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It is known that the four-dimensional effective field theory arising from heterotic string theory is general
relativity with both a Chern-Simons and Gauss-Bonnet term. We study the propagation of gravitational
waves in this combination of Chern-Simons and Gauss-Bonnet gravity, both of which have an associated
scalar field, the axion and the dilaton respectively, that are kinetically coupled. We review how the
combination of dynamical Chern-Simons and Gauss-Bonnet gravities can arise from string theory as
corrections to general relativity and show how the gravitational wave waveform is modified in such a
theory. We compare our results to a novel framework recently introduced for parametrizing the parity-
violating sector (Chern-Simons), and use that to guide our construction of a similar parametrization for
the parity-conserving (Gauss-Bonnet) sector. In general, we find that the contributions from the parity-
violating and parity-conserving sectors are similar. Moreover, the kinetic coupling between the axion and
dilaton introduces an extra contribution to the parity-violating sector of the gravitational waves. Using our
parametrization, we are able to comment on initial constraints for the theory parameters, including the time
variations of the axion and dilaton.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has been
shown to agree remarkably well with observations [1–4].
However, theoretical and observational challenges suggest
that GR may be modified in the strong field regime [5].
These corrections are generally motivated from a high-
energy ultraviolet (UV) theory that, at low energies, leads
to corrections to GR in an effective field theory (EFT).1

GR has been very well constrained in the weak field
regime (see, e.g., [7,8]), and with the ability to detect
gravitational waves (GWs) in the last decade, it has become
possible to probe the strong field regime of gravity directly
using compact objects, such as black holes and neutron
stars [9–12]. Thus, GWs have opened up a new avenue for
testing potential modifications of GR.
There are a wide range of modified gravity theories and

extensions to GR (see, e.g., [13,14] for a review), which may
be motivated from the fact that, at high energies, GR is
nonrenormalizable in a quantum theory of gravity.
Modifications to GR have also been proposed as alternatives
to inflation, dark matter, and dark energy (e.g., [14–17]).
Modified gravity theories are either parity-conserving, which

remain invariant under a parity transformation, or parity-
violating,which are not invariant under such a transformation.
Many well-studied modifications to GR incorporate

higher curvature terms. Some well-studied parity-conserving
theories are Gauss-Bonnet [18–23] and Starobinsky inflation
as a specific type of fðRÞ gravity [24,25]. Examples
of parity-violating theories include Chern-Simons gravity
[26–29], parity violating extensions to teleparallel gravity
[30,31], Horava-Lifshitz [32,33], and ghost-free scalar-
tensor gravity [34]. Recent work has also shown that
parity-violating gravitational interactions can be constructed
from the Kalb-Ramond field [35].
Two well-studied modified gravity theories are Chern-

Simons and Gauss-Bonnet gravity. Chern-Simons gravity
can be motivated from the context of particle physics
[36,37] and leptogenesis [38–40], as well as in other
areas such as string theory [41–43], loop quantum gravity
[44–46] and effective field theories [6,47]. Furthermore,
from a phenomenological perspective, such a theory could
give rise to parity violation in the cosmic microwave
background (CMB) [48–52] and in the gravitational sector
[26,27,53–55]. Notably, parity violation in the gravitational
sector can lead to birefringence in GW propagation, in
which the right- and left- handed polarization modes evolve
differently in their amplitude and/or velocity.2*tatsuya_daniel@brown.edu

†ljenks@uchicago.edu
‡stephon_alexander@brown.edu
1See e.g. [6].

2For recent work on how birefringence can lead to condensate-
induced inflation in Chern-Simons gravity, see [56].
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Gauss-Bonnet gravity is another well-motivated modified
gravity theory, initially arising from an attempt to generalize
GR [57–60]; it has also been suggested to arise from string
theory [61–65]. Its phenomenological implications have
been extensively studied, including its predicted effect
on compact objects such as black holes and neutron stars
[66–75], and its implications for inflation [76–85].
One avenue to find modifications to GR that are

mathematically well-motivated is string theory, a candidate
for a quantum theory of gravity and a unified description of
the fundamental forces of Nature [43,86–89]. In general,
constructions of string theory require more than four
dimensions. Upon compactification from a higher-
dimensional theory to four dimensions, string theory
predicts GR plus perturbative corrections in the string
tension α0 ¼ l2

s [62,90–92], and some of these corrections
are quadratic curvature terms [61,93]. In general, correc-
tions to the Einstein-Hilbert action are represented locally
by higher derivative additions, and coordinate invariance
implies that they must consist of second and higher powers
of curvatures, and their derivatives [94].
A natural question to ask then, is what would be

precisely the effective four-dimensional gravity theory
predicted from string theory. In string theory, the heterotic
string is a mixture of the right-moving sector of the
superstring and the left-moving sector of the bosonic
string. The two sectors need different spacetime dimensions
to cancel the anomalies; the matching of dimensions is
achieved by compactifying the extra dimensions on a
compact manifold. Heterotic string theory (HST) possesses
a number of attractive features, including that it is chiral
and includes gauge fields [95,96]. The two possible gauge
groups for the heterotic string are E8×E8 and SOð32Þ [95];
furthermore, the superstring’s spectrum contains no tachy-
ons and has a graviton [97].
For a long time, it has been theorized that the four-

dimensional effective action from HST is captured by GR
plus a Gauss-Bonnet term. However, this lacks an axion
field; the field strength of the Kalb-Ramond 2-form
satisfies the Bianchi identity dH ¼ α0R ∧ R, and hence
this term cannot be truncated out. Upon compactification to
four dimensions, this term results in a correction to GR
that can be precisely identified as the Pontryagin term of
Chern-Simons gravity, which is typically coupled to an
axion field. Thus, for HST, the 4D gravity theory cannot be
Gauss-Bonnet or Chern-Simons gravities alone, but rather a
combination of the two as corrections to GR, a result that
does not depend on the choice of compactification [98].
GWs are a powerful probe of modified gravity theories.

It is well known that the effects of deviations from GR on
GWs can generally be characterized by modifications to the
GW amplitude and phase, for example by using the
parametrized post-Einsteinian formalism (ppE) [99–106].
In this paper, we study Chern-Simons-Gauss-Bonnet
(CS-GB) gravity by computing the equations of motion

of GW propagation for such a theory, which contains both
terms and includes a kinetic coupling between the two
associated scalar fields, the axion and the dilaton. We map
our analytic expressions to the parity-violating framework
put forth in [107] and provide an explicit extension to the
parity-invariant sector. This extension maps to ppE and
provides a framework to explicitly parameterize parity-
violating and parity-conserving corrections to GR in
GW propagation. From this framework and our mapping
of the CS-GB parameters to GW observables, we are able
to use the constraints on the GW propagation speed, as
well as the coupling constant α0, to provide initial
constraints on the theory.
The outline of this paper is as follows: after presenting

the basics of CS and GB gravities in Sec. II, we review
in Sec. III how both theories can arise from HST by
summarizing the stringy derivation from [98] of the 4D
effective action, which showed that the result is a combi-
nation of CS and GB gravities. In Sec. IV we compute the
modified field equations, and in Sec. V we calculate the
equations of motion for GWs in an FLRW background.
From there, we generalize the parametrization of [107]
by including the parity-conserving sector, and use the full
parametrization to place initial constraints on the CS-GB
theory parameters, including the time derivatives of the
axion and dilaton, in Sec. VI. We briefly discuss other
effects, directions for future work, and conclude in Sec. VII.
Throughout this paper, we use geometric units such that

G ¼ c ¼ 1, and we assume a ð−;þ;þ;þÞmetric signature;
Greek letters (μ; ν;…) range over all spacetime coordi-
nates, Latin letters (i; j;…) range over spatial indices, and
square brackets denote antisymmetrization over indices.

II. BASICS OF CHERN-SIMONS AND
GAUSS-BONNET GRAVITIES

In this section, we review the basics of Chern-Simons
(Sec. II A) and Gauss-Bonnet (Sec. II B) gravities indi-
vidually, before turning to the combined theory for the
remainder of the paper.

A. Chern-Simons gravity

The CS modification of GR arises in different contexts,
including in particle physics [36,47] and in string theory,
where it arises from the Green-Schwarz anomaly cancella-
tion mechanism [41–43]. In other words, in HST, a
quantum effect due to a gauge field induces a CS term
in the effective low energy 4D action of GR.3

CS gravity is a 4D deformation of GR that can generally
be written as

S ¼ SEH þ SCS þ Sφ þ Smat; ð1Þ

3For more discussion and derivation of this, the reader is
referred to the review [28].
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where SEH is the usual Einstein-Hilbert action of GR

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
R; ð2Þ

the CS term is given by

SCS ¼
α

4κ

Z
d4xφ�RR; ð3Þ

with κ ¼ ð16πÞ−1, and α is a coupling parameter. The
pseudo-scalar field, φ, is coupled to the Pontryagin density
of the spacetime, which is defined as

�RR ¼ �Rμ
ν
ρσRν

μρσ; ð4Þ

where the Hodge dual of the Riemann tensor is

�Rμ
ν
ρσ ¼ 1

2
ϵρσαβRμ

ναβ; ð5Þ

with ϵρσαβ the antisymmetric Levi-Civita tensor. The scalar
field term is

Sφ ¼ −
β

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½gμνð∇μφÞð∇νφÞ þ 2VðφÞ�; ð6Þ

and lastly we can have an additional matter contribution
described by

Smat ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmat; ð7Þ

where Lmat is a matter Lagrangian density that does not
depend on φ.
If a nonzero potential VðφÞ is chosen in Eq. (6), then a

mass for the scalar field usually has to be generated, which
would render the field short-ranged. However, Eq. (1) has a
shift symmetry, and theories with a shift symmetry do not
allow mass terms, hence the field must be long-ranged.
Thus, we choose to set VðφÞ ¼ 0 and neglect the poten-
tial term.
The pseudo-scalar φ is known as the CS coupling field,

which can generically be a function of space and time.
If φ ¼ constant, CS gravity reduces to GR, since the
Pontryagin term can be expressed as the divergence of
the CS topological current Kμ,

∇μKμ ¼ 1

2
�RR; ð8Þ

where

Kμ ¼ ϵμνρσΓn
νm

�
∂ρΓm

σn þ
2

3
Γm
ρlΓl

σn

�
; ð9Þ

with Γ being the Christoffel connection. Upon integration
by parts, SCS becomes

SCS ¼ αðφKμÞ
����
∂V

−
α

2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ð∇μφÞKμ; ð10Þ

and the first term can be discarded because it is evaluated
on the boundary of the manifold, while the second term
clearly vanishes if φ is constant [28].
The addition of the CS terms modifies the Einstein

equations by the addition of the C-tensor, Cμν, as

Gμν þ
α

κ
Cμν ¼

1

2κ
Tμν: ð11Þ

The C-tensor is a 4D generalization of the 3D Cotton-York
tensor; it is given by

Cμν ¼ ð∇αφÞϵαβγðμ∇γRνÞ
β þ ½∇ðα∇βÞφ��RβðμνÞα: ð12Þ

Furthermore, we get an extra equation of motion for φ
from the variation of the action:

β□φ ¼ −
α

4
�RR; ð13Þ

which is the Klein-Gordon equation in the presence of a
source term.
Here we note that there are two formulations of CS

gravity [Eq. (1)]: the nondynamical formulation (α arbi-
trary, β ¼ 0) and the dynamical formulation (α and β
arbitrary but nonzero). These are two distinct theories,
because in the dynamical case the scalar field introduces
stress-energy into the field equations, which forces vacuum
spacetimes to possess a certain amount of “scalar hair,” a
feature which is absent in the nondynamical formulation.
In this paper, we will be considering the dynamical
formulation of CS gravity, appropriately called dynamical
Chern-Simons (dCS) gravity.

B. Gauss-Bonnet gravity

Gauss-Bonnet gravity has been well studied and it has
been found to exhibit a rich phenomenology (see, e.g.,
[75,108–113]), from producing viable models of inflation
to spontaneous scalarization in compact objects, as well as
admitting novel black hole solutions that evade the no-hair
theorems [114]. At the classical level, string theory predicts
that Einstein’s field equations receive next-to-leading-order
corrections that are usually described by higher-order
curvature terms in the action. In particular, GB terms occur
in HST in the 1-loop effective action of the 4D theory, in the
Einstein frame [61–65].
The GB action is another deformation of GR that can be

written as

S ¼ SEH þ SGB; ð14Þ

GRAVITATIONAL WAVES IN CHERN-SIMONS-GAUSS-BONNET … PHYS. REV. D 109, 124012 (2024)

124012-3



with SEH given in Eq. (2) and

SGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂αϕ∂

αϕþ αfðϕÞX4

�
; ð15Þ

where α is a coupling constant, X4 is the 4D GB density,

X4 ¼ R2 − 4RμνRμν þ RμνρσRμνρσ; ð16Þ

and we have included a kinetic term for the scalar field.4

A standard variation of Eq. (14) yields the field
equations [115]:

□ϕ ¼ αf0ðϕÞX4; ð17Þ

Gμν ¼
1

2
∂μϕ∂νϕ −

1

4
gμν∂αϕ∂αϕ − αDðϕÞ

μν þ 8πTμν; ð18Þ

where Gμν is the Einstein tensor, Tμν is the matter stress-
energy tensor, and

DðϕÞ
μν ¼ ðgμρgνσ þ gμσgνρÞϵασλγ∇κ½�Rρκ

λγ∂αfðϕÞ�: ð19Þ

For D ¼ 4, one can see that, when varying Eq. (14) with
respect to the inverse metric, the contributions of the GB
density to the field equations vanish identically. However, if
there is a dynamical scalar field ϕ which is coupled to the
GB density, the GB term will have nonvanishing contri-
butions to the field equations, even in four dimensions. This
scalar field ϕ is conventially referred to as the dilaton.
The combination of the Einstein-Hilbert and GB terms in

the gravitational action is known as Einstein-Gauss-Bonnet
gravity, and with the inclusion of the dilaton it is referred to
as Einstein-dilaton-Gauss-Bonnet (EdGB) gravity, which is
what we consider in this paper.

III. DERIVATION OF 4D EFFECTIVE
STRING ACTION

Here we review how CS-GB gravity can arise from HST,
a result which was derived in [98]. We outline the most
important steps in this section, with more intermediate steps
and explanations provided in Appendix A.
Our starting point is the ten-dimensional heterotic super-

string effective action at first order in α0. We will use the
action given by [116], which is obtained upon super-
symmetrization of the Lorentz-Chern-Simons terms:

Ŝ ¼ g2s

16πGð10Þ
N

Z
d10x

ffiffiffiffiffi
jĝj

p
e−2ϕ̂

�
R̂ − 4ð∂ϕ̂Þ2 þ 1

12
Ĥ2

þ α0

8
R̂ð−ÞμνabR̂

μνab
ð−Þ þOðα03Þ

�
; ð20Þ

where R̂ð−Þ is the curvature of the torsionful spin con-
nection, Ωað−Þb:

Ωa
ð−Þb ¼ ωa

b −
1

2
Hμ

a
bdx

μ; ð21Þ

with ωa
b being the usual spin connection, and a and b are

Lorentz indices. Ĥ is the 3-form field strength associated
with the Kalb-Ramond 2-form B̂,

Ĥ ¼ dB̂þ α0

4
ωL
ð−Þ; ð22Þ

with ωL
ð−Þ being the Lorentz-Chern-Simons 3-form of the

torsionful spin connection, and all of the gauge fields are
already truncated. The asymptotic vacuum expectation
value of the dilaton is related to the string coupling constant

as gs ¼ ehϕ̂∞i, and Gð10Þ
N ¼ 8π6g2sl8

s is the ten-dimensional
gravitational constant, with ls being the string tension.
We want to find the simplest compactification and

truncation of this theory down to four dimensions. The
minimal consistent truncation possible is a direct product
compactification on a six-torus,M4 × T6, where the metric
takes the form

dŝ2 ¼ ds̄2 þ dzidzi; i ¼ 1;…; 6; ð23Þ

where ds̄2 is the 4D metric in the Jordan frame, the six-
torus is parametrized by the coordinates zi ∼ zi þ 2πls, and
all the Kaluza-Klein vectors and scalars are taken to be
trivial. One can check that this compactification ansatz
solves all of the 10D equations of motion once the lower-
dimensional ones are satisfied, making this a consistent
truncation.
This compactification yields the same theory as Eq. (20),

except in four dimensions and with a gravitational constant

Gð4Þ
N ¼ Gð10Þ

N =2πl6
s . After introducing the Bianchi identity

in the action along with a Lagrange multiplier φ to promote
H to be the dynamical field instead of B, we obtain

S̄¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jḡj

p �
e−2ðϕ̂−ϕ̂∞Þ

�
R̄−4ð∂ϕ̂Þ2

þ 1

12
H2

�
−
1

3!
Hμνρϵ

μνρσ
∂σφþ

α0

8
LR2 þOðα03Þ

	
; ð24Þ

where

LR2 ¼ e−2ðϕ̂−ϕ̂∞ÞR̄ð−ÞμνρσR̄
μνρσ
ð−Þ − φR̄ð−Þμνρσ ˜̄R

μνρσ
ð−Þ : ð25Þ

We can vary Eq. (24) in terms of H to get a relation
between H and φ, thus allowing us to remove H from
the action. The variation of Eq. (24) with respect to H
can be solved by doing an expansion in α0, i.e.,

4One can include a potential term VðϕÞ as well; however due
to shift symmetry we set VðϕÞ ¼ 0, just like for CS gravity.
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H ¼ Hð0Þ þ α0Hð1Þ þ α02Hð2Þ þ…. After doing so and
plugging HðφÞ back into the action, we find that
Eq. (24) can be written as5

S̄ ¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jgj

p �
e−2ðϕ̂−ϕ̂∞Þ½R̄ − 4ð∂ϕ̂Þ2�

þ 1

2
e2ðϕ̂−ϕ̂∞Þð∂φÞ2 þ α0

8
LR2 jHð0Þ þOðα02Þ

	
; ð26Þ

where

LR2 jHð0Þ ¼ e−2ðϕ̂−ϕ̂∞Þ
�
R̄μνρσR̄μνρσ þ 6ḠμνAμAν þ 7

4
A4

− 2∇μAν∇μAν − ð∇μAμÞ2
�
− φR̄μνρσ

˜̄Rμνρσ

þ total derivatives; ð27Þ

where Aμ ¼ e2ðϕ̂−ϕ̂∞Þ
∂μφ and Ḡμν is the Einstein tensor.

At this point, we note that Eq. (26) is in the so-called
Jordan frame, or equivalently the string frame. To transform
it into the Einstein frame, we need to rescale the metric:

ḡμν ¼ e2ðϕ̂−ϕ̂∞Þgμν: ð28Þ

Equation (26) then becomes

S ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ 1

2
ð∂ϕÞ2 þ 1

2
e2ϕð∂φÞ2

þ α0

8
ðe−ϕX4 − φRμνρσR̃μνρσÞ þOðα02Þ

�
; ð29Þ

where we have setGN ¼1,X4¼R2−4RμνRμνþRμνρσRμνρσ

is the 4D GB density, and we have introduced the 4D
dilaton ϕ ¼ 2ðϕ̂ − ϕ̂∞Þ. We see in Eq. (29) that GB and CS
gravities are corrections to GR at linear order in α0, with a
kinetic coupling between the two scalar fields; we will call
φ the axion, with ϕ being the aforementioned dilaton.
A comment on this stringy derivation is in order,

particularly regarding our choice of compactification in
Eq. (23). The multitude of possible compactification
choices, together with a plethora of massless 4D moduli
fields originating from the deformation modes of the
extra dimensions, leads to vacuum degeneracy and moduli
problems [117]. There has been recent progress in achiev-
ing moduli stabilization (see, e.g., [117–121] and refer-
ences therein, as well as [122,123] for recent reviews);
while these results need to be combined with viable string
constructions of particle physics, the emergence of the CS
and GB terms as corrections to GR in a low-energy EFT is a
general prediction of string theory [28,61].

It is also worth noting that it is rather nontrivial that
the only higher derivative corrections of Eq. (29) are the
CS and GB terms; there are in principle higher derivative
terms that could be present in the action. However, Eq. (29)
is a general result, and these terms are not neglected by
assuming that the scalar fields are of order α0; these terms
are just simply not present [98].

IV. FIELD EQUATIONS

We find the field equations for CS-GB gravity by varying
Eq. (29) with respect to the dilaton, axion, and inverse
metric, respectively, which yields:

∇2ϕ ¼ e2ϕð∂φÞ2 − α0

8
e−ϕX4; ð30Þ

∇μðe2ϕ∇μφÞ ¼ −
α0

8
RμνρσR̃μνρσ; ð31Þ

Gμν þ
α0

8
ðDðϕÞ

μν þ 2CμνÞ ¼ 8πðTðϕÞ
μν þ TðφÞ

μν Þ; ð32Þ

where

DðϕÞ
μν ¼ ðgμρgνσ þ gμσgνρÞϵ0σλγ∇κ½�Rρκ

λγðe−ϕÞ0�; ð33Þ

Cμν ¼ ð∇αφÞϵαβγðμ∇γRνÞ
β þ ½∇ðα∇βÞφ��RβðμνÞα; ð34Þ

TðϕÞ
μν ¼ ∇μϕ∇νϕ −

1

2
gμνð∇αϕ∇αϕÞ; ð35Þ

TðφÞ
μν ¼ e2ϕ∇μφ∇νφ −

1

2
gμνe2ϕ∇αφ∇αφ: ð36Þ

We see that Eqs. (30)–(32) are a combination of the CS
and GB field equations in Sec. II, as expected since in our
theory, the CS and GB terms appear as a linear combination
at first order in α0, in addition to the kinetic coupling

between the dilaton and the axion.DðϕÞ
μν comes from the GB

term, and Cμν is the C-tensor that was introduced in
Sec. II A.
Equation (30) tells us that the dilaton is sourced by the

GB term and the axidilaton coupling, in Eq. (31) the
Pontryagin term sources the axidilaton kinetic coupling,
and in Eq. (32) a linear combination of CS and GBmodifies
the GR gravitational field equations.

V. GWS IN FLRW BACKGROUND

Having derived the equations of motion in the previous
section, we now study how the propagation of GWs on a
cosmological background is modified from GR in CS-GB
gravity. We consider the tensor perturbation

ds2¼gμνdxμdxν¼a2ðηÞ½−dη2þðδijþhijÞdxidxj�; ð37Þ5More details provided in Appendix A.
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where hij satisfies the transverse-traceless conditions
∂
jhij ¼ hii ¼ 0.
Perturbing Eq. (32) using Eq. (37), and expanding in α0

as well as the scalar fields, we obtain the linearized
equations

�
1 −

α0

2a2
ϕ00

�
□hji þ

α0

2a2
ϵpjk½ðφ00 − 2Hφ0Þ∂ph0ki

þ φ0
∂p□hki� ¼ 0; ð38Þ

where primes denote derivatives with respect to conformal
time. Here we take the probe limit of ϕ and φ, assuming
that the effects are small enough such that there is no
backreaction onto the metric.
We can write Eq. (38) in terms of the right- and left-

circular basis (R/L) of the two helicity-2 polarizations of
GWs:

hij ¼

0
BB@

1ffiffi
2

p ðhL þ hRÞ − iffiffi
2

p ðhL − hRÞ 0

− iffiffi
2

p ðhL − hRÞ − 1ffiffi
2

p ðhL þ hRÞ 0

0 0 0

1
CCA: ð39Þ

Using Eq. (39), we find that Eq. (38) can be written as

Ah00R;L þ Bh0R;L þ ChR;L ¼ 0; ð40Þ

where

A ¼ 1 −
α0

4a2
ϕ00 − λR;L

α0a2

2
kφ0; ð41Þ

B ¼ 2Hþ α0

2a2
Hϕ00 − λR;Lα

0k
�
a2Hφ0 þ φ00

a2

�
; ð42Þ

C ¼ k2 − 2H2 þ 6H0 þ α0

2a2
ϕ00ð4H2 − 12H0 − k2Þ

− λR;L
α0

2
k

�
a2φ0ð4H2 þ k2Þ þ 2Hφ00

a4

�
; ð43Þ

and λR;L ¼ �1. Since the right-hand side of Eq. (40) is 0,
we can divide by A to rewrite it as

h00R;L þ B̄h0R;L þ C̄hR;L ¼ 0; ð44Þ

where B̄≡ B=A and C̄≡ C=A.
Taylor expanding B̄ and C̄ to linear order in α0 (see

Appendix B for the explicit form of the expansions), and
using the evolution of the background scalar fields,

ϕ00 ¼ 2Hϕ0 þ 2φ02; ð45Þ

φ00 ¼ 2Hφ0 − 2ϕ0φ0; ð46Þ

we have

B̄ ¼ 2H − 2λR;Lα
0k
�
H
a
φ0 − ϕ0φ0

�
; ð47Þ

C̄ ¼ k2
�
1 −

α0

2

�
H
a
ϕ0 þ φ02

��
: ð48Þ

Moreover, we have assumed that k ≫ H (i.e., that GW
wavelengths are short compared to the expansion of the
universe), and ϕ00 ≪ ðϕ0Þ2. Note that we are keeping terms
quadratic in the scalar fields, even though we are treating
them to be small.
For B̄, we see that we have two overall terms; the first is

the background, and the second is the parity-violating
modification.6 Notice that in CS gravity alone, only the
term proportional to Hφ0 is present, while in GB alone
there is no correction to B̄. In C̄, we see that we only have
parity-invariant corrections. We note that the axidilaton
coupling actually shows up in C̄ as e2ϕφ02, but in our
expansion of the scalar fields, the coupling terms show up
beginning at third order in the fields, so the leading order
contribution is simply φ02. Similarly here, in CS gravity
alone, there is no correction to C̄, while in GB gravity one
obtains only the first correction proportional to Hϕ0.
From the propagation equations, we can find the explicit

corrections to hR;L. The linear perturbations of GWs can be
expressed in spatial Fourier space as

hR;LðηÞ ¼ AR;LðηÞe−i½θðηÞ−kixi�: ð49Þ

Plugging Eq. (49) into the equations of motion Eq. (44),
we find the modified dispersion relation

iθ00 þ θ02 þ iθ0
�
2H − 2λR;Lα

0k
�
H
a
φ0 − ϕ0φ0

��

− k2
�
1 −

α0

2

�
1

a
Hϕ0 þ φ02

��
¼ 0: ð50Þ

From here, we can linearize the equations of motion by
taking θ → θ̄ þ δθ, where the background θ is the usual
GR solution, θ0 ¼ k − iH. Applying this to Eq. (50), and
performing a series expansion assuming that δθ ≪ θ̄, θ00 ≪
ðθ0Þ2 and δθ00 ≪ θ̄δθ0 [124], we get that

δθ0 ¼ iλR;Lα0k
�
H
a
φ0−ϕ0φ0

�
−
α0k
4

�
1

a
Hϕ0 þφ02

�
: ð51Þ

We see that δθ has both real and imaginary parts, which
are associated with velocity birefringence and amplitude
birefringence terms, respectively. We can write Eq. (51)

6There is a parity-conserving modification to B̄, but those
terms are highly suppressed, of order H2 and Hφ02.
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accordingly as

δθ ¼ −iλR;LδθA þ δθV; ð52Þ

where

δθ0A ¼ −kα0
�
H
a
φ0 − ϕ0φ0

�
; ð53Þ

δθ0V ¼ −
α0k
4

�
1

a
Hϕ0 þ φ02

�
; ð54Þ

and the A and V subscripts denote the amplitude and
velocity contributions, respectively.
To simplify Eqs. (53) and (54) further, we will assume

that ϕ0 and φ0 vary slowly with respect to the expansion of
the universe, and can thus be well approximated by their
current values via a Taylor expansion, e.g. ϕ0 ≈ ϕ0

0.
Furthermore, we will use that dt ¼ −dz=½HðzÞð1þ zÞ�,
as well as the fact that k is a constant in conformal time.
Using all of this, we can write the integrals of Eqs. (53)
and (54) as

δθA ¼ −kα0
�
φ0
0

Z
dz − ϕ0

0φ
0
0

Z
dz
H

�
; ð55Þ

δθV ¼ −
α0k
4

�
ϕ0
0

Z
dzþ φ0

0

Z
dz
H

�
: ð56Þ

We can now define an effective distance,Dα as in [100,106],

Dα ¼ ð1þ zÞ1−α
Z ð1þ zÞα−2

HðzÞ dz; ð57Þ

as well as an effective redshift parameter, zα, such that [107]

zα ¼ ð1þ zÞ−α
Z

dz
ð1þ zÞ1−α : ð58Þ

We note that D1 ¼ DT , where DT is the look-back distance,
and D2 ¼ ð1þ zÞ−1DC ¼ DA, where DC and DA are the
comoving and angular-diameter distances, respectively.
We can see that z0 ¼ lnð1þ zÞ and z1 ¼ zð1þ zÞ−1.
With these definitions, we can write Eqs. (55) and (56) as

δθA ¼ α0kð1þ zÞðD2ϕ
0
0φ

0
0 − z1φ0

0Þ; ð59Þ

δθV ¼ −
α0kð1þ zÞ

4
ðD2φ

0
0
2 þ z1ϕ0

0Þ; ð60Þ

and we have

hR;L ¼ h̄R;L exp½∓ α0kð1þ zÞðD2ϕ
0
0φ

0
0 − z1φ0

0Þ�

× exp

�
−
iα0kð1þ zÞ

4
ðz1ϕ0

0 þD2φ
0
0
2Þ
�
; ð61Þ

where h̄R;L is the usual GR expression for the right and left-
handed modes.
We show an example of this modification to the

waveform of a binary black hole in Fig. 1. We can see
that both the right and left polarizations have the same
phase shift as a result of the parity-invariant correction
to the phase. The amplitude attenuates for hR and is
amplified for hL due to the parity-violating amplitude
corrections.

FIG. 1. Example modification to a binary black hole waveform for hR (left) and hL (right). We see a constant phase shift across both
polarizations due to the parity-invariant modification to the phase, and an attenuation/enhancement of the amplitude for hR and hL,
respectively, due to the parity-violating modification to the amplitude. To generate the waveform, we employ the GW Analysis Tools
code [125]. For the source parameters we takem1¼20M⊙,m2¼18M⊙, ι ¼ 2.6 rad, ψ ¼ 3.14 rad, RA ¼ 3.45 rad,Dec ¼ −3968 rad.
For computational ease we rescale f=100 Hz, and D2=Gpc. The modification parameters are chosen to be artificially large in order to
visually see the effects; in dimensionless units ϕ0

0 ¼ 3 and φ0
0 ¼ 5.

GRAVITATIONAL WAVES IN CHERN-SIMONS-GAUSS-BONNET … PHYS. REV. D 109, 124012 (2024)

124012-7



Furthermore, we can see how the GW velocity is
modified for CS-GB gravity. From Eqs. (44) and (48),
the GWs satisfy the dispersion relation

ω2
R;L ¼ k2

�
1 −

α0

2

�
1

a
Hϕ0 þ φ02

��
: ð62Þ

From Eq. (62), we can find the group and phase velocities
of a GW, which are given by vg ¼ dω=dk and vp ¼ ω=k,
respectively. We have

vR;Lg ¼ vR;Lp ¼ 1 −
α0

4

�
1

a
Hϕ0 þ φ02

�
: ð63Þ

In Appendix C, we show how Eq. (63) can be generalized
for any extension to GR, using the framework that is
presented in the next section.

VI. EXTENSION OF PARITY-VIOLATING
PARAMETRIZATION AND CONSTRAINTS

In this section, we place our work in a broader context
by making contact with the parametrization in [107] in
Sec. VI A and then discussing observational constraints on
the theory in Sec. VI B.

A. Parametrization

We would like to place our work in the context of the
parametrization in [107], in which it was shown that
generic parity-violating corrections to the GW propagation
equations can be written in a theory-agnostic way using
dimensionless parameters; a particular theory will then
correspond to specific values of these parameters. A similar
parametrization to [107] for describing parity-violating
propagation effects was also introduced in [126–128].
In our expression Eq. (44), because we have contributions

from both the CS and GB corrections, we have both parity-
even and parity-odd terms. Thus, we can extend the para-
metrization in [107] to also account for parity-invariant terms
such that the GW propagation equation can be written as

h00R;Lþ
�
2Hþ

X∞
n¼0

ðλR;LkÞn
�
αnðηÞ
ðΛaÞnHþ βnðηÞ

ðΛaÞn−1
�	

h0R;L

þk2
�
1þ

X∞
m¼0

ðλR;LÞmþ1km−1
�
γmðηÞ
ðΛaÞmHþ δmðηÞ

ðΛaÞm−1

�	
hR;L

¼0; ð64Þ

where fαn; βn; γm; δmg are the dimensionless parameters that
depend on the specific theory in consideration, and Λ is the
cutoff scale of the theory. When α ¼ β ¼ γ ¼ δ ¼ 0, we
recover the propagation equation for GWs in GR. In CS
gravity, for example, the parameter α1 ≠ 0 with all other
parameters vanishing.

Here m and n are integers; this extends the para-
metrization in [107] in which n and m were constrained
to be odd and even integers, respectively, as to consider
only parity-violating effects. With this extension, one can
now explicitly see the propagation effects of theories with
both parity-violating and parity-invariant contributions.
This extension also cleanly maps to ppE [99] and can be
easily used in data analysis.
Comparing Eq. (64) with Eqs. (47) and (48), we can

make the identification that α1 ¼ −2α0φ̃0, β1 ¼ 2α0ϕ0φ0,
γ1 ¼ − 1

2
α0ϕ̃0 and δ1 ¼ − 1

2
α0φ02, with all other parameters

being zero, where we have introduced a rescaling of the
scalar fields by Λ such that ϕ̃≡ ϕΛ and φ̃≡ φΛ.

B. Constraints

While a full data analysis will be necessary to rigorously
constrain ϕ0 and φ0, as a first step, we can consider initial
constraints based on previously existing work in the
literature. Significant work has been done to constrain
birefringent effects from a variety of GW sources,
e.g., [129–133]. Here, we consider both the velocity
constraints from the GW170817/GRB170817 coincident
event and birefringence specific constraints in the literature
from binary black hole events.
The coincident GW/gamma ray burst event from the

binary neutron star merger GW170817 has provided a tight
constraint on the speed of GWs, cT , compared to the speed
of light, c. We have [12]

−7 × 10−16 < 1 − cT < 3 × 10−15: ð65Þ

The constraint in Eq. (65) rules out many beyond-
GR theories that induce a modification to the GW
speed [134–138]. While it has been shown that the GW
speed in CS gravity is equal to the speed of light [139], this
is not the case for GB gravity.7 As a result, CS-GB gravity
also induces modifications to the GW speed which are thus
constrained by Eq. (65). We can map this constraint to our
parametrization Eq. (64) to constrain the CS-GB theory
parameters such that the CS-GB modified GW speed does
not violate the observational bound Eq. (65).
From Eq. (63), we have

jvg − 1j ¼ α0

4

�
1

a
Hϕ0 þ φ02

�
: ð66Þ

Taking the weaker constraint of Eq. (65), and neglecting the
term that is suppressed by H=ΛPV in Eq. (66), we have

���� 14 α0φ02
���� < 3 × 10−15: ð67Þ

7However, with modifications to the scalar GB potential, the
GW speed in GB gravity will equal the speed of light [140,141].
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One can combine Eq. (67) with constraints on α0 from
GB gravity (see, e.g., [142,143]) to obtain a bound on φ0,
which is roughly φ̃0 ≲ 10−15 eV2 (in natural units).8

We can then use the constraint from [131] via [107],

j2α0ϕ0
0φ

0
0j < 0.7 × 10−20; ð68Þ

and combining Eq. (68) with Eq. (67) allows one to place a
constraint on ϕ0

0, which is roughly ϕ̃0
0 ≲ 10−22 eV2.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have studied the propagation of GWs in
CS-GB gravity. We have reviewed the derivation of CS-GB
gravity from HST and derived how GW propagation is
modified in such a theory. We have furthermore extended
the parametrization first introduced in [107] for the parity-
violating sector to include the parity-even sector. The
framework presented in this paper thus allows one to study
any correction to GR in explicitly parity-violating and
parity-invariant contributions. Moreover, we have used this
parametrization to map the CS-GB modifications to GW
observables, which allows us to place constraints on the
theory parameters.
As we have seen, CS-GB gravity (and modified gravity

theories in general) will modify both the amplitude and
phase of a GW. Most of this paper has focused on these
modifications for the propagation of a GW, but these
modifications can also arise in the generation of GWs.
In compact binary coalescences, the presence of the axion
and dilaton will extract energy from the binary, leading to a
modification of the chirp mass (see, e.g., [29,54,144,145]).
The two effects can be considered independently, with the
generation effects being of Oðα02Þ, making them subdomi-
nant to the propagation effects, which are of Oðα0Þ [132].
Furthermore, CS-GB gravity can impact GWs during

inflation. For example, tensor perturbations of the space-
time metric source primordial GWs, which encode impor-
tant information of the early Universe and provide
an important test of GR. During inflation, the Pontryagin
term associated with CS gravity can lead to the resonant
amplification of GWs on small scales [146], and one
can study the energy spectrum associated with these
GWs [147]. It would be interesting to determine how these
scenarios would be modified in CS-GB gravity. We leave
this study for future work.9

The gravitational field in the exterior of supermassive,
spinning black holes (BHs) is crucial in the emission
of GWs. In GR, such a field is described by the Kerr
metric [149], which is a stationary and axisymmetric
solution, parametrized in terms of the mass of the BH
and its angular momentum. However, in modified theories
of gravity, the Kerr metric does not need to be a solution to
the field equations. For example, in the case of GB gravity,
slowly rotating BH solutions have been found that
differ from Kerr [69]. A measured deviation from the
Kerr metric, whether from electromagnetic or GW obser-
vations [150–153], can therefore provide insight into
extensions of GR, or lack thereof.
One can ask what metric represents a spinning BH in

CS-GB gravity. For CS, the metric and scalar field
perturbations describing the leading order corrections to
the Kerr metric are known [29,154,155]. The leading order
corrections for GB have been analyzed as well [70,72,73].
We leave an in-depth analysis of the BH solution in CS-GB
gravity for future work.
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APPENDIX A: STRINGY DERIVATION

In this appendix, we provide more details on the
derivation of the 4D effective action Eq. (29) in Sec. III,
following [98].
With the CS term in the 10D heterotic superstring

effective action [Eq. (20)], Ĥ satisfies the modified
Bianchi identity,

dĤ ¼ α0

4
R̂ð−Þab ∧ R̂ð−Þba: ðA1Þ

Upon compactifying Eq. (20) on a six-torus in Eq. (23),
Eq. (A1) can be written as

1

3!
ϵμνρσ∇μHνρσ þ

α0

8
R̄ð−Þνρσ ˜̄R

μνρσ
ð−Þ ¼ 0; ðA2Þ

where

˜̄Rμνρσ
ð−Þ ¼ 1

2
ϵμναβR̄ð−Þαβρσ: ðA3Þ

8Upon converting Eq. (67) from geometric to natural units
(c ¼ ℏ ¼ 1), we multiply φ0 by the cutoff scale ΛPV , which has a
lower bound ΛPV ≳ 102 eV [107]. We do the same for ϕ0

0 to get
the constraint on ϕ̃0

0 from Eq. (68).
9Primordial GWs arising from CS-GB gravity have been

previously studied in [148], but with a single scalar field
associated to both the CS and GB terms instead of two separate
scalar fields, like we are considering in this paper.
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After integrating by parts, we get Eq. (24):

S̄ ¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jḡj

p �
e−2ðϕ̂−ϕ̂∞Þ

�
R̄ − 4ð∂ϕ̂Þ2 þ 1

12
H2

�

−
1

3!
Hμνρϵ

μνρσ
∂σφþ α0

8
LR2 þOðα03Þ

	
; ðA4Þ

where

LR2 ¼ e−2ðϕ̂−ϕ̂∞ÞR̄ð−ÞμνρσR̄
μνρσ
ð−Þ − φR̄ð−Þμνρσ ˜̄R

μνρσ
ð−Þ : ðA5Þ

Now, from the variation of H, we have that

e−2ðϕ̂−ϕ̂∞Þ 1
6
Hμνρ −

1

6
ϵμνρσ∇σφþ α0

8

δLR2

δHμνρ ¼ 0; ðA6Þ

and as explained in Sec. III, to solve it we expand H in α0:

H ¼ Hð0Þ þ α0Hð1Þ þ α02Hð2Þ þ � � � ; ðA7Þ

which after plugging the expansion Eq. (A7) into Eq. (A4),
we arrive at Eq. (26),

S̄ ¼ 1

16πGð4Þ
N

Z
d4x

�
e−2ðϕ̂−ϕ̂∞Þ½R̄ − 4ð∂ϕ̂Þ2�

þ 1

2
e2ðϕ̂−ϕ̂∞Þð∂φÞ2 þ α0

8
LR2 jHð0Þ þOðα02Þ

	
: ðA8Þ

To evaluate the four-derivative term LR2 , we have to
substitute in the expression for Hð0Þ, which is

Hð0Þ
μνρ ¼ e2ðϕ̂−ϕ̂∞Þϵμνρσ∇σφ; ðA9Þ

and use the fact that the curvature R̂ð−Þ can be written in

terms of Ĥ as well as the Riemannian curvature R̂:

R̂ð−Þμνρσ ¼ R̂μν
ρ
σ − ∇̂½μĤν�ρσ −

1

2
Ĥρ

½μjαĤjν�ασ: ðA10Þ

Evaluation of the four-derivative term yields Eq. (27),

LR2 jHð0Þ ¼ e−2ðϕ̂−ϕ̂∞Þ
�
R̄μνρσR̄μνρσ þ 6ḠμνAμAν þ 7

4
A4

− 2∇μAν∇μAν − ð∇μAμÞ2
�
− φR̄μνρσ

˜̄Rμνρσ

þ total derivatives: ðA11Þ

Upon transforming our theory from the Jordan frame to
the Einstein frame via the conformal rescaling Eq. (28), the
effect on the two-derivative terms in the Lagrangian is
rather straightforward to compute:

ffiffiffiffiffi
jḡj

p
L2 ¼

ffiffiffiffiffi
jgj

p �
Rþ 2ð∂ϕ̂Þ2 þ 1

2
e4ðϕ̂−ϕ̂∞Þð∂φÞ2

�
: ðA12Þ

On the other hand, the effect of the conformal rescaling on
the four-derivative term LR2 requires a lengthier calcula-
tion; we need to take into account the transformation of the
Riemann tensor and the covariant derivative, and integrate
by parts multiple times. The end result is

ffiffiffiffiffi
jḡj

p
LR2 jHð0Þ ¼

ffiffiffiffiffi
jgj

p �
e−2ðϕ̂−ϕ̂∞Þ

�
RμνρσRμνρσ þ 4Rμνð4∂μϕ̂∂νϕ̂þ AμAνÞ þ R½4∇2ϕ̂ − 4ð∂ϕ̂Þ2 − 3A2� þ 12ð∂ϕ̂Þ4

þ 12ð∇2ϕ̂Þ2 þ 7

4
A4 − 12ð∂μϕ̂AμÞ2 − 2A2ð∂ϕ̂Þ2 − 8A2∇2ϕ̂ − 16∂μϕ̂Aμ∇αAα − 3ð∇αAαÞ2

�
− φRμνρσR̃μνρσ

	

þ total derivatives; ðA13Þ

which we can rewrite as

ffiffiffī̄
g

p
LR2 jHð0Þ ¼ ffiffiffī

g
p ½e−2ðϕ̂−ϕ̂∞ÞX4−φRμνρσR̃μνρσþL0�; ðA14Þ

where X4 ¼ R2 − 4RμνRμν þ RμνρσRμνρσ is the 4D GB
density, and we have collected the remaining terms in L0.
Now, let us consider the zeroth order equations of motion

Eμν ¼ Rμν þ 2∂μϕ̂∂νϕ̂þ 1

2
AμAν; ðA15Þ

Eϕ̂ ¼ ∇2ϕ̂ −
1

2
A2; ðA16Þ

Eφ ¼ ∇μAμ þ 2∂μϕ̂Aμ: ðA17Þ

After some algebra, L0 can be written in terms of
Eqs. (A15)–(A17) as follows:

L0 ¼ e−2ðϕ̂−ϕ̂∞Þf4EμνEμν − E2 þ 12E2
ϕ̂
þ 4EEϕ̂ − 3E2

φ

þ 2Eϕ̂½A2 − 4ð∂ϕ̂Þ2� − 4Eφ∂μϕ̂Aμg: ðA18Þ

We see that all the terms inL0 are proportional to the zeroth-
order equations of motion, which means if we redefine the
fields
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gμν → gμν þ α0Δμν; ðA19Þ

ϕ̂ → ϕ̂þ α0Δϕ̂; ðA20Þ

φ → φþ α0Δφ; ðA21Þ

then we introduce terms linear in α0 that are proportional to
the zeroth order equations of motion, which we can
therefore use to cancel all the terms in L0 [98].
Thus, introducing the 4D dilaton ϕ ¼ 2ðϕ̂ − ϕ̂∞Þ, we

end up with Eq. (29), a very simple form of our action in
four dimensions:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ 1

2
ð∂ϕÞ2 þ 1

2
e2ϕð∂φÞ2

þ α0

8
ðe−ϕX4 − φRμνρσR̃μνρσÞ þOðα02Þ

�
: ðA22Þ

APPENDIX B: TAYLOR EXPANSION FOR GW
PROPAGATION COEFFICIENTS

Here we show the steps in expanding the B̄ and C̄
coefficients in Eq. (44) to linear order in α0.
For B̄, we have

B̄ ≈
�
1þ α0

4a2
ϕ00 þ α0a2

2
λR;Lkφ0

��
2Hþ α0

2a2
Hϕ00

− λR;Lα
0k
�
a2Hφ0 þ φ00

a2

��
ðB1Þ

≈2Hþ α0

a2
Hϕ00 −

α0

a2
kλR;Lφ00; ðB2Þ

where we have assumed that k ≫ H. We can then use
Eqs. (45) and (46) to obtain

B̄ ¼ 2H − λR;Lk
2α0

a2
ðHφ0 − ϕ0φ0Þ: ðB3Þ

Now, we need to correct for the factors of a, since
ð1=aÞðda=dηÞ ¼ da=dt. Thus, the conformal time deriva-
tives in Eq. (B3) pick up an extra factor of a. So, we have

B̄ ¼ 2H − 2λR;Lα
0k
�
H
a
φ0 − ϕ0φ0

�
; ðB4Þ

which is Eq. (47).

For C̄, we have

C̄ ≈
�
1þ α0

4a2
ϕ00 þ λR;L

α0a2

2
kφ0

��
k2 − 2H2 þ 6H0

þ α0

2a2
ϕ00ð4H2 − 12H0 − k2Þ

− λR;L
α0

2
k

�
a2φ0ð4H2 þ k2Þ þ 2Hφ00

a4

�	
ðB5Þ

≈ k2 −
α0k2

4a2
ϕ00 ; ðB6Þ

where in going from Eq. (B5) to (B6) we have again
assumed that k ≫ H. Furthermore, we can assume that ϕ
and φ are small to retain terms that are at most second-order
in the scalar fields in Eq. (B6).
Plugging Eq. (45) into Eq. (B6) yields

C̄ ¼ k2
�
1 −

α0

2a2
ðHϕ0 þ φ02Þ

�
; ðB7Þ

and again noting that ð1=aÞðda=dηÞ ¼ da=dt to correct the
factors of a in the conformal time derivatives, we end up
with

C̄ ¼ k2
�
1 −

α0

2

�
H
a
ϕ0 þ φ02

��
; ðB8Þ

which is Eq. (48).

APPENDIX C: GENERALIZATION OF MODIFIED
DISPERSION RELATION

The discussion in Sec. V from Eq. (50) onward can be
generalized for any modification to GR by extending the
discussion in [107] to include the parity-even sector. From
Eq. (19) of [107] and Eq. (64), it is straightforward to see
that the effective modified dispersion relation Eq. (50) can
be parametrized as

θ00 þθ02þ iθ0
�
2HþðλR;LkÞn

�
αn

ðΛPVaÞn
Hþ βn

ðΛPVaÞn−1
�	

−k2
�
1þðλR;LÞmþ1km−1

�
γm

ðΛPVaÞm
Hþ δm

ðΛPVaÞm−1

�	

¼0; ðC1Þ

where we are keeping the sums over n and m implicit.
From Eq. (20) of [107], we can see that the generali-

zation of Eq. (52) is

δθ ¼ −iðλR;LÞnδθA þ ðλR;LÞmþ1δθV; ðC2Þ

where the amplitude and velocity birefringence contribu-
tions are
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δθ0A ¼ kn

2

�
αn

ðΛPVaÞn
Hþ βn

ðΛPVaÞn−1
�
; ðC3Þ

δθ0V ¼ km

2

�
γm

ðΛPVaÞm
Hþ δm

ðΛPVaÞm−1

�
: ðC4Þ

Equations (C3) and (C4) can be rewritten as

δθA ¼ ½kð1þ zÞ�n
2

�
αn0
Λn
PV

zn þ
βn0
Λn−1
PV

Dnþ1

�
; ðC5Þ

δθV ¼ ½kð1þ zÞm�
2

�
γm0

Λm
PV

zm þ δm0

Λm−1
PV

Dmþ1

�
; ðC6Þ

such that the right and left-handed polarization modes are
modified in the following way

hR;L ¼ h̄R;L exp

�
−ðλR;LÞn

½kð1þ zÞ�n
2

�
αn0
Λn
PV

zn þ
βn0
Λn−1
PV

Dnþ1

�	
exp

�
iðλR;LÞmþ1

½kð1þ zÞ�m
2

�
γm0

Λm
PV

zm þ δm0

Λm−1
PV

Dmþ1

�	
;

ðC7Þ

where h̄R;L is the usual GR expression for the right and
left-handed modes.
Via the generalized modified dispersion relation

ω2
R;L¼k2

�
1þðλR;LÞmþ1km−1

�
γm

ðΛPVaÞm
Hþ δm

ðΛPVaÞm−1

�	
;

ðC8Þ

the modified group and phase velocities are then

vR;Lg ¼ 1þ ðλR;LÞmþ1

2
mkm−1

�
γm

ðaΛPVÞm
Hþ δm

ðaΛPVÞm−1

�
;

ðC9Þ

vR;Lp ¼ 1þ ðλR;LÞmþ1

2
km−1

�
γm

ðaΛPVÞm
Hþ δm

ðaΛPVÞm−1

�
:

ðC10Þ
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