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We analyze the dynamics of the Sun-Earth-Moon system in the context of a particular class of theories of
gravity where curvature and matter are nonminimally coupled. These theories can potentially violate the
equivalence principle as they give origin to a fifth force and a extra non-Newtonian force that may imply
that Earth andMoon fall differently towards the Sun. We show, through a detailed analysis, that consistency
with the bound on weak equivalence principle arising from 48 years of lunar laser ranging data, for a range
of parameters of the nonminimally coupled gravity theory, can be achieved via the implementation of a
suitable screening mechanism.
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I. INTRODUCTION

General relativity (GR) can account for astrophysical and
cosmological phenomena such as the flattening of the
rotation curves of galaxies and the accelerated expansion
of the Universe provided about 95% of the content of the
Universe is composed of dark energy and dark matter. In
principle, this somewhat puzzling situation can be circum-
ventedwithout these dark components in the context of some
alternative theories of gravity. Some alternatives include,
fðRÞ gravity [1–4], inwhich the linear Ricci curvature scalar,
R, in the Einstein-Hilbert action is replaced by amore general
function fðRÞ and theories where a nonminimal coupling
(NMC) between curvature andmatter is introduced [5]. In the
latter, the Einstein-Hilbert action is replaced by two functions
of curvature, f1ðRÞ and f2ðRÞ. The function f1ðRÞ is
analogous to fðRÞ gravity theory, while the function
f2ðRÞ multiplies the matter Lagrangian density, which
couples nontrivially geometry and matter [5]. This theoreti-
cal route has been extensively examined in what concerns
dark matter [6], dark energy [7], inflation [8], energy density
fluctuations [9], gravitational waves [10], cosmic virial
theorem [11], and black holes [12]. This modified theory
has also been examined through the Newton-Schrodinger
approach [13,14].

In a previous work [15] the case of functions
f1ðRÞ; f2ðRÞ analytic at R ¼ 0 was considered, and impli-
cations of the NMC model were examined via the pertur-
bations to the perihelion precession by using data from
observations of Mercury’s orbit.
It turns out that NMC gravity modifies gravity as it

introduces both a Yukawa type fifth force and an extra force
that depends on the spatial gradient of the Ricci scalar.
While the Yukawa force is typical also of fðRÞ gravity, the
existence of the extra force is specific of NMC gravity
[5,16], as the nonminimal coupling induces a nonvanishing
covariant derivative of the energy-momentum tensor. On its
hand, the fifth force can give rise to static solutions even
though in the absence of pressure [14].
Constraints to the NMC gravity model with analytic f1,

f2 functions have been computed using the results of a
geophysical experiment in Ref. [17]. The idea was to
consider deviations from Newton’s inverse square law in
the ocean [18]. It was found that the presence of the extra
force in a fluid such as seawater imposes more stringent
constraints on the NMC gravity model than the observa-
tion of both Mercury’s perihelion precession and lunar
geodetic precession. Hence, for the NMC gravity model,
Solar System constraints are weaker than geophysical
constraints.
In the present paper we look for meaningful Solar

System constraints to NMC gravity, for a function f2ðRÞ
that contains a term proportional to Rα, with α < 0, so that
f2ðRÞ is not analytic at R ¼ 0. The resulting model has
been used in Ref. [6] to predict the flattening of the galaxy
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rotation curves, and to predict the current accelerated
expansion of the Universe [7].
In Ref. [15] the method based on the 1=c expansion was

used to study the NMC gravity model. However, since the
f2ðRÞ function is not analytic, a different nonlinear
approach has to be employed. It turns out that in Solar
System the above NMC model exhibits a screening
mechanism, which is a version of the so-called chameleon
mechanism [19] adapted to the NMC gravity and used to
obtain Solar System constraints [20].
In Ref. [20] the complications of the NMC where

considered. These generalize the nonlinear computations
of Ref. [21] for the chameleon mechanism for the gravi-
tational field of the Sun and the corresponding calculation
for the case of fðRÞ gravity [21]. Spherical symmetry was
considered and the constraints arising from the Cassini
measurement of Parametrized post-Newtonian (PPN)
parameter γ [22] were used to constrain the parameters
of the NMC gravity model. It was shown that the
chameleon solution in NMC gravity turns out to be close
to GR inside a screening radius rs that has to be large
enough, so that rs either lies inside the solar convection
zone, close to the top of the zone, or it is larger. Deviations
from GR are sourced by the fraction of solar mass,
including solar atmosphere, contained in the region with
radii r > rs, so that if rs lies in the top of the convection
zone then such deviations are essentially sourced by a thin
shell of mass in the convection zone. This is a typical
feature of the chameleon mechanism [19].
In the present work we extend the nonlinear computa-

tions made in Ref. [20] and evaluate the contribution of the
interactions in the NMC gravity in the interior of the Sun,
Earth, and Moon. It is shown that in order to satisfy Solar
System constraints for the NMC gravity, the solution of the
chameleon mechanism is a suitable scalar function that
must remain close to the minimizer of an effective potential
Veff in most of the interior of massive astronomical bodies
(Sun, Earth, and Moon), so that GR is approximately
satisfied [19,21]. More specifically, for each astronomical
body, the solution has to be close to the minimizer of Veff
inside a critical radius, the screening radius, which must be
determined. If the screening radius is close to the radius of
the astronomical body, then the thin shell condition is
satisfied and deviations from GR are screened. The
potentials of the metric tensor are then expressed in terms
of the scalar function.
The chameleon solution for the three-body system is

computed by taking into account the appropriate boundary
conditions at the boundaries of the screened zones, and we
develop a method of solution based on different linear
approximations of the field equations in different zones.
The Earth and Moon are modeled by means of layers of
constant density, we solve a Yukawa equation in each
layer, a Poisson equation in interplanetary space outside
of the screened zones of the three astronomical bodies,

and Laplace equation in the solar neighborhood of the
Galaxy. An analytic solution of the Poisson equation with
Dirichlet conditions at the boundaries of the screened
zones is computed by means of Green’s function, which is
in turn approximated by using an extension of the method
of images to a system of three spheres. The screening
radii of the bodies are computed by solving a system of
integral equations which result from Neumann boundary
conditions.
We compute the equations of motion for the centers of

mass of Earth andMoon in the gravitational field of the Sun
from first principles, by taking the covariant derivative of
the field equations, then solving the resulting stressed-
matter equations of motion. The Earth andMoon are treated
as layered spheres of matter characterized by the energy-
momentum tensor of continuous bodies in a hydrostatic
state of stress. The equations of motion exhibit the presence
of both the fifth force and the extra force which give rise to
deviations from GR. Such deviations are sourced by the
masses contained in the thin shells of the bodies which in
turn depend on the density profiles of the bodies them-
selves, so that the Earth andMoon fall towards the Sun with
different accelerations giving rise to a violation of the weak
equivalence principle (WEP). Such a violation takes place
in modified gravity theories which exhibit the chameleon
mechanism [23,24]. The WEP violation in the Sun-Earth-
Moon system makes it possible to constrain the parameters
of the NMC gravity model by means of lunar laser ranging
(LLR) measurements, which is the result achieved in the
present paper by resorting to most recent LLR data [25,26].
The paper is organized as follows. In Sec. II the NMC

gravity model is presented. In Sec. III we consider the field
equations inside and around the astronomical bodies (Sun,
Earth, Moon) for the chameleon mechanism. In Sec. IV we
compute the solutions for the interior of the astronomical
bodies and in the outskirts of the Solar System. In Sec. V
we determine the boundary conditions for the chameleon
solution at the boundaries of the screened zones, then the
gravitational field of the astronomical bodies is evaluated
using Green’s function and the method of images for a
system of spheres. The integral equations which determine
the screening radii are also found. In Sec. VI the dynamics
of the continuous bodies is considered in order to compute
the fifth force and the extra force inside the bodies and to
evaluate a yielding jump in the pressure. Both the fifth force
and the extra force are shown to be negligible inside the
screening radii. In Sec. VII the acceleration of Earth and
Moon due to the fifth force is computed. In Sec. VIII the
acceleration of Earth and Moon due to the extra NMC force
is computed. In Sec. IX the potential violation of the
equivalence principle is quantified and in Sec. X the bound
on the WEP arising from the LLR data is used to constrain
the parameters of the NMC gravity model. It is shown that
the screening mechanism is successful in ensuring that the
bound on the WEP can be respected for a suitable range of
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model parameters. Finally, our conclusions are presented in
Sec. XI. Appendices A–E contain the technical details of
the calculations needed to obtain the various results of
the paper.

II. NONMINIMALLY COUPLED GRAVITY

The action functional of NMC gravity theory here
considered is of the form [5]

S ¼
Z �

1

2
f1ðRÞ þ ½1þ f2ðRÞ�Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where fiðRÞ (with i ¼ 1, 2) are functions of the Ricci
curvature scalar R, Lm is the Lagrangian density of matter,
and g is the metric determinant. The Einstein-Hilbert action
of GR is recovered by taking

f1ðRÞ ¼ c4

8πG
R; f2ðRÞ ¼ 0; ð2Þ

whereG is Newton’s gravitational constant. We work in the
Jordan frame throughout this paper.
The first variation of the action functional with respect to

the metric gμν yields the field equations:

ðf1R þ 2f2RLmÞRμν −
1

2
f1gμν

¼ ð∇μ∇ν − gμν□Þðf1R þ 2f2RLmÞ þ ð1þ f2ÞTμν; ð3Þ

where fiR ≡ dfi=dR. The trace of the field equations is
given by

ðf1R þ 2f2RLmÞR − 2f1 þ 3□f1R þ 6□ðf2RLmÞ
¼ ð1þ f2ÞT; ð4Þ

where T is the trace of the energy-momentum tensor Tμν.
In NMC gravity the energy-momentum tensor of matter

is not covariantly conserved [27,28]: applying the Bianchi
identities to Eq. (3), it follows

∇μTμν ¼ f2R
1þ f2

ðgμνLm − TμνÞ∇μR; ð5Þ

a property that gives rise to an extra force that is added to
the fifth force which is typical of fðRÞ gravity theory. We
will find that this extra force has a negligible effect on the
motion of Earth and Moon for values of NMC gravity
parameters of astrophysical and cosmological interest,
while such a force is expected to have important effects
at the galactic scale.
We point out that as both f1ðRÞ and f2ðRÞ depend only

on the scalar curvature, the Cauchy initial condition
problem of the NMC gravity theories is like the one of
the fðRÞ theories, which can be solved by the standard

method used in GR (see, for instance, Ref. [29]) for
nonsingular energy-matter contributions. Furthermore,
the NMC gravity theory with a Levi-Civita connection is
free from Ostrogradsky-type instabilities [30].

A. Metric and energy-momentum tensors

We use the following notation for indices of tensors:
greek letters denote space-time indices ranging from 0 to 3,
whereas latin letters denote spatial indices ranging from 1
to 3. Cartesian spatial vectors are indicated by boldface
type and the scalar product is indicated by a dot. The
signature of the metric tensor is ð−;þ;þ;þÞ.
The Sun is modeled as a static spherically symmetric

distribution of matter, while the Earth and Moon are
modeled as orbiting spherically symmetric bodies. The
metric tensor that describes the spacetime in the Sun-Earth-
Moon system is given, in the Newtonian gauge, by

ds2 ¼ −½1 − 2Φðx; tÞ þ 2Ψðx; tÞ�c2dt2
þ ½1þ 2Φðx; tÞ�δijdxidxj; ð6Þ

where the potentials Φ and Ψ are perturbations of the
Minkowski metric of order Oð1=c2Þ.
The Sun is considered as a perfect fluid in hydrostatic

equilibrium, while the Earth and Moon are approximately
described as continuous bodies in a hydrostatic state of
stress, i.e., the normal stresses are equal to the pressure and
shear stresses are neglected [31]. In this approximation the
components of the energy-momentum tensor, to the rel-
evant order for our computations, for all the astronomical
bodies are given by (Ref. [32], Chapter 4.1)

T00 ¼ ρc2 þOð1Þ; ð7Þ

T0i ¼ ρcvi þO
�
1

c

�
; ð8Þ

Tij ¼ ρvivj þ pδij þO
�
1

c2

�
; ð9Þ

where matter is characterized by density ρ, velocity field vi,
and pressure p. The trace of the energy-momentum
tensor is

T ¼ −ρc2 þOð1Þ: ð10Þ

In the present paper we use Lm ¼ −ρc2 þOð1Þ for the
Lagrangian density of matter [16].

B. Choice of functions f 1ðRÞ and f 2ðRÞ
We choose the following functions:

f1ðRÞ ¼ c4

8πG
R; f2ðRÞ ¼ qRα; α < 0; ð11Þ
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where the function f1ðRÞ corresponds to GR and q, α are
real numbers that have to be considered as parameters of
the NMC model of gravity.
The functions (11) have been used in Ref. [6] to model

the rotation curves of galaxies, and in Ref. [7] to model the
current accelerated expansion of the Universe.
In some cases it will be useful to replace parameter q

with the following rescaled, dimensionless parameter:

q̃ ¼ qRα
g ; ð12Þ

with Rg ¼ 8πGρg=c2, where ρg is the galactic mass density
in the solar neighborhood of the Milky Way. With this
substitution, the function f2ðRÞ can be written in the form

f2ðRÞ ¼ q̃

�
R
Rg

�
α

: ð13Þ

Parameter q̃ will be used to draw the exclusion plots
resulting from the LLR constraint on the NMC gravity
model, because it permits to avoid too small numbers. For
the theoretical computations parameter q will be preferred
since it yields simpler formulas.

III. APPROXIMATION OF THE FIELD
EQUATIONS

We approximate the field equations (3) and (4) taking
into account that the metric potentials Φ and Ψ are small
perturbations of the Minkowski metric, so that we neglect
the higher order terms that include products of potentials or
their derivatives, and cross products between their deriv-
atives and the potentials. Moreover, velocities of bodies are
negligible with respect to c. By computing the Ricci tensor
and the Ricci curvature scalar R from the metric (6), it then
follows that the functions Φ and Ψ satisfy the following
equations:

∇2ðΦþΨÞ ¼ −
R
2
; ð14Þ

∇2Ψ ¼ 1

2

�
R00 −

R
2

�
; ð15Þ

where ∇2 denotes Laplace operator in flat three-dimen-
sional space. We introduce the scalar field η, which is a
function of curvature R also explicitly depending on
spacetime coordinates ðx; tÞ through mass density:

η ¼ ηðx; t; RÞ ¼ f1R − 2f2Rρðx; tÞc2: ð16Þ

Using the metric (6) and Eqs. (14) and (15), the time-time
component of the field equations (3) at leading order is
given by [we neglect a Oð1Þ term in T00 without conse-
quences]

ηð−∇2Φþ∇2ΨÞ þ f1

2
ð1 − 2Φþ 2ΨÞ

¼ ∇0∇0ηþ ð1 − 2Φþ 2ΨÞ□ηþ ð1þ f2Þρc2; ð17Þ

and the trace (4) of the field equations becomes

ηR − 2f1 þ 3□η ¼ ð1þ f2ÞT: ð18Þ

Eliminating □η in Eq. (17) by means of the trace equation,
and ∇2Φ by means of Eq. (14), we obtain [we neglect a
Oð1Þ term in T without consequences]

η

�
2∇2Ψþ 5

6
R

�
−
f1

6
ð1− 2Φþ 2ΨÞ

¼∇0∇0ηþ
2

3
ηRðΦ−ΨÞ þ 2

3
ð1þ f2Þρc2ð1þΦ−ΨÞ:

ð19Þ

We require the functions f1ðRÞ and f2ðRÞ to satisfy the
following conditions:

���� 8πGc4
f1

R
− 1

���� ≪ 1; jf2j ≪ 1; ð20Þ

and the following condition on the derivatives of f1 and f2

with respect to R,

���� 8πGc4 η − 1

���� ≪ 1: ð21Þ

The conditions (20) mean that the Lagrangian density in
Eq. (1) is a small perturbation of the Lagrangian of GR.
While the first of conditions (20) is trivial for the choice
(11) of function f1, the other two conditions will be verified
a posteriori. Using such conditions Eq. (19) is approx-
imately given by

∇2Ψþ R
3
¼ 8πG

3c2
ρþ 1

3

�
R
2
þ 8πG

c2
ρ

�
ðΦ −ΨÞ

þ 4πG
c4

∇0∇0η; ð22Þ

from which, keeping terms of order Oð1=c2Þ, we find

∇2Ψ ¼ 1

3

�
8πG
c2

ρ − R

�
; ð23Þ

and, using Eq. (14),

∇2Φ ¼ −
4πG
c2

ρþ 1

6

�
8πG
c2

ρ − R

�
: ð24Þ
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A. Equation for the scalar field η

Equations (23) and (24) have to be completed with an
equation for the scalar field η. Neglecting cross-products
between the potentialsΦ,Ψ and their derivatives we have at
leading order

□η ¼ ð1 − 2ΦÞ∇2η −
1

c2
ð1þ 2Φ − 2ΨÞ ∂

2η

∂t2
þ ∂Ψ
∂xi

∂η

∂xi

≈ ∇2η: ð25Þ

Using conditions (20) and (21) the trace equation (18) is
approximately given by

∇2η ¼ c4

24πG
R −

1

3
ρc2: ð26Þ

Note that Eqs. (23), (24), and (26) are formally the same as
the ones found in Ref. [21] for fðRÞ gravity in the special
case of spherical symmetry, with the difference that the
scalar field η, defined in (16), depends explicitly on ðx; tÞ
through the multiplication by ρðx; tÞ due to the nonminimal
coupling. Such a dependence on ρðx; tÞ will be exploited in
the sequel.
By introducing a potential function V ¼ Vðx; t; ηÞ and

an effective potential Veff as in Refs. [19,21],

∂V
∂η

¼ c4

24πG
ωðη; ρÞ; Veff ¼ V −

1

3
ρc2η; ð27Þ

where the function ωðη; ρÞ is obtained by solving Eq. (16)
with respect to R, the equation for the scalar field η
becomes

∇2η ¼ ∂Veff

∂η
: ð28Þ

Note that for the choice (11) of functions f1ðRÞ; f2ðRÞ the
function ωðη; ρÞ exists and it is unique. The effective
potential has an extremum which corresponds to the GR
solution

R ¼ ωðη; ρÞ ¼ 8πG
c2

ρ; ð29Þ

and we require that such an extremum is a minimum
[19,21], which yields the condition

∂
2Veff

∂η2
¼ c4

24πG
1

ηR
≥ 0; ð30Þ

with ηR ¼ f1RR − 2f2RRρc
2 and R ¼ ωðη; ρÞ, the double

subscript in fiRR denoting second derivative with respect
to R. For the choice (11) of f1, f2 such a minimum
condition requires

αðα − 1Þq½ωðη; ρÞ�α−2 ≤ 0; ð31Þ

from which, for q ≠ 0 and R ¼ ωðη; ρÞ > 0, it follows

α < 0 ⇒ q < 0; ð32Þ

which is an application of a general stability condition
against Dolgov-Kawasaki instability in NMC gravity found
in Refs. [33,34].
At the minimum of the effective potential Veff we set

∂
2Veff

∂η2
¼ 1

λ2
> 0; with ωðη; ρÞ ¼ 8πG

c2
ρ; ð33Þ

where λ ¼ λðρÞ > 0 has dimension of length and depends
on mass density. For the choice (11) of functions of
curvature we have

λ2 ¼ 6qαð1 − αÞ
�
8πG
c2

ρ

�
α−1

; ð34Þ

and the function λðρÞ decreases as density ρ increases. In
the next sections we consider only the choice (11) of
functions f1ðRÞ; f2ðRÞ, and we compute an analytic
approximate solution of the equation for the scalar field η.

B. Effective potential

Equation (28) for the scalar field η is typical of chameleon
theories of gravity [19,21]. The difference with respect to
other chameleon theories such as fðRÞ gravity consists in the
explicit dependence of ∂V=∂η on ρðx; tÞ due to the non-
minimal coupling (see the discussion in Ref. [20]).
The effective potential Veff and its dependence on mass

density plays a crucial role in this theory, so that in the
following we give its explicit expression, complicated by
the nonminimal coupling, and its main properties. Using
Eq. (27) the effective potential is given by

Veffðη; ρÞ ¼
c4

24πG

Z
ωðη; ρÞdη − 1

3
ρc2η; ð35Þ

where in the indefinite integral we may add an arbitrary
function of density ρwithout changing the Eq. (28) for η. In
order to plot the effective potential with respect to η for a
given density ρ, it is convenient to rescale and translate the
variable η as follows:

ξ ¼ ð8πG=c4Þη − 1

jqjc2=ð8πGÞ ; ð36Þ

where the division by jqj makes the plot also independent
on the parameter q < 0. We have ξ < 0.
Expressing ω as a function of ðη; ρÞ by means of

inversion of formula (16), evaluation of the integral (35)
yields after a suitable rescaling
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Veffðξ; ρÞ
jqj½c4=ð8πGÞ�2 ¼ −

2

3
ρ

�
1

2
ξþ ð1þ jαjÞ

�
c2

8πG

�αþ1
α−1

×

�
−

1

2jαjρ ξ
� α

α−1
�
; ð37Þ

which is independent on parameter q. The effective
potential has a minimizer ξmin < 0 given by

ξmin ¼ −2jαj
�
8πG
c2

�
αþ1

ρα; ð38Þ

hence jξminj increases as density ρ decreases, being α < 0.
The minimum value of the rescaled effective potential is
given by

Veffðξmin; ρÞ
jqj½c4=ð8πGÞ�2 ¼ −

2

3

�
8πG
c2

ρ

�
αþ1

< 0: ð39Þ

If density decreases, then the minimum value increases for
0 > α > −1, decreases for α < −1, and it is constant
for α ¼ −1.
Figure 1 shows the plot of the effective potential for α ¼

−1 and for two different values of density which correspond
to the transition from the lunar interior to interplanetary
space: the large value is the density of lunar crust
(ρ ¼ 2.55 g cm−3) while for the small value we consider
the density of the solarwind at a distance of one astronomical
unity from the Sun (ρ ¼ 5.8 × 10−24 g cm−3 [35]). The plot
shows how the minimizer of the effective potential changes
position with the transition from large density to small
density and we note that (due to logarithmic scale) the
curvature of the potential becomes much smaller for low
density.

C. Plan of computations

This section is intended as a guide for the reader in order
to understand both the method of solution of the field
equations found in this section and some of the approx-
imations that will be used to compute an analytic approxi-
mation of the solution.
The system of field equations (23) and (24) for the

potentials Ψ and Φ of the metric, together with Eq. (28) for
the scalar field η constitute a nonlinear system of partial
differential equations. Since partial derivatives only appear
with respect to space coordinates and, using the definition
(11) of functions f1, f2, the relation (16) between η and
curvature R is algebraic, then the functions Ψ, Φ, η depend
on time only through the instantaneous values of mass
density ρðx; tÞ of the three bodies and interplanetary
medium. Moreover, all nonlinearities are contained in
the equation for η since we will show that the potentials
Ψ and Φ can be computed from η by solving linear
equations. Hence, Secs. IV and V will be entirely devoted
to the solution of the nonlinear problem for η, with a short
final subsection for the computation of the metric
potentials.
The equation for η is typical of chameleon theories of

gravity, modified through the explicit dependence of the
potential V on density due to the nonminimal coupling,
hence, we solve this equation by extending to the Sun-
Earth-Moon system the approach followed in Refs. [19,36]
for the one body problem. More precisely, the nonlinear
equation for η is approximated by means of different linear
equations in different regions of space and the solutions of
the linear equations are then matched across the boundaries
of such regions. Hence, the nonlinearity is reduced to the
fact that the equation for η changes shape in different
regions of space, and boundary conditions yield suitable
transitions of the solution across different regions.
Following [19], we use the following different approx-

imations of the effective potential Veff . If the solution η has
to remain close to a minimizer of Veff , then we use a
quadratic approximation of the potential around the mini-
mizer so that the derivative of Veff is approximated by

∂Veff

∂η
ðη; ρÞ ≈ ∂Veff

∂η
ðηmin; ρÞ þ

∂
2Veff

∂η2
ðηmin; ρÞðη − ηminÞ:

ð40Þ

In order to satisfy the stringent bounds from Solar System
experiments on modified gravity, a chameleon theory
requires the solution η to remain close to the minimizer
of the effective potential Veff in most of the interior of
massive astronomical bodies such as the Sun, Earth, and
Moon, so that GR is approximately satisfied [19,21]. More
precisely, in each body η has to be close to the minimizer of
Veff inside a critical radius, called the screening radius, that
has to be determined. If the screening radius is close to the

FIG. 1. Plot of the rescaled effective potential versus jξj for
α ¼ −1. Due to the logarithmic scale for jξj the curvature of the
potential at low density is much smaller than the value at large
density.
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radius of the astronomical body for each body, then the thin
shell condition is satisfied and deviations from GR are
screened.
Particularly, since we model both the Earth and Moon by

means of layers of constant density, the approximation (40)
of the effective potential for large density, inside the
screening radii of Earth and Moon, yields

∇2η ¼ ∂Veff

∂η
ðη; ρÞ ≈ 1

λ2ðρÞ ðη − ηminÞ; ð41Þ

so that Eq. (28) for η becomes of Yukawa type in each layer.
We model the Sun, Earth, and Moon by means of spheri-
cally symmetric mass densities ρðx; tÞ, so that the require-
ment that deviations from GR have to be suppressed inside
the screening spheres of all three bodies implies at each
time instant t:

Rðx; tÞ ≈ 8πG
c2

ρðx; tÞ; ð42Þ

hence, with a good approximation, inside the three screen-
ing spheres curvature has to be spherically symmetric with
respect to the center of each sphere. Then, by definition
(16), the scalar field η is spherically symmetric too. Hence
we look for spherically symmetric solutions of the Yukawa
equation (41) inside the screening spheres of Earth and
Moon. Since we model the Sun by means of a continuously
varying mass density, in this case we make a different
computation based on the consistency condition introduced
in Ref. [21].
Following [19] we require the solution η to be close to

the minimizer of Veff also in the outskirts of the Solar
System where ρðx; tÞ approaches the galactic mass density,
so that at large distances from the Sun’s center beyond the
boundary of the heliosphere we use again the quadratic
approximation (40) of the effective potential, in this case
for low density. Since the function λðρÞ increases as density
ρ decreases we find that in this region λðρÞ is large enough
to turn the Yukawa equation (41) into a Laplace equation

∇2η ¼ 0: ð43Þ

Now we consider the thin shells of the Sun, Earth, and
Moon. For each of the astronomical bodies the thin shell is
the spherical shell defined by rs < jx − xbj < rb, where
xb is the position vector of the center of the body, rs is the
screening radius and rb is the radius of the body. We call
the sphere with center xb and radius rs a screening sphere.
Following again [19], in the three thin shells we approxi-
mate the derivative of the effective potential Veff by
means of

∇2η ¼ ∂Veff

∂η
≈ −

1

3
ρðx; tÞc2; ð44Þ

which corresponds to consider curvature R much smaller
than the GR value inside the thin shells. In the interplan-
etary space between the bodies mass density is low and we
find that the equation for η is well approximated by
Laplace equation ∇2η ¼ 0. Hence, outside of the screen-
ing spheres of the three bodies up to the outskirts of the
Solar System, at each time instant t the equation for η is
Poisson equation with source different from zero in the
thin shells and given by the instantaneous value of mass
density ρðx; tÞ in the shells. The domain of the Poisson
equation then changes with time as the bodies move in
interplanetary space, but at each t a static problem has to
be solved.
In order to ensure the existence of ∇2η at each t,

matching conditions that impose the continuity of η and
its space derivatives are imposed across the screening
surfaces that separate the interior of the three bodies from
interplanetary space. Moreover, a further boundary con-
dition is imposed at the outskirts of the Solar System, where
η has to approach the minimizer of the effective potential
Veff as ρðx; tÞ approaches the galactic mass density.
The requirement of interior spherical symmetry for η

with respect to the center of each screening sphere imposes
a constant Dirichlet boundary condition on each screening
sphere for the solution of Poisson equation. We observe that
the solution outside of the three screening spheres cannot
be the superposition of functions that are spherically
symmetric with respect to the center of each body: indeed
such a superposition cannot yield a constant value on the
three spheres. The solution of the resulting Dirichlet
boundary problem for Poisson equation in the thin shells
and in interplanetary space is computed by means of
Green’s function method that allows for matching the
exterior solution with the spherically symmetric interior
solutions.
In the case of a single sphere the Green’s function could

be obtained by using the method of images as in electro-
statics, however, since the constant boundary condition is
given on three spheres we resort to an extension of the
method of images to a system of spheres [37]. The
achievement of a constant boundary condition by means
of such a method requires an infinite series of images which
yields a representation of Green’s function by means of an
infinite series. Nevertheless, if the distances between the
centers of the spheres are much greater than the radii, a
condition that is satisfied in the Sun-Earth-Moon system,
the series converges quickly and we obtain a good
approximation by using three image points inside each
of the three screening spheres. The resulting Green’s
function has ten terms, and it turns out that the solution
η is a superposition of several terms, some of which are
spherically symmetric with respect to the center of each
body, plus other terms that are not spherically symmetric.
The composition of these further terms with the spherically
symmetric ones allows for the approximate satisfaction of
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the constant Dirichlet boundary condition on the screening
spheres (the boundary condition would be exactly satisfied
by using the whole infinite series of image terms).
Interior spherical symmetry also requires a constant

normal derivative of η across the screening spheres, so
that a further Neumann boundary condition is imposed on
the spheres in order to ensure the existence of ∇2η. Such a
further boundary condition for Poisson equation is redun-
dant, nevertheless, it will be used to determine the screen-
ing radii that are among the unknowns of the problem.
The satisfaction of the Neumann boundary condition for
the exterior solution again requires an approximation: the
constant Dirichlet condition yields a gradient ∇η, which is
normal to the spheres; however, such a normal derivative is
not necessarily constant, nevertheless, we find that the
exterior normal derivative has a dominant constant part and
a varying part that is much smaller since it depends on the
small ratios between the radii of the spheres and the
distances between the centers. Eventually, neglecting such
a small varying part, we get a self-consistent approximated
matching between the interior solution and the solution
outside of the three bodies.

IV. SCALAR FIELD IN THE INTERIOROF BODIES
AND IN INTERPLANETARY SPACE

In the following we denote by rS, rE, and rM the
screening radii of the Sun, Earth, and Moon, respectively.
For each body we compute a solution inside the screen-

ing radius by using the approximation of spherical sym-
metry around the center. In Sec. V E we will match the
interior solution with the solution outside of the screening
radii and we will show that the approximation of interior
spherical symmetry can be used, provided that the distances
between the astronomical bodies are much greater than the
radii, a condition that is satisfied for the Sun-Earth-Moon
system.
For a spherically symmetric solution the finiteness of

∇2η imposes the boundary condition

dη
dr

¼ 0; at r ¼ 0; ð45Þ

at the center of each astronomical body, where the variable
r is distance from the center.

A. Solution in the Sun’s interior

The Sun is modeled as a static spherically symmetric
distribution of matter with density ρS ¼ ρSðrÞ, where r is
the distance from the center. A model of mass density
profile for the Sun has been used in Ref. [20] and the parts
of the model that will be used in the sequel are reported in
Appendix A 1.
Since the effective potential has an extremum which

corresponds to the GR solution, ∂Veff=∂η ¼ 0, then expres-
sion (29) of curvature yields an exact solution of Eq. (26)

only if ∇2η ¼ 0. Under spherical symmetry, the only
harmonic function which satisfies the boundary condition
(45) is a constant, however, one can check that the solution
η ¼ constant implies that density ρSðrÞ must also be
constant, which is not the case for the Sun’s interior [20].
Though the GR solution is not an exact solution of

Eq. (28), it is an approximate solution if the following
consistency condition is satisfied for r < rS [20,21]:

j∇2ðηðr; R ¼ 8πGρSðrÞ=c2ÞÞj ≪
1

3
ρSc2; ð46Þ

with rS < R⊙, where R⊙ is the Sun’s radius. Computing the
Laplacian of η according to (16), the consistency condition
has been evaluated in Ref. [20] and reads

λ2
���� α

1 − α
∇2ρS −

αþ 1

ρS

�
dρS
dr

�
2
���� ≪ ρS: ð47Þ

Then, using definition (16) of η, the GR expression of
curvature (29), and formula (34) of λ2, we have the
following approximate solution:

η ≈
c4

8πG
− 2αq

�
8πG
c2

ρS

�
α−1

ρSc2

¼ c4

8πG
−

λ2ðρSÞ
3ð1 − αÞ ρSc

2; ð48Þ

which holds for r < rS. The boundary condition (45) is
satisfied provided that the Sun’s density model has the
property dρS=dr ¼ 0 at the center.
Eventually, by using the Sun density profile in

Appendix A 1, we find λðρSÞ ≪ R⊙, particularly λðρSÞ
turns out to be a negligible quantity when jαj is not too
close to zero.

B. Solution in the Earth’s interior

Differently from the Sun, the density profile of the
Earth’s interior is conveniently modeled by resorting to
density discontinuities, detected by seismology, such as the
Mohorovičić discontinuity, or Moho, at the boundary
between the crust and the mantle. On the two sides of a
density discontinuity the values of η that minimize Veff are
different, however, since the function η and its gradient
have to be continuous in order to guarantee the existence of
∇2η, then at the discontinuity the solution η has to
interpolate between the two minimizers so that it cannot
be close to both minimizers. Hence, the solution locally
deviates from GR and one has to check if such a deviation
is small enough in such a way that screening takes place
anyway.
The Earth is modeled as a spherically symmetric dis-

tribution of matter with density ρE ¼ ρEðrÞ, where r is
distance from the center, and axial rotation of Earth is
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neglected. An average Earth model [38] is considered, and
the planet is divided into four homogeneous regions
separated by spherical surfaces of density discontinuities:
ocean layer, crust, mantle, and core. Numerical values of
density and radii of discontinuity surfaces are reported in
Appendix A 2.
Since, for r < rE, the solution η has to remain close to

the minimizer of Veff , then inside each region of constant
density the derivative of the potential V is approximated by

∂V
∂η

ðη;ρEÞ≈
∂V
∂η

ðηmin;ρEÞ þ
∂
2V
∂η2

ðηmin;ρEÞðη− ηminÞ; ð49Þ

where ηmin is the minimizer of Veff in the considered region.
Since

∂V
∂η

ðηmin; ρEÞ ¼
1

3
ρEc2; ð50Þ

Equation (28) for η becomes

∇2η ≈
1

λ2ðρEÞ
ðη − ηminÞ: ð51Þ

Since in each region the value of density ρE is constant,
using (34) λ2ðρEÞ is also constant, then Eq. (51) admits a
closed-form solution that, for a given screening radius rE of
Earth, is completely determined by conditions of continuity
of η and its radial derivative at the discontinuity surfaces,
and by the following condition at rE given in Ref. [36]:

1

λ2ðρEÞ
½ηðrEÞ − ηmin� ¼ −

1

3
ρEc2; ð52Þ

where rE < R⊕, with R⊕ the Earth’s radius, and ρE is
evaluated at the uppermost layer of the Earth’s interior
model, i.e., the ocean layer.
Note that the Sun’s interior is modeled by means of a

continuously varying density profile (see Appendix A 1),
hence Eq. (51) in the case of Sun does not admit a closed-
form solution, so that we have used a different approxi-
mation of the solution η given by Eq. (48). Conversely, the
presence of discontinuity surfaces in the Earth’s interior
prevents us from using a consistency condition of the type
(47) where derivatives of density are involved, so that we
resorted to a piecewise constant density profile which
permits us to compute an analytic solution that can be
proved to be close to the minimizer of the effective
potential, except at the density discontinuities.
In the sequel RE;c is the outer radius of the crust, RE;m is

the outer radius of the mantle, and RE;n is the radius of the
core (nucleus). The mass densities of ocean, crust, mantle,
and core are denoted by ρE;w; ρE;c; ρE;m and ρE;n, respec-
tively. The corresponding values of λðρEÞ are denoted by
λE;w; λE;c; λE;m, and λE;n. Analogously, the values of η

minimizing the effective potential in the various layers
are denoted by ηE;w; ηE;c; ηE;m, and ηE;n, and they are
given by

ηmin ¼
c4

8πG
−

λ2ðρEÞ
3ð1 − αÞ ρEc

2: ð53Þ

By using the numerical values of density of the various
Earth’s layers, we find in Appendix A 2 λðρEÞ ≪ R⊕,
particularly λðρEÞ turns out to be a completely negligible
quantity for jαj not too close to zero.
The expression of the analytic solution of Eq. (51) in the

various Earth’s layers is cumbersome; nevertheless, it
admits a manageable approximation, that guarantees con-
tinuity of η and approximate continuity of its derivative,
and it is given in the following.
Ocean layer. The ocean and seas cover 70.8% of the

surface of the Earth, so that we approximate the uppermost
layer with seawater. The approximate solution for RE;c ≤
r ≤ rE is given by

ηðrÞ ≈ ηE;w −
1

r

�
1

3
rEλ2E;wρE;wc

2 exp

�
r − rE
λE;w

�

−
λE;w=λE;c

1þ λE;w=λE;c
RE;cðηE;c − ηE;wÞ exp

�
RE;c − r
λE;w

��
:

ð54Þ

If rE is close to R⊕ then the thin shell condition for Earth is
satisfied, and rE − RE;c ≫ λE;w. It turns out that the differ-
ence jηðrÞ − ηE;wj between η and the minimizer is exponen-
tially suppressed for rE − r ≫ λE;w and r − RE;c ≫ λE;w,
hence inmost of the ocean layer, due to the smallness of λE;w.
The value of η at the boundary between seawater and the
oceanic crust is

ηðRE;cÞ ≈ ηE;w þ λE;w=λE;c
1þ λE;w=λE;c

ðηE;c − ηE;wÞ; ð55Þ

and we see that the solution η interpolates between the
minimizers ηE;w and ηE;c, hence deviating from GR in a thin
shell of thickness of order λE;w. In Secs. VI A and VI C we
will prove that the resulting perturbation of the Newtonian
gravitational force, hence of hydrostatic equilibrium, is
negligible.
Crust. The approximate solution for RE;m ≤ r ≤ RE;c is

given by

ηðrÞ≈ ηE;c −
1

r

�
RE;cðηE;c − ηE;wÞ
1þ λE;w=λE;c

exp

�
r−RE;c

λE;c

�

−
λE;c=λE;m

1þ λE;c=λE;m
RE;mðηE;m − ηE;cÞ exp

�
RE;m − r
λE;c

��
:

ð56Þ
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Again, it turns out that the difference between η and the
minimizer ηE;c is exponentially suppressed in most of
the crust. The value of η at Moho, the discontinuity between
the crust and the mantle, is

ηðRE;mÞ ≈ ηE;c þ
λE;c=λE;m

1þ λE;c=λE;m
ðηE;m − ηE;cÞ; ð57Þ

a formula analogous to Eq. (55). In the crust the solution η
deviates from GR in thin shells of thickness of order λE;c
adjacent to the upper boundary at r ¼ RE;c and to the lower
boundary at r ¼ RE;m, respectively. The resulting pertur-
bation will turn out to be again negligible, so that screening
takes place.
Mantle. The approximate solution for RE;n ≤ r ≤ RE;m is

given by

ηðrÞ ≈ ηE;m −
1

r

�
RE;mðηE;m − ηE;cÞ
1þ λE;c=λE;m

exp

�
r − RE;m

λE;m

�

−
λE;m=λE;n

1þ λE;m=λE;n
RE;nðηE;n − ηE;mÞ exp

�
RE;n − r
λE;m

��
:

ð58Þ

The properties of the solution in the mantle are analogous
to the properties in the crust.
Core. The approximate solution for 0 < r ≤ RE;n is

given by

ηðrÞ ≈ ηE;n − 2
RE;n

r
ðηE;n − ηE;mÞ
1þ λE;m=λE;n

exp

�
−
RE;n

λE;n

�

× sinh

�
r

λE;n

�
: ð59Þ

The difference jηðrÞ − ηE;nj between η and the minimizer is
exponentially suppressed for RE;n − r ≫ λE;n, hence in the
whole core except in a thin shell of thickness of order λE;n
adjacent to the boundary of the core. The approximate
solution in the core satisfies the boundary condition (45).
Using expression (34) of λ2 we see that, for given values

of NMC gravity parameters α and q, the approximate
solution in the Earth’s interior is completely determined in
all the layers except the ocean layer where it depends on the
screening radius rE, hence it is determined everywhere
once the screening radius is determined.

C. Solution in the Moon’s interior

The model of the lunar interior is analogous to the
Earth’s model. The Moon is modeled as a spherically
symmetric distribution of matter with density ρM ¼ ρMðrÞ,
where r is distance from the center, and the satellite is
divided into three homogeneous regions separated by
spherical surfaces of density discontinuities: crust, mantle,
and core. Numerical values of density and radii of

discontinuity surfaces are reported in Appendix A 3. The
length λðρMÞ turns out to be again a completely negligible
quantity.
In the sequel RM is the Moon’s radius, RM;m is the outer

radius of the mantle, and RM;n is the radius of the core. The
mass densities of crust, mantle and core are denoted by
ρM;c; ρM;m, and ρM;n, respectively. The corresponding
values of λðρMÞ are denoted by λM;c; λM;m, and λM;n.
Analogously, the values of η minimizing the effective
potential in the various layers are denoted by ηM;c; ηM;m,
and ηM;n.
The approximate solution for η is analogous to the one

found for Earth.
Crust. The approximate solution for RM;m ≤ r ≤ rM is

given by

ηðrÞ≈ηM;c−
1

r

�
1

3
rMλ2M;cρM;cc2 exp

�
r− rM
λM;c

�

−
λM;c=λM;m

1þ λM;c=λM;m
RM;mðηM;m−ηM;cÞexp

�
RM;m− r
λM;c

��
:

ð60Þ

The properties of the solution are analogous to the ones in
the ocean layer of Earth. The value of η at the lunar Moho is

ηðRM;mÞ ≈ ηM;c þ
λM;c=λM;m

1þ λM;c=λM;m
ðηM;m − ηM;cÞ: ð61Þ

Mantle. The approximate solution for RM;n ≤ r ≤ RM;m
is given by

ηðrÞ≈ηM;m−
1

r

�
RM;mðηM;m−ηM;cÞ
1þ λM;c=λM;m

exp

�
r−RM;m

λM;m

�

−
λM;m=λM;n

1þ λM;m=λM;n
RM;nðηM;n−ηM;mÞexp

�
RM;n− r
λM;m

��
:

ð62Þ

Core. The approximate solution for 0 < r ≤ RM;n is
given by

ηðrÞ ≈ ηM;n − 2
RM;n

r
ðηM;n − ηM;mÞ
1þ λM;m=λM;n

exp

�
−
RM;n

λM;n

�

× sinh

�
r

λM;n

�
: ð63Þ

The approximate solution in the core satisfies the boundary
condition (45). Again, the approximate solution in the lunar
interior is completely determined once the Moon’s screen-
ing radius rM is determined.
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D. Scalar field in the outskirts of the Solar System

We assume that in the solar neighborhood of the Galaxy
the field η is close to the minimizer of the effective potential
Veff , so that the spacetime curvature R is approximately
given by the GR solution [20]. This assumption implies that
the Milky Way is screened within a distance of about 8 kpc
from its center, where the Solar System is approximately
located. Such a screening condition may impose additional
constraints on the NMC gravity model whose assessment
requires the solution for the gravitational field of the
Milky Way, possibly taking also into account the effect
of the other galaxies in the local group. That will be the
subject of a future paper.
The galactic mass density ρg in the solar neighborhood of

the Milky Way is ρg ≈ 6.9 × 10−24 g=cm3 [39], so that we
have R ≈ Rg, with Rg the GR solution Rg ¼ 8πGρg=c2. The
minimizer ηg of the effective potential Veffðη; ρÞ, corre-
sponding to ρðx; tÞ ¼ ρg, is given by

ηg ¼
c4

8πG
− 2αq

�
8πG
c2

�
α−1

ραgc2: ð64Þ

We denote by rg a distance from the Sun’s center such that
mass density is dominated by the galactic density compo-
nent at points x such that jx − xSj > rg, where xS is
the position vector of Sun’s center. We choose rg at the
heliopause, the boundary between the solar wind and the
interstellar medium [20], corresponding to a heliocentric
radial distance of about 120 AU ¼ 2.58 × 104R⊙, where
R⊙ is the Sun’s radius.
Since η approximately minimizes Veff in the solar

neighborhood of the Galaxy, then Eq. (28) becomes

∇2η ≈
1

λ2g
ðη − ηgÞ; for jx − xSj > rg; ð65Þ

where λg ¼ λðρgÞ. The length λðρÞ increases as density
decreases, which is a typical property of the chameleon
mechanism [19], so that the length λg is an upper bound for
λ in the Solar System. The computations in the present
paper will be made under the condition λg ≫ rg, which will
permit us to find analytic estimates of the results. We will
find that such a condition is satisfied when the constraint
from LLR measurements is saturated. Then we have

∇2η ¼ 0 for rg < jx − xSj ≪ λg; ð66Þ

and, for large enough jx − xSj, we assume

ηðx; tÞ ≈ ηg: ð67Þ

Under our assumptions the solution η is a harmonic
function in the outskirts of the Solar System.

E. Scalar field in interplanetary space

In interplanetary space, where mass density ρ is small
and gradually approaches the galactic density ρg as jx − xSj
approaches rg, we proceed as in Ref. [20] and we expand
the derivative of the potential V around the minimizer ηg:

∂V
∂η

ðη; ρÞ ≈ ∂V
∂η

ðηg; ρÞ þ
∂
2V
∂η2

ðηg; ρÞðη − ηgÞ: ð68Þ

Solving the expression (16) of η,

η ¼ c4

8πG
− 2αqRα−1ρc2; ð69Þ

with respect to curvature R ¼ ωðη; ρÞ we find

ωðη; ρÞ ¼
�
16πG
c2

αqρ

�
1=ð1−αÞ�

1 −
8πG
c4

η

�
1=ðα−1Þ

; ð70Þ

from which, using the first equality in Eq. (27), we obtain
the property

∂V
∂η

ðη; ρÞ ¼
�
ρ

ρg

�
1=ð1−αÞ ∂V

∂η
ðη; ρgÞ; ð71Þ

where we note the explicit dependence of ∂V=∂η on ρ due
to the nonminimal coupling. Taking now into account that
at density ρg (in the solar vicinity of the Galaxy) the field η
approximately minimizes the effective potential Veff , so
that

∂V
∂η

ðηg; ρgÞ ≈
1

3
ρgc2; ð72Þ

we can compute the approximation (68) of the derivative of
the potential:

∂V
∂η

ðη;ρÞ ≈
�
ρ

ρg

�
1=ð1−αÞ�∂V

∂η
ðηg;ρgÞ þ

∂
2V
∂η2

ðηg;ρgÞðη− ηgÞ
�

≈
�
ρ

ρg

�
1=ð1−αÞ�1

3
ρgc2 þ

1

λ2g
ðη− ηgÞ

�

≈
1

3
ρgc2

�
ρ

ρg

�
1=ð1−αÞ

; ð73Þ

where, taking into account that λg is assumed large with
respect to rg, we have used the inequality

1

λ2g
ðη − ηgÞ ≪

1

3
ρgc2; ð74Þ

that will be verified a posteriori. Then we have
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∂Veff

∂η
¼ ∂V

∂η
−
1

3
ρc2 ≈ −

1

3
ρ̃c2; ð75Þ

with

ρ̃ ¼ ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

: ð76Þ

Then, in interplanetary space we look for the field η, which
solves the Poisson equation

∇2η ¼ −
1

3
ρ̃c2: ð77Þ

As jx − xSj tends to rg, density ρ tends to ρg and the
Poisson equation turns to Laplace equation (66), which
holds for jx − xSj ≥ rg. Nevertheless, since mass density in
interplanetary space is much smaller than density inside the
bodies, then, for the purpose of computation, Poisson
equation can be in fact replaced with Laplace equation
∇2η ¼ 0 everywhere outside of the three bodies.

V. SCALAR FIELD SOURCED BY THE
ASTRONOMICAL BODIES

In the thin shells inside the astronomical bodies, the
function η has to interpolate between the solution inside the
screening radii computed in the previous section and
the solution in interplanetary space. By adapting to
NMC gravity the chameleon mechanism developed in
Ref. [19], we require the interpolating function η to satisfy
the condition (see also Refs. [20,21])

0 <
∂V
∂η

ðη; ρÞ ≪ 1

3
ρc2; ð78Þ

inside the thin shells and in the vicinity of the astronomical
bodies where mass density is significantly larger than the
galactic density ρg due to the presence of Earth’s atmos-
phere and solar wind. Hence the equation for η becomes the
Poisson equation

∇2η ¼ −
1

3
ρc2: ð79Þ

The explicit dependence of ∂V=∂η on density ρ in condition
(78) is a distinctive feature of the application of the
chameleon mechanism to NMC gravity with respect to
fðRÞ gravity. Inequality (78) will be verified a posteriori in
Appendix E for α < −1=2. Since we have

α < 0 ⇒ 0 < −
α

1 − α
< 1; ð80Þ

when jαj is not too small, the second term inside the square
bracket in Eq. (76) is negligible in comparison to 1 in the
thin shells inside the astronomical bodies and in zones

where mass density is much larger than the galactic density
ρg, so that ρ̃ ≈ ρ and the Poisson equation,

∇2η ¼ −
1

3
ρ̃c2; ð81Þ

is valid with a good approximation everywhere outside of
the screening radii. In the next sections we compute an
approximate solution of this equation.

A. Boundary conditions

We rewrite the Poisson equation (81) in the form

∇2ðη − ηgÞ ¼ −
1

3
ρ̃c2; ð82Þ

and we solve this equation in the unbounded domain Ω
outside of the screening radii, with the boundary condition
(67) at large distance from the Sun’s center. We denote by
∂Ω the boundary of Ω and by xS, xE, xM the centers of the
Sun, Earth, and Moon, respectively. Then the boundary ∂Ω
consists of the union of the three spherical surfaces with
centers at xS, xE, xM and radii given by rS, rE, rM,
respectively.
We have to match the solution in Ω with the interior

solution computed in Sec. IV. Using the value (53) of η
minimizing the effective potential inside the Earth, and the
solution (54) for η in the Earth’s ocean layer, the value of η
at the Earth’s screening surface is given by

η ≈
c4

8πG
−

2 − α

3ð1 − αÞ λ
2
E;wρE;wc

2: ð83Þ

Using the expression (64) of the minimizer ηg in the
Galaxy, and formula (34) for λðρÞ, we have

ηg ¼
c4

8πG
−

λ2g
3ð1 − αÞ ρgc

2: ð84Þ

In the sequel we assume jαj is not too close to zero in such a
way that, using again the formula for λðρÞ, we have

λ2E;wρE;w
λ2gρg

¼
�
ρE;w
ρg

�
α

≪ 1; ð85Þ

from which it follows that at the Earth’s screening surface
the boundary condition η − ηg ≈ c4=ð8πGÞ − ηg holds.
Note that the expression (69) of η, for R > 0 and α < 0,
implies η ≠ c4=ð8πGÞ, so that the above boundary con-
dition is proposed as an approximate condition in the sense
of the inequality jð8πG=c4Þη − 1j ≪ 1. Analogous consid-
erations can be applied for the boundary conditions at the
screening surfaces of the Sun and Moon.
Then we have the following Dirichlet boundary con-

ditions for the Poisson equation (82) in the set Ω:

MARCH, BERTOLAMI, MUCCINO, and DELL’AGNELLO PHYS. REV. D 109, 124013 (2024)

124013-12



�
ηðx; tÞ− ηg ≈ c4

8πG− ηg for x∈∂Ω and any t

ηðx; tÞ− ηg ≈ 0 for rg < jx− xSj large and any t
:

ð86Þ

Moreover, the existence of ∇2η requires the continuity of
the first partial derivatives of η across the screening
surfaces. The normal derivative of η at the Earth’s screening
surface, computed from the interior by using solution (54),
is given by

dη
dr

ðrEÞ ≈ −
1

3
λE;wρE;wc2; ð87Þ

and an analogous result holds for the Moon. Moreover,
using the approximate solution (48) in the Sun’s interior,
the normal derivative of η at the Sun’s screening surface is
given by

dη
dr

ðrSÞ ≈ −
αλ2ðρSðrSÞÞ
3ð1 − αÞ

dρS
dr

ðrSÞc2: ð88Þ

Then, taking into account the smallness of λðρÞ in the
interior of the bodies, we neglect the derivatives of η from
the interior of ∂Ω and we impose the Neumann boundary
condition:

∇ηðx; tÞ · n̂ðxÞ ≈ 0 for x∈ ∂Ω and any t; ð89Þ

where n̂ðxÞ denotes a normal unit vector to the surface ∂Ω
at point x. For given screening radii rS, rE, rM the Dirichlet
condition uniquely determines the solution of the Poisson
equation, while the Neumann condition will be used to find
the screening radii.

B. Solution by means of Green’s function

In order to compute effects in the Sun-Earth-Moon
system it is enough to compute the solution ηðx; tÞ for
jx − xSj of the order of Earth’s distance from the Sun. For a
given screening radii and time instant t, the solution of the
Dirichlet problem for the Poisson equation is represented
by means of the Green’s function Gðx;x0Þ [40]:

ηðx; tÞ ¼ ηg −
c2

3

Z
Ω
ρ̃ðx0; tÞGðx;x0Þd3x0

þ
�

c4

8πG
− ηg

�Z
∂Ω

∇x0Gðx;x0Þ · n̂ðx0ÞdS0;

ð90Þ

provided that, for jx − xSj of the order of Earth’s distance
from the Sun, the following inequality is satisfied

jηðx; tÞj ≫ jIðη; G; R�Þj; ð91Þ

where Iðη; G; R�Þ is the following integral evaluated on a
sphere SðR�Þ of large enough radius R� > rg and center
in xS,

Iðη; G; R�Þ ¼
Z
SðR�Þ

½ðη − ηgÞ∇G −G∇η� · n̂dS: ð92Þ

In Green’s representation formula (90) the normal unit
vector n̂ to ∂Ω points towards the interior of bodies. In the
next section we compute an analytical approximation of the
Green’s function.

C. Method of images for a system of spheres

If the set ∂Ω would consist of a single sphere, then the
Green’s function could be obtained by using the method of
images. Since in our case the set ∂Ω consists of three
spheres, which are the three screening surfaces of Sun,
Earth, and Moon, respectively, then we apply to our
problem the extension of the method of images to a system
of spheres that has been proposed in Ref. [37]. This is an
iterative method that involves an infinite series of images so
that it yields a representation of Green’s function by means
of an infinite series:

Gðx;x0Þ ¼ Gð0Þðx;x0Þ þ Gð1Þðx;x0Þ þ Gð2Þðx;x0Þ þ � � � :
ð93Þ

The first terms of the series are obtained as follows (see [37]
for further details). The zeroth-order term is

Gð0Þðx;x0Þ ¼ −
1

4π

1

jx − x0j
; ð94Þ

with x0 ∈Ω, so that x0 lies outside of the three screening
spheres.
The first order term Gð1Þðx;x0Þ involves three image

points: one image inside each screening sphere. In each
sphere the image point is obtained by applying the usual
method of electrostatics to the unitary source at x0:

Gð1Þðx;x0Þ ¼
1

4π

�
rS

jxS −x0j · jx− x̃Sj
þ rE
jxE−x0j · jx− x̃Ej

þ rM
jxM −x0j · jx− x̃Mj

�
; ð95Þ

where x̃S is the image of x0 inside the screening sphere of
the Sun, which is given by

x̃S ¼ xS þ r2S
x0 − xS

jx0 − xSj2
; ð96Þ

and the image points x̃E and x̃M, inside the screening
spheres of Earth and Moon, are obtained by replacing in the
expression of x̃S the subscript Swith E andM, respectively.
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The second order term Gð2Þðx;x0Þ involves six image
points: two images inside each screening sphere. The image
points in each sphere are obtained by iterating the pro-
cedure used for the first order term: consider the three
sources at points x̃S; x̃E; x̃M with charges

−
rS

jxS − x0j
; −

rE
jxE − x0j

; −
rM

jxM − x0j
; ð97Þ

respectively. Then, the six image points are obtained by
applying the method of electrostatics to the above sources
and they are given by the following:

(i) the images inside the Sun’s screening sphere of the
sources at x̃E and x̃M;

(ii) the images inside the Earth’s screening sphere of the
sources at x̃S and x̃M; and

(iii) the images inside the Moon’s screening sphere of the
sources at x̃S and x̃E.

The resulting expression of Gð2Þðx;x0Þ is given in
Appendix B. This procedure is repeated iteratively giving
rise to an infinite series of images and terms in the Green’s
function. The convergence of the series is discussed in
Ref. [37]. If the distances between the spheres are much
greater than the radii, a condition which is satisfied for the
Sun-Earth-Moon system, then the contribution of the
higher order terms decreases quickly, and we find that
the Green’s function up to the second order will suffice
while higher order terms will not be necessary. Eventually,
we observe that notwithstanding the ratio of Sun’s radius
and the Earth-Moon distance is not small, such a ratio never
appears in the computations.

D. Solution for the scalar field η

In this section we give the solution η in Ω by using the
Green’s function up to the first order, while the second
order terms are given in Appendix B. Then the function
Gð0Þðx;x0Þ þ Gð1Þðx;x0Þ is substituted in Green’s repre-
sentation formula (90), and the volume integral over Ω and
the surface integral over ∂Ω are computed according to the
following scheme:

(i) we have ρ̃ ≈ ρ inside the thin shells, and density
becomes immediately much smaller outside the thin
shells in solar atmosphere, in terrestrial atmosphere
and outside of the Moon; then in the volume integral
over Ω the contribution outside of the thin shells can
be safely neglected, so that we have to add the
integrals over the three shells; these integrals are
then evaluated in closed-form by resorting to spheri-
cal coordinates for each of the three astronomical
bodies; and

(ii) the surface integrals over the three screening spheres
that constitute ∂Ω are evaluated by using Gauss
theorem.

The result of the computation is the following. For each
astronomical body we introduce the effective mass that is a

function of the screening radius. The effective mass of the
Sun is

M⊙;effðrSÞ ¼ 4π

Z
R⊙

rS

ρSðrÞr2dr; ð98Þ

and the effective masses M⊕;effðrEÞ and MM;effðrMÞ of
Earth and Moon are defined analogously. The solution η is
given by

ηðx; tÞ ¼ ηSðx; tÞ þ ηEðx; tÞ þ ηMðx; tÞ þ ηg; ð99Þ

where ηS, ηE, and ηM are the contributions from the thin
shells of Sun, Earth, and Moon, respectively. The contri-
bution from the Earth’s shell is

ηEðx; tÞ ¼
�

c4

8πG
− ηg

�
rE

jx − xEj
þ IEðx; tÞ þ J Eðx; tÞ

−
c2

3

rE
jx − xEj

Z
R⊕

rE

ρEðrÞrdr; ð100Þ

where the term IE is given by

IEðx; tÞ ¼
c2

3jx − xEj
Z jx−xEj

rE

ρEðrÞr2dr

þ c2

3

Z
R⊕

jx−xEj
ρEðrÞrdr for jx − xEj < R⊕;

ð101Þ

and

IEðx; tÞ ¼
c2

12π

M⊕;effðrEÞ
jx − xEj

for jx − xEj ≥ R⊕; ð102Þ

and the term J E ¼ J E;S þ J E;M is given by

J E;Sðx; tÞ ¼ −
c2

12π

rSM⊕;effðrEÞ
jjx− xSjðxS − xEÞ þ r2Sn̂Sj

;

J E;Mðx; tÞ ¼ −
c2

12π

rMM⊕;effðrEÞ
jjx− xMjðxM − xEÞ þ r2Mn̂Mj

; ð103Þ

where n̂S and n̂M are the outward unit normal vectors to the
screening surfaces of the Sun and Moon, respectively.
The function ηEðx; tÞ depends on time through the

centers xSðtÞ;xEðtÞ;xMðtÞ of the bodies, which vary with
time along the respective orbits.
The meaning of the terms in the expression (100) of ηE is

the following: the first term is the surface integral over
Earth’s screening surface of the term in Gð1Þðx;x0Þ corre-
sponding to the image of x0 inside Earth’s screening sphere
(the other three surface integrals vanish); IE is the volume
integral over the Earth’s shell of the zeroth-order term of
Green’s function; J E;S and J E;M are the volume integrals
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of the terms in Gð1Þðx;x0Þ corresponding to the images of
x0 inside the screening spheres of the Sun and the Moon,
respectively; the last term is the volume integral corre-
sponding to the image of x0 inside Earth’s screening
sphere.
The solution η is formally symmetric with respect to the

three bodies:
(i) the contribution ηS from the Sun’s shell is obtained

by replacing in Eqs. (100)–(102) the subscript E
with S, the radius R⊕ with R⊙, and the effective
mass M⊕;eff with M⊙;eff ; then

J E ¼ J E;S þ J E;M is replaced with

J S ¼ J S;E þ J S;M; ð104Þ

in the first of Eq. (103) the subscripts E and S are
exchanged andM⊕;eff is replaced withM⊙;eff , and in
the second of Eq. (103) the subscript E is replaced
with S and M⊕;eff with M⊙;eff ; and

(ii) the contribution ηM from the Moon’s shell is
obtained with analogous changes.

We observe that the terms J S, J E, and JM originate from
the term Gð1Þðx;x0Þ in the Green’s function, which
involves the first order images.
Eventually, since the various terms in ηðx; tÞ decrease as

1=jx − xSj, 1=jx − xEj, and 1=jx − xMj in interplanetary
space, and the integral Iðη; G; R�Þ decreases as 1=R�, then
the inequality (91) is satisfied for jx − xSj of the order of
Earth’s distance from the Sun and R� > rg large enough.

In Appendix C we report the error in the verification of
the Dirichlet condition on ∂Ω when the solution η is
computed by using the Green’s function up to the second
order. We also show that by increasing the number of image
points, hence the order of Green’s function, the approxi-
mation of the Dirichlet condition improves.

E. Determination of the screening radii

Now we impose the Neumann boundary condition (89)
on ∂Ω and we use such a condition to find integral
equations that determine the three screening radii rS,
rE, rM.
Let us consider Earth’s screening sphere where we have

to compute the scalar product ∇η · n̂E. We compute the
contribution to the scalar product given by the leading
terms, the other ones being negligible because suppressed
by factors involving the small radius-to-distance ratios (and
their powers) of the astronomical bodies.
Let us first consider the contribution from the solar term

ηS. Since IS is the volume integral over the Sun’s shell of
the zeroth-order term (94) of Green’s function, and J S;E is
the volume integral of the term in Gð1Þðx;x0Þ correspond-
ing to the image of x0 inside the Earth’s screening sphere,
then, by the properties of image points we have ISðx; tÞ þ
J S;Eðx; tÞ ¼ 0 on the screening sphere, so that the vector
∇ðIS þ J S;EÞ is orthogonal to the sphere. By means of a
Taylor approximation we have

∇ðIS þ J S;EÞ · n̂E ¼ c2

12π

�
1 − 3

rE
jxE − xSj

n̂ES · n̂E −
5

2
½1 − 3ðn̂ES · n̂EÞ2�

�
rE

jxE − xSj
�

2
	

M⊙;effðrSÞ
rEjxE − xSj

þO
��

rE
jxE − xSj

�
3
�
; ð105Þ

where n̂ES ¼ ðxE − xSÞ=jxE − xSj, from which, since

rE
jxE − xSj

< 10−4;
r2E

jxE − xSj2
< 10−8; ð106Þ

it follows that the scalar product has the constant dominant
term

∇ðIS þ J S;EÞ · n̂E ≈
c2

12π

M⊙;effðrSÞ
rEjxE − xSj

; ð107Þ

plus a variable part on the sphere suppressed by the small
geometric factor rE=jxE − xSj and its powers.

Let us now consider the integral term in ηS,

−
c2

3

rS
jx − xSj

Z
R⊙

rS

ρSðrÞrdr; ð108Þ

obtained by replacing E with S in the last term of the
solution (100) for ηE. By using the method of images it is
shown in Appendix C that such an integral term cancels on
the Earth’s screening sphere with a term in ηS resulting
from the second order Green’s function Gð2Þðx;x0Þ. Hence
the gradient of the sum of these two terms is orthogonal to
the sphere and the contribution to the scalar product
∇ηS · n̂E, by means of a computation analogous to
Eq. (105), has the constant dominant term
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−
c2

3

rS
rEjxE − xSj

Z
R⊙

rS

ρSðrÞrdr; ð109Þ

plus a small variable part on the sphere. The surface term
in ηS,

�
c4

8πG
− ηg

�
rS

jx − xSj
; ð110Þ

obtained by replacing Ewith S in the first term of Eq. (100),
gives rise to an analogous cancellation discussed in
Appendix C. Then, arguing as before, we find a contribu-
tion to the scalar product with the constant dominant term

rS
rEjxE − xSj

�
c4

8πG
− ηg

�
: ð111Þ

Further contributions from ηS turn out to be negligible. The
contribution from the lunar term ηM is obtained by
replacing S with M in the previous expressions.
Eventually, the contribution from the terrestrial term ηE
is given by

∇ηE · n̂E ≈
c2

3rE

Z
R⊕

rE

ρEðrÞrdr −
1

rE

�
c4

8πG
− ηg

�
: ð112Þ

By substituting all these contributions in the scalar product
∇η · n̂E, and imposing the Neumann boundary condition
(89) on Earth’s screening sphere, we obtain the following
integral equation:

c2

3

Z
R⊕

rE

ρEðrÞrdr −
�
1 −

rS
jxE − xSj

−
rM

jxE − xMj
��

c4

8πG
− ηg

�

þ c2

3

�
1

jxE − xSj
�
M⊙;effðrSÞ

4π
− rS

Z
R⊙

rS

ρSðrÞrdr
�
þ 1

jxE − xMj
�
MM;effðrMÞ

4π
− rM

Z
RM

rM

ρMðrÞrdr
��

¼ 0: ð113Þ

Then, repeating the computation on the screening
spheres of the Sun and Moon, we obtain a system of
integral equations. Such equations are obtained from
Eq. (113) by exchanging the subscripts S, E, M. Using
formula (64) for the minimizer ηg, the solution to the
resulting system of integral equations determines the three
screening radii rE, rS, rM for given values of the NMC
gravity parameters α and q. The system of equations
generalizes the integral equation found in Ref. [20] to a
system of three gravitationally interacting extended bodies.
Neglecting factors involving radius-to-distance ratios,

the following relations follow from Eq. (113) and the other
integral equations as a first approximation:

Z
R⊙

rS

ρSðrÞrdr ≈
Z

R⊕

rE

ρEðrÞrdr ≈
Z

RM

rM

ρMðrÞrdr: ð114Þ

If we also assume that all bodies have a thin shell, so that
we have R⊕ − rE ≪ R⊕ for the Earth, and analogous
inequalities for the Sun and Moon, then the above approxi-
mate relations are equivalent to the following relations
between effective masses:

M⊙;effðrSÞ
R⊙

≈
M⊕;effðrEÞ

R⊕
≈
MM;effðrMÞ

RM
: ð115Þ

Eventually, we observe that the results obtained in this
section show that the normal derivative of η on the
screening spheres has a main part that is constant on each

sphere, and a much smaller variable part that can be
neglected thanks to inequalities of type (106). Since the
interior solution computed in Sec. IV is spherically sym-
metric inside each body, then it has a constant normal
derivative on each screening sphere, so that matching the
solution outside of the screening radii with the interior
solution yields a consistent approximation, as it was
anticipated at the beginning of Sec. IV.

F. Verification of inequalities

The solution for η has been computed by assuming
inequalities (20), (21), (74), and (78), necessary in order to
find an analytic approximation of the solution, that have to
be verified a posteriori. In this section we show that the
computed solution satisfies inequalities (20), (21), and (74),
while inequality (78) is verified in Appendix E.
Let us first consider inequality (21) and the solution

inside the screening radii. In the case of Earth, using the
value (53) of η minimizing the effective potential, the
solution for η found in Sec. IV B satisfies

����8πGc4 η− 1

����∼ G
c2

λ2ðρEÞρE ∼
�
λðρEÞ
R⊕

�
2GM⊕

c2R⊕
≪ 1: ð116Þ

Analogous results can be found for the Moon and the Sun.
Then, using now the solution outside of the screening radii
found in Sec. V D, for jx − xSj < rg the expression
jð8πG=c4Þη − 1j is bounded by a sum of terms, each of
which is bounded by a quantity of type
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either
GMeff

c2R
≪ 1; or

GMeff

c2d
≪ 1; ð117Þ

whereMeff is an effectivemass,R is the radius of a body, and
d is a distance between the astronomical bodies. Moreover,
using formula (64) for the minimizer ηg and the integral
equations (113), we have jð8πG=c4Þηg − 1j ≪ 1. Since η is a
harmonic function for jx − xSj > rg by Eq. (66), and η ≈ ηg
at large distance from the Sun by the boundary condition
(67), then by the maximum principle for harmonic functions
η satisfies the desired inequality also for jx − xSj > rg.
Hence the computed solution η satisfies inequality (21)
everywhere.
We now consider the second of inequalities (20). We set

RGR ¼ 8πGρ=c2 and we observe that R ≈ RGR both inside
the screening radii and in the solar neighborhood of the
Galaxy, R ≪ RGR in the thin shells (see Appendix E), and
R interpolates between such values in interplanetary space,
so that R=RGR ≲ 1 everywhere. Then, using formula (69),
we have

jf2ðRÞj ¼ jqjRα ¼ 1

2jαj
R

RGR

���� 8πGc4 η − 1

���� ≪ 1; ð118Þ

for jαj not too close to zero, which is the case of interest for
applications to astrophysics [6] and cosmology [7]. Then the
second of inequalities (20) is satisfied, the first being trivial.
Eventually we verify inequality (74) under the

assumption that the thin shell condition is satisfied for
all the astronomical bodies, a condition that will follow
from the constraint from LLR measurements. First we
observe that the leading terms of the solution η in
interplanetary space are given by

η − ηg ≈
c2

12π

�
M⊙;eff

jx − xSj
þ M⊕;eff

jx − xEj
þ MM;eff

jx − xMj
�
; ð119Þ

where we have dropped the dependence of the effective
masses on the screening radii for simplicity. Then, using the
integral equations that determine the screening radii under
the approximation (114), the thin shell condition and the
definition (34) of λg, we find

M⊕;eff ≈ 4πR⊕

Z
R⊕

rE

ρEðrÞrdr ≈
4π

1 − α
R⊕λ

2
gρg: ð120Þ

Using the approximate relations (115) between effective
masses, we have

η − ηg ≈
c2λ2gρg
3ð1 − αÞ

�
R⊙

jx − xSj
þ R⊕

jx − xEj
þ RM

jx − xMj
�
;

ð121Þ

from which, for α < 0, inequality (74) is satisfied if

R⊙

jx − xSj
þ R⊕

jx − xEj
þ RM

jx − xMj ≪ 1; ð122Þ

which is satisfied in interplanetary space at a large enough
distance from the astronomical bodies.

G. Solution for the potentials Φ and Ψ
We have assumed the field η is close to the minimizer of

the effective potential Veff in the solar neighborhood of the
Galaxy for jx − xSj > rg, so that GR is approximately
satisfied.
In what follows we denote by U the Newtonian potential

of the mass distribution with density ρ,

Uðx; tÞ ¼ G
Z

ρðy; tÞ
jx − yj d

3y; ð123Þ

which satisfies the Poisson equation ∇2U ¼ −4πGρ.
Using Eqs. (23) and (24) it follows that the potentialΨ of

the metric is related to the deviation from GR, then we
impose the following boundary conditions in the Galaxy at
large distance jx − xSj from the Sun’s center, where GR is
satisfied by our assumptions:

Φðx; tÞ ≈ 1

c2
Uðx; tÞ; Ψðx; tÞ ≈ 0: ð124Þ

Combining Eqs. (23) and (26) for Ψ and η we have

∇2

�
Ψþ 8πG

c4
η

�
¼ 0: ð125Þ

Using now the second of boundary conditions (124) for Ψ
and the boundary condition (67) for η, for all points x on a
sphere with center in xS and large enough radius R� > rg,
and for any time t, we have

Ψðx; tÞ þ 8πG
c4

ηðx; tÞ ≈ 8πG
c4

ηg: ð126Þ

Hence, by the maximum principle for harmonic functions,
it follows that the harmonic function (with respect to the
spatial variables x)

Ψðx; tÞ þ 8πG
c4

ηðx; tÞ ð127Þ

is constant inside the sphere of radius R�, so that the
solution for the potential Ψ is given by

Ψðx; tÞ ¼ −
8πG
c4

½ηðx; tÞ − ηg�: ð128Þ

The solution for Ψ then follows immediately from the
solution for η found in the previous sections. Combining
now Eqs. (23) and (24) for Ψ and Φ we have
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∇2

�
Φ −

U
c2

−
1

2
Ψ
�

¼ 0: ð129Þ

Then, applying both boundary conditions (124) and using
again the maximum principle for harmonic functions, the
solution Φ of this equation is given by

Φðx; tÞ ¼ 1

c2
Uðx; tÞ þ 1

2
Ψðx; tÞ: ð130Þ

The solutions found for Φ and Ψ define the space-time
metric (6).

VI. DYNAMICS OF CONTINUOUS BODIES

We consider the motion of Earth and Moon in the
gravitational field of the Sun. The equations describing the
dynamics of the system are obtained by taking the covariant
divergence of the energy-momentum tensor and applying
Bianchi identities to the gravitational field equations (see
Ref. [5]), as given by Eq. (5), which we repeat for
convenience:

∇μTμν ¼ f2R
1þ f2

ðgμνLm − TμνÞ∇μR: ð131Þ

In the following computation we neglect mass density of
solar and terrestrial atmospheres, and of solar wind in
interplanetary space, so that density ρðx; tÞ has a compact
support consisting of the three spheres of radii R⊙; R⊕, and
RM. We assume densities assigned inside the bodies
according to the profiles given in Appendix A, and we
assume all the astronomical bodies in hydrostatic equilib-
rium. According to Sec. II A the Sun is considered as a
perfect fluid, while the Earth and Moon are approximately
described as continuous bodies in a hydrostatic state of
stress, so that inside the bodies the equations describing the
dynamics of continuous media formally coincide with the
equations of hydrodynamics of a perfect fluid.
We begin by computing the zeroth component of

Eq. (131): using the components of the energy-momentum
tensor given by Eqs. (7) and (8), the left-hand side of this
equation yields

∇μTμ0 ¼ c
∂ρ

∂t
þ c

∂

∂xi
ðρviÞ þO

�
1

c

�
: ð132Þ

Now we compute the right-hand side of Eq. (131). First we
observe that inside the screening surfaces we have
R ¼ Oð1=c2Þ. Then, the integral equations (113) imply

jqj ¼ ρ−αg ·O
�

1

c2−2α

�
; ð133Þ

being α < 0, from which, using formula (70) for curvature
R ¼ ωðη; ρÞ and the property jð8πG=c4Þη − 1j ¼ Oð1=c2Þ

found in Sec. V F, we have R ¼ Oð1=c2Þ also in the thin
shells of the astronomical bodies. Using now property
(133) and the definition f2ðRÞ ¼ qRα, it follows

f2ðRÞ ¼ ρjαjg ·O
�
1

c2

�
; f2R ¼ ρjαjg ·Oð1Þ; ð134Þ

from which the evaluation of the right-hand side of
Eq. (131) yields

f2R
1þ f2

ðgμ0Lm − Tμ0Þ ∂R
∂xμ

¼ O
�
1

c

�
: ð135Þ

Using Eq. (132) and neglecting terms of orderOð1=c2Þ, the
continuity equation then follows in the nonrelativistic limit
as usual:

∂ρ

∂t
þ ∂

∂xi
ðρviÞ ¼ 0: ð136Þ

The NMC term on the right-hand side of Eq. (131) gives a
distinctive contribution to the spatial part of this equation
that now we compute. Using the components (7)–(9) of the
energy-momentum tensor, for i ¼ 1, 2, 3 the left-hand side
yields

∇μTμi ¼ ∂

∂t
ðρviÞ þ ∂

∂xj
ðρvivjÞ − ρ

∂U
∂xi

þ c2

2
ρ
∂Ψ
∂xi

þ ∂p
∂xi

þO
�
1

c2

�
: ð137Þ

Using now the continuity equation Eq. (136), at orderOð1Þ,
we get

∇μTμi ¼ ρ
dvi

dt
þ ∂p
∂xi

− ρ
∂U
∂xi

þ c2

2
ρ
∂Ψ
∂xi

þO
�
1

c2

�
; ð138Þ

where d=dt ¼ ∂=∂tþ vi∂=∂xi is the material derivative of
continuum mechanics.
For i ¼ 1, 2, 3, taking into account that jf2j ≪ 1, the

right-hand side of Eq. (131) yields

f2R
1þ f2

ðgμiLm − TμiÞ ∂R
∂xμ

¼ −c2f2Rρ
∂R
∂xi

þO
�
1

c2

�
: ð139Þ

Combining Eqs. (138) and (139), and neglecting terms of
order Oð1=c2Þ, we obtain the equations of NMC dynamics
of continuous bodies in hydrostatic state of stress and in the
nonrelativistic limit,

ρ
dv
dt

¼ ρ∇U −∇p −
1

2
ρc2∇Ψ − c2f2Rρ∇R; ð140Þ

where the vector notation has been used. These equations
are the Eulerian equations of Newtonian hydrodynamics
with the presence of two additional terms:
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(i) a fifth force density proportional to the gradient of
the metric potential Ψ; and

(ii) an extra force density proportional to the product of
f2R by the gradient of curvature R.

The extra force density in (ii) has been extensively
discussed in Ref. [5], and for relativistic perfect fluids in
Ref. [16]. While the fifth force is typical of fðRÞ gravity
theory, the extra force is specific of NMC gravity for the
choice corresponding to Eq. (11).

A. Fifth force inside the screening spheres

The fifth force density is given by

−
1

2
ρc2∇Ψ ¼ 4πG

c2
ρ∇η; ð141Þ

where the expression (128) of Ψ in terms of the function η
has been used. In the interior of the screening spheres the
magnitude of fifth force is expected to be largest at the
surfaces of density discontinuity where the largest devia-
tions from GR take place. Let us compute such a force at
the Moho, the crust-mantle discontinuity in the Earth’s
interior.
The radial derivative of η is continuous, and using the

solution for η inside the Earth’s screening radius, found in
Sec. IV B, we have

dη
dr

ðRE;mÞ ≈
ηE;c − ηE;m
λE;c þ λE;m

: ð142Þ

The quantity ρEdη=dr is discontinuous at the Moho and the
maximum value of its magnitude is ρE;mjdη=drðRE;mÞj.
Then, using the value (53) of η minimizing the effective
potential Veff and formula (34) for λ, the magnitude of the
fifth force density is estimated by

jFf j ≈
4

3

πG
1þ jαj ρE;m

jλ2E;cρE;c − λ2E;mρE;mj
λE;c þ λE;m

≤
8π

3
GλE;cρE;mρE;c: ð143Þ

Now the magnitude of the Newtonian force density at the
Moho is

jFN j ¼ ρE;m

���� dUdr ðRE;mÞ
���� ¼ 4π

3
GRE;mρE;mρ̄E;c; ð144Þ

where ρ̄E;c is the average Earth density below the crust.
Since we have λðρEÞ ≪ RE;m with λðρEÞ completely
negligible [λðρEÞ ≲ 10−7 m for α ¼ −1 according to
Appendix A 2], it then follows jFf j ≪ jFN j. The same
behavior is found at the other density discontinuities,
moreover, far from discontinuities the fifth force is further
decreased by exponential suppression with decay constant
1=λðρEÞ in the various layers. Eventually, the perturbation

of the Newtonian gravitational force, hence of hydrostatic
equilibrium, is completely negligible inside the Earth’s
screening radius, confirming the effectiveness of the
screening mechanism.
Inside Earth’s thin shell, hence for rE < r < R⊕, the fifth

force exerted by the Sun and Moon contributes to the
motion of Earth’s center of mass (see Sec. VII), while the
leading contribution from Earth itself is radial, so that it
does not contribute to the motion of center mass but only to
hydrostatic equilibrium. Such a contribution to hydrostatic
equilibrium is computed in Appendix E 1 where it is shown
that the resulting perturbation is again negligible in
comparison with Newtonian force.
Analogous results hold for the Moon, while for the Sun

see Ref. [20].

B. Jump conditions for the pressure

The expression (70) for curvature R ¼ ωðη; ρÞ, which we
rewrite in the form

R ¼
�
c2=ð8πGÞ − η=c2

2αqρ

� 1
α−1
; ð145Þ

shows that R is discontinuous at surfaces across which
mass density is discontinuous, such as the external surfaces
of Earth and Moon or the Mohorovičić discontinuity. Since
the extra force is proportional to ∇R, then such a force is
concentrated at the surfaces of density discontinuity and the
concentration gives rise to a jump of pressure p across these
surfaces that we now compute. We will find that such a
jump of pressure is undetectable for interesting values of
parameter α.
In the following the astronomical body considered is

either the Earth or the Moon. Let Rd be the radius of a
discontinuity surface, and let ρþ and ρ− be the values of
density on the two sides of the discontinuity. We adopt the
method of Ref. [41] and we introduce a boundary layer
across which density changes continuously, then we
proceed to the limit in which the thickness of the layer
tends to zero. Let ε be a positive small parameter and let r
be the distance from the center of the body, then we
introduce a family of mass density functions ρε defined by

�
ρεðrÞ ¼ ρðrÞ for r < Rd − ε and r > Rd þ ε

ρεðRd þ εÞ ¼ ρþ; ρεðRd − εÞ ¼ ρ−
; ð146Þ

where ρεðrÞ is continuously differentiable in the interval
ðRd − ε; Rd þ εÞ. Moreover, we denote by means of the
subscript ε the functions which are solution of the field
equations and equations of motion for assigned density ρε,
and we assume that such functions converge as ε → 0 to the
solution of the problem with density ρ.
Let now n̂ ¼ ðx − xoÞ=jx − xoj, where xo is the position

vector of the center of the body, then replacing ρ with ρε
in Eq. (140), taking the scalar product of the resulting

EQUIVALENCE PRINCIPLE VIOLATION IN NONMINIMALLY … PHYS. REV. D 109, 124013 (2024)

124013-19



equations by the unit vector n̂, and integrating radially over
the boundary layer of thickness 2ε, at the time instant t we
have

Δpε ¼ −c2
Z

Rdþε

Rd−ε
ρεf2Rε

∂Rε

∂r
dr

þ
Z

Rdþε

Rd−ε
ρε

�
−
dvε
dt

· n̂þ ∂Uε

∂r
−
c2

2

∂Ψε

∂r

�
dr; ð147Þ

where Δpε ¼ pεðRd þ ε; θ;φ; tÞ − pεðRd − ε; θ;φ; tÞ and
ðr; θ;φÞ are spherical coordinates on the discontinuity
surface. Taking the limit as ε → 0, and observing that
the derivatives in the integrand in the second row of the
above equation are bounded above and below for all ε, we
find

Δp ¼ −c2lim
ε→0

Z
Rdþε

Rd−ε
ρεf2Rε

∂Rε

∂r
dr; ð148Þ

where Δp ¼ pðRþ
d ; θ;φ; tÞ − pðR−

d ; θ;φ; tÞ is the pressure
jump. In order to compute the pressure jump we now
compute the above limit of the integral. Using f2ðRεÞ ¼
qRα

ε and Eq. (145), the integrand is given by

−ð2jαjÞ α
1þjαjjqj 1

1þjαjρε
∂

∂r

�
ρ

α
1þjαj
ε

�
c2

8πG
−
ηε
c2

� α
α−1
�
; ð149Þ

which can be decomposed into the sum of a bounded term
whose contribution vanishes in the limit as ε → 0, and an
unbounded term which in the limit gives rise to the pressure
jump. The result of the computation is

Δp ¼ Cðα; qÞ
�

c2

8πG
−

η

c2

� α
α−1ðρ− 1

1þjαj − ρþ
1

1þjαjÞ; ð150Þ

where the coefficient Cðα; qÞ is given by

Cðα; qÞ ¼ c22
α

1−αðαqÞ 1
1þjαj; ð151Þ

and the function η ¼ ηðRd; θ;φ; tÞ is evaluated on the
discontinuity surface at the point with angular coordinates
ðθ;φÞ. The jump Δp does not depend on the angular
coordinates on the discontinuity surfaces which are located
inside the screening spheres, while the jump varies with
position on the external surfaces of Earth and Moon.
We see that the jump of pressure depends both on the

solution η and, explicitly, on the NMC gravity parameters α
and q (take into account that in Sec. III A we have found
that α < 0 implies q < 0).

C. Extra force inside the screening spheres

We consider the perturbation of the hydrostatic equilib-
rium due to extra force in the interior of astronomical
bodies. Let us apply the jump condition for pressure at the

mantle-core discontinuity inside the Moon. Separating the
motion of the center of mass from the internal condition of
hydrostatic equilibrium in Eq. (140), integrating radially
and taking into account the pressure jump, we find

pðRþ
d Þ−pð0Þ−Δp¼

Z
Rd

0

ρM
∂UM

∂r
dr−

c2

2

Z
Rd

0

ρM
∂ΨM

∂r
dr

−c2
Z

Rd

0

ρMf2R

�
∂R
∂r

�
dr; ð152Þ

where Rd ¼ RM;n is the radius of the mantle-core interface,
pð0Þ is pressure at the Moon’s center, UM is the Newtonian
potential sourced by Moon’s mass density, ΨM is the
potential inside the Moon’s screening radius, and
½∂R=∂r� denotes the derivative ∂R=∂r outside of the dis-
continuity surface.
In order to compute the pressure jump Δp we use

Eq. (150) and the solution (63) for η inside the Moon’s
core:

c2

8πG
−

1

c2
ηðRM;nÞ

¼ 1

3ð1þjαjÞ
λM;mλM;n

λM;mþλM;n

× ðλM;mρM;mþλM;nρM;nÞ<
2

3ð1þjαjÞλ
2
M;mρM;m; ð153Þ

from which we obtain the following estimate for the
pressure jump:

jΔpj < 16

3
πGλ2M;mρ

2
M;n: ð154Þ

For the Newtonian term we have

Z
Rd

0

ρM
∂UM

∂r
dr ¼ −

2

3
πGR2

M;nρ
2
M;n; ð155Þ

from which, being λM;m ≪ RM;n with λM;m completely
negligible [λðρMÞ ≲ 10−7 m for α ¼ −1 according to
Appendix A 3], it then follows

jΔpj ≪
����
Z

Rd

0

ρM
∂UM

∂r
dr

����: ð156Þ

The volume contribution of the extra force inside Moon’s
core is given by

−c2
Z

Rd

0

ρMf2R

�
∂R
∂r

�
dr¼−c2ρM;n½f2ðR−

d Þ−f2ð0Þ�: ð157Þ

Using expression (145) of curvature R, the solution (63) for
η inside Moon’s core, taking into account that λM;n ≪ Rd

implies ηð0Þ ≈ ηM;n, we have
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jf2ðR−
d Þj > jf2ð0Þj; ð158Þ

then we compute the following estimate:

c2
����
Z

Rd

0

ρMf2R

�
∂R
∂r

�
dr

���� < 2c2ρM;njf2ðR−
d Þj

<
16

3
2

1
α−1πG

�
ρM;n

ρM;m

� 1
1þjαj λ2M;m

jαj ρ2M;m:

ð159Þ

Since λ2M;m=jαj ≪ R2
M;n for values of α of interest for

application to astrophysics and cosmology (see
Refs. [6,7] and Appendix A 3), then for such values the
volume contribution of the extra force turns out to be
completely negligible in comparison with the Newtonian
term (155).
The same behavior is found in other regions of the

Moon’s interior and in the Earth’s interior, while for the Sun
see Ref. [20]. The effectiveness of the screening mecha-
nism is then confirmed by taking into account also the
extra force.
Inside the thin shell of both the Moon and Earth the extra

force contributes to the motion of centers of mass (see
Sec. VIII) while the extra force exerted by a body on itself
has a leading contribution which is radial, so that it
contributes only to hydrostatic equilibrium. The contribu-
tion to hydrostatic equilibrium is computed in Earth’s thin
shell in Appendix E 2, where it is shown that the resulting
perturbation is again negligible in comparison with
Newtonian force. An analogous result holds for the
Moon, while for the Sun see Ref. [20].

D. Motion of centers of mass

In the following we denote by VEðtÞ and VMðtÞ the
regions of space occupied by Earth and Moon, respectively,
at the time instant t. By using the continuity equation and
Reynolds transport theorem of continuum mechanics, we
have

M⊕
d2xE

dt2
¼

Z
VEðtÞ

dv
dt

ρEðx; tÞd3x; ð160Þ

where M⊕ is the mass of Earth, and an analogous equation
holds for the Moon. By substituting the expression of
ρdv=dt given by Eq. (140) we obtain the various contri-
butions to the acceleration of Earth and Moon. Because of
the presence of discontinuities, the integrals involving the
pressure gradient and the extra force are computed as
follows. We consider the Earth motion. The results of
Sec. VI B show that the extra force makes pressure
discontinuous across the external surface of Earth, and
the pressure jump,

Δp ¼ patm − pðR−
⊕; θ;φ; tÞ; ð161Þ

where patm is atmospheric pressure at sea level, is given by
formula (150) with ρ− ¼ ρE;w and ρþ ¼ ρatm, the atmos-
pheric density at sea level.
The contribution of the extra force to the integral on the

right-hand side of Eq. (160) is then given by

−c2
Z
VEðtÞ

ρEf2R½∇R�d3x −
Z
∂VEðtÞ

pðR−
⊕; θ;φ; tÞn̂Edσ;

ð162Þ

where [∇R] denotes the vector function ∇R outside of the
discontinuity surfaces, and we have taken into account that
the contributions of pressure jumps across the discontinuity
surfaces in the Earth’s interior vanish because of spherical
symmetry of curvature R, assuming such surfaces con-
tained in the screening sphere. The surface integral of
pðR−

⊕; θ;φ; tÞ is computed by using the expression (150) of
Δp taking into account that the integral of patm vanishes
because of spherical symmetry, assuming patm uniform on
the Earth surface.
Then, substituting the expression of ρdv=dt given by

Eq. (140) into the integral in Eq. (160), and using Eq. (162),
we obtain

M⊕
d2xE

dt2
¼

Z
VEðtÞ

ρE∇Ud3x −
c2

2

Z
VEðtÞ

ρE∇Ψd3x

−
Z
∂VEðtÞ

p−n̂Edσ − c2
Z
VEðtÞ

ρEf2R½∇R�d3x;

ð163Þ

where p− ¼ pðR−
⊕; θ;φ; tÞ. The first integral is the con-

tribution of Newtonian gravity to the acceleration of Earth,
the second integral is the contribution of fifth force, the
surface integral is the contribution of the extra pressure on
Earth’s surface, and the last integral is the volume con-
tribution of the extra force. An analogous formula holds for
the Moon.
In the next section we evaluate the integral that gives the

contribution of the fifth force.

VII. ACCELERATION OF EARTH AND MOON
DUE TO THE FIFTH FORCE

The fifth force contribution to the acceleration of Earth is
given by

M⊕

�
d2xE

dt2

�
f
¼ −

c2

2

Z
VEðtÞ

ρEðx; tÞ∇Ψðx; tÞd3x; ð164Þ

and an analogous integral holds for the Moon. In Sec. VI A
we have found that the contribution to the fifth force from
the interior of the screening sphere is negligible due to the
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smallness of λðρEÞ, so that the contribution to the integral
over VEðtÞ only comes from the thin shell defined
by rE < jx − xEj < R⊕.
The integral over the thin shell is evaluated by using the

expression (128) of the potential Ψ in terms of η, which
gives ∇Ψ ¼ −ð8πG=c4Þ∇η, and using the solution for the
function η computed by means of the method of images.
Let us first consider the contribution from the solar term

ηS. Using spherical coordinates we find the values of the
following integrals:

4πG
c2

Z
VEðtÞ

ρE∇ISd3x ¼ G
3
M⊙;effM⊕;eff

xS − xE

jxS − xEj3
; ð165Þ

where we have dropped the dependence of effective masses
on the screening radii, and

Z
VEðtÞ

ρE∇J S;Ed3x ¼ 0: ð166Þ

Let us now consider the contribution from the following
terms of ηS:

rS
jx − xSj

�
c4

8πG
− ηg −

c2

3

Z
R⊙

rS

ρSðrÞrdr
�
: ð167Þ

Using the integral equation on the Sun’s screening sphere,
which is obtained from Eq. (113) by exchanging E with S,
we have

c2

3

Z
R⊙

rS

ρSðrÞrdr ¼
c4

8πG
− ηg þO

�
R
d

�
; ð168Þ

whereOðR=dÞ denotes terms multiplied by a factor of type
R=d, where R is a radius and d is a distance between the
astronomical bodies. Hence, by taking the gradient of the
expression (167) and integrating over the Earth’s thin shell,
we find contributions to the fifth force multiplied by
factors R=d.
The contribution from the lunar term ηM is obtained by

replacing S with M in the previous expressions.
For the contribution from the terrestrial term ηE we find

Z
VEðtÞ

ρEðx; tÞ∇IEðx; tÞd3x ¼ 0; ð169Þ

�
c4

8πG
− ηg −

c2

3

Z
R⊕

rE

ρEðrÞrdr
�

×
Z
VEðtÞ

ρEðx; tÞ∇ rE
jx − xEj

d3x ¼ 0; ð170Þ

because of spherical symmetry.
All other contributions from η resulting from Green’s

function Gðx;x0Þ up to second order are discussed in

Appendix D where it is argued that they either vanish or are
multiplied by factors R=d. Moreover, it turns out that all
contributions to the fifth force of the order of R=d cancel
each other. Since in the Sun-Earth-Moon system the ratios
R=d are small, then corrections of the order of ðR=dÞ2 have
not been computed because exceedingly small to give rise
to observable effects.
Combining all these results, we obtain the acceleration of

the Earth due to fifth force and computed by using the
Green’s function up to second order:

M⊕

�
d2xE

dt2

�
f
¼ G

3
M⊕;eff

�
M⊙;eff

xS − xE

jxS − xEj3

þMM;eff
xM − xE

jxM − xEj3
�
: ð171Þ

The acceleration of the Moon due to fifth force is
analogous:

MM

�
d2xM

dt2

�
f
¼ G

3
MM;eff

�
M⊙;eff

xS − xM

jxS − xMj3

þM⊕;eff
xE − xM

jxE − xMj3
�
: ð172Þ

In the case of astronomical bodies with uniform mass
density the above expressions coincide with the acceler-
ations of Earth and Moon found in [19] for chameleon
gravity and in [42] for fðRÞ gravity theory. In the more
realistic case of bodies with varying density such expres-
sions give different results. Moreover, the equations that
determine the screening radii in NMC gravity in general are
different from the corresponding equations in fðRÞ grav-
ity [43].
Since the accelerations of the Earth and Moon depend on

the effective masses of the bodies, which are the masses of
the respective thin shells and these depend on the internal
structure of the bodies through density and size, then a
violation of the weak equivalence principle takes place.
Such a violation can be looked for in the Earth-Moon
system by means of LLR measurements.

VIII. ACCELERATION OF EARTH AND MOON
DUE TO THE EXTRA FORCE

The acceleration due to extra force takes contributions
from the extra pressure on the surface of the moving
astronomical body and from the volume part inside the
body. In the sequel we compute the acceleration of Earth,
while the acceleration of the Moon is obtained by an
analogous computation. Using Eqs. (150) and (163), the
contribution of the surface integral of pressure to the
acceleration is given by
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M⊕

�
d2xE

dt2

�
e;s

¼ −
Z
∂VEðtÞ

pðR−
⊕; θ;φ; tÞn̂Edσ

¼ Cðα; qÞρ
1

1þjαj
E;w

Z
∂VEðtÞ

�
c2

8πG
−

η

c2

� α
α−1
n̂Edσ;

ð173Þ

where we have neglected the atmospheric density with
respect to the density of seawater. Using again Eq. (163) the
volume part of the extra force, taking into account that the
contribution from the interior of Earth’s screening sphere
vanishes because of spherical symmetry, is given by

M⊕

�
d2xE

dt2

�
e;v

¼ −c2
Z
VEðtÞ

ρEf2R½∇R�d3x

¼ −c2
Z
ΩE

ρEf2R∇Rd3x

¼ −c2ρE;w
Z
ΩE

∇f2d3x; ð174Þ

where ΩE ¼ frE < jx − xEj < R⊕g is the thin shell of
Earth, which is assumed to lie inside seawater. Using now
the Gauss theorem, the formula f2ðRÞ ¼ qRα, the expres-
sion (145) of curvature, and taking into account that R is
constant on the screening surface, we have

M⊕

�
d2xE

dt2

�
e;v

¼ −c2ρE;w
Z
∂VEðtÞ

f2ðRÞn̂Edσ

¼ −
1

α
Cðα; qÞρ

1
1þjαj
E;w

Z
∂VEðtÞ

�
c2

8πG
−

η

c2

� α
α−1
n̂Edσ; ð175Þ

so that we have the following relation between the volume
and surface contributions to Earth’s acceleration:

�
d2xE

dt2

�
e;v

¼ −
1

α

�
d2xE

dt2

�
e;s
: ð176Þ

For the function η inside the integral (175) we use the
solution computed by means of the Green’s function up to
the second order: note that such a solution was computed
by neglecting curvature R inside the thin shell according to
inequality (78), so that with this procedure we compute a
first correction to R ¼ 0. This correction satisfies itself
inequality (78) for α < −1=2 as it is shown in Appendix E.
In order to approximate the surface integral (175) we

introduce the small radius-to-distance ratios ε1; ε2;…,
where

ε1 ¼
rE

jxE − xSj
; ε2 ¼

rE
jxE − xMj

; ð177Þ

the other geometric ratios are defined analogously, and the
thin-shell parameter of Earth,

δE ¼ ΔR⊕

R⊕
¼ R⊕ − rE

R⊕
; ð178Þ

so that the thin-shell condition for Earth reads δE ≪ 1. If
such a condition is satisfied, then Earth’s screening surface
lies inside seawater and, at first order in δE, we have the
relations

M⊕;effðrEÞ ≈ 4πρE;wR3
⊕δE; ð179Þ

and

Z
R⊕

rE

ρEðrÞrdr −
M⊕;effðrEÞ
4πR⊕

≈
M⊕;effðrEÞ
8πR⊕

δE: ð180Þ

Now we observe that the Dirichlet condition (86) requires
the function ðc2=ð8πGÞ − η=c2Þ to vanish on Earth’s
screening surface, so that such a function, when evaluated
on the external surface of Earth, is infinitesimal with
respect to δE. Such an infinitesimal property has to be
satisfied by the approximation of function η in order to have
a valid approximation of the surface integral (175). Then, if
we consider the solution η computed with the Green’s
function up to the first order, we have argued in Sec. V E
that the sums IS þ J S;E and IM þ JM;E vanish on Earth’s
screening surface, so that they are infinitesimal with respect
to δE on ∂VE. Moreover, using Eqs. (99) and (100), the
radial terms of ðc2=ð8πGÞ − ðηE þ ηgÞ=c2Þ, which depend
on jx − xEj, also vanish on the screening surface. The other
terms in the first order solution do not vanish on the
screening surface, so that the solution computed with the
Green’s function up to the second order has to be used. By
using the method of images for a system of spheres, we
show in Appendix C that the remaining terms in the first
order solution cancel on the screening surface with terms of
the second order solution, so that the sum of all such terms
is infinitesimal with respect to δE on ∂VE.
Using these results we make a second order Taylor

approximation on the external surface of Earth, with respect
to δE, and ε1; ε2;…, of the terms in the function
ðc2=ð8πGÞ − η=c2Þ which vanish on Earth’s screening
surface. By the above arguments such a Taylor approxi-
mation has the overall multiplicative factor δE. By using the
method of images one can check that the remaining terms in
the second order solution that do not vanish on the
screening surface, and which are not considered in the
Taylor approximation, cancel with terms of the third order
solution giving rise to smaller corrections, and this pro-
cedure can be iterated at higher orders. The leading terms in
the Taylor approximation are computed in Appendix D and
they are the following:
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c2

8πG
−

1

c2
ηðR⊕; θ;φ; tÞ ≈

δE
12π

�
M⊕;eff

2R⊕
þ 3

�
ε1

M⊙;eff

jxE − xSj
n̂ES þ ε2

MM;eff

jxE − xMj
n̂EM

�
· n̂E þ…

�
; ð181Þ

where θ;φ are angular coordinates on the Earth’s surface, n̂E ¼ n̂EðR⊕; θ;φÞ, the term multiplied by ε1 comes from the
Taylor approximation of IS þ J S;E, the term multiplied by ε2 comes from the approximation of IM þ JM;E, and the dots
represent all terms that involve the other geometric ratios. We will find that these further terms give a negligible contribution
to the extra force.
The further first order Taylor approximation with respect to ε1; ε2;… then follows:

�
c2

8πG
−

1

c2
ηðR⊕; θ;φ; tÞ

� α
α−1

≈
�

δE
12π

� jαj
1þjαj

��
M⊕;eff

2R⊕

� jαj
1þjαj þ 3jαj

1þ jαj
�
M⊕;eff

2R⊕

�
− 1
1þjαj

×

�
ε1

M⊙;eff

jxE − xSj
n̂ES þ ε2

MM;eff

jxE − xMj
n̂EM

�
· n̂E þ � � �

�
: ð182Þ

Now, using the integral equation (113), substituting the expression (64) of ηg into the integral equation, neglecting factors
involving radius-to-distance ratios in the integral equation and using the relation (180), the term αq inside the coefficient
Cðα; qÞ is approximated by

αq ≈
�
8πG
c2

�
1þjαj

ρ−αg
M⊕;eff

24πR⊕
: ð183Þ

Substituting the Taylor approximation (182) and the above expression of αq inside the contributions (173) and (175) to the
Earth acceleration, using the relation (179) for the Earth’s effective mass, executing the surface integrals, and adding the
surface and volume parts, we obtain the total expression of the extra force on Earth. We find that a computation identical to
the one executed for the fifth force shows that the terms represented by dots in the Taylor approximation (182) give
contributions to the extra force of the order of ðR=dÞ2, so that they have been neglected. The final expression of the extra
force is given by

M⊕

�
d2xE

dt2

�
e
≈
�
2R⊕

ΔR⊕

� 1
1þjαj G

3

rE
R⊕

�
ρg
ρE;w

� jαj
1þjαj

M⊕;eff

�
M⊙;eff

xE − xS

jxE − xSj3
þMM;eff

xE − xM

jxE − xMj3
�
: ð184Þ

Comparing with Eq. (171), we see that the extra force and the fifth force are parallel vectors which point in opposite
directions. The ratio of magnitude of the two vectors is given by

Q⊕ ≈
�
2R⊕

ΔR⊕

� 1
1þjαj rE

R⊕

�
ρg
ρE;w

� jαj
1þjαj

: ð185Þ

The contribution of the extra force to the Moon’s acceleration is analogous:

MM

�
d2xM

dt2

�
e
≈
�
2RM

ΔRM

� 1
1þjαj G

3

rM
RM

�
ρg
ρM;c

� jαj
1þjαj

MM;eff

�
M⊙;eff

xM − xS

jxM − xSj3
þM⊕;eff

xM − xE

jxM − xEj3
�
; ð186Þ

and the corresponding ratio of magnitude of this vector and the fifth force on the Moon is given by

QM ≈
�
2RM

ΔRM

� 1
1þjαj rM

RM

�
ρg
ρM;c

� jαj
1þjαj

: ð187Þ

If the thin-shell condition for the Moon is satisfied, then the Moon’s screening surface lies inside the Moon’s crust so that
the crustal density ρM;c appears in the above formulas.
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IX. EQUIVALENCE PRINCIPLE VIOLATION

The results of the previous sections imply that the Earth
and Moon fall toward the Sun with different accelerations,
hence a violation of the universality of free fall (UFF) takes
place. The UFF can be satisfied only if the astronomical
bodies are completely screened (the effective masses
vanish), a condition that follow from the Eq. (113) that
determine the screening radii only if ηg ¼ c4=ð8πGÞ, hence
q ¼ 0 from Eq. (64), so that NMC gravity reduces to GR.
Using the expressions of the acceleration of Earth and

Moon due to fifth force and extra force, computed in
Secs. VII and VIII, the leading terms of the relative Earth-
Moon acceleration are given by

aM − a⊕ ¼ −GM� xM − xE

jxM − xEj3
þΔESMGM⊙

xS − xE

jxS − xEj3

þ ð1þΔtidalÞGM⊙

�
xE − xS

jxE − xSj3
−

xM − xS

jxM − xSj3
�
;

ð188Þ

where

ΔESM ¼ 1

3

M⊙;eff

M⊙

�
ð1 −QMÞ

MM;eff

MM
− ð1 −Q⊕Þ

M⊕;eff

M⊕

�
;

ð189Þ

M� ¼ M⊕ þMM

þ 1

3

M⊕;eff

M⊕

MM;eff

MM
½M⊕ð1 −QMÞ þMMð1 −Q⊕Þ�;

ð190Þ

Δtidal ¼
1

3
ð1 −QMÞ

MM;eff

MM

M⊙;eff

M⊙
: ð191Þ

The meaning of the terms in the expression of aM − a⊕ is
the following [32]:

(i) the first term is the relative acceleration due to the
gravitational attraction between the Earth andMoon;

(ii) the second term, which can be written in the form,

ΔESMgS; ð192Þ

gS being the Newtonian acceleration of Earth due to
the Sun, is the UFF violation-related difference
between the Earth and theMoon accelerations toward
the Sun, hence, in the framework of NMC gravity,
this term gives rise to a violation of the WEP; and

(iii) the third term is the solar tidal perturbation of the
Moon’s orbit, Δtidal being the NMC gravity correc-
tion to the Newtonian perturbation.

The size of the UFF violation is represented by the
parameter ΔESM, where ESM stands for Sun, Earth, and
Moon, since, by definition of the effective mass, such a

parameter depends on the composition (density) and size of
all the three astronomical bodies [25]. Particularly, the
WEP violation depends on size and composition of the
Sun, in addition to the more usual dependence on size and
composition of the Earth and Moon.
If the astronomical bodies are screened with screening

radii close enough to radii of the bodies, then the effective
masses and, consequently,ΔESM can be made small enough
in such a way that an experimental bound on WEP can be
satisfied.
If we denote dEM the Earth-Moon distance, then the UFF

acceleration (192) gives rise to a polarization of the Moon’s
orbit in the direction of the Sun with a periodic perturbation
ΔdEM of the form [44]

ΔdEM ¼ SΔESM cosD; ð193Þ

where D is the synodic phase measured from the new
Moon, and S is a scaling factor whose theoretical compu-
tation gives S ¼ 2.9 × 1012 cm [45].
The Newtonian solar tidal perturbation of the Moon’s

orbit also produces a periodic perturbation of dEM that has a
component at the synodic frequency; nevertheless, such a
perturbation can be accounted for to a very small uncer-
tainty [46], so that the corresponding NMC gravity cor-
rection can be neglected for jΔtidalj ≪ 1.
In the next section constraints on the NMC gravity model

will be obtained by means of the test of WEP performed in
Ref. [25] using LLR data. For a recent test of WEP based
on LLR data, see also [26].

X. LLR CONSTRAINTS ON NMC GRAVITY
PARAMETERS

In Ref. [25] the authors give a general constraint in terms
of difference between the Earth and the Moon accelerations
toward the Sun, without assuming metric theories or other
types of modified gravity theories. In order to test UFF
violations, a supplementary acceleration of the form (192)
is introduced in the geocentric equation of motion of the
Moon. The parameter ΔESM is estimated in the LLR
adjustment together with a set of parameters of the lunar
ephemerides listed in [25].
Then, using the expression (189), specific of our

framework, the estimate of ΔESM obtained in [25] can be
directly translated into a constraint on NMC gravity
parameters. The result on the WEP violation parameter
in [25], based on 48 years of LLR data, is given by

ΔESM ¼ ð3.8� 7.1Þ × 10−14; ð194Þ

with 3σ uncertainty. In our frameworkΔESM is a function of
α and of the screening radii of the Sun, Earth, and Moon,

ΔESM ¼ ΔESMðα; rS; rE; rMÞ; ð195Þ
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which are determined by Eq. (113) as functions of the
parameters α and q of the NMC gravity model:

rS ¼ rSðα; qÞ; rE ¼ rEðα; qÞ; rM ¼ rMðα; qÞ:
ð196Þ

Substituting such functions in the constraint (194) we
obtain the set of the admissible values of parameters α
and q.
In order to avoid too small numbers we replace param-

eter q with the rescaled, dimensionless parameter q̃
defined by

q̃ ¼ qRα
g ; ð197Þ

with Rg ¼ 8πGρg=c2. We represent the constraints from
LLR by means of a two-dimensional exclusion plot in the
plane with coordinates α, q. The resulting admissible
region in the plane is restricted by means of the condition
λg ≫ rg introduced in Sec. IV D that, expressed in terms of
parameters α; q̃ and using Eq. (34) with ρ ¼ ρg, becomes

�
3

4π
αð1 − αÞ c2

Gρg
q̃

�
1=2

> 102rg; ð198Þ

where we have required λg > 102rg.
In the numerical computation the screening radii have

been determined by Eq. (113) neglecting the factors
involving radius-to-distance ratios, since they give rise to
corrections that are not visible at the scale of the following
exclusion plots.
The LLR constraints are graphically reported in Figs. 2

and 3: admissible regions for parameters are plotted in
white, while the excluded regions are plotted in gray.

Figure 2 shows the admissible region for values of
parameter α in the range ð−10; 0Þ; since both α and q̃ are
negative the admissible region is plotted in the quarter
plane with coordinates ðjαj; jq̃jÞ. Figure 3 shows the
admissible region for values of α in the range ð−1; 0Þ.
The portion of the admissible region which lies above the
dashed red line rS ¼ rp corresponds to values of rS such
that the Sun’s screening sphere lies in the solar convec-
tion zone.
In Ref. [20] it has been found that the Cassini measure-

ment of Parametrized post-Newtonian (PPN) parameter γ
constrains the parameters α; q̃ to be of the order jq̃j < 10−12

for −1 > α > −10. Hence, the constraints from WEP
violation and LLR data provide tighter bounds on model
parameters compared to bounds from Cassini measurement.
Figures 4 and 5 show the thin-shell parameter of Earth δE

and the corresponding parameters δS and δM of Sun and

FIG. 2. LLR constraints on the parameter quarter plane jαj; jq̃j
for 0 > α > −10. The solid black line yields the upper bound on
jq̃j from LLR data, the dashed black line yields the lower bound
on jq̃j from inequality λg > 102rg. The dashed red line represents
the condition Sun’s screening radius rS equal to the radius rp at
the base of the solar photosphere.

FIG. 3. LLR constraints on the parameter quarter plane jαj; jq̃j
for 0 > α > −1. The solid black line yields the upper bound on
jq̃j from LLR data. The meaning of the dashed black line and of
the dashed red line is the same as in Fig. 2.

FIG. 4. Plot of thin-shell parameters δS, δM, and δE versus jq̃j
for α ¼ −1. The vertical solid black line on the right corresponds
to the upper bound on jq̃j for α ¼ −1. The vertical dashed black
line corresponds to the condition λg ¼ 102rg and the red one
corresponds to rS ¼ rp. The horizontal dashed and dotted lines
correspond to rS ¼ rp and rS ¼ rconv, respectively.
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Moon, which are defined analogously to formula (178),
plotted versus jq̃j for a fixed value of α. Figure 4 shows the
plot for α ¼ −1 and Fig. 5 for α ¼ −10.
The excluded regions are colored in gray. The figures

show that increasing jq̃j the Sun’s screening radius enters
into the convection zone.
The numerical results show that for values jαj > 1=2,

such that the thin-shell approximation is self-consistent, we
have for the Earth the upper bound δE < 2 × 10−5 which,
using Earth’s density profile in Appendix A 2, corresponds
to a thin shell ΔR⊕ ≈ 127 m in seawater. Since the Earth
has been modeled by means of a sphere (as it is usually
done for this kind of problem), it is interesting to compare
the thin shell with topographic variation on Earth’s surface.
First we observe that the ocean and seas cover 70.8% of the
surface of the Earth, then, because of currents, tides and
other dynamic effects, the surface of oceans departs by
roughly �2 m from the geoid, which is the equipotential
surface of the Earth’s gravity field (including centrifugal
force) going through the ocean surfaces in average [47].
The geoid, in turn, locally differs from the reference
ellipsoid used in geodesy which has a small flattening
f ≈ 1=300, so that it is very close to a sphere. The geoid
undulations, which are the local deviations between the
geoid and the ellipsoid, range worldwide from −107 m
(North Central Indian Ocean) to 85 m (Western Pacific, east
of New Guinea) relative to the ellipsoid, but over the large
majority of the ocean surface the undulations range from
−20 to 20 m [48]. Hence, on the majority of Earth’s areas,
the deviation between the Earth’s topographic surface and a
sphere is less than 1=6 of the value ofΔR⊕, which saturates
the LLR constraint, so that the use of the spherical
approximation of the thin shell is justified in order to find
analytical order of magnitude estimates of the constraints
on the NMC gravity parameters.

For the Moon we have the upper bound δM < 10−4 that,
using Moon’s density profile in Appendix A 3, corresponds
to a thin shell ΔRM ≈ 174 m in the lunar crust.
Figure 6 shows the ratios Q⊕ and QM of magnitude of

extra force and fifth force for the Earth and Moon,
respectively, versus jαj for −1 < α < 0. The ratios Q⊕
and QM are of order unity for α ≈ −1=5; however, in
Appendix E it is shown that the thin shell inequality (78) is
satisfied for α < −1=2 so that the solution for η is self-
consistent for such values of α. For α < −1=2 bothQ⊕ and
QM are less than 10−4 so that the extra force is negligible in
comparison with the fifth force. The smallness of the ratios
Q⊕ and QM is due to the presence in Eqs. (185) and (187)
of the term

�
ρg
ρ

� jαj
1þjαj

; ð199Þ

where ρ is density in the thin shell of the astronomical
body: either the density of seawater on Earth or density of
the lunar crust. Eventually, at the galactic scale where
density is of the order of ρg we expect the extra force to
have relevant effects.
We conclude this section with the evaluation of the

pressure jump on Earth at the interface between seawater
and atmosphere. Using expression (150) of the pressure
jump with ρ− ¼ ρE;w and ρþ ¼ ρatm, the Taylor approxi-
mation (182) and the thin shell approximation, we find the
following leading term for the pressure jump:

Δp ≈
G
3

M⊕;eff

R⊕
ρE;w

�
δE
2

ρg
ρE;w

� jαj
1þjαj

; ð200Þ

where we have neglected atmospheric density with respect
to density of seawater. The pressure jump increases by
decreasing jαj and the value of Δp for α ¼ −1=2 at the
saturation of the LLR constraint, which corresponds to
δE ¼ 2 × 10−5, is given by Δp ≈ 6 × 10−10patm, where

FIG. 6. Plot of the ratios Q⊕ and QM of magnitude of extra
force and fifth force versus jαj for −1 < α < 0.

FIG. 5. Plot of thin-shell parameters δS, δM , and δE versus jq̃j
for α ¼ −10. The vertical solid black line on the right corre-
sponds to the upper bound on jq̃j for α ¼ −10. The meaning of
the vertical dashed black and red lines, and of the horizontal
dashed and dotted lines, is the same as in Fig. 4.
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patm is atmospheric pressure at sea level, hence a negligible
quantity. By increasing jαj the jump Δp decreases quickly.

A. Comparison with application to cosmology

The results of the previous section show that compat-
ibility with LLR data is found for jq̃j < 10−14 and for
1=2 < jαj. Since interesting applications of NMC gravity
concern the rotation curves of galaxies [6] and the current
accelerated expansion of the Universe [7], such a tight
constraint on parameter q̃ raises the question of effectively
achieving those effects. In this section we discuss the
application to the accelerated expansion of the Universe
and we show that the LLR constraint still allows for the
prediction of an accelerated expansion.
Following Ref. [7], in order to model the accelerated

expansion of the Universe, we may choose

f2ðRÞ ¼ −
�
R
R0

�
α

; ð201Þ

with the curvature R0 chosen in the form

R0 ¼
�
m
ct0

�
2

; ð202Þ

where t0 ¼ 13.73 Gy is the present-day age of the Universe
and m is an integer. We have

q̃ ¼ qRα
g ¼ −

�
Rg

R0

�
α

; ð203Þ

and setting for instance the values α ¼ −4 and m ¼ 4 used
in Ref. [7], one finds

jq̃j ≈ 10−16: ð204Þ

Hence the constraint from LLR data does not prevent
the NMC gravity model from predicting an accelerated
expansion.

XI. CONCLUSIONS

In this work we have examined the NMC theories of
gravity specified by Eq. (11). These theories for certain
values of q and α are potentially inconsistent with the
Equivalence Principle given that the fifth force and the extra
non-Newtonian force they give rise could imply that Earth
and Moon fall differently towards the Sun. We have shown
that the screening chameleon-type mechanism, discussed
for the first time in the context of these theories in Ref. [20],
can be used to shield any violation of the equivalence
principle provided the astronomical bodies are screened in
such a way that their screening radii are close enough to the
radii of the bodies as discussed in Sec. IX. Furthermore, we
have shown in Sec. X for which range of values of the

parameters α and q, compatibility with 48 years of LLR
data can be ensured. Hence, the screening mechanism here
discussed does allow for compatibility with data even of
versions of the NMC gravity theories that are potentially
problematic. We find that constraints from WEP compat-
ible with the LLR data yield tighter bounds on the model
parameters compared than the corresponding bounds from
the Cassini measurement of the parametrized post-
Newtonian parameter, γ [20]. Indeed, WEP and LLR data,
compatible with lunar ephemerides, do provide stringent
bounds on the parameters q and α, more specifically, as
depicted in Figs. 2 and 3, for jαj and the rescaled value jq̃j
given by Eq. (197). Compatibility with data is found for
jq̃j < 10−14 and for 0.5 < jαj. As for the robustness of the
screening mechanism, the thin-shell conditions were tested
for different model parameters for Earth, Moon, and Sun, as
shown in Figs. 4 and 5. As can one inspect, consistency is
found for the range of model parameters that are compatible
with data.
Recently,WEPhas been testedwith a precision of10−15 by

the MICROSCOPE mission [49]; nevertheless, the resulting
bounds on chameleon gravity are not competitive with state-
of-the-art constraints [50] since MICROSCOPE was not
designed for testing modified gravity theories of this type.
Improvements concerning LLR data are expected from

lunar laser retroreflectors of next generation such as in the
Moon Laser Instrumentation for General Relativity High
accuracy Tests (MoonLIGHT) experiment, developed by
the National Institute of Nuclear Physics-National
Laboratories of Frascati, supported by the European
Space Agency and Italian Space Agency, and waiting
for launch to the Moon through the Commercial Lunar
Payload Services NASA program [51,52].
As a final remark, we can state, on general grounds, that

our results provide yet another confirmation that the NMC
gravity model under study remains a workable alternative
to address certain issues for which GR is not fully adequate.
Furthermore, given that the particular subclass of NMC
model under study requires the development of various
techniques for the implementation of the screening mecha-
nism, its relevance goes beyond the specificities of the
model as the technical issues addressed in our work can, in
principle, be useful for any model of gravity.
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APPENDIX A: INTERIOR DENSITY PROFILES

We report on models of mass density profiles for the Sun,
Earth, and Moon, which have been used in order to find
analytical estimates of the constraints on the NMC gravity
parameters at a suitable order of magnitude.

1. Sun density profile

The complete model of mass density of the Sun is
reported in Ref. [20]. In this appendix we report the density
profiles of the convection zone and photosphere since the
screening radius rS that saturates the LLR bound lies in
such zones. For the details see Ref. [20].
The radius of the Sun is R⊙ ¼ 6.9634 × 105 km, the

solar atmosphere begins below the spherical surface of
radius R⊙ and center in the origin, at a depth of about
500 km, and extends outward from the Sun. Then rp ¼
R⊙ − 500 km is the radius at the base of the photosphere.
Matter in the Sun is modeled as a perfect gas in hydrostatic
equilibrium.
Convection zone. We use a polytrope model with an

effective polytropic index nc ¼ 2.33 [53]:

ρSðrÞ ¼ Kc½TSðrÞ�nc ; ðA1Þ

with Kc ¼ 3.44 × 10−16, and the radius r varying in the
range

rconv ≤ r < rp; rconv ¼ 5.3185 × 105 km: ðA2Þ

The temperature profile is approximated by [53]

TSðrÞ ¼
GM⊙

Cpr
− T0; ðA3Þ

with M⊙ ¼ 1.989 × 1033 g, Cp ¼ 2.95 × 108 erg g−1K−1

is an averaged value of the specific heat at constant
pressure, and T0 ¼ 6.461 × 106 K.
Photosphere. For the density in the photosphere we use

the following model, adapted from [54], for rp ≤ r < R⊙:

ρSðrÞ ¼
μmppm

kB½Tm þ AðR⊙ − rÞ2�Þ exp
�
R⊙ − r
Hp

�
; ðA4Þ

where μ ¼ 1.26, mp ¼ 1.66 × 10−24 g is the proton mass,
kB ¼ 1.3806 × 10−16 ergK−1 is the Boltzmann constant,
Hp ¼ 117 km, A ¼ 8.8 × 10−3 km−2 K, Tm¼ 4.4×103 K
is the temperature minimum at the top of the photosphere,
pm is pressure corresponding at the temperature minimum,
such that pm=kB ¼ 1.2 × 1019 Kcm−3.

The Sun density profile permits us to compute the values
of the length λðρSÞ. By using the definition (34) of λ we
have

λðρSÞ ¼ λg

�
ρS
ρg

�α−1
2

; ðA5Þ

and by the discussion in Sec. IV D we require λg ≫ rg. For
instance, if α ¼ −1 and λg ¼ 103rg ∼ 105 AU, at the
bottom of the solar convection zone where ρS≈
1.65 × 10−1 g=cm3, we have λðρSÞ ≈ 10−6 m. At the top
of the convection zone where ρS ≈ 2.73 × 10−7 g=cm3, we
have λðρSÞ ≈ 7 × 10−1 m.

2. Earth density profile

We consider an average Earth model in the sense of [38].
The Earth is divided into four regions with constant mass
density separated by spherical surfaces of density disconti-
nuities: ocean layer, crust, mantle, and core. The following
numerical values of radii and densities are taken from
[38,55]. The radius of the Earth is R⊕ ¼ 6371 km.
Ocean layer. Since the ocean and seas cover 70.8% of

the surface of the Earth, the uppermost layer of the average
Earth model consists of seawater with a depth of 3 km. The
layer corresponds to distances r from the Earth’s center
RE;c < r ≤ R⊕:

RE;c ¼ 6368 km; ρE;w ¼ 1.02 g cm−3: ðA6Þ

Crust. The layer corresponds to RE;m < r ≤ RE;c:

RE;m ¼ 6346.6 km; ρE;c ¼ 2.7 g cm−3: ðA7Þ

At radius RE;m there is the Mohorovičić discontinuity.
Mantle. The layer corresponds to RE;n < r ≤ RE;m:

RE;n ¼ 3480 km; ρE;m ¼ 4.5 g cm−3: ðA8Þ

At radius RE;n there is the Gutenberg discontinuity.
Core. The layer corresponds to 0 < r ≤ RE;n:

ρE;n ¼ 11 g cm−3: ðA9Þ

Using Eq. (A5) wemay compute λðρEÞ in the various Earth’s
layers. We have λðρEÞ ≤ λðρE;wÞ, then, using for instance
α ¼ −1 and λg ¼ 105 AU,we find λðρE;wÞ ≈ 10−7 m, hence
a completely negligible quantity.

3. Moon density profile

The Moon is divided into three regions with constant
mass density separated by spherical surfaces of density
discontinuities: crust, mantle, and core. The following
numerical values of radii and densities are taken from
[56–58]. The radius of the Moon is RM ¼ 1737 km.

EQUIVALENCE PRINCIPLE VIOLATION IN NONMINIMALLY … PHYS. REV. D 109, 124013 (2024)

124013-29



Crust. The layer corresponds to distances r from the
Moon’s center RM;m < r ≤ RM [57]:

RM;m ¼ 1697 km; ρM;c ¼ 2.55 g cm−3: ðA10Þ

At radius RM;m there is the lunar Moho.
Mantle. The layer corresponds to RM;n < r ≤ RM;m:

ρM;m ¼ 3.4 g cm−3: ðA11Þ

Core. The layer corresponds to 0 < r ≤ RM;n [56,58]:

RM;n ¼ 330 − 400 km; ρM;n ¼ 3.9 − 5.5 g cm−3:

ðA12Þ

Considerable uncertainty is connected with the radius and
physical state of a metallic core.

In the Moon’s layers, using again α ¼ −1 and
λg ¼ 105 AU, we have λðρMÞ ≲ 10−7m.

APPENDIX B: SECOND ORDER GREEN’S
FUNCTION

First we give the six second order images inside the
screening spheres. The position vectors of the two image
points inside the Sun’s screening sphere are given by

x̂SE ¼ xS þ r2S
x̃E − xS

jx̃E − xSj2
;

x̂SM ¼ xS þ r2S
x̃M − xS

jx̃M − xSj2
; ðB1Þ

where x̂SE; x̂SM are the images of the sources at x̃E; x̃M,
respectively. The other four second order images are
obtained by changing the subscripts S, E, M.

The second order term of Green’s function contains six terms and its expression is then given by

Gð2Þðx;x0Þ ¼ −
1

4π

�
rE

jxE − x0j
rS

jx̃E − xSj
1

jx − x̂SEj
þ rM
jxM − x0j

rS
jx̃M − xSj

1

jx − x̂SMj
þ rS
jxS − x0j

rE
jx̃S − xEj

1

jx − x̂ESj
þ rM
jxM − x0j

rE
jx̃M − xEj

1

jx − x̂EMj
þ rS
jxS − x0j

rM
jx̃S − xMj

1

jx − x̂MSj

þ rE
jxE − x0j

rM
jx̃E − xMj

1

jx − x̂MEj
�
: ðB2Þ

We now give the contribution ηð2ÞE ðx; tÞ from the Earth’s thin shell to the solution ηðx; tÞ obtained by adding the second
order term of Green’s function. The following expression has to be added to formula (100). We drop the dependence on
ðx; tÞ for simplicity:

ηð2ÞE ¼ −
�

c4

8πG
− ηg

�
rE

�
rS

jjx − xSjðxS − xEÞ þ r2Sn̂Sj
þ rM
jjx − xMjðxM − xEÞ þ r2Mn̂Mj

�

þ FE;ES þ FE;SE þ FE;EM þ FE;ME þ FE;SM þ FE;MS; ðB3Þ

FE;ES þ FE;SE ¼ c2

3
rErS

� R R⊕
rE ρEðrÞrdr

jjx − xSjðxS − xEÞ þ r2Sn̂Sj
þ M⊕;effðrEÞ=4π
jr2EðxE − xSÞ þ jx − xEjðjxE − xSj2 − r2SÞn̂Ej

	
; ðB4Þ

FE;SM þ FE;MS ¼
c2

12π
rMrSðASM þ AMSÞM⊕;effðrEÞ;

ASM ¼ jjx − xMj½jxS − xEjðxM − xSÞ þ r2Sn̂SE� þ r2MjxS − xEjn̂Mj−1; ðB5Þ

where FE;EM þ FE;ME is obtained by replacing subscript S
with M in Eq. (B4), AMS is obtained by exchanging
subscripts S and M in the expression of ASM,
and n̂SE ¼ ðxS − xEÞ=jxS − xEj.

The first two terms in the expression (B3) of ηð2ÞE are the
contributions from the surface integrals over Earth’s screen-
ing surface; the terms FE;ES þ FE;SE in Eq. (B4) are the
volume integrals over the Earth’s thin shell of the terms in
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Gð2Þðx;x0Þ corresponding to the second order images
inside Sun and Earth of the sources at x̃E and x̃S,

respectively; the other terms in ηð2ÞE have analogous mean-

ings. The contributions ηð2ÞS ; ηð2ÞM from the Sun and Moon
are found by exchanging the subscripts S, E,M. The sum of
all the resulting terms yields the second order correction
ηð2Þ to the solution η.

APPENDIX C: VERIFICATION OF DIRICHLET
CONDITION

We compute the solution η on ∂Ω by using the Green’s
function up to the second order. We report the computation
for the Earth’s screening sphere, the results for the Sun and
the Moon being analogous.
Let us first consider the solutionup to the first order and the

contribution from the solar term ηð1ÞS . In Sec. V E we have
argued that ISðx; tÞ þ J S;Eðx; tÞ ¼ 0 on the Earth’s screen-
ing sphere. The remaining terms give the following con-
tribution on the screening sphere, which is approximated at
the leading order with respect to ratios R=d, where R is a
radius and d is a distance between the astronomical bodies:

ηð1ÞS ðx; tÞ ≈
�

c4

8πG
− ηg

�
rS

jx − xSj

−
c2

3

rS
jx − xSj

Z
R⊙

rS

ρSðrÞrdr

−
c2

12π

rM
jxM − xSj

M⊙;effðrSÞ
jx − xMj

: ðC1Þ

The first order contribution from the Moon is obtained by
exchanging S with M in the previous expression. The first
order contribution from the Earth is given by

ηð1ÞE ðx; tÞ ≈ c4

8πG
− ηg −

c2

12π

rS
jxS − xEj

M⊕;effðrEÞ
jx − xSj

−
c2

12π

rM
jxM − xEj

M⊕;effðrEÞ
jx − xMj

: ðC2Þ

By adding the contributions from the three astronomical
bodies and ηg according to formula (99), we find that the
difference ηð1Þðx; tÞ − c4=ð8πGÞ, between the first order
solution and the Dirichlet datum (86) on Earth’s screening
sphere, contains terms multiplied by factors of the order
of R=d.
We now consider the terms given by the Green’s function

up to the second order and we start again with the

contribution from the solar term ηð2ÞS . The integral term

in ηð1ÞS ðx; tÞ (which is exact),

−
c2

3

rS
jx − xSj

Z
R⊙

rS

ρSðrÞrdr; ðC3Þ

obtained by replacing E with S in the last term of the
solution (100) for ηE, is the volume integral over the Sun’s
thin shell of the term in Gð1Þðx;x0Þ corresponding to the
image point x̃S, which is the image of x0 inside Sun’s
screening sphere. Now exchange E with S in the solution

(B3) and (B4) for ηð2ÞE of Appendix B, then consider the
resulting term F S;SE, which turns out to be proportional to
the integral in expression (C3). The term F S;SE is the
volume integral over the Sun’s shell of the term in
Gð2Þðx;x0Þ corresponding to the image of x̃S inside the
Earth’s screening sphere, so that, by the properties of image
points the sum of the integral term (C3) plusF S;SE vanishes
on the screening sphere.
The surface term in ηð1ÞS ,

�
c4

8πG
− ηg

�
rS

jx − xSj
; ðC4Þ

obtained by replacing Ewith S in the first term of Eq. (100),
is the surface integral over Sun’s screening surface of the
term in Gð1Þðx;x0Þ corresponding to the image point x̃S.
Now exchange E with S in Eq. (B3) of Appendix B, then
consider the first term in the square bracket which turns out
to be proportional to the expression c4=ð8πGÞ − ηg. This
term is the surface integral of the term in Gð2Þðx;x0Þ
corresponding to the image of x̃S inside the Earth’s
screening sphere, so that, the sum of this term plus the
surface term (C4) again vanishes on the screening sphere.
The term J S;M in ηð1ÞS [which is approximated on Earth’s

screening surface by the last term in Eq. (C1)], is the
volume integral over the Sun’s thin shell of the term in
Gð1Þðx;x0Þ corresponding to the image point x̃M. Then

exchange again E with S in the solution for ηð2ÞE and
consider the resulting term F S;ME, which is the volume
integral over the Sun’s shell of the term in Gð2Þðx;x0Þ
corresponding to the image of x̃M inside the Earth’s
screening sphere, then one can check that the sum of
J S;M plus F S;ME vanishes on the screening sphere.
Hence, all the first order terms in ηð1ÞS cancel with some

second order terms in ηð2ÞS and the remaining terms are
approximated on Earth’s screening surface as follows:

ηð1ÞS ðx; tÞ þ ηð2ÞS ðx; tÞ ≈ c2

12π

�
rSrE

jxS − xEj2
1

jx − xSj
þ rErM
jxE − xSj · jxM − xEj

1

jx − xMj
þ rSrM
jxS − xMj2

1

jx − xSj
�
M⊙;effðrSÞ

þ rMrS
jxM − xSj · jx − xMj

�
c2

3

Z
R⊙

rS

ρSðrÞrdr −
c4

8πG
þ ηg

�
: ðC5Þ
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The contribution from the lunar term ηM is obtained by
replacing S with M in the previous expressions.
Now we consider the second order contribution from

Earth. The terms J E;S and J E;M in ηð1ÞE [which are
approximated on Earth’s screening surface by the last
two terms in Eq. (C2)] are the volume integrals over the
Earth’s thin shell of the terms in Gð1Þðx;x0Þ corresponding
to the image points x̃S and x̃M, respectively. Then consider

the term FE;SE in ηð2ÞE , which is the volume integral over the
Earth’s shell of the term in Gð2Þðx;x0Þ corresponding to the

image of x̃S inside the Earth’s screening sphere, then one
can check that the sum of J E;S plus FE;SE vanishes on the
screening sphere. Analogously, the sum of J E;M plus
FE;ME vanishes on the screening sphere.
Hence, all the first order terms in ηð1ÞE , with the exception

of c4=ð8πGÞ − ηg, cancel with some second order terms in

ηð2ÞE and the remaining terms are approximated on Earth’s
screening surface as follows:

ηð1ÞE ðx; tÞ þ ηð2ÞE ðx; tÞ ≈ c4

8πG
− ηg þ

c2

3

�
rS

jxS − xEj
rE

jx − xSj
þ rM
jxM − xEj

rE
jx − xMj

�Z
R⊕

rE

ρEðrÞrdr

þ c2

12π

�
rMrS

jxS − xEj · jxM − xSj
1

jx − xMj
þ rSrM
jxM − xEj · jxS − xMj

1

jx − xSj
�
M⊕;effðrEÞ

−
�

rErS
jxS − xEj · jx − xSj

þ rErM
jxM − xEj · jx − xMj

��
c4

8πG
− ηg

�
: ðC6Þ

If we compare the above result with the first order
computation, then we find that the difference,

ηð1Þðx; tÞ þ ηð2Þðx; tÞ − c4=ð8πGÞ; ðC7Þ

between the solution computed up to second order and the
Dirichlet datum (86) on Earth’s screening sphere contains
terms multiplied by factors of order of ðR=dÞ2. Since the
ratios of the type of R=d are small, it then follows that the
approximation of the Dirichlet condition improves by
increasing the number of image points.

APPENDIX D: FIFTH FORCE AND EXTRA
FORCE AT SECOND ORDER

We discuss the contributions to fifth force and extra force
resulting from the solution η computed by resorting to the
second order Green’s function Gð2Þðx;x0Þ.

1. Fifth force

We consider the contributions from the solar term ηS. By
exchanging E with S in the second order solution (B3) and
(B4) for ηE of Appendix B, we observe that the terms

c4

8πG
− ηg −

c2

3

Z
R⊙

rS

ρSðrÞrdr ðD1Þ

appear in the second order solutionmultiplied by a geometric
factor of the same form of J S;E. Hence, the contribution of
such terms to the fifth force is proportional to

�
c4

8πG
− ηg −

c2

3

Z
R⊙

rS

ρSðrÞrdr
�Z

VEðtÞ
ρE∇J S;Ed3x; ðD2Þ

which vanishes because of formula (166). Furthermore,
using also the integral equation on the Sun’s screening
sphere, we find that the sum of the contribution from
∇J S;M plus all other second order terms in ∇ηS gives
contributions multiplied by factors R=d. That completes
the contributions from ηS.
The contribution from the lunar term ηM is obtained by

replacing S with M in the previous results.
Now we consider the second order solution Eq. (B3) for

ηE of Appendix B. By using the integral equation (113) on
the Earth’s screening sphere, we observe that the terms in
the first row of Eq. (B3) cancel with the terms FE;ES þ
FE;EM in the second row, given in Eq. (B4), except for
OðR=dÞ. Furthermore, we find that the sum of the con-
tribution from ∇J E plus all other second order terms in
∇ηE gives contributions multiplied by factors R=d.
Eventually, by using the thin shell assumption for all

bodies and the approximate relations (115) between effec-
tive masses, it turns out that all contributions to the fifth
force of the order of R=d cancel each other.

2. Extra force

Wecompute the leading terms in theTaylor approximation
(181). Let us first consider the contribution from the solar
term ηS. We have ISðx; tÞ þ J S;Eðx; tÞ ¼ 0 on the Earth’s
screening sphere. By exchanging E with S in the second
order solution (B3) and (B4) for ηE ofAppendixB,we obtain

the approximation ηð2ÞS and we observe that the terms in the
sum

−
c2

3

rS
jx − xSj

Z
R⊙

rS

ρSðrÞrdrþ F S;SEðx; tÞ ðD3Þ
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have the same geometric factors of ISðx; tÞ þ J S;Eðx; tÞ.
The surface term (C4) and the corresponding term in ηð2ÞS
identified in Appendix C have the same property. Then all
these sums have a common second order Taylor approxi-
mation on the external surface of Earthwith respect to δE and
ε1, and the contribution of this Taylor approximation to
−ηS=c2 is given by

−
δE

jxE−xSj
ð1−3ε1n̂ES · n̂EÞ

×

�
M⊙;eff

12π
−
rS
3

Z
R⊙

rS

ρSðrÞrdrþ rS

�
c2

8πG
−
ηg
c2

��
: ðD4Þ

The contribution from the lunar term ηM is obtained by
replacing S with M in the previous expression.
Using then Eqs. (99), (100), and (180), the radial terms

of ðc2=ð8πGÞ − ðηE þ ηgÞ=c2Þ, which depend on jx − xEj,
evaluated on Earth’s external surface, yield

δE

�
M⊕;eff

24πR⊕
−
1

3

Z
R⊕

rE

ρEðrÞrdrþ
c2

8πG
−
ηg
c2

�
: ðD5Þ

Adding all above terms from ηS, ηM, and ηE, and elimi-
nating ðc2=ð8πGÞ − ηg=c2Þ from the Earth’s contribution
by means of the integral equation (113) on the Earth’s
screening sphere, we obtain

c2

8πG
−

1

c2
ηðR⊕; θ;φ; tÞ ≈ δE

�
M⊕;eff

24πR⊕
þ n̂ES · n̂E

jxE − xSj
3ε1

�
M⊙;eff

12π
−
rS
3

Z
R⊙

rS

ρSðrÞrdrþ rS

�
c2

8πG
−
ηg
c2

��

þ lunar terms
	
; ðD6Þ

where the lunar terms are obtained by replacing SwithM in
the terms depending on solar quantities. Eventually, sub-
stituting Eq. (168) we obtain the leading terms of the
approximation (181).

APPENDIX E: THIN SHELL INEQUALITY

We give a proof a posteriori of inequality (78) that has
been used in order to compute the solution for function η.
Particularly, we prove that such a solution is consistent with
the inequality for α < −1=2. We give the proof for the
Earth’s thin shell, the case of the Moon being similar, while
the case of the Sun has been proved in Ref. [20]. Since η is a
solution of Eq. (26), we have to prove that for r > rE and r
close to rE, the solution η in the thin shell is such that
curvature R ¼ ωðη; ρÞ quickly becomes much smaller than
the GR curvature, so that the inequality (78) is verified
a posteriori.
We use formula (145) for curvature, which we write in

the form

R ¼ ð2αqρÞ 1
1þjαj

�
c2

8πG
−

η

c2

�− 1
1þjαj

: ðE1Þ

The term ðc2=ð8πGÞ − η=c2Þ is computed on the sphere of
radius r, with rE < r < R⊕, with the same method used to
compute the same expression for r ¼ R⊕ in formula (181)
and reported in Appendix D. The leading term depends on r
and it is given by

c2

8πG
−

1

c2
ηðrÞ ≈ δr

6r

Z
r

rE

ρEðr0Þðr0Þ2dr0; ðE2Þ

where

δr ¼
r − rE

r
¼ 1 − rE=r

1 − rE=R⊕
δE: ðE3Þ

Now, using the thin shell approximation so that the Earth’s
screening surface lies in the ocean layer, we have

Z
R⊕

rE

ρEðrÞrdr ¼
1

2
ρE;wðR2

⊕ − r2EÞ ≈ ρE;wR2
⊕δE: ðE4Þ

Using then the integral equation (113), substituting the
expression (64) of ηg into the integral equation, and
neglecting factors involving radius-to-distance ratios in
the integral equation, we find the approximation

δE ≈
6αq

ρE;wR2
⊕

�
8πG
c2

�
α−1

ραg : ðE5Þ

Using again the thin shell approximation we have

1

6r

Z
r

rE

ρEðr0Þðr0Þ2dr0 ≈
1

6
ρE;wr2δr: ðE6Þ

Moreover, using definition (34) of λ, we have

αq ¼ λ2g
6ð1þ jαjÞ

�
8πG
c2

ρg

�
1þjαj

: ðE7Þ

Substituting formulas (E2), (E3) and (E5)–(E7) in expres-
sion (E1) of curvature, we find for rE < r < R⊕,
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R≈ ½2ð1þjαjÞ� 1
1þjαj

�
R⊕−rE
r−rE

R⊕

λg

� 2
1þjαj

�
ρg
ρE;w

�jαj−1
jαjþ1

RGR; ðE8Þ

where RGR ¼ ð8πG=c2ÞρE;w is the value of GR curvature in
the ocean layer. The expression of curvature diverges as
r → rE, which means that the approximation is not valid in
this limit. Nevertheless, there exist α0 and r� ∈ ðrE; R⊕Þ,
with r� ¼ r�ðαÞ close to rE, such that for any α < α0 and
any r∈ ðr�; R⊕Þ we have R ≪ RGR, so that the desired
inequality is verified in almost all the thin shell. In the
following we give a sample of values.
Let us set λg ¼ 102rg. We have R < 10−3RGR

for α ¼ −2 and r� − rE ¼ 10−15ðR⊕ − rEÞ;
for α ¼ −1 and r� − rE ¼ 10−5ðR⊕ − rEÞ:

We have R < RGR=20

for α ¼ −1=2 and r� − rE ¼ 3.6 × 10−2ðR⊕ − rEÞ:

If we increase λg by setting λg ¼ 7.07 × 102rg, which is the
upper bound permitted by the LLR constraint for
α ¼ −1=3, then we have R < 10−1RGR

for α ¼ −1=3 and r� − rE ¼ 0.2ðR⊕ − rEÞ:

We see that r� increases as α increases, and we consider the
inequality verified for α < −1=2. However, note that the
values α > −1=2 are not excluded by the LLR constraint.

1. Fifth force in the thin shell

The fifth force density is given by Eq. (141) and the
leading term in Earth’s thin shell is computed by using
Eqs. (E2) and (E6): for r�ðαÞ < r < R⊕ the fifth force
density is given by

FfðrÞ ≈ −
4

3
πGðr − rEÞ

�
ρE;w

R⊕δE
R⊕ − rE

�
2

; ðE9Þ

and it achieves maximum magnitude at r ¼ R⊕. The
Newtonian force density at r ¼ R⊕ has magnitude
jFNj ¼ ð4=3ÞπGρE;whρ⊕iR⊕, where hρ⊕i is Earth’s mean
density, so that the ratio of magnitude is

jFfðR⊕Þj
jFNðR⊕Þj

≈
ρE;w
hρ⊕i

δE: ðE10Þ

In Sec. X we have found the upper bound δE < 2 × 10−5

for jαj > 1=2, which corresponds to the value 3.6 × 10−6

for the ratio of magnitude of fifth force and Newtonian
force. Since Earth’s thin shell is contained in seawater, then
the fifth force is negligible (see the ocean experiment in
[18]) in the thin shell for α < −1=2 and r > r�ðαÞ.

For values of r such that rE < r < r�ðαÞ the above
approximation of η cannot be used; nevertheless, the radial
integral of fifth force density can be evaluated by using the
boundary conditions. Using the Dirichlet condition
ηðrEÞ ≈ c4=ð8πGÞ, and considering the leading term of
ηðr�Þ, we find

Z
r�

rE

FfðrÞdr ≈
4πG
c2

ρE;w½ηðr�Þ − ηðrEÞ�

¼ −
2

3
πGρ2E;wðr� − rEÞ2: ðE11Þ

The evaluation of the corresponding integral of Newtonian
force density yields
Z

r�

rE

FNðrÞdr≈−
4

3
πGρ2E;w

�hρ⊕i
ρE;w

− 3

�
rEðr� − rEÞ: ðE12Þ

Since hρ⊕i=ρE;w − 3 > 2, the ratio of the integral of fifth
force and the integral of Newtonian force is bounded by the
ratio

r� − rE
rE

¼ r� − rE
R⊕ − rE

R⊕

rE
δE; ðE13Þ

so that, by using the values of r� − rE found in the previous
subsection and δE < 2 × 10−5, such a ratio is less than 10−6

for α < −1=2 and the contribution of the fifth force turns
out to be again negligible.
Analogous results can be found for the Moon.

2. Extra force in the thin shell

Using formula (145) for curvature R and taking into
account that density is constant in the thin shell of both
Earth and Moon, we find for the extra force density Fe ¼
−ρc2f2R∇R the expression

Fe ¼ −
1

2

R
1þ jαj∇η ¼ −

R
ð8πG=c2Þρ

Ff

1þ jαj
¼ −

R
RGR

Ff

1þ jαj : ðE14Þ

Since we have R ≪ RGR for r�ðαÞ < r < R⊕ it follows
jFej ≪ jFf j for such values of radius in Earth, so that the
extra force is also negligible in the thin shell.
For values of r such that rE < r < r�ðαÞ the radial

integral of the extra force density can be evaluated by using
the boundary conditions:

Z
r�

rE

FeðrÞdr¼−ρE;wc2
Z

r�

rE

f2R
dR
dr

dr

¼ρE;wc2jq̃j
��

Rðr�Þ
Rg

�
α

−
�
RðrEÞ
Rg

�
α
�
; ðE15Þ

with q̃ ¼ qRα
g . Using formula (E5) we have
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c2jq̃j ≈ 4

3jαj πGρE;wR
2
⊕δE; ðE16Þ

from which, being Rðr�Þ ≪ RGRðr�Þ ¼ RðrEÞ for the
boundary condition on Earth’s screening sphere, and
α < 0, we have the inequality

Z
r�

rE

FeðrÞdr <
4

3jαj πGρ
2
E;wR

2
⊕δE

�
Rðr�Þ
Rg

�
α

: ðE17Þ

Using now the integral (E12), the absolute value of the ratio
of the integral of the extra force and the integral of
Newtonian force is bounded by the ratio

R2
⊕δE

jαjrEðhρ⊕i=ρE;w − 3Þ
1

r� − rE

�
Rðr�Þ
Rg

�
α

: ðE18Þ

The ratio increases by decreasing jαj so that it is bounded
by the value achieved for α ¼ −1=2 and, using the values
of r� ¼ r�ðαÞ which satisfy the thin shell inequality, we
find that the above ratio is less than 10−9, hence the
contribution of the extra force turns out to be again
negligible.
Analogous results can be found for the Moon.
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