(u+v)v*Ch_3),
By =2u*(D = 3)(C4p_y3u(u + v) = Cip_y(u® + 4uv + v*) + 3C5_5 (u + v)v = 2C5;,_40?),
BR =2(D = 3)u(—uf ,0* + 2cpequ(Ctp,_ju + Chp_io(u+v) =3Ch,_;v)w
—2cpe*q*(Clip_jou — Cop_yv)). (A6)
Now we prove the normalization factor is positive, i.e.
fp>0(p21). (A7)
When p =1,
71 = (9D = 23)u = 4(D = 2)uv — (D = 3)v% > (9D = 23 —=4(D = 2))uv — (D = 3)12 > (4D — 12)* > 0.
When p > 2,
fp=u(u+0)C_ 15+ (u? + 0*)Clip_yo = 3v(u+ 0)C5p_; + 20°CH 4
ct C
> (w - 3) v(u+0)Chp ;> 1.20(u + v)Ch,_; > 0.
3D-7
Thus, we finish the proof of Eq. (A7).
In the following four subsections, we will prove b, > b),, (0 < p < D —4), and obtain
sign(b,,) > sign(b,), (0O<p<D-4). (A8)
This will be achieved by, respectively, proving
XL XL AR YR M A R A
Ap+l>ﬁ’ Ap+l>ﬁ, Bp+l>% Bp+l>i§ (A9)

]_Cp+1 J_Cp ]_Cp+1 J_Cp fp+1 ]_Cp’ fp+1 ]_Cp'

124015-6



NO BLACK HOLE BOMB FOR D-DIMENSIONAL ... PHYS. REV. D 109, 124015 (2024)

AL AL
p+l “p
1. Proof of P > 7

We first prove
AL >0(p > 1). (A10)
When p =1, 2, 3, 4, the explicit expressions of Z\ﬁ are
AL =2(D=3)2ut(u—-v)2, AL =3(D-3)2u*(u—v)((3D - 8)u— (D —2)v),

b (D=3 ((440 4+ D(=333 + 61D))u? — 10(25 + D(=24 + 5D))uv + (=82 + D(21 + D))v?),

3 = 3
. D — 2.4
Al = % ((=7000 + D(8274 + D(—3083 + 369D)))u?
—4(370 + D(228 + D(—232 + 39D)))uv + (3728 + D(—2682 + (619 — 45D)D))v?). (A11)

Since u > v > 0, it is easy to prove directly they are positive when D > 7. When p > 5, it is easy to see that the sum of the
C%,_y term and the C},_ term in ]\ﬁ are positive, i.e.

(3D = 13)v(u+ v)Cp_g — (2D — 8)v*Chpy_ > 0. (A12)
Since 2u? > u(u + v) and u?® + 4uv + v> < 3u(u + v), for other terms in A5, we have
2u*Cl 1+ (D= Tu(u+ v)CEy_ s — (D =5)(u? + duv + v*)Chy_1y
S (CgD—IS +(D-7)Csp_ys 3(D - 5))u(u +0)Cly

CfljD—lz
> (6/4)° +(5/4)°(D—17) =3(D -5) > 0.05D + 1.23 > 0. (A13)

Thus, A% > 0 when p > 1.
Now we prove

AL AL
A _ 4y

==(p21). Al4
For T, (p=1) (A14)

For p =1, since u > v > 0 and D > 7 it is easy to see

Ay AF 4(D-3)

A Wu(u - 0)[(5D = 13)((2D = 5)u* = (D — V)uv) + (D = 2)(D — 1)v*] > 0. (A15)
For p =2,
AL AL _13)2
% - I;_‘C—i = (’;J_CT?;) (agu* + v + u*v? + azuv® + auv*), (A16)
where

ay = 400D* — 4137D% + 15730D% — 25977D + 15640,

a, = —150D* + 762D 4 954D — 9888D + 12714,

a, = —=36D* + 888D3 — 5736D> + 14214D — 12138,

ay = 2D* — 6D3 — 166D? + 924D — 1258,

ay = =27D? + 234D?* — 657D + 594. (A17)
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Since u > v > 0,

aou* + oy udv + autv? + azur® + oyt

> (ay + ay)uv + au?v® + azuv® + agv’

> (ay + ay + &) u?v? + azuv® + auv*
> (ay + ay + ay + az)uv’ + av*
(

> (ap +ay +ay + a3 + ag)v* > 0. (A18)
In the above inequalities, we use the facts that oy > 0,
(10+C(1 >0, ao—l—a1 —‘r(lz >O, a0+a1 +02+(X3 >0,
ag+aoy+ay+oa3+a, >0 for D>7, which can be
checked directly. So we have

AL AL

_ 0. A19
nTR (A19)

In the same way, we can also explicitly prove that

AL AL
2l TP S0 (p=23.4,5,6). (A20)
fp+1 fp

fi ; AL AL/CSD 13
When p > 7, we first rewrite =2 as Then,
fp fp fp/ 5D-13

using the Eq. (A1), we have

fo  fou D-3
_ — CP 2 2 _6Cp 6Cp 2
Clyy LT (5D-13- P)Cgo—w( ap—10(u” +v7) Sp—7 (U + v)v 4+ 6Co,_4v7)
D-3
So-
where we use the fact % > 7.4 for p > 7 in the last inequality. And, we also have
3D-7
AL AL 2u*
1 P _ (B 2 2
= ou” + pruv + o),
nglg CgD—B (5D =13 - p)C5) 5
o (Bt Bur 4 ) > 0 (A22)
(SD=13=p)CL, 0 PPETRE ’
where
Po = Cip_1n(D = 5)(D = 1) +2C¢;,_5(D = 5) = 2C5),_15(D = 7).
pr = =2Cl, (D ~2)(3D ~ 13) +4C,_o(D = 5)(D = 1) = 2CLy, 5(D = 7).
Br = 2C8_o(D = 4)(3D —7) = 2C5,_o(D = 2)(3D = 13) + Chp_ (D = 5)(D — 1). (A23)
I
In the above inequalities, we use the facts that f, > 0, We rewrite fp as
P> >0, o+ B >Osmcecc“,§’ l’>74and 6" 18>35f0r
p > 7. With the results in Egs. (A21) (A22) we conclude fp=Y5s+Ya—y3+ 2, (A26)
that
YL AL p+1 AL /P AL where
él’-‘rl +1/C5D 13 /CSD 13 _é_[? (p>7> (A24)
fpi fp+l/C5D 13 FolCipoiz fo ys = u(u +0)C5)_ 3, va = (2 +0*)Chp_ 1o
Thus, we finish the proof of Eq. (A14) with the results in Y3 3v(u +0)Cip_g. 2 = 202Cp_y, (A27)
Egs. (A15), (A19), (A20) and (A24).
and rewrite A§ as
2. Proof of s >4
In this subsection, we provefp+1 ’ J
n thi , .
Af =Y aiClip s, (A28)
i=1

Ap+l A§

0 1).
Fou 7, 0 P21

(A25)

where
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g5 = (D =2)(D —4),

gs = =3(D=2)(D —4)u*(u+v),

s = —(D =2)u(u —v)*> + Fy(u+ v)?u — Fu’v,
g3 = (u—v)*(u+v)=10(D =2)(D —4)(u + v)uv,
g =(D=2)%2(D-4)v(u-v)*+ (D -4)v(Guv+ G,(u + v)?),

g1 ==3(D=2)(D—4)(u+ v)v?,

and

F, =5D>—18D + 16, F, =5D?>-27D + 34,

Now consider g; term and let us prove
1
CoChs | w09 Cha (A31)
fp+1 fp

1e.
CPtl CP_ _ -
L3 < D36 (D-3-p)f, <(p+1Dfpi
fp+1 4

© (4D —10)ys + (3D = T)ys = 2(D = 2)y;

+(D-=1)y, > 0. (A32)

Since ys/y; > 1.5/3, y4/y3 > 1.2/3, the above inequality
holds.

Similarly, let us consider the (D —2)(D — 4) term in g3,
and prove

3 —10(D - 2)(D - 4)(u+ v)szfggl9
fp+1
I —10(D - 2)(D —_4)(u + v)uvCip_y
fp 7

(A33)

(A29)

|

ie.

Cg;)rl9 CZD—9 7 f

== <—==0BD-9-p)f, <(p+1)f,

fp+1 fP

© (2D =4)ys + (D —1)ys—2y3 = (D =5)y, > 0.

(A34)

Since ys/y; > 1.5/3, y4/y, > 1, the above inequality
holds. Then, let us consider the F; term in g4 and prove

+1
—Fu*vC?
u3 1* Y4p-12 >

fp+1

2, D
w3 —FuvCyp_y,

o ’

(A35)

1.€.

1
C_Zg—lz < Célt)_D—IZ
fp+1 fp
& (D —=1)ys +2y,+ (D =5)y; —=2(D —4)y, > 0.
(A36)

©(4D_12_p)}p<(p+1>fp+l

Since y3/y, > 3,y5 > y,, the above inequality holds.
Next, consider the sum of the (1 — v)? terms in g4, g, and
for p > 3 let us prove

s =(D = 2)%u(u— v)2CLEL L, + (D = 2)2(D — 4)v(u — v)2CL L,

u
fp+1
> 3 —(D - 2)3”<” - U)chb-lz + ED - 2)2(D —4)v(u — U)zch—6 ’ (A37)
Ip
1.€.
—(D — 2)”C£Z)Lllz + (D - 4)chgi6 —(D - 2)qufD_]2 + (D - 4)1]C§D—6
fp+1 fp
& Cip_1n[-2(D =4)y, + (D = 5)y3 + 2y4 + (D = 1)ys]
> Chp_g[2y, = (D = 1)y3 4 (2D — 4)y4 + (3D = 7)ys]. (A38)
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Since y3/y, > 3, the sum of yy, y3, ¥, terms on the left-hand side is positive and the sum of ys, y, terms on the right-hand
side is negative. When p > 3, Cy,_,,/C%_s > 8 and the y5 term on the left-hand side is greater than the sum of y,, ys terms

on the right-hand side. Thus, we finish the proof of Eq. (A37).

Finally, let us consider all other terms in Aﬁ, which is

Sy = u3(g6ch 18 "'QSCgD 15+ Fou+ )2MC£D 12

+(u—v)*(u+

+ 0)Chp_g + (D = 4)v(Guv + Gy (u + v)*)Chp_g).

(A39)

The second line of S, is obviously positive. Then we prove the first line of S, is positive for p > 7 in the following:

g6CgD 13t 95C§D_15 + Fz(u + U)zu

& (D -2)(D - 4)C¢),_ gu?

It is known that u + v = 2m. To simplify the expression in
following proof, hereafter, we take the mass of the black
hole tobe 1/2,i.e. u + v = 1. This simplification just leads
to a difference of an overall positive factor, and does not
change the positivity or negativity of a homogeneous
expression of u, v. Replacing u with 1 — v, the above
inequality is equivalent to

1’]21}2+I’]1’U+7’]0 >O, (A41)

where

7]2:(D_2)(D_4)CgD—18’
m= (D—2)(D—4)(3ng)—15 _2CgD—18)’
o= (D=2)(D=4)(Cgp_15=3C5_15) + F2Clp_1s.
(A42)
When p >7,C?,,_</CE_|s > 3,501 > 0. The quadratic

function of v,;7,v> + 1,v + 179, opens upwards. The sym-
metric axis satisfies

v — lzcga—m = 3C5y_s > 1
g Cop-is 2

for p>7. (A43)

The lower bound of 7,0? +nyv + 1 is at v =1, ie.

(P+ ) p+1 =
+6(D-2)(D -
—2(D=2)(u—v)*(u+v)Cp_o —

where we use u > 1/2,
15u(D —2)/4, and

(D =5)(D—2)(D=4)Cqp_13/4+5(D =2)(D —4)C5p,_15/2

(5D — 13— p)S, = w[(D - 5)(D
4)C8,_1s(u+ v)u* = (D

(D=2)(D=4)CL,_ s(u+v)u*>2(D=2)(u—v)*(u+0)C5)_,,

P
Cip_12>0

—3(D=2)(D—-4)Ct,_\su(u+v)+ F,Clp_p(u+v)> > 0. (A40)
[
% (D =2)(D = 4)Cly_ g +4F>Cly_ 1y
—6(D —2)(D -4)C5)_5)- (A44)

It is easy to check the above is positive when p > 7. Thus,
S, > 0 when p > 7. Then, let us prove

Sp+1

S
>=Lfor p>8.

(A45)
fp+1 fp
The above inequality is equivalent to
1
fP+1/C5D 13 fp/ch—w
Consider the following difference
Sp1 _Sp (p+1)Sy11 —(SD—13-p)S,

nglm CgD—IS (SD - 13- p)CgD—IS

(A47)

When p > 8, the numerator of the above difference is
positive, i.e.

—2)(D —4)C¢p_ g1

— DF;(u+v)*uCip_,
(3D =7)(D = 4)v(Guv + Gy (u + v)*)Chp_¢] > 0,

(A48)

v(Guv + Gy(u + v)?) <

(D= 1)F,Cyp,_1, + 153D = 7)(D = 4)(D = 2)C5;,_¢/4

> 1.2 for p >38. (A49)

Then, together with Eq. (A21), we prove Eq. (A46), i.e. Eq. (A45).
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With the results in Egs. (A31), (A33), (A35), (A37) and
(A45), we prove that

Since u > v, it is obviously positive when D > 7. When
p = 2, the difference satisfies

AR AR
P50 (p28). (A50)
fp+1 fp 1
L 5(D—3)3(u—1})2(k3u3 + kyu?v + kyuv? + kov?)
For 1 < p <7, we can check directly that ?”“ - /}—” >0 1
a0 >—(D=3)*(u—0)*((ks + ky + ky)uv? + kov?)
holds. When p = 1, the difference f”—*l' - f—" is ?
> E(D - 3)3(1/! - U)z(k:; + k2 + kl + k0)7_)3 > 0, (A52)
2(D=3)*(u—v)>((D—-1u+ (D-3)v)
x ((2D = 5)(5D — 13)u?
—(D—=1)(5D = 13)uv + (D —2)(D - 1)v?). (AS51) where
|
ks = D(D(2D(4D(25D — 281) + 4789) — 18799) + 15881) — 3586,
ky = (D(D(2D(D(101D — 1523) -+ 8984) — 51829) + 73117) — 40354),
ky = =(D = 2)(D(2D(4D?* + D — 255) + 2143) — 2525),
ko = —(D = 3)(D — 2)(2D(D(5D - 53) + 175) — 353), (A53)

and we also use the results: k3 > 0,ky, > 0, ks +ky, + k| > 0, ks + ky + k; + kg > 0 for D > 7. When p = 3, the similar
argument can be used to prove the difference is positive. When p = 4, the difference is

1
1440

where

ny = 80000D3 — 1445688D7 + 9955851 D° — 27463065D3 — 19290150D*
+ 336996048D* — 928280156D? + 1138695960D — 545407200,
n; = —307992D% + 5330579D7 — 33196467D° + 58112421D° + 317588127D*

n, = 2(180912D% — 2705933D7 + 10350693D% + 49629585D° — 609429207D*

ny = —8(16460D% — 111888D7 — 1939017D° + 30813387D° — 187841085D*
+ 621263463D% — 1176724838D% + 1203712368D — 517001280),
ny = 96(6032D7 — 129296D% + 1179584D3 — 5934980D* + 17778503 D3

—31693094D? + 31117416D — 12974640).

—— (D =3)*(1 = 20)(ngv* + n3v® + nyv? + nyv + ny), (A54)
—2036657124D% + 4908514212D? — 5709234656 D + 2657836800,
+2467053018D% — 5154998928 D2 + 5589738800D — 2495614080),
(AS5)
12n4v% + 6130 + 2n, (A57)

Consider the following linear function of v

24n4v + 6ns. (A56)
It is easy to check the above function is negative for
O<wv< %when D > 7. Then, the following integral of the
above function

is monotonically decreasing in the domain 0 < v < % when
D >7. Its lower bound is at v :% and is positive when
D > 7. Then, the following integral of the above function

4nyv’ + 3n30% + 2,0 + 1y (AS8)
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is monotonically increasing in the domain 0 < v < % when

D >77. Its upper bound is at v:% and is negative

when D > 7. Then, the following integral of the above
function
nav* 4+ n3v® + nyv? 4+ nyv + ny (A59)

is monotonically decreasing in the domain 0 < v < % when
D > 7. Its lower bound is at v :% and is positive when
D > 7. Thus, itis easy to see that the difference in Eq. (A54)
is positive, i.e.

AR AR

S _TEso.

fs  Jfa

We can use the same strategy to prove differences of the
p = 5,6, 7 cases are also positive. Thus, we finish the proof
of Eq. (A25).

(AGO)

P+1 BP
3. Proof 0f Ay &
We first prove
B >0 (p>1). (A61)

Since 2u?(D — 3) is positive, we just consider the rest
factor of BY, i.e.

Clp_jaulu+v) = Cip_yo(u® + duv + v°)

The above quadratic function of » has a positive inter-
section and opens upwards. Its symmetric axis satisfies

_ lch—IS + 2CZD—IO - 3C§D—7 >

1
vy = —. (A6
2 2(C£D—10 - C§D—4) 2

Proof of the above inequality. It is easy to see that CY,, |5 +

ZCZD_IO 3C§D_7 > 0 and 2(C£’D_10 C’Z’D_4) > (. Then,
their difference is
(C§D—13 + 2C4117D—10 3C3D 7) — 2(C£D—10 - CgD—4)

= CgD—l3 + 2C§D—4 - 3C3D—7- (A65)

When p > 3, CS,? L > 3, the above expression is positive.

When p =1, the above expression is zero. When p = 2,
the above expression equals to 3(D —3)2, which is
positive.

Since 0 < v < 1/2, the lower bound of Eq. (A63) is at
v = 1/2, which is

(CgD—B - 3C‘ZD—IO + 3C‘Z[;D—7 - CgD—4)‘ (A66)

N =

When p = 1, 2, 3, 4, 5, the values of the above lower bound
are, respectively, {0,0,(D —3)3,(D —3)*(7D —20)/2,
(D -3)3(5D - 16)(5D — 14)/4}, which are all positive.

When p > 6, SD 12 > 3 and the above lower bound is also
4D 10

+3CE, 5 (u+ v)v —2Ch, 0% (A62)  positive. So we prove Eq. (A61).
Now we prove
Replacing u with (1 — v), we obtain
By By 0 (p>1). (A67)
P P _ 9P _ P = = > p>
20%(Clp_1o = Cop_y) + v(3C5p_ = 2C5p_19 = C5p_13) frin fp
+C5p_i3 = Clp_io- (A63)
For p =1, 2, 3, we calculate the differences directly and
prove they are positive. When p = 1, we have
BY BM D -3 -
-2 A - )f‘(” v) ((10D* = 51D + 65)u + (=5D* + 18D — 13)uv + (D* = 3D + 2)v?)
oh fafi
D-3 -
2D =3 =) (sp2 33D 4 52)up + (D* = 3D + 2)12) > 0, (A68)
f2fi
where we use the facts that u > v > 0 and 10D> — 51D + 65 > 0,5D> — 33D + 52 > 0 for D > 7. When p = 2, we have
B¥  BY (D 3)u (D =3)u
R (you® + y1u?v + pouv? + y30°) > e ((yo + 1) U0 + your® + y30%)
Fs F 30k ‘ 3faf> ‘
D —3)u
> DI b+ )+ 730%) > 0, (A69)
3f3/f2

where
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Yo = 200D* — 2130D? + 8501D? — 15069D + 10010,

y1 = =3(25D* — 210D? + 612D — 681D + 182),

v2 = =3(6D* — 84D3 + 401D* — 801D + 574),

y3 = D* = 12D3 + 46D? — 69D + 34, (A70)

and we also use the facts that u > v > O and yy > 0,79 + 71 > 0,70 + 71 + 72 > 0,73 > 0 for D > 7. The proof of p =3
case is similar to the proof of p =2 case. When p > 4, we have

B’,‘,Ql BY 2(D —3)u
fp+1 fp ( +1>}p+1}p

+ Chp_10(=8Ch,_4v* + 6CE, ;v (u 4 v) + CLp_y5(u +v)*)).

(—=6C%p_13v(u +v)(=

Chp_gv + Cip_7(u+v))

(A71)

Replacing u with 1 — v in the above equation, and since v < 1/2, we obtain

B\, B)  2(D-3)u

fp+l fp (p+1)fp+lfp
2(D=3)u
(p+ 1)J_cp+1fp
Since (pi(l'é%)lf > 0 we just consider the rest factor, i.e.

P P P P
Cip-10Csp_13—6C3p_7C5p_130

+ 6<C3D 7C4D—10 + C§D—4C§D—13)U2 - 4C§D—4CfD—10U2'

Taking it as a quadratic function of v(0 < v <1), it is
obvious that this function has a positive intersection and
opens upwards. The symmetric axis is at

1 6C3p_7C5p_13 _
2 6(C5p_1Clip 10+ Chp_4Csp_13) —4C3p_4Clip_yo
(A73)

Vg =

cr
Since 1 — % o> 0.3 for p >4 we have v, > %
5D-13 3D-17

The lower bound of the quadratic function is at v = %
which is

3 3
Cip_10 <§ Cip_g — CgD—4> + 5 Cp_4C8p_ 13

+ CSD 13(CfD—10 - 3C§D—7)'

c’
Because 7<% > 3 for p >4, the above lower bound is
3D-7

positive. Then, Eq. (A72) is positive. We finish the proof of
Eq. (AG7).

(Chp_10CEp_13=6Ch,_CE,_ 130 +6(Chp_7Clhp 19+ Chp_yCEp_13)0?

(CfD—10C§D—13_6C3D 7C§D 131)+6( 3D- 7C4D 10+C2D 4C5D 13)

—8Chp_4Cip_1o?”)

4C§D—4C£D—1002)'

(A72)
I
+1 B
4. Proof of f:+1 > f":
Now we prove
BR BR
2P0 (p>1). (A74)
fp+l fp

BR .
An important observation is that the difference f”*' — s
p+1 P
linear in w. In order to prove the positivity of the difference,
we just need to check the @ =0 and w = 2% cases
(remember the superradiance condition 0 < @ < %)

When o = 0, the difference is

u(u + v)che*q?

(B’;’+1 B,’S) _4(D-3)
0=0

fp+1 fp J_cp+1]_[17
X (Sou* + Syuv + 5,0?), (A75)
where
6y = CgD-lOCgD—B’
o) = 2(C§D—7 - CgD—4>C4[:D—10
+ CgD 7C4117D 10~ 3C§D—4C§D—13’
6y = Czn 4(3C3D 7 cht’D—lO)' (A76)

For p =1,
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8o=2(2D-5)(5D-13), &, =-2(D-1)(5D-13), BR.,  BR
1=202D-5)(SD-13). 8 =-2(D~1)(5D~13) (B By a70)
5,=2(D-1)(D-2). (A77) Foer o/ oo
Since u>v>0 we have &yu®+8uv+6,0>>  When w =2 we find that
(89 + 8;)uv + 8,v> > 0. For p > 2, we have
(B[’fH Bﬁ) 4D =3)%u(u—v)che’q
Sou? + 81uv + 8,0° > (8 + 6, )uv + 5,07 for1 [/ ycoe fosifp
> (80 + 8 +8,)v* >0, (A78) X (Sou® + 8 uv + 6,v%) > 0.
(A80)
where we use the facts that % > 3 and iggﬁ > 1.5. So
we obtain Then we finish the proof of Eq. (A74).
|
APPENDIX B: sign(b,,) > sign(b,), D-3 <p <2D-7
When D —2 < p <2D — 6, the coefficient of z” is
b, = “6CgD—18r2D_18_p +asCsp_ys rzD—lS—p + a4CfD—12’1D_12_p + “3C§D—972D_9_p + azch—ériD_é_p
5D-13- 4D—-10- 3D-7- 2D-4-
+ asCSp_y57 "+ a,Clp_ior) P+ asChpgry P aCopyry
= 1" (agu®Cop_y5 + asu’Cp,_ys + ayutClp_yy + a3’ Cpy_g + ayu* €5 _¢)
+ r;p+2”2(“/5 WC_ i3 + @y Chp_yg + asuCly_; + ayChp_y). (B1)
Define the normalized coefficient as
p A B, AL AR B
b’p:’:—hbp:_—p+r%u2]_c—p:_—p/ll+]_c—p+rﬁu2}—p, (BZ)
p p P p p p
where
AL =2u*(2u?Cl,_ s + (D = T)u(u + v)CEy_ 15 — (D = 5)(u® + duv + v*)Chy,_,
+ (3D = 13)v(u + v)Chp_g — (2D = 8)1>Chp ),
Af =1 ((D=2)(D = 4)u’Chp_15 = 3(D = 2)(D = 4)u* (u+ v)CEp_5
+ u((4D? = 29D? + 66D — 48)uv — (D* — 11D? + 39D — 42)(u + v)*)Ch,_ 5
+ (u+ v)((u+ v)* =2(5D* = 30D + 42)uv)CLp_,
+ (D —4)v((D* =3D +3)(u + v)? — (4D* = 27D + 42)uv)Ch) ). (B3)
Since Af, = AIL,, according to the proof in Appendix A 1, we have
AL AL
AR (B4)
fp+1 fp
According to the proofs in Appendices A 3 and A 4, we also have
B
r%lu2 WAL riuz_—p. (B5)
fp+l P
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The difference between Aﬁ and AIIS is the g; term in
Eq. (A28). In the proof in Appendix A2, the g; term
and other terms are discussed separately, so we have

Based on the proof of Eq. (B7), it is easy to deduce

AD—Z BD 2 AD 3 BD—S

+ rau? + rpu” = (B10)
. fp-a fp-a fD 3 h D-3
AR AR
ptl ,2p (B6) . -
fp g f ' According to the definitions of A, and A,, we have
Thus, we prove Ap_3=Ap_3-3(D=2)(D—4)u®(u+v)v*Ch_5 <Ap_s,
b, >b, (D-2<p<2D-5), (B (B11)
and obtain and then
sign(b,,) >sign(b,), (D-2<p<2D-5). (B8) {‘D—z 422 Z:;D—2 {10—3 422 ?0—3
fom " Fo fos M fpea
When p = D — 3, we need prove b},_, > b},_5, i.e.
~ Thus, we have
Ap_s 2 ,Bps Ap_; » »Bp_3
= +r +rput=——. B9 . .
fp= w foa foos fp-3 (B9) sign(b,41) > sign(b,), (p=D-3). (Bl12)
|
APPENDIX C: sign(b, ) > sign(b,), p=2D-6,2D -5
The coefficient b, (p = 2D —4,2D —5) is
b, = = agCep_ 18r2D e +a5C§D—15”iD_15_p +a4C§D—12’”2D_12_p + a3 Cip_or ZD o
5D—13— 4D-10— 3D-7- 2D—4—
+ a5C§D—13”h P+ a,Clp_yor), P+ asChp g, P+ aCop yr, e
= ”Zp(a6”6CgD—18 + a5“5C§D—15 + a4u4CffD_12 + a3u3C§D—9)
+ r;p+2”2(“/5“3cgl)—13 + “Q”chD—lo + aguCé’D_7 +a5Chp ). (C1)
Define the normalized coefficient as
A B AL AR B
by =y, =y 2B oy A a2 B (€2)
fp fp fp fp f fP
where
AL = 2ut(2uClpy_ 15+ (D = Tu(u + v)Chp_ys — (D = 5)(u? + 4uv + 0?)Chp_y,
+ (3D = 13)v(u + v)Chp_y),
Af = (D =2)(D = 4)u*CE), 15 = 3(D =2)(D = 4)u?(u + v)C5), 5
+ u((4D? = 29D? + 66D — 48)uv — (D* — 11D? 4+ 39D — 42)(u + v)*)Ch,_ 5
+ (u+v)((u+ v)*> =2(5D> —= 30D + 42)uv)Chy,_y). (C3)
Now, let us prove
AL AR B
byp_s = (205 ) 4 TaD=5 4 0 Pl Bap_s
2D-5 Sfan-s fap-s
AL AR B
>bhp = 20— 6/11 2D-6 ru 22206 (C4)
fan-s fan—s Sfan-s6
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Since 2D — 6 > 7 for D > 7, according to the proof in
Appendix A 1, we have

f2D6

f2D5

) Cs5
B, " B )
and
Alps A 2u’
- > B>
ng ?5 ng ?5 (3D — 7)6%13 ?3 ((Bo + Br)uv + prv*)
>0, (Co)

where f, f1, f» are defined in Eq. (A23) with p = 2D — 6.
Thus, we get

AéD 5/1 >é2D 6/1

(€7)

f2D5 f2D6

Similarly, according to the proof in Appendix A 2, we can
also prove

AR
A2D—5

fZD—S

R
A2D 6

C8
fan-e (®)

Two points should be emphasized here. One is that g; term
and other terms separately satisfy the required inequality in
the proof in Appendix A 2. The second is that in the proof
in Appendix A 2, all the C¥ +1is rewritten as ;’i C?, and

then formally we have

A2D 5= Azo 5 <C9)
since
AR = AR —Uu 92C2D_ = A I/t3gz 0
2D-5 2D-5 6 2D-5 2D—5
= AgD—S' (C10)

According to the proofs in Appendices A3 and A4, we
have

B B
Pyt =223 5 2,2 22076 (C11)
fan-s RV
Thus, we have b}, s > b},  and
sign(b,, ;1) > sign(b,,), (p=2D-06). (C12)

Then, let us prove

AL AR Byp_
b/zD , = 2D— 41 4 _2D 4_|_r%lu2 _2D 4
fD 4 fZD 4 f2D—4
AL AR ,Bop_

> by s ==L, + 225 4 22 205 (C13)
fZD 5 fZD 5 2D-5

According to the proofs in Appendices A3 and A4, we
have

2 2B2D 5

2 2BZD 4
> Tyu
fZDS

ryu (C14)

f2D4

By taking the C%,,_ term to zero in the proof of Eq. (A22)
in Appendix A 1, it is easy to get

Aoy Aps. (C15)
Sfon-a fap-s
Then, for the term including A%, we have
6
AR=13Y "g,C b3 (p=2D=5,2D—4), (CI6)
i=3
where
go = (D—=2)(D —4)u’, gs = =3(D = 2)(D — 4)u*(u + v),
s =—(D =2u(u—v)*+ Fy(u+v)*u— Fu’v,
g3 =(u—v)*(u+v)—10(D =2)(D —4)(u+ v)uv,
(C17)
and
—5D2_18D+16, F,=5D*—27D+34. (CI8)

The proofs for the negative terms in g3, g4 are the same as
that in Eqgs. (A33), (A35). The proof for other terms is the
same as that for Eqs. (A45), (A46). It is easy to check that
after taking the Cé’ e term to zero, all the inequalities in the
proof of Eqgs. (A45), (A46) still hold. So, we obtain

%gD—Ll A§D 5 (Clg)
faoa ™ faps
Thus, we have b,,_, > b, s and
sign(b,, 1) > sign(b,,), (p=2D-5). (C20)
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APPENDIX D: sign(b,,,) > sign(b,), 2D-4 <p <3D-10

For 2D — 3 < p <3D -9, The coefficient of b p 18

6D—18—p P SD—-15-p P 4D—12—p P 3D 9—-p
b, = acCep_137, +asCsp_ys7), +ayCyp_1p1y +az;C3p o1y,
4 5D—]3—p ! P 4D—lO—p ! P 3D T-p
+ asCsp_y575, +ayCap_107 + a3Cyp_g7y, ,

= r,"(aeu®Clpp_ 15 + asu’CL,_ s + auuChpy_ 1y + azu’ CYp )

+ " (aud CYy_y + d? Chy_ g + ajuClp ). (D1)
The normalized coefficient is defined as

r A B, AL AR BY Bk
b, ==tb, ==L+t =Ly +=L+ <A—”(u2—w2)+A—”>, (D2)
fp fp fp fP fn fp 14

where

fp=u(u+v)Cly_ 15+ (u? + v*)Chp_1o = 3v(u + v)C4p_,,

B, = dyi’Cl,_ 5 + ayu*Cly_yo + duCly ;.

BY = 2u?(D = 3)(C§p_3u(u + v) = Chp_yo(? + 4uv + %) + 3C5, 5 (u + v)v),

f9§ =2(D - 3)u(—uf‘pa)2 + 2epequ(Cly,_su + Chy_yo(u+ v) = 3C5,_v)w — 2¢he*q*uCly,_y,), (D3)
and A5, AR are defined in Eq. (C3).

Accordmg to the proof of Eq. (A7), it is easy to know that f » > 0. According to the proof of Eq. (A61), it is easy to know
that BM > 0. Based on the proof in Eq. (A72) and taking the C},,_, term to zero, we have

B, B)  2(D-3)u

= (C{p_oCt - 6vCh,_,Ct +6CE,_Ct_v?) >0, D4
pr fp 7+ 1)fp+lfp( 4p-10%5p-13 30-7%5p-13 5p-7C4p_107") (D4)
[
cr AL AL
where we use Z7-¢ > 17 when p > 2D —3 > 11. Based Tl T (D8)
3D-17 A~ .
on the proof in Appendix A4, it is easy to deduce / pit Ip
BR AR Following the proof in Appendix A2, and taking terms
TP, (D5)  proportionalto C},_s, C5,,_¢ and y, as zero, itis easy to deduce
prrl fp
Aj A
since &, 8, 5, defined in Eq. (A76) are all positive in this = (D9)
case. S
Following the proof in Eq. (A21), it is easy to deduce
Wing P a- ( ) y 4 Thus, we have b’p+1 > b), and
[f” > f’”ll ) (D6)  sign(b,,y) 2sign(b,), (2D-3<p<3D-10). (D10)
Csp-13 ng—m
Now, let us prove by, , > b5, ,, i.e.
Following the proof in Eq. (A22), it is easy to deduce
i it Afp_ 23, _'_‘i‘gD 3402 2(?%—3 (/42—0)2)—1—1?5’)‘3)
i:I > 7 (D7) faos o fapea fan-3 Jap-3
P C ’ - _ _
Csp-i3 5D-13 >A§D 4, +Ii\20 4122 (€%‘4(y2—a)2)+{3§D‘4>.
since f3,, f; defined in Eq. (A23) preserve the same form Ja— = Jop-s Jan-s Jap-4
and f, is still positive. So, we have (D11)
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; 7 f; AL
Since frp_4 > fap_4 > 0 and A3,_, > 0, we have

AL AL AL
A2D—4 A2D—4 A2D—3

f2D—4

f2D—4

= s D12
Sfap-3 (b12)

where we use the result in Eq. (D8) in the last inequality. Similarly, since fop_s > ]?21)—4 > 0 and E%_4 > BM , >0,

we have
fap-a fap—a fapos
. BR BR . .. .
The difference =22=2 — =22=4 jg linear in w. For @ = 0,
foa-s  Jap-a
B, . B, _ 4c2e*q* (D —3)u - -
<—A D=3 _ —2b=t 4) == - (fap-3(CiP=lou = v) = fap_aC3piou)
fonz Jop-4/ oo Jap-3fap-a
4 2,22 D-3 2
— b¢d ( Ju (et + €1u*v + e uv? + e30%)
fan-3fap-4(2D = 3)
4¢2e2g%(D —3)%u
> p¢d ( ) ((eg + €1 + €2)uv? + €30°)
fon-3fap-4(2D = 3)
4 2 2.2 D -3 2
> e d ( Yu (€0 + € + € +€3)0° >0, (D14)
fon-3fap-4(2D = 3)
|
where where
€0=Cip-1C3p 1
e1==2C3p "1 +3C3D 5 CIp 1o —3CpT 1 + Cip 1o Cp i £y = C24 cb-4
€, =3C3p73—4C{pl, +3C3p5CIp Tl —3C30 . ¢ = (=2 +3C34)C384, — 3¢,
e3=3C3p77-2Cip o, (D15) £, =3CB4 — 2024 (D17)

and we also use the inequalities ¢y > 0,¢; > 0, (¢p + €;+

€) >0, (eyg + €, + €, + €3) > 0, which are easy to check.
For @ = 2%,

<%_%>

JAC 2D-3 Jan-4 w==L41

_Ache?q*(D-3)u(u—v)
fap-3fap-s(2D=3)

- 4céezq2§D =3)u(u—v)
Jap-3f2p-4(2D=3)

- 402,232qZED =3)u(u—v)
Jap-3f2p-4(2D=3)

(Cou? + S uv+E,07%)

((Co+&1)uv+4o0%)

Lo+ +8)v* >0, (D16)

and we also use the inequalities {y > 0,{,+ ¢ > 0,

o+ ¢ + ¢ >0, which are easy to check. So, we
obtain

BY, , B}
203 —abet (D18)
f2D—3 f2D—4

In the proof of Eq. (C19), we always rewrite C¥ in
A§+1 and f,., as ﬁCﬁ, e.g.
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fra = P —— (u(u+v)Ct,_5(5D =13 = p) + (u® + v*)Clp_o(4D — 10 — p)
=3v(u+v)Cp_,(3D =7 = p) + 20*Ch,_,(2D —4 = p)),
Fyor = (a0l 5 (5D =13 = p) (a2 + 12)Clp_ (4D — 10— p)

p+1
=3v(u+v)Clp_,(3D =7 = p)). (D19)

From the above equations, we can see that after the rewriting, fz p_3 is formally equal to f,,_3. Then, according to the proof
of Eq. (C19), we have

Afp_s A2D 4 (D20)
fan-3 f 2D—4

/ /
Thus, we have b5, 5 > b5, 4 and

sign(b,, ;1) > sign(b,,), (p=2D-4). (D21)

APPENDIX E: sign(b, ) > sign(b,), p=3D-9.3D-8
The coefficient b, (p =3D —7,3D —8) is

b, = = agCep_ 18”2[) o +a5C§D-1erD_]5_p +a4C§D 127 11) e
[ SD-13~ 4D—-10- . 3D-7-
—|—a5C§’D 137 "+ a,Clp_yo7y, a5Clp_qry, "
=r, P (agu® Cep_1s + astt CSD st 04“4C4D—12)
—pi2
+ rhp+ “2( 3CSD 13 +agu C w10+ a5uCip 7). (E1)
Define the normalized coefficients b;,
P A B, AL AR B BR
b;,:f—hbpzA—”Jrrﬁu%" L+ =L+ riu ( (1? —w2)+A—”>, (E2)
fp fp fp fp fp V4 f]’
where
AL =2u*(2uCl_ 1+ (D = Tu(u + v)CEpy_s — (D = 5)(u® + duv + v*)Chp_,).
A =w3((D=2)(D = 4)u*Cl, 15— 3(D = 2)(D = 4)u(u+ v)CE s
u((4D? —29D? + 66D — 48)uv — (D? — 11D + 39D — 42)(u + v)*)Chp_,,). (E3)
|
Now let us prove b}, ¢ > by, g, i.e. Aél()R_)g — Agl()R_)g' (E5)
AL AR BM BE
0= 8/1 308 | ru? <A308 (0* —®) + 208 8) Then, with the results in Appendix D, we immediately
Fan-s f3D 8 J3p-s J3p-s obtain
R
>A3D 92 +‘i\31) 9+r%u2<B3D 9(ﬂ2 o?) {330 9)
f3p—9 S3p—o f3p-9 S3p—o / /
(E4) b3p_g > b5p_o,
After rewriting C? o *1’: C?, formally, we have and
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Sign(bp+1) > sign(bp), (p=3D-9). (E6) Taking terms including y,, Cp_3, Cop_g, C3p_g as zero and
following the proof in Appendix A 2, it is easy to deduce

/ / :
Then, let us prove b5, , > b5, q, ie.

AR AR
fw 1S JAC3D—8_ (E9)
AL AR pM B 3D-7 3D-8
3D- 7/1 o %u2<A31)—7 (4% — ?) + A3D—7)
f 3D-7 f 3D-7 f3p=7 N Based on the general results in Egs. (D4), (D5), we can get

Ak AR BM BX
> 3D 8/1 _'_A _'_r%luz(ASD—S (Mz_w2)+A3D—8).

AM(R)  pM(R)
3D—8 Sfap-s 3D-8 f3p-s 133D—7 > {33D—8 ) (E10)
(E7) fap-1 f3p-s
. . Thus, we prove
Following the proof of Eq. (A24) and taking terms
including y,, C},_5. Ch,_. Chp_g as zero, all the inequal- b Y
ities in Eqs. (A21)—(A23) still hold, and we obtain 3b=7 = 73b=8
R and obtain
A3D 7 = A.{;D—S (E8)
f3D 2 Fips sign(b,, 1) > sign(b,,), (p=3D -238). (EIL1)
|
APPENDIX F: sign(bp+1) > sign(b,,), 3D-7<p<4D-13
The coefficient b, BD —6 < p <4D —12) is
b, = a6C6D 18’2D R +a5C5D 15’21) o +asClp_pp7 iD 1r
SD—13— 4D—-10—- 3D-7-
+ asch 137n P +a,Cip_ 107n P+ a3C3D 7"h e
= r,: (agu® C6D 18 + asu’ CSD 15 + agu’ Cip_12) + ”hp+2 *(a /5”3C§D—13 +a£1”2CZD-1o)- (F1)
Define the normalized coefficients b;, as
P A B, AL AR BM BR
b = hb P+r21’ /1_|_ P+r (PMZ_CUZ > F2
V4 fp f h f], fp l h f], ( ) fp ( )
where
fp=u(u+v)C,_ 5+ (u* + v?)Clhp_y
BY =2u?(D —3)(C%,_ u(u + v) — Chp_yo(u? + 4uv + 07)),
B’; =2(D - 3)u(—ufpa) + 2cpequ(Cly_ju+ Chy_o(u+v))w — 2¢}etq uC4D_10),
AL =20t (2uPCl,_ g + (D = T)u(u + v)CL,_ s — (D = 5)(u? + 4uv + v*)Chp_1),
Ay = ((D=2)(D - 4)u’CEp_ 15— 3(D = 2)(D — 4)u’(u + v)C_5
+u((4D? —29D? + 66D — 48)uv — (D3 — 11D? + 39D — 42)(u + v)Z)CffD_u). (F3)

Following the proof of Eq. (A24) and taking terms including y,, ys, CZ_3, CgD_G, C_’; p_g as zero, all the inequalities in
Eqgs. (A21)-(A23) still hold, and we obtain

>Z2 (3D-6<p<4D—13). (F4)
fp+l fp

Taking terms including y,, y3. C},_5. C5p_s. Chpy_g as zero and following the proof in Appendix A 2, it is easy to deduce
AR AR

2l TP (3D—6<p<4D—13). (F5)
fp+l fp
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Based on the proofs in Eq. (A72) and in Appendix A 4, and
taking terms including y,, y3. C}_3,Ch,_¢. Chp_g as zero, it
is easy to deduce

BM®) MR
el S22 3D-6<p<4D-13). (F6)
fp+1 fp
Thus, we prove
b’l,+1>b’, (3D-6<p<4D-13)
and obtain
sign(b, ;) >sign(b,), (3D-6<p<4D-13). (F7)

*—

After rewriting CZ"" as P C?, formally, we have

f3p-6 = [3p-6: Bsp_s = B3p_s. (F8)
Following the proof of b%,,_, > b}, ¢, we have
bip_g > bsp;
and
sign(b,.) > sign(b,), (p=3D-7). (F9)
APPENDIX G: sign(b,.,) > sign(b,),
p=4D-11,4D -12
The three coefficients byp_10,bap—11,D4p—12 are
~(4D-10 _ -
bap-t0="5 """ (agus CH13+ asu’ CIB19)
+r T @ CPZI + ae?),
—(4D-11 N -
bip-11= ’”h( )(%”60613—%51; +asu’C3pTiy)
—(4D-13 _ -
1R  CB I+ OB,
—(4D-12 _ -
b4D—12:rh( b )(a6u6Cég_{§—|—a5u5C‘5‘g_}§—|—a4u4)
—(4D-14 - -
+r, T @ PR+ aurCBT). (G

We define the normalized coefficients,

4D-10

r b A B
=T 4p-10 _ A4p-10 | 2 2 Dan-10. (G2)
Ap=10 Sap-10 fap-o " fap-io
Fp=11p A B
b T 4p-11 _ A4p-11 o0 Ban-in (G3)
- Sap-11 Sap-11 " fapnn
A2 A B
b o ap-12 _ Aap-12 | o o Bap-12. G4
-t Sap-12 fap-z " fapon (G4
After rewriting C% Hoas =2 P, formally, we have
P
Agp_n = Agp_1. (Gs)
Following the proof of Eq. (F7), we have
bip_11 > bip_12;
and
sign(b,,) > sign(b,), (p=4D-12). (GO6)

Following the proof in Appendix A, and taking terms
including ys3, y,, C_3.C5p . Chp_o. Ciip_1, as zero, it is
easy to check

! !
bip-10 > bip_11-
and we have

sign(b,, 1) > sign(b,,), (p=4D-11). (G7)
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