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Accelerated expansion of the Universe prompted searches of modified gravity theory beyond
general relativity, instead of adding a mysterious dark energy component with exotic physical
properties. One such alternative gravity approach is metric-affine Palatini fðR̂Þ theory. By now routine
gravitational wave detections have opened a promising avenue of searching for modified gravity
effects. Future expected cases of strong lensing of gravitational waves will enhance this opportunity
further. In this paper, we present a systematic study of the propagation and gravitational lensing of
gravitational waves in Palatini fðR̂Þ gravity and compare it with general relativity. Using the Wentzel-
Kramers-Brillouin approximation we explore the geometric-optical limit of lensing and derive the
corrections to the measured luminosity distance of the gravitational source. In addition, we study the
lensing by the singular isothermal sphere lens model and show that Palatini fðR̂Þ modifies the lensing
potential and hence the deflection angle. Then we show that the lens model and chosen theory of
gravity influence the rotation of the gravitational wave polarization plane through the deflection angle.
To be more specific we discuss the fðR̂Þ ¼ R̂þ αR̂2 gravity theory and find that the modifications
compared to general relativity are negligible if the upper bound of α ∼ 109 m2 suggested in the
literature is adopted. However, this bound is not firmly established and can be updated in the future.
Therefore, the results we obtained could be valuable for further metric-affine gravity vs general
relativity tests involving lensing of gravitational waves and comparison of luminosity distances
measured from electromagnetic and gravitational wave sources.
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I. INTRODUCTION

The first detections [1] followed by ongoing routine
observations [2] of gravitational waves (GW) opened a new
range of possibilities not only to investigate astrophysical
phenomena inherently hidden from the electromagnetic
wave domain but also to test the theory of gravity. In
addition, we have our first direction detection of the
GW signal from the pulsar timing array [3–6]. So far
the results obtained only strengthened our confidence in
general relativity (GR) and severely constrained some
of the alternative gravity theories [7–9]. One of the
predictions of the GR is light bending by massive objects.
This phenomenon underlies the theory of gravitational
lensing [10]. Hence, in the era of GW astronomy, the

detection of GW signals lensed by massive sources along
the line of sight is highly anticipated. So far, however, there
is no observational evidence for the lensed GW signals in
LVK data [11–13].
The detection of lensed GW signals will open up unique

opportunities for precision cosmology [11,14–19], detec-
tion of intermediate mass black holes (IMBH) [20,21], as
well as detection of low mass halos and primordial black
holes [22,23]. It can also lead to the tests of GR [24–29]
and other fundamental interactions [30]. The next gen-
eration of GW detectors like the Einstein Telescope (ET)
[31], Cosmic Explorer (CE) [32], and the space-based
detectors such as DECIGO [33], LISA [34], Taiji [35], and
TianQin [36] are designed to observe distant sources up to
redshifts z ∼ 20 and higher. Some of these sources located
at such large cosmological distances should be lensed.
Currently, the literature discussing the predictions for
the gravitational wave lensing rate is rich. For example,
current generation detectors are expected to detect 1 lensed
signal per year for A+ [37]. On the other hand, ET has
a much higher estimate of expected 50–100 strongly
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lensed events per year [38–40], which is not surprising
as the accessible volume will be 3 orders of magnitude
larger than in the current generation detectors. Predictions
for the DECIGO are a bit less optimistic due to contami-
nation by unresolved sources, yet 50 strongly lensed
BH-BH systems should be detected each year of DECIGO
operation [41].
In the much more familiar context of electromagnetic

lensing the approximation of geometric optics (GO) is
used, which is justified by the fact that the wavelength is
much smaller in comparison to the typical size of lens
objects (stars or galaxies). Regarding GWs, the frequency
range currently probed by ground-based detectors covers
10 Hz < f < 10 kHz. Future space-borne detectors will
probe 0.1 mHz < f < 100 mHz–LISA and 1 mHz < f <
100 Hz–DECIGO. This corresponds to the GW wave-
lengths of 104 m< λ<107m in ground-based and 106 m <
λ < 1012 m in space-borne detectors. In the case of lenses
whose Schwarzschild radii are comparable to λwave optics
(WO) approach is crucial [42,43]. Hence, for ground-based
detectors, WO should be used for the lenses less massive
than 104M⊙, while in the case of space-borne detectors, this
upper mass limit reaches 109M⊙.
Even though propagation and detection of GWs involve

the weak-field regime, the structure of the waveform is
created in violent processes in a strong gravity regime.
Hence, the analysis of the waveforms offers a unique
opportunity to test competing theories of gravity. GR
predicts only two polarization modes known as the plus
and cross. However, other viable metric theories of gravity
typically predict more than these two polarizations for a
generic gravitational wave. In fact, the most general weak
gravitational wave is composed of six modes of polariza-
tion, expressible in terms of the six “electric” components
of the Riemann tensor [44–46]. Therefore, the detection of
extra polarizations has been considered as a smoking gun
for modified gravity. Yet, it has been shown that even in the
GR strong gravitational lensing may distort the GW
waveform in such a way that extra polarizations appear
[47–49]. This is another motivation for studying GW
lensing in alternative theories of gravity. In what follows,
we are going to examine the effect of modified gravity on
the lensed gravitational signal. To our knowledge, this is the
first work dealing with such a problem.
Here, we focus upon Palatini fðR̂Þ gravity [50], which is

one of the simplest extensions of GR. The theory does not
introduce additional degrees of freedom, and there are
no instabilities of the kind found in the metric fðRÞ theories
[51]. Palatini formulation has implications for cosmology
[52–57] and astrophysical objects [58–67]; however, in the
vacuum and radiation dominated regions the theory reduces
to GR plus an effective cosmological constant, and easily
passes the Solar System tests [68–70]. Gravitational waves
in Palatini fðR̂Þ carry only two polarizations, such as in the
GR [71]. Therefore, if one is interested in testing the

Palatini fðR̂Þ gravity with GWs, strong lensing effects are
of particular interest.
The paper is structured as follows. Section II introduces

the essential features of Palatini fðR̂Þ gravity necessary for
further discussion. In Sec. III, we systematically derive the
geometric optics limit in GR and in Palatini fðR̂Þ gravity.
Then in Sec. IV the propagation of GWs in both theories
is studied. In Sec. V we study the rotation of the GW
polarization plane in GR and compare it with Palatini fðR̂Þ
gravity. Then as an example of lensing, we discuss the
singular isothermal sphere (SIS), which is a reliable model
for a galaxy scale lens, in the context of Palatini fðR̂Þ
gravity. Differences between GR and Palatini formulation
are revealed, and we conclude the paper in Sec. VI.

II. PALATINI f ðR̂Þ GRAVITY

Let us begin by briefly recalling some of the key features
of Palatini fðR̂Þ gravity. The action of the theory can be
written down as [50]

S½g; Γ̂;ψm� ¼
1

2κ2

Z
d4x

ffiffiffiffiffi
jgj

p
fðR̂Þ þ Smatter½g;ψm�; ð1Þ

where κ2 ¼ 8πG=c4, R̂≡ gμνR̂μνðΓ̂Þ is the Palatini curva-
ture scalar, and jgj is the absolute value of the determinant
of the metric tensor. In contrast with the usual metric
approach, that is, instead of assuming that the connection
is the Levi-Civita one of the metric g, in the Palatini
formalism one considers an arbitrary torsion-free (sym-
metric in lower indices) connection Γ̂ which is then used to
construct the Riemann and Ricci curvatures. The curvature
scalar R̂ is built from both geometric structures, i.e., the
metric and the independent of it, connection. On the other
hand, the matter action depends on the metric g and matter
fields ψm only,1 which guarantees that the matter energy-
momentum tensor Tμν ¼ − 2ffiffiffiffi

jgj
p δSm

δgμν
obeys the usual con-

servation law [73],

∇μTμν ¼ 0; ð2Þ

with respect to the Levi-Civita covariant derivative∇ of the
metric g.
The variation of the action (1) is taken with respect to

both structures; the metric one gives

f0ðR̂ÞR̂μν −
1

2
fðR̂Þgμν ¼ κ2Tμν; ð3Þ

1That is, the matter fields are coupled to the metric only. One
may also couple them to the connection [72]; this broader class is
usually called metric-affine gravity.
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where the prime is understood here as differentiating the
function f with respect to its argument, i.e., the curvature
scalar R̂. Contracting the above equation with the metric
gμν provides an algebraic relation between the Palatini
curvature scalar and the trace of the energy-momentum
tensor T ≡ gμνTμν,

f0ðR̂ÞR̂ − 2fðR̂Þ ¼ κ2T: ð4Þ
This feature allows one to solve the above equations in
some particular choices of the function fðR̂Þ, providing
R̂ ¼ R̂ðTÞ.
On the other hand, the relation between the connection

and the metric tensor is given by the variation of (1) with
respect to Γ̂, which can be written as

b∇βð
ffiffiffiffiffi
jgj

p
f0ðR̂ðTÞÞgμνÞ ¼ 0: ð5Þ

The above covariant derivative is understood as the one
defined by the independent connection Γ̂. Defining a new
metric tensor

ĝμν ¼ f0ðR̂ðTÞÞgμν; ð6Þ
which is conformally related to the original metric gμν,
Eq. (5) can be expressed as

b∇βð
ffiffiffiffiffi
jĝj

p
ĝμνÞ ¼ 0: ð7Þ

Therefore, the connection Γ̂ happens to be the Levi-Civita
one with respect to the conformal metric ĝ (6). It is related
to the Levi-Civita connection Γ of the original metric g by

Γ̂α
μν ¼ Γα

μν þ
1

2f0
½δαν∂μf0 þ δαμ∂νf0 − gμν∂αf0�: ð8Þ

As Γ̂ can be computed from the original metric and the trace
of the matter energy momentum, it may be considered an
auxiliary field that can be integrated out, with the impli-
cation that the degrees of freedom are related to the metric
tensor g only. Therefore, in the end, the connection is not an
independent dynamical quantity in the theory.
Equivalently, we can apply the conformal transformation

(6) to the metric field equation (3) to encapsulate the
gravitational dynamics in terms of the conformal metric ĝ,

Ĝμν ¼ κ2T̂μν −
1

2
ĝμνÛðf0Þ; ð9Þ

where Ĝμν is the Einstein tensor computed from the
Levi-Civita connection Γ̂ of ĝ, while T̂μν ¼ ðf0Þ−1Tμν is
the conformally transformed matter energy-momentum
tensor, and the effective “potential” is given by

Û ¼ R̂f0ðR̂Þ − fðR̂Þ
f0ðR̂Þ2 : ð10Þ

The conformal energy momentum does not obey the
conformal conservation law, but2

b∇μT̂
μν ¼ 1

2κ2
b∇νÛðf0Þ: ð11Þ

Let us notice that if f0ðR̂ðTÞÞ is a constant, the con-
nection in (7) boils down to the Levi-Civita connection
of the original metric g. This happens when one deals
with trace-free matter energy momentum, T ¼ 0, or with a
linear Lagrangian. For the vanishing T the field equa-
tions (3) and (9) coincide and reduce to [74,75]

R̂μν − ΛðR̂0Þgμν ¼ 0; ð12Þ

where the “potential” Û acts as an effective cosmological
constant that depends on the constant vacuum value of R̂,
that is,

ΛðR̂0Þ≡ fðR̂0Þ=2f0ðR̂0Þ ð13Þ

with R̂0 ¼ R̂ðT ¼ 0Þ. Although its value does depend on a
given choice of the fðR̂Þ model, it always leads to a unique
solution for each choice of fðR̂Þ. Therefore, in the vacuum
or radiation environment (for which also T ¼ 0), the
Palatini fðR̂Þ gravity reduces to GR with a cosmological
constant. One can argue that the theory passes Solar System
tests because of this property. Indeed, as examined in detail
for analytic functions fðR̂Þ [68], the center-of-mass orbits
are the same as in GR, while modifications appearing in the
terms related to the momentum and energy in the Euler
equation are not sensitive enough for the current experi-
ments which use the Solar System orbits.3

For the purposes of the GW physics one can neglect the
cosmological constant in GR [80]. In this paper, we assume
that the Palatini fðR̂Þ effective cosmological constant
ΛðR̂0Þ is compliant with the observations of our universe
and we can drop it from the GW calculations, although in
general there might exist specific choices of fðR̂Þ for which
the quantity (13) is not negligible.
In the context of fðR̂Þ ¼ R̂þ αR̂2 gravity it has been

observed that the value of the parameter α is connected to
the curvature regime [81]. This relationship arises from the
fact that the Palatini curvature scalar is directly proportional
to the trace of the energy-momentum tensor, resulting in a
similar dependence for its value. Furthermore, when
examining the weak-field limit analytically, it has been

2To see the relation between the geometric objects in different
frames, see, e.g., [52].

3However, let us mention that these considerations assume a
Minkowski background. Moreover, when atomic level experi-
ments are in our reach [64,67,70,76–79], one may arrive at the
required accuracy to confront the theory against the data provided
by the experiments performed in the Solar System.
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found that jαj is approximately less than 2 × 108 m2 [81].
However, due to uncertainties in microphysics, the experi-
ments conducted within the Solar System have not been
able to establish any constraints on these parameters [68].
On the other hand, taking microphysical properties into
account, seismic data from Earth constrained the theory’s
parameter to jαj≲ 109m2 [67,82] while analyzing neutron
stars’ equations of state and combining the results with the
observational data put the bound to be jαj ≲ 106 m2 [83].
The lower bound of the parameter α⪆ − 7 × 107m2 was
obtained in [84] ensuring the microscopic stability of
matter. Note that in the case of studies in the nonrelativistic
limit, it was shown that only the quadratic term is relevant;
further terms entering the equations are of the sixth or
higher order [68]; see the Poisson equation in Sec. IV.
Similar to the case of general relativity, none of the fðR̂Þ
models can adequately explain the rotation curves of
galaxies [70,85]. As a result, no constraints have been
derived from galaxy catalogs thus far. In contrast, the latest
cosmological data such as SNIa and BAO data provide
bounds on the parameter α about 40 orders of magnitude
bigger, that is, jαj ≤ 1049 m2 [86].
In our investigation, the most relevant feature of the

family of the Palatini theories is that the gravitational waves
are propagating perturbations of the background conformal
metric ĝ. It is so since in the case of the absence of the
anisotropic stress, the tensor perturbations for the con-
formal and the spacetime metrics coincide [87–89]. We will
use that fact further in this paper.

III. PROPAGATION OF GRAVITATIONAL WAVE
IN THE GEOMETRIC OPTICS REGIME

To be self-consistent and not to refer the reader to
dispersed pieces of literature, we present in this section the
basic formalism of GW propagation in the eikonal approxi-
mation. We start with the GR and then extend our analysis
to the Palatini gravity. Such an approach allows us to trace
similarities and differences between these theories.

A. General relativity

In the study of gravitational waves over some arbitrary
background, the metric describing the background geom-
etry (of larger amplitude) is considered to be smooth over a
typical characteristic length scale LB. Gravitational waves
constitute perturbations of much smaller amplitudes propa-
gating on top of the larger ones. The typical scale of spatial
variation of this perturbation is denoted by l, which obeys
the condition l ≪ LB. Therefore, the configuration can be
described as

gtotalμν ¼ gμν þ hμν; ð14Þ

where a natural distinction can be made in frequency space
with gμν being a slowly varying background (or a low

momenta component) while the gravitational wave described
by hμν is a high frequency fluctuation. How fast the metric
components vary is given by how their derivatives change,
that is, ∂g ∼ g=LB and ∂h ∼ h=l. The separation of scales in
frequency space is given by f ≫ fB. The method of sepa-
ration of scales and the expansion based on that is called
the short-wave expansion [90]. Following this procedure,
we expand the Ricci tensor as

Rtotal
μν ¼ Rμν þ R½1�

μν þ R½2�
μν þ � � � ; ð15Þ

where Rμν is the background Ricci tensor containing only
the slowly varying component of the metric, while on the

other hand, R½1�
μν and R½2�

μν contain terms that are linear and
quadratic in the metric perturbation hμν, respectively. As

R½1�
μν is linear, it contains only higher frequency modes,

whereas R½2�
μν is quadratic and contains both high and low

frequency modes.
We can rewrite Einstein’s equations as

Rtotal
μν ¼ κ2

�
Tμν −

1

2
gμνT;

�
; ð16Þ

and the distinction of scales guarantees us the decompo-
sition into two parts [90]:

Rμν ¼ −ðR½2�
μνÞLow þ κ2

�
Tμν −

1

2
gμνT

�
Low

; ð17Þ

R½1�
μν ¼ −ðR½2�

μνÞHigh þ κ2
�
Tμν −

1

2
gμνT

�
High

: ð18Þ

It is Eq. (17) that determines the dynamics of the back-
ground metric gμν and the energy-momentum tensor
associated with the high frequency mode hμν. The order
of magnitude of the high frequency field equations suggests

that R½1�
μν∼∂

2h∼h=l2 while R½2�
μν∼∂

2h2∼h2=l2. Therefore,

ðR½2�
μνÞHigh is quadratic in the perturbation and negligible

with respect to R½1�
μν and thus can be neglected in the linear

order equations. Similarly, the analogous estimation
applied to the right-hand side of (18) provides that Tμν

is a smooth macroscopic external matter, and its high
frequency contribution can arise only via its dependence on
gμν and via the term gμνT. Since it has the order OðhÞ,

�
Tμν −

1

2
gμνT

�
High

∼O
�

h
L2
B

�
: ð19Þ

In comparison to R½1�
μν ∼ h=l2 we see that (19) is smaller

than R½1�
μν by a factor of Oðl2=L2

BÞ. In summary, the low
frequency part of the Einstein equations describes the effect
of external matter and GWs which affect the curvature of
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the background, while the high frequency part reduces to
the wave equation in this background

□hμν − 2hαβRα
μν

β ¼ 0; ð20Þ

where □ ¼ ∇μ∇μ as well as Rα
μν

β are computed from the
Levi-Civita connection of the background metric gμν. The
above equation can be studied by the Wentzel-Kramers-
Brillouin (WKB) approximation.4

Thewave equation (20) cannot be solved explicitly as the
approximation of plane waves is not valid in curved
spacetime. However, it is to be noted that in the geometric
optics limit the plane wave approximation is still valid [49].
Therefore, the eikonal ansatz can be used to study the
effects of background on the propagation of GWs in the
geometric optics limit and beyond. Then, if the information
about the GW amplitude and polarization is carried by the
complex symmetric tensor denoted as ξμν, the high fre-
quency fluctuation can be written in the following form:

hμν ¼ Re
nh

ξð0Þμν þ ϵξð1Þμν þ ϵ2ξð2Þμν þ � � �
i
eiΦ=ϵ

o
; ð21Þ

where ΦðxÞ is a real scalar function that depends on the
coordinates and defines the phase of the GWs while ϵ is an
expansion bookkeeping parameter. The geometric optics
limit corresponds to ϵ → 0. As a consequence of this
ansatz, independently of the systematic expansion in hμν
there exists a derivative expansion of high frequency modes
given by the parameter ϵ ¼ l=LB. The hierarchy of the
terms are as follows: ϵ ≫ hϵ ≫ hϵ2 � � � ≫ h2. Therefore,
each derivative of the high frequency fluctuation hμν of (21)
will collect a factor 1=ϵ, allowing one to separate out
geometric optics and beyond geometric optics terms. To
study the evolution of the fluctuations up to a required
order, one applies the eikonal ansatz (21) in the wave
equation (20)

eiΦ=ϵ

�
1

ϵ2

h
−kβkβξ

ð0Þ
μν

i

þ 1

ϵ

h
ið∇βkβξ

ð0Þ
μν þ kβ∇βξ

ð0Þ
μν Þ− kβkβξ

ð1Þ
μν

i
þOðϵ0Þ

�
¼ 0;

ð22Þ

where we have defined the wave vector kμ as the gradient
of Φ; that is, kμ ¼ gμν∂νΦ. Applying the ansatz to the
Hilbert gauge condition ∇μhμν ¼ 0 yields

eiΦ=ϵ

�
1

ϵ

h
ikμξð0Þμν

i
þOðϵ0Þ

�
¼ 0: ð23Þ

Considering the leading Oðϵ−1Þ term in (23), and the
leading order Oðϵ−2Þ term with the next to the leading
order Oðϵ−1Þ term in (22) defines the geometric optics
limit. Beyond the optical limit termsOðϵ0Þwere considered
in [48,49].
Therefore, we see from (23) that at the leading order, the

GW polarization is transverse to the direction of propaga-
tion in the geometric optics limit,

kμξð0Þμν ¼ 0: ð24Þ

Similarly, the leading order term Oðϵ−2Þ in the expansion
(22) provides us with the information that the wave vector
is a null vector field, kβkβ ¼ 0, and hence the gravitational
waves travel at the speed of light. Taking a covariant
derivative of this relation and making use of the fact that the
wave vector is a gradient of the phase functionΦ give us the
geodesic equation

kμ∇μkν ¼ 0; ð25Þ

which tells us that the gravitational wave vector is parallel
propagated along the null geodesic of the background
metric gμν. It is easy to see that by defining kμ ¼ dxμ=dλ,
where λ is an affine parameter along the geodesic, and
substituting it in Eq. (25) we get the geodesic equation in
the familiar form

d2xβ

dλ2
þ Γβ

αμ
dxα

dλ
dxμ

dλ
¼ 0; ð26Þ

where Γβ
αμ are the coefficients of the Levi-Civita connection

of the background metric gμν. The next-to-leading order
provides the following relation:

2kβ∇βξ
ð0Þ
μν þ∇βkβξ

ð0Þ
μν ¼ 0: ð27Þ

To understand this equation better, let us rewrite the

tensor ξð0Þμν as

ξð0Þμν ¼ AAμν; ð28Þ

where A is the amplitude, defined as A ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ξ�μνξμν

p
where

ξ�μν is the complex conjugate of ξμν, and Aμν is the
normalized polarization tensor. Using this decomposition
and the gauge condition in Eq. (27), we obtain the following
relations for the amplitude and the polarization tensor:

∇ρðkρA2Þ ¼ 0; ð29Þ

kα∇αAμν ¼ 0: ð30Þ

Equation (30) suggests that in the geometric optics limit
the polarization tensor is parallel transported along the

4Also known as the eikonal approximation or stationary phase
approximation in the literature.
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gravitational wave direction kμ. Moreover, Eq. (29) can be
written as a conservation equation. Let us define the
momentum of the gravitons as Pμ ¼ ℏkμ. Then, the graviton
number density along the geodesic bundle is given by
Nμ ¼ A2

ℏ2 P
μ. Applying it into (29) leads to the conservation

of graviton number density

∇μNμ ¼ 0 ð31Þ

in the geometric optics limit [10,90]. This arises as a
consequence of the absence of high frequency fields that
contribute to ðTμνÞHigh in the Einstein field equations [91].

B. Palatini f ðR̂Þ gravity
To obtain all basic relations that govern the propagation

of gravitational waves in Palatini fðR̂Þ gravity, we need to
perturb the field equations which we obtained in Sec. II. It
is more convenient to start from the conformal representa-
tion and use the perturbed form of the metric

ĝtotalμν ¼ ĝμν þ ĥμν; ð32Þ

where ĝμν ¼ f0gμν and ĥμν ¼ f0hμν þ f00gμνδR̂ [cf. (6) and
(14)]. The inverse metric is defined by ĝμνtotal ¼ ĝμν − ĥμν.
As already mentioned at the end of Sec. II, since we are
dealing with no anisotropic stress, the perturbations
coincide and the second term can be neglected; that is,
ĥμν ¼ hμν [87–89].
Substituting the perturbation (32) in Eq. (9), neglecting

the “potential” (effective cosmological constant) contribu-
tion and considering only the high frequency part of the
Palatini fðR̂Þ gravity yields

b□hμν − 2hαβR̂
α
μν

β ¼ 0; ð33Þ

where b□ and R̂α
μν

β are computed from the Levi-Civita
connection Γ̂ of the long wavelength background metric ĝ.
Notice that, in this case, the absence of matter does not
reduce Palatini theory to GR. The slowly varying part of
the field equations does not have a vanishing trace of the
energy-momentum tensor as it happens in the GR. As
before, applying the eikonal ansatz one obtains the follow-
ing expansion similar to the GR one:

eiΦ=ϵ

�
1

ϵ2

h
−k̂βk̂βξ

ð0Þ
μν

i
þ 1

ϵ

h
iðb∇βk̂

βξð0Þμν

þ k̂βb∇βξ
ð0Þ
μν Þ − k̂βk̂βξ

ð1Þ
μν

i
þOðϵ0Þ

�
¼ 0; ð34Þ

where the covariant derivatives b∇ are defined with respect
to the connection Γ̂. We see that the leading order provides
that the GWs in Palatini fðR̂Þ gravity also follow null paths

defined by the wave vector k̂μk̂
μ ¼ 0. On the other hand, the

geodesic equation requires a bit of discussion. Taking the
covariant derivative (with respect to the connection Γ̂) of
this leading order term gives an autoparallel

k̂μb∇μk̂ν ¼ 0; ð35Þ

which can be rewritten in a familiar form

dxβ

dλ̂2
þ Γ̂β

αμ
dxα

dλ̂

dxμ

dλ̂
¼ 0 ð36Þ

by defining the wave vector as k̂μ ¼ dxμ=dλ̂, where λ̂ is the
affine parameter in the conformal frame. This is a geodesic
equation of the conformal metric ĝ which we introduced as
a convenient calculation tool in the theory. In principle the
geodesics of ĝ can be contrasted with the geodesics of
the original metric g, and it is the latter that is obeyed by the
matter particles [since the matter action (1) depends on the
metric g]. However, due to the conformal invariance of
the null directions, the null geodesics of g and ĝ coincide,
and thus in the geometric optics limit the GWs in GR and
Palatini fðR̂Þ gravity follow the same paths.5

Although the next to leading order Oðϵ−1Þ also seems to
be similar,

2kαb∇αξ
ð0Þ
μν þ b∇αk̂

αξð0Þμν ¼ 0; ð37Þ

let us decompose the wave tensor ξð0Þμν as previously in order
to understand the physical consequences. The polarization
tensor Aμν in this theory is parallel propagated along the

direction of k̂α,

k̂αb∇αAμν ¼ 0: ð38Þ

However, since due to the conformal relationship the
vectors k̂α and kα are parallel, the polarization tensor is
also parallel propagated along the light cone direction kα of
the original metric g, such as the light rays.
Moreover, we also obtain information about the

conservation of graviton number density. It goes as follows:
if we define the momentum of gravitons as P̂ ¼ ℏk̂μ,
then graviton number density along a geodesic ray bundle
can be defined as N̂μ ¼ A2

ℏ2 P̂
μ. Therefore, as we have seen

in the case GR (29), one can obtain a relation for the
amplitude as

2k̂αb∇αAþAb∇αk̂
α ¼ 0: ð39Þ

5Consider the conformal relations for the wave vectors k̂μ ¼
ðf0ðR̂ÞÞ−1kμ and k̂μ ¼ kμ [52,92].
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Rewriting the above equation as b∇μðk̂μA2Þ ¼ 0 and mak-
ing use of the expression for graviton number density we
obtain

b∇μN̂
μ ¼ 0: ð40Þ

Note that the graviton number density conservation in
Palatini fðR̂Þ gravity holds for the quantity N̂ and con-
formal metric ĝ (in terms of its Levi-Civita covariant

derivative b∇μ). If we rewrite these formulas for the
quantity Nμ and the vector kμ as in GR, the conservation
of graviton number density turns out to be violated.
Namely, one has

2kα∇αAþA∇αkα þAkα∂α ln f0ðR̂Þ ¼ 0; ð41Þ

which can be rewritten as

∇μNμ ¼ −Nμ
∂μ ln f0: ð42Þ

This feature can be compared to the conservation of matter
energy momentum in terms of ∇μ, Eq. (2), but not in terms

of the conformal b∇μ, Eq. (11). For gravitational waves the

roles of ∇μ and b∇μ have switched, which is one of the key
features of Palatini fðR̂Þ gravity [87,89]. Later in Sec. IV E
we see that the graviton number nonconservation can be
attributed to the change in amplitude. Such effects are also
observed in scalar-tensor theories [91] due to the presence
of high frequency scalar fields. Further, the nonconserva-
tion has consequences related to the observable such as the
GW luminosity distance [93–96].

IV. GRAVITATIONAL WAVE AMPLITUDE
EVOLUTION

Passing by distributions of matter can affect the ampli-
tude and polarization of a gravitational wave, as well as
deflect the direction of the rays. We will focus on the
amplitude first.

A. Newman-Penrose tetrad in both theories

The analysis of the polarization states and the evolution
of the amplitude can be made simpler by introducing a
Newman-Penrose (NP) tetrad [97,98] of null covectors

eAμ ¼ fkμ; mμ; lμ; nμg; ð43Þ

which are parallel transported along the null geodesics.
The vectors kμ and nμ are real while mμ and lμ are complex
conjugate pairs whose only nonvanishing contractions
satisfy the relations

mμlμ ¼ 1; kμnμ ¼ −1: ð44Þ

It can be shown that they can be used to express the
spacetime metric as

gμν ¼ mμlν þmνlμ − nμkν − nνkμ: ð45Þ

The GW is represented by a second-rank symmetric tensor.
Therefore, ten independent components of the tensor can be
rewritten in terms of a symmetric basis constructed from
the null tetrad [49]

ΘAB
μν ¼ 1

2
ðAμBν þ AνBμÞ; ð46Þ

where Aμ and Bμ have the same structure as eμ in (43). The
tensor ξμν can then be expanded in this basis as follows:

ξμν ¼ CkkΘkk
μν þ CllΘll

μν þ CmmΘmm
μν þ CnnΘnn

μν þ CklΘkl
μν

þ CkmΘkm
μν þ CknΘkn

μν þ CmlΘml
μν þ CnlΘml

μν þ CmnΘmn
μν ;

ð47Þ

where CAB are complex coefficients. In the geometric optics
limit, after using all gauge freedom this tensor reduces to
the following form:

ξð0Þμν ¼ Cð0Þll lμlν þ Cð0Þmmmμmν; ð48Þ

which reveals the two polarizations. To see this let us
substitute lμ ¼ ðxμ þ iyμÞ= ffiffiffi

2
p

and mμ ¼ ðxμ − iyμÞ= ffiffiffi
2

p
,

whereby (48) can be rewritten as

ξð0Þμν ¼ HþAþ
μν þH×A×

μν: ð49Þ

Here Aþ
μν ¼ xμxν − yμyν and A×

μν ¼ xμyν þ yνyν are the
two polarization tensors in GR and Hþ and H× are their
corresponding amplitudes. The complex amplitudes CAB
are related to the polarization amplitudes as follows:

Hþ ¼ 1

2

�
Cð0Þll þ Cð0Þmm

�
; H× ¼ i

2

�
Cð0Þll − Cð0Þmm

�
: ð50Þ

B. General relativity

Gravitational waves in the geometrical optics limit are
rays of null congruences. The congruence is a set of
parametrized curves such that only one curve passes
through each point. The behavior of one null geodesic
with respect to another reference ray is governed by the
separation vector χμ. The evolution of χμ depends on the
background Riemann tensor Rμνρσ and obeys the geodesic
deviation equation

D2χμ

dλ2
¼ Rμ

νρσkνkρχσ; ð51Þ
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where λ denotes the affine parameter and D is the direc-
tional covariant derivative, that is, kμ∇μ with respect to the
null geodesics kμ. It can be written in the matrix form (see
Appendix A), and it is also known as the Sachs equation
when projected onto a two-dimensional spacelike surface
(see the discussion below).
The cross section of the beam has a nonzero extension

except from the point of observation where the rays converge
and the separation vector χðλOÞ ¼ 0, with λO being the value
of the affine parameter at the observation point. Therefore, a
given observer with four-velocity uμ can also project the
separation vector into a two-dimensional surface which is
called a screen space. The screen space is perpendicular
to the line of the sight direction dμ of the observer, with
dμdμ ¼ 1 and dμuμ ¼ 0. The screen projector is defined as

Qμν ¼ gμν þ uμuν − dμdν: ð52Þ

To study the morphology of the beam in the screen space
by an observer with uμ, let us consider the physical area A
of the cross sections of the beam on the screen space. It is
given by the following expression:

A ¼
Z

dχ1dχ2 ¼
Z

detDdχ̇1Odχ̇
2
O; ð53Þ

where D is the Jacobi matrix satisfying Eq. (A5), where χ̇1O
denotes the derivative with respect to the affine parameter.
Let us now consider an infinitesimal light beam. Then,

the Jacobi matrix D can be regarded as a constant, and
the evolution rate of the area of the cross sections of the
beam (53) with respect to the affine parameter λ can be
expressed with the use of the expansion scalar θ (see its
definition in Appendix A)

Ȧ
A
¼ 1

detD
dðdetDÞ

dλ
¼ trðSÞ ¼ 2θ:

Therefore, the expansion scalar θ can be interpreted as
the evolution rate of the beam’s area:

θ ¼ 1

DA

dDA

dλ
; ð54Þ

where the angular diameter distance DA is proportional
to

ffiffiffiffi
A

p
[99]. Now, using the above relations along with

amplitude evolution equation (27) rewritten in terms of two
polarization states in GR (48), we get

2kμ∇μCAB þ∇μkμCAB ¼ 0 ð55Þ

and

d ln CAB
dλ

þ d lnDA

dλ
¼ 0: ð56Þ

Integrating this equation from the source to the observation
point we get the amplitude of polarization at an arbitrary
position in terms of the affine parameter λ

CGRABðλÞ ¼
CABðλsÞDðλsÞ

DðλÞ ; ð57Þ

where λs is the affine parameter at the source position.

C. Palatini f ðR̂Þ gravity
As mentioned in earlier sections of Palatini fðR̂Þ

gravity, the metric ĝ that is convenient to describe the
gravitational dynamics in this theory is related to the
physical metric g via the conformal factor f0ðR̂Þ.
Therefore all quantities that describe the morphology of
the beam, including the Sachs vector equations and
expansion, carry an imprint of this conformal factor.
The screen projector is given by Q̂μν ¼ f0Qμν, and this
is due to the rescaling of the line of sight direction and the
four-velocity of the observer6

d̂μ ¼
ffiffiffiffi
f0

p
dμ; ûν ¼

ffiffiffiffi
f0

p
uν: ð58Þ

As a consequence of this conformal transformation, the
expansion term (54) gets an extra term that is related to
the conformal factor and hence to the trace of the
energy-momentum tensor via the trace equation (4).
Therefore, the Ricci and Weyl lensing terms get modified
in Palatini fðR̂Þ gravity. The expansion scalar in Palatini
fðR̂Þ gravity is related to the expansion scalar in general
relativity as

θ̂ ¼ 1

2
b∇αk̂

α ¼ 1

2

d ln f0

dλ
þ 1

f0
θ; ð59Þ

where θ is related to the angular diameter distance (54).
Using the relation for the evolution of amplitude in

Palatini fðR̂Þ gravity given by (37) and making use of the
new basis introduced in Sec. IVA and the gauge freedom,
we obtain the following equation for the evolution of
amplitude:

2k̂μb∇μCAB þ b∇μk̂
μCAB ¼ 0; ð60Þ

where CAB denotes the amplitude of two polarizations.
It is to be remembered that the wave direction is given by

k̂μ ¼ kμ
f0 and the covariant derivative b∇ is given by the

connection Γ̂ in Palatini fðR̂Þ gravity. Integrating the above
equation from the source to the observation point and

6Notice that û is not a physical observer—the observer vector
field is related to the metric g, and in our case, it comoves with the
fluid given by the energy-momentum tensor Tμν.
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making use of (59) one gets the evolution of the gravita-
tional wave amplitude in this theory of gravity,

CPalatiniAB ¼ CGRABðλÞ exp
	
−
Z

λo

λs

�
2
d ln f0

dλ
þ 1

2
f0
d ln f0

dλ

�
dλ



;

ð61Þ

where CGRABðλÞ is given by (57) where λo and λs are the
values of the affine parameter at the observer and the
source, respectively. This is our main result. We observe
that in the geometric optics limit the two polarizations
evolve independently, in the same way as in GR. However,
in Palatini fðR̂Þ gravity we are dealing with the additional
term making the amplitude decrease with the distance.
The exponential term is related to the mass distribution of
the lens through the conformal factor. This extra exponen-
tial factor modifies the amplitude of GW detected, hence
modifying the luminosity distance inferred from the signal
based on the GR prediction. A similar effect is also seen
in scalar-tensor theories [91,100] where this modification
can be interpreted as a correction to the GW luminosity
distance. Alternatively, it is also possible to derive the
luminosity distance starting from the energy-momentum
tensor similar to [100,101] (see Appendix C). The corrected
luminosity distance in Palatini theory takes the following
form:

dPL ¼ dGRL exp

	Z
λo

λs

�
2
d ln f0

dλ
þ 1

2
f0
d ln f0

dλ

�
dλ



: ð62Þ

As mentioned in Sec. III, this is a consequence of the
nonconservation of graviton number density. Therefore, in
the event of GW lensing in Palatini fðR̂Þ one observes a
larger luminosity. Further, in the case of a multimessenger
GW event with the electromagnetic follow-up observation,
luminosity distance measured in the electromagnetic win-
dow would be different from that measured using GW
standard sirens.

D. Nonrelativistic limit of Palatini f ðR̂Þ gravity
In what follows, we will consider a nonrelativistic

object described by the Palatini fðR̂Þ gravity, such as a
star or galaxy. To do so, we need to briefly discuss
the nonrelativistic limit of the theory. For an analytic
function fðR̂Þ ¼ P

i¼0 αiR̂
i, the Poisson equation is given

by [68,70]

∇2Φ ≈ 4πGðρþ 2α∇2ρÞ; ð63Þ

where α comes from the quadratic term of the Lagrangian
(we neglect the cosmological constant). Therefore, in the
nonrelativistic objects, the only correction to the GR
equations that has a negligible effect is given by the
polynomial term

fðR̂Þ ¼ R̂þ αR̂2: ð64Þ

Inserting this functional into the trace equation (3) provides
the analogous to GR relation between the trace of the
energy-momentum tensor and the Palatini curvature scalar:

R̂ ¼ −
8πG
c4

T; ð65Þ

where T ¼ 3p − c2ρ if we consider a perfect-fluid descrip-
tion of matter. Since we are interested in nonrelativistic
objects, pressure, when it appears together with the energy
density, is negligible in such objects, that is, p=c2 ≪ ρ.
Therefore, any modification introduced by Palatini gravity
in the Poisson equation (63) and further in the gravitational
potential is signalized by the functions of the energy
density ρðrÞ (with the parameter α).

E. Gravitational wave amplitude evolution

The above set of equations can be used to evaluate
gravitational wave amplitude evolution and hence the
luminosity distance correction in Palatini fðR̂Þ gravity.
From Eqs. (64) and (65) the conformal factor becomes
f0 ¼ 1þ 2αR̂ ¼ 1þ Aρ, where A ¼ 2ακ2c2. As a first
approximation, one can rewrite the amplitude evolution
expression (61) in the form

CPAB ¼ CGRAB exp

	
−
5A
2

Z
ρo

ρs

dρ



: ð66Þ

It is quite clear from (62) that the above equation can be
expressed as the correction to luminosity distance. Any
deviation from GR comes from the exponential factor
present in the above equation.
To see the effect of Palatini gravity on the amplitude

evolution, we need to consider some density profile which
describes our lens. As Palatini fðR̂Þ gravity differs from GR
only in the presence of matter, it is evident from above that
the most popular lens model considered in the literature,
that is, a point such as mass in the vacuum [10], will
not give any additional effect compared to GR. Because of
that fact, we need to consider an extended body with a
given density profile that resides asymmetrically on the
path of the gravitational ray, whereby the entry and exit
values of the density differ. For instance, we may consider a
GW source close to the center of a galaxy cluster and
estimate the accumulated extra effect as the wave exits the
cluster and passes into the cosmic intergalactic medium.
Computing the terms in the exponential for the Navarro-
Frenk-White (NFW) density profile [102] for an XMM
Cluster Outskirts Project (XCOP) galaxy cluster sample
[103] A85 with a radial distance of b ¼ 3 Mpc from the
cluster center one obtains the magnitude of the correction
factor to be of the order 10−42 for α ∼ 109 m2. Analogously,
assuming a SIS for the same radial distance one estimates
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the correction to be of the order 10−43. Therefore, it can be
seen that the correction to the GW amplitude as well as to
the luminosity distance during the wave propagation is
negligible and clearly beyond the sensitivity limit of the
GW detectors. Out of curiosity, we may also estimate the
accumulated extra effect for an ancient wave that has been
traveling since the early universe. Integrating over the
cosmic mean density from a redshift zs ¼ 3000 till now
will have the luminosity distance corrected by a factor of
10−33, which is still negligible. However, if one uses the
upper constraint for α ∼ 1049 m2 from Type Ia Supernova
(SNIa) and Baryon Acoustic Oscillations (BAO) [86], the
corrections for the GW luminosity distance is 10−2 which is
non-negligible.

V. GRAVITATIONAL WAVE DEFLECTION
ANGLE AND ROTATION OF

POLARIZATION PLANE

So far we have discussed the propagation of GW through
an extended distribution of matter characterized by some
energy density ρ distribution profile. In this section, we
discuss how GW propagation is influenced by a compact
matter distribution, i.e., gravitational lensing.

A. Gravitational lensing

The subject of gravitational lensing has become a mature
field of astrophysics [10,104] having its own rich math-
ematical formalism [105] and numerous practical applica-
tions [106]. Referring the reader to the literature just cited
for a detailed and systematic introduction, we give here a
short, concise review of basic concepts of strong lensing
and notation used in the sections below. Strong gravita-
tional lensing occurs whenever the source is located at a
distance7 DS, a deflecting mass—the lens at a distance of
DL from the observer (distance between the source and the
lens being DLS) are almost perfectly aligned. Then instead
of a single image of the source, multiple images can be
formed. This is possible because the weak perturbation of
the background metric by the lens endows the space with
the effective refractive index n ¼ 1 − 2Φ

c2 , where Φ is the
Newtonian potential of the lens.
In practice, the size of the lens is negligible in com-

parison to the characteristic distances of this optical system,
and it is convenient to use thin lens approximation, i.e., to
assume that all changes in propagation of null geodesics
from the source to the observer (with respect to propagation
through the background space undistorted by the lens)
occur at the locus of the closest encounter with the lens.
This suggests a natural choice of (local) coordinate system:
the line of sight to the center of the lens z (optical axis of the
system), the lens plane—perpendicular to z at lens location

—and the source plane—perpendicular to z at the source
location. The intersection of the z axis with lens and source
planes defines the origin of coordinate systems on these
planes spanned by arbitrarily (but consistently) chosen
orthogonal vectors. Radius vectors [in physical (length)
units] on the lens and source planes are denoted ξ⃗ and η⃗,
respectively. Because observations on the sky (the celestial
sphere) are expressed in terms of angles, it is convenient to
describe strong lensing in the following way. The rays from
the source at the intrinsic angular position β⃗, i.e., lying on
the source plane at a distance η⃗ ¼ β⃗DS from the optical
axis, impact the lens plane at the position ξ⃗ ¼ θ⃗DL
and reach the observer because they are deflected by the
angle γ⃗. In consequence, the observer registers the source’s
image at angular position θ⃗ instead of intrinsic β⃗, which is
governed by the lens equation

β⃗ ¼ θ⃗ − γ⃗ðθ⃗Þ: ð67Þ

It is convenient to choose some length scale ξ0 on the
lens plane (and associated with it η0 ¼ ξ0DS=DL on the
source plane), and use dimensionless vectors x⃗ ¼ ξ⃗=ξ0,
y⃗ ¼ η⃗=η0. In this case the lens equation reads y⃗ ¼ x⃗ − γ⃗ðx⃗Þ
and the deflection angle is γ⃗ ¼ ∇x⃗ðΨðx⃗ÞÞ. The dimension-
less 2D deflection potential is defined as

Ψðξ⃗Þ ¼ DLDLS

ξ0DS

2

c2

Z
Φðξ⃗; zÞdz: ð68Þ

Let us finally remark that although the choice of the
length scale ξ0 is arbitrary, it is convenient to use for
this purpose the so-called Einstein radius on the lens
plane ξ0 ¼ θEDL, where angular Einstein radius θE
satisfies θE ¼ γ⃗ðθEÞ. It is also useful to introduce the
convergence

κðξ⃗Þ ¼ Σðξ⃗Þ=Σcr; ð69Þ

where

Σðξ⃗Þ ¼
Z

∞

−∞
ρðξ⃗; zÞdz ð70Þ

is the surface mass density of the lens and

Σcr ¼
c2

4πG
DS

DLDLS
ð71Þ

is the so-called critical surface density [10]. Dimensionless
2D deflection potential and convergence satisfy the 2D
Poisson equation:

∇2
x⃗Ψðx⃗Þ ¼ 2κðx⃗Þ: ð72Þ

7In cosmological scales these distances have a meaning of
angular diameter distances.
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B. General relativity

To evaluate the corrections in polarization due to lensing,
one needs to perturb the tetrad kμ ¼ k̄μ þ δkμ, where δkμ

is the first order correction that satisfies the perturbed
geodesic equation [92]:

k̄ν∇νδkμ ¼ −δΓμ
νρk̄νk̄ρ: ð73Þ

The Christoffel symbols are evaluated for the following
weak-field metric:

ds2¼−ð1þ2ΦÞdt2þð1−2ΦÞðdx2þdy2þdz2Þ; ð74Þ

where Φ is the gravitational potential of the lens.8

Solving (73) for the nonvanishing contributions of the
Christoffel components arising from Eq. (74), one obtains

δxμ ¼ 1

2
ðγ⃗ · x⃗;−ðγ⃗ · x⃗Þk⃗Þ; ð75Þ

δyμ ¼ 1

2
ðγ⃗ · y⃗;−ðγ⃗ · y⃗Þk⃗Þ; ð76Þ

where γ⃗ ¼ ∇xðΦðxÞÞ is the deflection angle due to lensing.
The vectors x⃗, y⃗ are the spatial parts of xμ, yν introduced in
Sec. IVA, and k⃗ denotes the direction of propagation of the
GW in space. Now, one can use the basis described in
Sec. IVA to write the wave tensor in a more familiar form.
Therefore, the wave tensor (49) can be rewritten by
changing the wave vector as xμ→xμþδxμ, yμ→yμþδyμ

arising from the presence of the lens, where δx and δy are
given by (75) and (76), respectively. The polarization tensor
undergoes a rotation and the wave tensor becomes

ξð0Þμν ¼ HþÃ
þ
μν þH×Ã

×
μν; ð77Þ

where Ãþ and Ã× are the new modified polarization
tensors due to the presence of the lens. They are defined as

Ãþ
ij ¼ Aþ

ij −
1

2
ðγ⃗ · x⃗ÞAx

ij þ
1

2
ðγ⃗ · y⃗ÞAy

ij ð78Þ

and

Ã×
ij ¼ A×

ij −
1

2
ðγ⃗ · y⃗ÞAx

ij −
1

2
ðγ⃗ · x⃗ÞAy

ij; ð79Þ

where Ax
ij ¼ xikj þ kixj and Ay

ij ¼ yikj þ kiyj are the
polarization tensors for the vector −x and vector −y
polarizations, respectively. One can see that the effect of
the lens is that it introduces additional polarizations in GR,

which is an illusion (see, e.g., [47]). Namely, one can
always choose appropriate coordinates to remove these
nontensorial polarizations. Therefore, we do not deal here
with any additional physical effect.

C. Palatini f ðR̂Þ gravity
Similarly, to evaluate the perturbed quantities we can

use the perturbed geodesic equation similar to the
perturbation of light rays [92]. Substituting the relation
kμ ¼ k̄μ þ δkμ into the geodesic equation and evaluating
it to first order in perturbation, we obtain the following
relation for the tetrad δkμ (and similarly for other
tetrads):

k̄νb∇νδkμ ¼ −δΓ̂μ
νρk̄νk̄ρ: ð80Þ

To evaluate the above equation, one must calculate the
nonvanishing components of the affine connection corre-
sponding to the background geometry associated with the
lensing mass (see Appendix B). Since we are interested in a
static case, the conformal factor f0ðR̂Þ ¼ f0ðTÞ, where T is
the trace of the energy-momentum tensor, is independent of
time, and hence we will deal with the spatial derivatives
only in the above expression. Analogously as in GR, we
deal with the following solutions of (80):

δxμ ¼ 1

2
ðγ⃗P · x⃗;−ðγ⃗P · x⃗Þk⃗Þ; ð81Þ

δyμ ¼ 1

2
ðγ⃗P · y⃗;−ðγ⃗P · y⃗Þk⃗Þ; ð82Þ

where

γ⃗P ¼ ∇x⃗ðf0Ψðx⃗ÞÞ ð83Þ

is the gravitational deflection due to the lens in this
theory, whereas usually ΨðxÞ is the lens potential in a
given theory of gravity and the deflection angle γP

reduces to GR when f0 ¼ 1 (α ¼ 0 for the considered
cases). Recall that ∇⊥ is the projected gradient on the
plane perpendicular to the GW propagation. Therefore,
the wave tensor (49) can be rewritten by changing the
wave vector as xμ → xμ þ δxμ, yμ → yμ þ δyμ. The polari-
zation tensor undergoes a rotation and the wave tensor
becomes

ξð0Þμν ¼ HþÃ
þ
μν þH×Ã

×
μν; ð84Þ

where Ãþ and Ã× are the new modified polarization
tensors defined as

Ãþ
ij ¼ Aþ

ij −
1

2
ðγ⃗P · x⃗ÞAx

ij þ
1

2
ðγ⃗P · y⃗ÞAy

ij ð85Þ
8We have already used the fact that gravitational potentials

coincide in the case of GR; see Appendix B for the modified
gravity case.
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and

Ã×
ij ¼ A×

ij −
1

2
ðγ⃗P · y⃗ÞAx

ij −
1

2
ðγ⃗P · x⃗ÞAy

ij; ð86Þ

where Ax
ij ¼ xikj þ kixj and Ay

ij ¼ yikj þ kiyj are the
polarization tensors for the vector −x and vector −y
polarizations, respectively.
It is evident from the above expressions (85) and (86)

that the polarization plane is rotated in the geometric
optics limit in a similar manner to what we have observed
in GR [47]. However, the rotation is different from GR as a
consequence of the extra conformal factor f0ðR̂Þ appearing
in γ⃗P. Let us recall that it is customary in the literature to
neglect the spin 2 nature of gravitational waves and it is
acceptable as the polarization tensor is parallel transported
along the geodesic as we saw in Sec. III.

D. Lensing by singular isothermal sphere

Singular isothermal sphere [107] is one of the simplest
parametrizations of the axially symmetric lens model where
the matter content of the lens behaves as an ideal gas in
thermal and hydrostatic equilibrium. The SIS density
profile is given by the density distribution

ρðrÞ ¼ σ2v
2πGr2

; ð87Þ

where σv is the velocity distribution of the gas
particles. Using the above density distribution and the
Poisson equation given in (63) it is easy to calculate the
convergence

κðξ⃗Þ ¼ 1

c2
DLDLS

DS

Z
∞

−∞
∇2Φðξ⃗; zÞdz

¼ 4πG
c2

DLDLS

DS

Z
∞

−∞
ðρþ 2α∇2ρÞdz; ð88Þ

which provides

κðξ⃗Þ ¼ 2πσ2v
c2

DLDLS

DS

	
1

ξ
þ 2α

ξ3



: ð89Þ

The above equation can be rewritten in terms of the
dimensionless variable x ¼ ξ=ξ0,

κðxÞ ¼ 1

2x
þ α

x3ξ20
; ð90Þ

where the length scale ξ0 is given by

ξ0 ¼ 4π
σ2v
c2

DLDLS

DS
: ð91Þ

As expected, taking α ¼ 0 recovers the convergence in GR
for the SIS density profile.
Lensing potentialΨðx⃗Þ ¼ ΨðxÞ can be obtained from the

2D Poisson equation ∇2
x⃗ΨðxÞ ¼ 2κðxÞ. For this purpose it

is convenient to introduce polar coordinates in the lens
plane: x⃗ ¼ xðcosφ; sinφÞ. Then ∇2

x⃗ ¼ 1
x
∂

∂x ðx ∂

∂xÞ þ 1
x2

∂
2

∂φ2

and the 2D Poisson equation reads

1

x
d
dx

�
x
dΨ
dx

�
¼ 1

x
þ 2α

x3ξ20
: ð92Þ

Its solution is

ΨðxÞ ¼ xþ 2α

ξ20x
: ð93Þ

Taking the derivative of the lensing potential (83) gives us
the corresponding deflection angle γ⃗ for the Palatini
polynomial fðR̂Þ models,

γ⃗PðxÞ ¼ x⃗
x
−
2α

ξ20

x⃗
x3

: ð94Þ

In addition to the convergence κðxÞ being informative about
the Ricci part of the curvature effect on the bundle of null
geodesics, shear modulus9 γðxÞ quantifies the magnitude
of the Weyl part of the curvature tensor. In the case of
Palatini’s theory one has, for the SIS lens,

γ ¼ 1

2x3

���� 6αξ20 − x2
���� ð95Þ

and the magnification is

μ ¼ x6
�
x3 −

4α

ξ20

�
−1
�
x3 − x2 þ 2α

ξ20

�
−1
; ð96Þ

where again GR formulas are recovered in the limit of
vanishing α.

VI. CONCLUSIONS

The aim of the present research was to examine the
effects of Palatini fðR̂Þ gravity on the propagation of
gravitational waves and gravitational lensing of them, in
particular. To our knowledge, this is the first work in which
the effects of metric-affine gravity were studied in the
context of the lensing of gravitational waves. First, we have
confirmed the results obtained by previous works in the
literature [87,89], demonstrating that gravitational waves
propagate along autoparallel curves in this theory which
coincides with geodesics in general relativity. This con-
sistency reinforces the validity of our approach and

9For more details see Appendix D.
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contributes to the overall understanding of gravitational
waves in modified theories of gravity. Following the
standard procedure, we have studied using the WKB
approximation the geometric optics limit in Palatini fðR̂Þ
gravity. This allowed us to successfully compute the
evolution of the gravitational wave amplitude and explore
the effects of metric-affine gravity on the rotation of the
gravitational wave polarization plane. Furthermore, as a
useful and realistic example, we discussed the SIS model,
which is a robust model for a galaxy acting as a lens, in the
context of Palatini fðR̂Þ gravity.
The examined model of gravity reduces to GR in a

vacuum, and it does not provide any changes in the
gravitational wave amplitude and other lensing properties
for a point lens. Therefore, one has to consider the
propagation of GWs through the region of spacetime where
a nonzero energy density distribution is present or in a close
vicinity of it. Note that the nonrelativistic gravitational
potential describing such a situation carries an additional
term due to the modification of the Poisson equation (63).
An example of the first case is when a GW signal emitted
from the source travels not exactly through the vacuum but
rather through the dark matter halo of the host galaxy,
through the dark matter of the galaxy cluster to which the
host belongs, and through the dark matter halo of our
Galaxy. This attenuates the GW amplitude in the metric-
affine gravity theory studied. Moreover, we have shown
that the GWamplitude evolution equation can be expressed
as a correction to the measured luminosity distance (62) of
the source. One should note that the corrections depend
on the matter density distribution along the line of sight
through the conformal factor. As an example, we consid-
ered a galaxy halo modeled by the NFW (SIS) density
profile. Taking the value of α ∼ 109 m2 we found that the
corrections are of the order of 10−42ð10−43Þ, which is
negligible. However, the corrections could be significant—
of order of 10−2—if one uses the constraints for α ∼
1049m2 obtained from SNIa and BAO observations [86].
Furthermore, we have derived the corrections to the
polarization tensors (85) and (86) and found that the
polarization plane is rotated and a vector polarization
appears. However, just as in GR this is illusory and can
be removed by proper gauge choice. It is worth mentioning
that these corrections depend on the modified deflection
angle (94), and hence they are theory dependent. As an
example of the second case, we studied the SIS lens model
and we demonstrated that Palatini fðR̂Þ gravity indeed
modifies the convergence (90), the lensing potential (93),
and the deflection angle (94), reducing to the GR limit
when α vanishes. Let us stress that the exemplary value of α
used by us is not the firmly established one and can be
updated in the future. Hence the claims of negligible
modified gravity effects are not firmly established, as well.
Therefore, the results we obtained could be valuable for
further metric-affine gravity vs GR tests involving lensing

of GWs and the comparison of luminosity distances
measured from electromagnetic and GW sources.
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APPENDIX A: SACHS FORMALISM

With the notations of Sec. (IV B), let us introduce an
orthonormal basis (the Sachs basis) ðsμAÞ, A ¼ f1; 2g,
satisfying the conditions

sμAuμ ¼ sμAdμ ¼ 0; sμAsBμ ¼ δAB: ðA1Þ

In the further part, we follow [92].
One of the ways to study the beam pattern is provided by

the solutions of the deviation equation (51) provided in the
Sachs basis

d2χA

dλ2
¼ RA

Bχ
B; ðA2Þ

whereRA
B is the optical tidal matrix that is symmetric under

the exchange of their indices. Moreover, it can be decom-
posed into pure trace and trace-free parts as

R ¼
�
R 0

0 R

�
þ
�−ReW ImW

ImW ReW

�
; ðA3Þ

where R ¼ − 1
2
Rμνkμkν is the Ricci lensing term, respon-

sible for a homothetic transformation of the beam pattern.
On the other hand,

W ¼ −
1

2
Cμρνσðsμ1 − isμ2Þkρkνðsσ1 − isσ2Þ ðA4Þ

is the Weyl lensing matrix responsible for the elongation
and contraction of the beam pattern in different directions.
The Weyl tensor Cμρνσ has the same symmetries as the
Riemann tensor, and it is trace-free. As we will see, these
quantities are useful in lensing studies to express the wave’s
polarization amplitude.
Let us now denote the optical tidal matrix as R. Then,

the Sachs equation (A2) can be written in terms of the

PROPAGATION AND LENSING OF GRAVITATIONAL WAVES IN … PHYS. REV. D 109, 124014 (2024)

124014-13



Jacobi matrixD which relates the position of images on the
observers’ celestial sphere to the physical separation of the
sources:

D̈ ¼ RD; ðA5Þ

where the dot denotes the derivative with respect to the
affine parameter λ. Let us now define the deformation rate
of the beam as

S ¼ Ḋ
D
: ðA6Þ

Note that the deformation matrix (A6) can be expressed in
terms of Sach’s basis as

SAB ¼ sμAs
ν
B∇μkν: ðA7Þ

Now, we can decompose the matrix S into antisymmetric,
trace, and traceless symmetric parts,

S ¼
�

0 ω

−ω 0

�
þ
�
θ 0

0 θ

�
þ
�−σ1 σ2

σ2 σ1

�
; ðA8Þ

where ω, θ, and σ ¼ σ1 þ iσ2 are optical scalars defined as

ω2 ¼ 1

2
ωαβωαβ; θ ¼ 1

2
kα;α; σ2 ¼ σαβσαβ ðA9Þ

with

ωαβ ¼ k½α;β�; ðA10Þ

σαβ ¼ kðα;βÞ −
1

2
Qαβθ: ðA11Þ

The semicolon ;β means the application of ∇β while the
round and rectangular brackets denote symmetrization
and antisymmetrization in the indices, respectively.
Since we are dealing with a null congruence, the vorticity
tensor ωαβ is zero since the null vector was defined as
kμ ¼ Φ;μ after the expression (21). Therefore, the matrix’s
components (A8) consist of the expansion θ and shear
scalars σ1 and σ2 only.

APPENDIX B: WEAK-FIELD LIMIT EQUATIONS
FOR PALATINI GRAVITY

In the weak-field limit, the metric in modified gravity can
be written as

ds2¼−ð1þ2ΦÞdt2þð1−2ΨÞðdx2þdy2þdz2Þ; ðB1Þ

where Φ and Ψ are Bardeen potentials. We can directly
obtain the nonvanishing components of the affine

connection corresponding to the background geometry
associated with the lensing mass:

δΓ̂0
i0 ¼ −∂iΦþΦ∂if0; ðB2Þ

δΓ̂i
00 ¼ ∂iΨ; ðB3Þ

δΓ̂0
ij ¼ 0; ðB4Þ

δΓ̂i
j0 ¼ 0; ðB5Þ

δΓi
jk ¼ −∂kΨδij − δik∂jΨþ δjk∂

iΨ

− ∂j ln f0δikΨ − ∂k ln f0δijΨþ ∂
i ln f0δjkΨ: ðB6Þ

APPENDIX C: LUMINOSITY DISTANCE

A key observable in the gravitational wave domain is the
luminosity distance. It is defined in terms of the ratio of
GW power emitted by the source and flux registered at the
detector location. Following the treatment of [100,101], the
gravitational energy flux measured by an observer can be
calculated according to the following formula:

F̂ α ¼ −T̂μ
νhαμuν; ðC1Þ

where T̂μν is the gravitational wave energy momentum
tensor in Palatini fðR̂Þ gravity, hαμ is the projection tensor,
and uα is the four-velocity of the observer. The projection
tensor can be written as hαμ ¼ δαμ þ uαuμ, and the energy-
momentum tensor can be obtained from the amplitude
evolution equation following [100], in which we assume
that the structure of the T̂μν is the same as in GR with the
modified amplitude derived in (61),

T̂μν ¼
1

32π
CPk̂μk̂ν; ðC2Þ

where CP ¼ CGRe−
R
ð2d ln f0dλ þ1

2
f0d ln f

0
dλ Þdλ is the evolution of

amplitude given in Eq. (61) and k̂μ is the wave vector in
the conformal frame. Using this one obtains the measured
energy flux as

F̂ ¼ F d̂ ¼ 1

32π
ðCPÞ2ω2d̂; ðC3Þ

where F is the flux amplitude and d̂α is the unit spacelike
vector given by

d̂α ¼ 1

ω
ðk̂α − ωûαÞ; ðC4Þ

where ω is the gravitational wave frequency measured by
the observer, defined as ω ¼ −kμuμ. This notion underlies
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the definition of the GW redshift for a given value of the
affine parameter λ, as

1þ zðλÞ ¼ ωðλÞ
ωð0Þ : ðC5Þ

If we assume that GWs are emitted by a spherically
symmetric source with radius Rs, then the intrinsic lumi-
nosity of the source is given by Ls ¼ 4πR2

sF ðλsÞ, where as
usual λs is the value of the affine parameter at the source.
The luminosity distance to the source as measured by
observation is given by

dL ¼
	

Ls

4πF ðλOÞ


1=2

¼
	
F ðλsÞ
F ðλOÞ



1=2

Rs: ðC6Þ

This gives us the luminosity distance relation

dPL ¼ dGRL exp

	Z
λo

λs

�
2
d ln f0

dλ
þ 1

2
f0
d ln f0

dλ

�
dλ



: ðC7Þ

It is to be noted that in lensing angular diameter distances
are used and we assume Etherington’s reciprocity theorem.
However, its validity in the chosen theory of gravity needs
to be proved.

APPENDIX D: LENSING POTENTIAL
AND CONVERGENCE

First-order strong lensing effects, i.e., image distortion
and magnification, can be derived from the Jacobi matrix of

lens equation

½A�ij ≔
�
∂y⃗
∂x⃗

�
ij
¼

�
δij −

∂
2Ψ

∂xi∂xj

�
: ðD1Þ

With a shorthand notation Ψij for partial derivatives in the
above expression, one can express the shear tensor Γ ¼
ðγ1γ2

γ2
−γ1

Þ where γ1 ¼ 1
2
ðΨ11 −Ψ22Þ≕ γ cos 2φ, γ2 ¼ Ψ12 ¼

Ψ21≕ γ sin 2φ. For the SIS lens in Palatini theory, one has

Ψ11 ¼
1

x5

	
x2
�
x2 −

2α

ξ20

�
þ
�
6α

ξ20
− x2

�
x21



;

Ψ12 ¼ Ψ21 ¼
x1x2
x5

�
6α

ξ20
− x2

�
;

Ψ22 ¼
1

x5

	
x2
�
x2 −

2α

ξ20

�
þ
�
6α

ξ20
− x2

�
x22



;

and hence the shear components are

γ1 ¼
1

2x5

�
6α

ξ20
− x2

�
ðx21 − x22Þ;

γ2 ¼
�
6α

ξ20
− x2

�
x1x2
x5

; ðD2Þ

where the notation x⃗ ¼ ðx1; x2Þ and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
was used.
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