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We investigate the geometrical properties, spectral classification, geodesics, and causal structure of
Bonnor’s spacetime [W. B. Bonnor, A rotating dust cloud in general relativity, J. Phys. A 10, 1673 (1977)],
i.e., a stationary axisymmetric solution with a rotating dust as a source. This spacetime has a directional
singularity at the origin of the coordinates (related to the diverging vorticity field of the fluid there), which
is surrounded by a toroidal region where closed timelike curves (CTCs) are allowed, leading to chronology
violations. We use the effective potential approach to provide a classification of the different kind of
geodesic orbits on the symmetry plane as well as to study the helical-like motion around the symmetry axis
on a cylinder with constant radius. In the former case we find that, as a general feature for positive values of
the angular momentum, test particles released from a fixed space point and directed toward the singularity
are repelled and scattered back as soon as they approach the CTC boundary, without reaching the central
singularity. In contrast, for negative values of the angular momentum there exist conditions in the parameter
space for which particles are allowed to enter the pathological region. Finally, as a more realistic
mechanism, we study accelerated orbits undergoing friction forces due to the interaction with the
background fluid, which may also act in order to prevent particles from approaching the CTC region.

DOI: 10.1103/PhysRevD.109.124011

I. INTRODUCTION

General relativistic fluid solutions are typically used to
build stellar models, whenever the fluid is distributed
within a bounded spacetime region. In order to obtain a
physical model, Einstein’s field equations are then coupled
to the thermodynamical equations, which are solved all
together by imposing several conditions, e.g., symmetries,
equation of state, the falloff behavior of energy density
and pressure, and their values at the boundary. A further
problem in this case is the matching with an asymptotically
flat exterior vacuum solution. If the fluid is filling the
whole spacetime, instead, the corresponding solution to the
gravitational field equations can be used as a cosmological
model. There exist very few classes of exact solutions [1],
most of them being associated with perfect fluids.
For instance, according to the Friedmann equations under-
lying the standard cosmological model the matter- and
radiation-dominated epochs are driven by dust fluids and
radiation fields, respectively. The simplest solutions for
the stellar interiors are instead those which are static
and spherically symmetric, which can be always matched
across the spherical boundary to an external solution, which
consists of a Schwarzschild spacetime. Our motivation
here is to contribute to a deeper understanding of such
kinds of solutions, which hold potential relevance across

various astrophysical contexts, e.g., in relation to galactic
dynamics [2–9].
Unfortunately, most of the known exact solutions are

plagued by the presence of singularities as well as unphysical
spacetime regions often associated with chronology viola-
tions. This is the reason why they have been poorly inves-
tigated since their discovery. The most popular is perhaps the
Gödel spacetime [10], which is the prototype for rotating
cosmological models. The source of the gravitational field
is represented by a dust of particles which are at rest with
respect to the coordinates, but form a family of twistingworld
lines preserving the cylindrical symmetry of the spacetime.
The Gödel solution admits the existence of closed timelike
curves (CTCs), allowing for time travel, so that it has been
discarded as describing an unphysical universe.
The aim of the present paper is to study the general

properties of Bonnor’s rotating dust cloud spacetime [11],
belonging to the Van Stockum class of stationary and
axisymmetric perfect fluid solutions [1], which are referred
to as rigidly rotating dust spacetimes. In fact, the particles
of the dust are free falling along the integral curves of the
temporal Killing vector. Their angular velocity with respect
to locally nonrotating observers equals in magnitude the
angular velocity of dragging of inertial frames. The dust
particles thus form a geodesic congruence with vanishing
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expansion and shear, but nonzero vorticity. Bonnor’s
solution depends on a single parameter, the vanishing of
which gives back the flat Minkowskian spacetime. Such a
special feature allows for disentangling at any moment
genuine curved spacetime properties from special relativ-
istic ones. The arbitrary parameter has the meaning of a
rotation parameter, since the metric at spatial infinity
reduces to that of a spinning body situated at the origin
with angular momentum proportional to it, but with zero
mass. Remarkably, for this solution the density gradient
has a component parallel to the rotation axis, which is a
peculiar general relativistic feature, as discussed by Bonnor
[11]. He also conjectured the presence of a negative mass
distribution contained in the singularity at the center,
balancing the positive mass outside, since the density is
everywhere positive. The nature of the central singularity in
Bonnor spacetime and the possibility to remove it have
been further investigated by many authors [12–17].
Furthermore, in recent years there has been a renewed
interest in this solution (and in other rotating fluid space-
times) as an alternative to supermassive black holes at the
centers of galaxies (see, e.g., Ref. [4]).
The existence of CTCs has also been extensively studied

over the years [12,18–21]. Not much attention has been
devoted instead to a systematic study of particle motion in
Bonnor spacetime. A careful investigation of null geodesic
motion can be found in Ref. [18]. It has been shown there
that there exists a region, or regions, around the origin and
the axis of rotation which cannot be entered by null
geodesics from spatial infinity. Noticeably, for a wide range
of values of the angular momentum, photons can be confined
in a closed region whose inner boundary is the CTC surface.
In this work we first review the main geometrical

properties of the Bonnor spacetime, including the behavior
of curvature invariants and the directional character of the
central singularity, the spectral classification, and causal
structure. We then focus on timelike geodesics and on how
the presence of both the singularity and the CTC surface
affects the motion of test particles. The different kinds
of orbits are classified by using the effective potential
approach. In the case of motion on the symmetry plane,
some features are familiar from test particle dynamics
around compact objects, e.g., circular motion, bound orbits
between a minimum and a maximum radius, and scattering
orbits. We also discuss conditions on the orbital as well as
background parameters such that particles may enter the
region containing CTCs. A more realistic model taking
into account the interaction with the dust particles would
introduce conditions which may prevent particles from
entering the CTC region. To this aim we introduce a friction
force (modeled á la Poynting-Robertson [22,23], for
example) modifying the geodesic behavior, the effect of
which is mainly that of slowing down motion toward the
singularity and even stopping particles before they reach
the pathological region.

We use a mostly positive signature of the metric and
units such that c ¼ 1 ¼ G. Greek indices run from 0 to 3
while Latin indices run from 1 to 3.

II. VAN STOCKUM CLASS OF PERFECT
FLUID SOLUTIONS

Let us consider a spacetime sourced by a dust fluid,
i.e., with energy-momentum tensor Tμν ¼ ρmuμuν, associ-
ated with a metric written in cylindrical-like coordinates
xα ≡ ðt; r;ϕ; zÞ in the form

ds2 ¼ ds2ðt;ϕÞ þ ds2ðr;zÞ; ð2:1Þ
where

ds2ðt;ϕÞ ¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2;

ds2ðr;zÞ ¼ grrdr2 þ gzzdz2; ð2:2Þ
belonging to the Van Stockum class. All metric and fluid
functions depend on r and z and are chosen so that
grr ¼ gzz ¼ eψ , and

gtt ¼ −
�
Hγ2 −

r2χ2

Hγ2

�
;

gtϕ ¼ −
r2χ
Hγ2

;

gϕϕ ¼ r2

Hγ2
; ð2:3Þ

where we introduced γ ¼ ð1 − v2Þ−1=2, as a function of v,
whose meaning will be clarified below, and gtϕ=gϕϕ ≡ −χ.
The fluid particles move along circular orbits, with four-
velocity

u ¼ 1ffiffiffiffi
H

p ð∂t þΩ∂ϕÞ; ð2:4Þ

where the angular velocity Ω is given by

Ω ¼ χ �Hγ2v
r

; ð2:5Þ

fixed by the (timelike) normalization condition of u,
u · u ¼ −1. Summarizing, the four functions H, χ, ψ , γ
are used to parametrize the metric tensor and are related by
the Einstein equations, which are rather involved in this
general case and will not be displayed (see, e.g., Ref. [1]).
It is also convenient to introduce the lapse-shift notation

and write the metric in a form adapted to the zero angular
momentum observers (ZAMOs), with four-velocity1

n♭ ¼ −Ndt; n♯ ¼ 1

N
ð∂t − Na

∂aÞ; ð2:6Þ

1The symbols ♭ and ♯ are associated with the fully covariant
and fully contravariant representation of tensors, respectively.
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namely

N¼ γ
ffiffiffiffi
H

p
; Nr¼0; Nϕ¼−χ; Nz¼0; ð2:7Þ

so that the metric in ZAMO-adapted form reads

ds2¼−N2dt2þgabðdxa−NadtÞðdxa−NadtÞ

¼−Hγ2dt2þ r2

Hγ2
ðdϕ−χdtÞ2þeΨðdr2þdz2Þ; ð2:8Þ

and naturally defines a ZAMO-adapted orthonormal
(denoted by a hat) frame of 1-forms

ω0̂ ¼
ffiffiffiffi
H

p
γdt;

ωr̂ ¼ eΨ=2dr;

ωϕ̂ ¼ rffiffiffiffi
H

p
γ
ðdϕ − χdtÞ;

ωẑ ¼ eΨ=2dz; ð2:9Þ

with dual frame

e0̂ ¼ n♯; er̂ ¼ e−Ψ=2∂r;

eϕ̂ ¼
ffiffiffiffi
H

p
γ

r
∂ϕ; eẑ ¼ e−Ψ=2∂z: ð2:10Þ

The fluid four-velocity then reads

u ¼ γðn� veϕ̂Þ; ð2:11Þ

so that v ¼ vðr; zÞ is the spatial three-velocity of the dust as
measured by the ZAMOs.

III. BONNOR SOLUTION

The case of a rigidly rotating dust is obtained by setting
H ¼ 1, as discussed in Ref. [24]. For this subclass of
solutions Ω is a constant, which can be always put
consistently to zero by a proper rotation of the coordinate
system. Without any loss of generality we will then assume
u ¼ ∂t for the fluid four-velocity. The request Ω ¼ 0
imposes on vðr; zÞ the constraint

v ¼ −
A
r
; ð3:1Þ

where A ¼ Aðr; zÞ satisfies the equations

ð∂zAÞ2 þ ð∂rAÞ2
r2eΨ

¼ 8πGρm; ð3:2Þ

∂rrAþ ∂zzA −
∂rA
r

¼ 0: ð3:3Þ

The function Ψ satisfies the equations

Ψ;r ¼
A2
;z − A2

;r

2r
; Ψ;z ¼ −

A;rA;z

r
; ð3:4Þ

which have Eq. (3.3) as a compatibility condition. Separable
solutions to this equation (as functions of r and z) will be
reviewed in the Appendix. However, Eq. (3.3) is a homog-
enous Grad-Shafranov equation [9] and admits separable
solutions in the form of a multipole expansion by introduc-
ing polar coordinates on the r − z plane

r ¼ R cosα; z ¼ R sin α: ð3:5Þ

Such solutions are written as

ψðR; αÞ ¼
X∞
n¼2

ðαnRn þ βnR1−nÞ sin αP1
n−1ðcos αÞ; ð3:6Þ

where P1
n−1ðcosαÞ are the Legendre functions, and αn, βn

are arbitrary constants. We will consider below a particular
example of rotating dust, namely Bonnor’s solution [11],
corresponding to α2¼0 and β2¼m2. Accordingly, we have

A ¼ m2 cos2 α
R

; Ψ ¼ m4 cos2 αð9 cos2 α − 8Þ
8R4

: ð3:7Þ

Bonnor’s line element written in standard cylindrical-like
coordinates is then given by

ds2 ¼ −dt2 − 2Adtdϕþ ðr2 − A2Þdϕ2 þ eΨðdr2 þ dz2Þ;
ð3:8Þ

with

A ¼ m2r2

ðr2 þ z2Þ3=2 ; Ψ ¼ m4r2ðr2 − 8z2Þ
8ðr2 þ z2Þ4 : ð3:9Þ

The associated dust energy density (see Fig. 1) reads

κρm ¼ m4ðr2 þ 4z2Þ
ðr2 þ z2Þ4 e−Ψ; ð3:10Þ

with κ ¼ 8πG (actually κ ¼ 8π after settingG ¼ 1which is
a standard choice here unless differently noted), entering
the matter energy-momentum tensor

Tμν ¼ ρmuμuν ¼ ρmδ
μ
0δ

ν
0: ð3:11Þ

Herem has the dimensions of a length, and it can be used to
adimensionalize t, r, and z,

t̂ ¼ t
m
; r̂ ¼ r

m
; ẑ ¼ z

m
: ð3:12Þ

PARTICLE MOTION IN A ROTATING DUST SPACETIME PHYS. REV. D 109, 124011 (2024)

124011-3



Sometimes we will find convenient to use the polar
coordinates (3.5), with R adimensionalized as R̂ ¼ R=m.
m can also be used to rescale and adimensionalize all
metric quantities (and associated tensors). For example,
if Xðm; r; zÞ has the dimensions of ðlengthÞn then
Xðm; r; zÞ ¼ mnX̂ðr̂; ẑÞ, with X̂ dimensionless.
The congruence of world lines tangent to the fluid

four-velocity u ¼ ∂t is geodesic [vanishing acceleration
aðuÞ ¼ 0] and shear-free [vanishing expansion θðuÞ ¼ 0],
with nonvanishing vorticity vector (see, e.g., Ref. [25] for
definitions and notations of kinematical quantities)

ωðuÞ ¼ e−Ψm2

ðr2 þ z2Þ5=2 ½3rz∂r − ðr2 − 2z2Þ∂z�: ð3:13Þ

The latter turns out to be aligned with the z axis when
evaluated on the symmetry plane (z ¼ 0),

ωðuÞjz¼0 ¼ −
m2

r3
e−

m4

8r4∂z; ð3:14Þ

and exponentially decaying asymptotically for large r.
Moreover,

jωðuÞj2 ¼ κρm; ð3:15Þ
as noticed in Ref. [11].
Unfortunately, Bonnor’s spacetime admits a pathological

domain. In fact, the vanishing of the gϕϕ metric component
is responsible for the appearance of an unphysical region
characterized by the existence of CTCs

r2 − A2 ¼ 0; ð3:16Þ
leading to the following toroidal boundary:

zctc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4=3r2=3 − r2

p
; ð3:17Þ

or, equivalently, in terms of the rescaled and dimensionless
variables (3.12)

ẑctc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2=3 − r̂2

p
: ð3:18Þ

On the symmetry plane ẑctc ¼ 0, implying that the toroidal
region reduces to the circle r̂ctc ¼ 1. Even if this can be
interesting as a matter of principle, in the following
discussion we will not consider physical phenomena in
this region.

A. Curvature invariants

The Kretschmann invariant for this metric is given by

K ¼ RαβγδRαβγδ ¼ K
m4e−2Ψ

ðr2 þ z2Þ12 ; ð3:19Þ

with

K ¼ −36r16 − 360r14z2 þ ð8m4 − 1512z4Þr12 − 3z2ð1176z4 þm4Þr10 þ ð−141m4z4 −
1

4
m8 − 5040z8Þr8

− z2ð4536z8 þ 293m4z4 þ 3m8Þr6 − 3z4ð840z8 þ 61m4z4 þ 4m8Þr4 − 4z6ð198z8 − 3m4z4 þ 4m8Þr2
þ 4z12ð−27z4 þ 8m4Þ; ð3:20Þ

and m4K dimensionless. Taking the limit r → ∞ at fixed z ¼ constant yields

K ¼ −
36m4

r8
þ 72z2m4

r10
þO

�
1

r12

�
; ð3:21Þ

whereas for r → 0

K ¼ 4m4ð8m4 − 27z4Þ
z12

þ 12m4ð4m8 − 49z4m4 þ 42z8Þ
z18

r2 þOðr4Þ: ð3:22Þ

FIG. 1. The behavior of the energy density ρmðr; zÞ is plotted as
a function of r for fixed values of z ¼ ½0; 0.85; 1; 1.2�, in units of
κ−1 and assuming m ¼ 1.
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The second quadratic invariant is given by

�K ¼ Rαβγδ
�Rαβγδ ¼ �K

m6e−2Ψ

ðr2 þ z2Þ21=2 z; ð3:23Þ

with

�K¼−18r10 − 120z2r8 −
�
3

2
m4þ 300z4

�
r6

− ð12m4þ 360z4Þz2r4 − ð24m4þ 210z4Þz4r2 − 48z10;

ð3:24Þ

and m4�K dimensionless.
For large values of the radial coordinate at fixed z it

behaves as

�K ¼ −
18zm6

r11
þ 69z3m6

r13
þO

�
1

r15

�
; ð3:25Þ

whereas for r → 0

�K ¼ −
48m6

z10
−
6m6ð−49z4 þ 20m4Þ

z16
r2 þOðr4Þ: ð3:26Þ

Therefore, both invariants diverge approaching r ¼ 0
for z → 0 only, implying that the singularity at the origin
has a directional character, as already discussed by Bonnor
himself. In fact, when approaching it along the lines z ¼ kr,
r ¼ constant the argument Ψ of the exponential term
changes sign for 1 − 8k2 ¼ 0, so that the curvature invar-
iants as well as the density exhibit different behavior forffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
→ 0. No other singularities are present, so that

the Bonnor spacetime represents a rotating dust cloud
containing an isolated singularity. The latter is not gen-
erated by a matter distribution at the center, but rather by
the vorticity of the fluid which generally has a divergent
behavior there. For instance, for r → 0 at fixed z

jωðuÞj2 ¼ κρm ¼ 4m4

z6
þm4ð−15z4 þ 4m4Þ

z12
r2 þOðr4Þ;

ð3:27Þ

which diverges for z → 0. A picture of the dust spatial
distribution is shown in Fig. 2, where surfaces of constant
energy density are plotted in the r − z plane. The value of
the density (whence the vorticity of the fluid too) rapidly
increases in the clipped region.
We will come back to curvature invariants when dis-

cussing the timelike geodesics in Sec. III C.

B. Spectral Petrov type properties

Using e0̂ ¼ n♯ with the corresponding natural adapted
spatial frame one can form the null Newman-Penrose tetrad

lNP ¼
1ffiffiffi
2

p ðe0̂ þ eϕ̂Þ; nNP ¼
1ffiffiffi
2

p ðe0̂ − eϕ̂Þ;

mNP ¼
1ffiffiffi
2

p ðer̂ þ ieẑÞ: ð3:28Þ

The associated Weyl scalars are ψ1 ¼ 0 ¼ ψ3, and

m2eΨψ2 ¼
1

4R̂4

�
−3i sin αþ 5 − 3 cosð2αÞ

12R̂2

�
; ð3:29Þ

while the expressions for ψ0 and ψ4 are of the type

m2eΨψ0 ¼
C0
6R̂

6 þ C0
4R̂

4 þ C0
2R̂

2 þ C0
0

R̂8ðcos α − R̂2Þ ;

m2eΨψ4 ¼
C4
6R̂

6 þ C4
4R̂

4 þ C4
2R̂

2 þ C4
0

R̂8ðcos αþ R̂2Þ ; ð3:30Þ

where the various coefficients C0
n and C4

n are listed in
Table I. The metric is thus of Petrov type I.

C. Timelike geodesics

Let us consider the (timelike, geodesic) motion of a
massive test particle with mass μ and four-velocity
U ¼ Uα

∂α. The conserved quantities E ¼ −Ut (energy
per unit mass of the particle, dimensionless) and L¼Uϕ

(angular momentum per unit mass of the particle, with the
dimensions of a length, so that, e.g., L=m is dimensionless)
are related to the contravariant components of the four-
velocity as

FIG. 2. Level curves of the energy density ρmðr; zÞ in the r − z
plane for m ¼ 1 (in units of κ−1). In the clipped region the value
of the density increases very rapidly, so that contours are no
longer shown there (the last value is κρm ¼ 30).
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E ¼ Ut þ AUϕ; L ¼ AUt þ ðr2 − A2ÞUϕ; ð3:31Þ

so that

Ut ¼ E − A
Lþ EA

r2
; Uϕ ¼ Lþ EA

r2
; ð3:32Þ

with A given in Eq. (3.9). Note that Uϕ vanishes when
A ¼ −L=E (even for r ¼ constant motion). The normali-
zation condition U ·U ¼ −1 implies

gzzðUzÞ2 þ grrðUrÞ2 ¼ E2 − 1 −
ðLþ EAÞ2

r2
: ð3:33Þ

The geodesic equations written in ðt; R;ϕ; αÞ coordi-
nates, Eq. (3.5), then read

dt
dτ

¼ − cos2 αm4E− LRm2 þ R4E
R4

;

dϕ
dτ

¼ cos2 αm2EþRL
R3 cos2 α

;

d2R
dτ2

¼ m4 cos2 αð9 cos2 α − 8Þ
4R5

�
dR
dτ

�
2

þm4 sinα cosαð−4þ 9 cos2 αÞ
2R4

dR
dτ

dα
dτ

−
ð−8m4 cos2 α − 4R4 þ 9m4 cos4 αÞ

4R3

�
dα
dτ

�
2

þ ð2m4E2 cos4 αþR2L2 þ 3RELm2 cos2 αÞ
R5 cos2 α

e
−m4 cos2 αð9 cos2 α−8Þ

8R4 ;

d2α
dτ2

¼ −
m4 sinα cosαð−4þ 9 cos2 αÞ

4R6

��
dR
dτ

�
2

− R2

�
dα
dτ

�
2
�

−
ð8m4 cos2 α− 9m4 cos4 αþ 4R4Þ

2R5

dR
dτ

dα
dτ

þ sinαð−R2L2 þm4E2 cos4 αÞ
cos3 αR6

e
−m4 cos2 αð9 cos2 α−8Þ

8R4 ð3:34Þ

and can be integrated numerically. Note that the dependence
on the parameterm disappears upon rescaling all variables as
in Eq. (3.12) (together with the dimensionless proper time
τ̂ ¼ τ

m and the angular momentum parameter L̂ ¼ L
m), so that

one can set it to unity without any loss of generality.
As an example, we shown in Fig. 3 the behavior of the

integrated orbit in the r − z section. The figure also displays
the location of the unphysical region containing CTCs. It is
interesting tonote how theorbit is somehow “repelled”by this
region as a typical feature. However, there exist conditions
on the energy and angular momentum parameters such that
particles can enter the CTC region, as discussed below.
In order to have an insight into the general features

of motion in the r − z plane one can introduce a two-
dimensional effective potential as a function of both spatial
coordinates ðr; zÞ from the normalization condition (3.33),

gzzðUzÞ2 þ grrðUrÞ2 ¼ gϕϕ
r2

�
E − Vðr;zÞþ

eff

��
E − Vðr;zÞ−

eff

�
;

ð3:35Þ

where

Vðr;zÞ�
eff ¼ AL

r2 − A2
� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − A2 þ L2

p

r2 − A2
; ð3:36Þ

with A ¼ Aðr; zÞ given by Eq. (3.9). The vanishing of the
right-hand side of Eq. (3.33) gives the simultaneous turning
points in both coordinates

ðr2 þ z2Þ3=2 ¼ −
m2r2E

L� r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p : ð3:37Þ

Plotting the level curves of the effective potential (3.36) for
a fixed value of the angular momentum parameter then
provides information on the allowed regions for motion
of a particle with a given energy. We show in Fig. 4 just
few examples, postponing in the subsequent sections
the equivalent information from the analysis of the one-
dimensional effective potentials for motions along the r and

TABLE I. List of the various coefficients C0
n and C4

n entering
Eqs. (3.30).

C0
6

96 cosðαÞ þ 96i sinðαÞ − 480i sinð3αÞ − 480 cosð3αÞ
C0
4

−144 cosð2αÞ þ 40 − 312 cosð4αÞ − 144i sinð2αÞ
−312i sinð4αÞ

C0
2

42i sinðαÞ − 48 cosð3αÞ − 36i sinð5αÞ − 48i sinð3αÞ
þ54i sinð7αÞ þ 54 cosð7αÞ þ 30 cosðαÞ − 36 cosð5αÞ

C0
0

7 − 18 cosð4αÞ − 11 cosð2αÞ − 9i sinð2αÞ þ 27 cosð6αÞ
þ27i sinð8αÞ þ 27i sinð6αÞ þ 27 cosð8αÞ − 18i sinð4αÞ

C4
6

−480 cosð3αÞ þ 96 cosðαÞ þ 480i sinð3αÞ − 96i sinðαÞ
C4
4

312 cosð4αÞ − 312i sinð4αÞ þ 144 cosð2αÞ
−144i sinð2αÞ − 40

C4
2

−42i sinðαÞ þ 48i sinð3αÞ þ 54 cosð7αÞ þ 36i sinð5αÞ
−54i sinð7αÞ þ 30 cosðαÞ − 36 cosð5αÞ − 48 cosð3αÞ

C4
0

−7 − 9i sinð2αÞ þ 27i sinð8αÞ − 18i sinð4αÞ þ 27i sinð6αÞ
þ18 cosð4αÞ þ 11 cosð2αÞ − 27 cosð8αÞ − 27 cosð6αÞ
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z directions which allows for a better understanding of
stability properties of motions.
Let us compare this feature with the null case discussed

in Ref. [18]. The normalization condition P · P ¼ 0
(P denoting the four-momentum of the massless particle)
reads

gzzðUzÞ2 þ grrðUrÞ2 ¼ E2

�
1 −

1

r2

�
L
E
þ A

�
2
�
: ð3:38Þ

The motion is allowed only in those regions of the r − z
plane such that

1 −
1

r2

�
L
E
þ A

�
2

≥ 0; ð3:39Þ

which implies

−ðrþ AÞ ≤ L
E
≤ r − A: ð3:40Þ

Therefore, for any fixed value of the parameter L
E there

exists a region (or regions) of the r − z plane around the
origin and the axis of rotation which cannot be entered by
null geodesics also in this case (see Fig. 2 of Ref. [18]).
The main difference with the timelike case is then the
possibility to characterize the allowed motion in terms of
the single parameter L

E instead of the two independent
parameters E and L.

1. Evaluating curvature invariants along geodesics

We can evaluate the curvature invariants K and �K,
previously given as functions of the coordinates r and z,
along the geodesic motion discussed above so that
they actually become functions of the orbital parameters,
including proper time. A parametric plot �K vs K
eliminates the dependence on proper time and gives a
(gauge-invariant) curve, or better families of curves, only
depending on E, L, and m. This is an interesting way to
look at the geometrical properties of the spacetime too.
Figure 5 shows a geometrical information concerning
curvature invariants associated with the geodesic of Fig. 3
as an example. From the plots one sees that the curves �K
vs K intersect the horizontal axis (�K ¼ 0) as soon as the
geodesic crosses the symmetry plane z ¼ 0. Furthermore,
each curve terminates at the origin, since both invariants
vanish at spatial infinity.

2. Motion on the symmetry plane

To study the motion on the symmetry plane (z ¼ 0,
Uz ¼ 0), where rctc ¼ m, it is convenient to introduce the
associated effective potential for radial motion

grrðUrÞ2 ¼ gϕϕ
r2

ðE − Vrþ
eff ÞðE − Vr−

effÞ; ð3:41Þ

FIG. 3. Example of numerical integration of the orbit,
Eq. (3.34), projected on the r − z plane for the following choice
of parameters: m ¼ 1, E ¼ 1.5, and L ¼ −1.8. Initial conditions
are chosen so that Rð0Þ ¼ 5, αð0Þ ¼ 0, ϕð0Þ ¼ 0, tð0Þ ¼ 0,
dα
dτ jτ¼0 ¼ 0.055, and dR

dτ jτ¼0 ≈ −1.0412, the latter coming from
the normalization condition for timelike orbits. The shaded region
(gray) denotes the unphysical region with boundary (3.17) where
CTCs exist.

FIG. 4. Level curves of the two-dimensional effective potential
(3.36) for motion in the r − z plane. The shaded regions cannot be
entered by timelike geodesics corresponding to the selected pairs
of values of energy and angular momentum. In the first row the
value of the energy has been chosen as E ¼ 1.1, while the values
of the angular momentum parameter are L ¼ ½−0.2; 0; 0.2� (with
m ¼ 1), from left to right. In the second row, instead, the value of
the angular momentum parameter is fixed as L ¼ −0.8, whereas
the values of the energy are E ¼ ½1.01; 1.01241; 1.015�.
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where

Vr�
eff ¼

rm2L
r4 −m4

� r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ L2r2 −m4

p

r4 −m4
; ð3:42Þ

which tends to the limiting value �1 for large values of r.
Consider, for instance, the positive branch of the effective
potential. Taking the limit r → m, i.e., as the location of the
CTC boundary is approached, the latter behaves as

Vrþ
eff ¼

1

4
jLjð1þ signðLÞÞðr−mÞ−1

þ 1

2

�
m
jLj þ

jLj
4m

ð3− signðLÞÞ
�
þOðr−mÞ; ð3:43Þ

so that the CTC boundary is a potential barrier for all
particles with positive values of the angular momentum.
Imposing the condition Ur ¼ 0 in Eq. (3.33) gives the

turning points of the radial motion. Solving for r yields four
roots r�i (i ¼ 1;…; 4)

r�i ¼
σL

2
ffiffiffiffiffiffiffiffiffiffiffiffi
E2−1

p þ ϵ

2ðE2−1Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ffiffiffiffiffiffiffiffiffiffiffiffi
E2−1

p þ4m2σE

s
; ð3:44Þ

where σ ¼ �, ϵ ¼ � are independent signs, and E > 1.
The number of turning points (i.e., positive real roots, for
fixed values of the energy) determines the particular radial
motion, either bound or hyperboliclike. It is convenient to

treat the cases L > 0 and L < 0 separately. By using the
dimensionless rescaled variables

r̂�i ¼
r�i
m
; L̂ ¼ L

m
; ð3:45Þ

as well as the notation

ξ ¼ L̂
2j sinh βj ; E ¼ cosh β; ð3:46Þ

Eq. (3.44) can be conveniently rewritten as

r̂�i ≡Rðσ; ϵÞ ¼ σξþ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ σj coth βj

q
; ð3:47Þ

with signðξÞ ¼ signðLÞ.
For positive values of the angular momentum there are

four real roots, provided that the argument of the square
root in the second term of Eq. (3.47) is positive, i.e., for
ξ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij coth βjp
, but only one is positive, namely Rð1; 1Þ.

For ξ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij coth βjp

, instead, there are two complex con-
jugate roots and two real roots, one of which is negative,
Rð1;−1Þ, and the other positive,Rð1; 1Þ. Hence, for L > 0
there is always a single turning point at r̂tp ¼ Rð1; 1Þ. The
motion can be only hyperboliclike in this case.
The case L < 0 is more interesting. In fact, for jξj >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij coth βjp

there are four real roots, one of them is negative,
implying that there are at most three turning points,
depending on the chosen value of the energy, i.e.,
r̂1 tp ¼ Rð1; 1Þ, r̂2 tp ¼ Rð−1;−1Þ, and r̂3 tp ¼ Rð−1; 1Þ.
In contrast, for jξj < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij coth βjp

there are two real roots
[one positive, Rð1; 1Þ, the other negative, Rð1;−1Þ] and
two complex conjugate roots, so that the only turning
point is r̂tp ¼ Rð1; 1Þ. Therefore, for positive values of the
angular momentum bound motion is also allowed.
The typical behavior of the (positive branch of the)

effective potential as a function of the radial coordinate r is
shown in Fig. 6 for selected (negative) values of the
particle’s angular momentum parameter. Horizontal lines
corresponding to fixed values of the particle’s energy
parameter intersect the potential curve at the turning points
of the radial motion.
Figure 7 shows some examples of incoming orbits from a

given initial value for the radial distance and the same
choice of parameters as in Fig. 6.
Let us conclude this section by discussing the issue of

CTC avoidance in the case L < 0. The particle will enter
the CTC region during its motion if the innermost radial
turning point is less than the location of the CTC boundary,
i.e., r̂1 tp ¼ Rð1; 1Þ ≤ 1. The condition for CTC avoidance
is then

−jξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ j coth βj

q
> 1; ð3:48Þ

FIG. 5. The curvature invariants �K vs K evaluated along three
nonequatorial geodesics: the one of Fig. 3 (with L ¼ −1.8) and
two similar hyperboliclike orbits corresponding to the same set
of parameters as well as initial conditions, except for slightly
different values of the angular momentum, L ¼ −1.9 and
L ¼ −2.0. The initial conditions are such that the geodesics
start on the symmetry plane where �K ¼ 0 at a given radius with
K < 0 and approach spatial infinity, where both invariants vanish,
so that the curves all terminate at the origin.
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so that

j coth βj > 1þ 2jξj: ð3:49Þ
Turning to the original variables the latter condition is
written as

jL̂j < E −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
: ð3:50Þ

3. Bound motion

Bound motion is conveniently studied by using an
eccentricity–semilatus rectum parametrization, which is
familiar from the Newtonian description of the binary
dynamics

r ¼ p
1þ ϵ cos χ

; ð3:51Þ

where p > m and 0 ≤ ϵ < 1 are the semilatus rectum
and eccentricity, respectively, and χ is the polar angle in
the plane of the orbit. The motion is confined between
a minimum value rperi ¼ p=ð1þ ϵÞ for χ ¼ 0 and a
maximum value rapo ¼ p=ð1 − ϵÞ for χ ¼ π of the radial
coordinate. From Eq. (3.44) one can then express the
particle energy and angular momentum parameters in terms
of ðp; ϵÞ as follows:

E ¼ p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 −m4ϵ2ð1 − ϵ2Þ2

p ;

L ¼ −
m2ð1þ ϵ2Þ

p
E: ð3:52Þ

The equation for the radial variable r is thus replaced by the
following equation for the angular variable χ:

dχ
dτ

¼ m4E2

p5
e
−m4ð1þϵ cos χÞ4

8p4 ϵ sin χð1þ ϵ cos χÞ2

× ½ð1 − ϵ2 þ ϵ cos χÞ2 − ϵ2�; ð3:53Þ

which can be used to express t and ϕ as functions of χ. One
can then compute the period Tr of the radial motion and the
corresponding full variation Φ of the azimuthal angle

Tr ¼
I

dt ¼ 2

Z
π

0

dt
dχ

dχ;

Φ ¼
I

dϕ ¼ 2

Z
π

0

dϕ
dχ

dχ: ð3:54Þ

(a) (b)

FIG. 6. Typical behavior of the (positive branch of the) effective
potential for radial motion as a function of the radial coordinate
for m ¼ 1 (implying that the CTC boundary is at rctc ¼ 1) and
different values of the particle’s angular momentum parameter.
The horizontal lines correspond to different values of the
particle’s energy parameter and intersect the potential curve at
the turning points. (a) L ¼ −0.8; E ¼ 1.01 (three distinct roots),
E ≈ 1.0124 (three roots, two of them coinciding), and E ¼ 1.015
(one root). (b) L ¼ −0.2; E ¼ 1.01 (one root).

(a) (b)

(c) (d)

FIG. 7. Examples of numerical integration of the geodesic
orbits in the symmetry plane z ¼ 0. In all plots we have set the
value of the parameter m ¼ 1 and the initial condition for t, ϕ,
and α to the values tð0Þ ¼ 0, ϕð0Þ ¼ 0, αð0Þ ¼ 0. The shaded
region (gray) containing CTCs is always displayed and never
crossed by the orbits. (a) Parameter choice, E ¼ 1.01, L ¼ −0.8;
initial conditions, Rð0Þ ¼ 1.5, dR

dτ jτ¼0 ≈ −0.1125, dα
dτ jτ¼0 ¼ 0;

turning points, r�1 ≈ 1.0625, r�2 ≈ 1.9069. (b) Parameter choice,
E ¼ 1.0125, L ¼ −0.8; initial conditions, Rð0Þ ¼ 5, dR

dτ jτ¼0≈
−0.1043, dα

dτ jτ¼0 ¼ 0; turning points, r� ≈ 1.0479 (other roots
corresponding to imaginary values). (c) Parameter choice, E ¼
1.0124, L¼−0.8; initial conditions, Rð0Þ¼5, dRdτ jτ¼0 ≈ −0.1033,
dα
dτ jτ¼0 ¼ 0; turning points, r� ≈ 2.5865 (the one corresponding
to the largest values of r). (d) Parameter choice, E ¼ 1.01,
L ¼ −0.2; initial conditions, Rð0Þ ¼ 5, dR

dτ jτ¼0 ≈ −0.1418,
dα
dτ jτ¼0 ¼ 0; turning points, r� ≈ 2.0554 (other roots correspond-
ing to imaginary values).

PARTICLE MOTION IN A ROTATING DUST SPACETIME PHYS. REV. D 109, 124011 (2024)

124011-9



The associated radial and azimuthal frequencies are given
by Ωr ¼ 2π=Tr and Ωϕ ¼ Φ=Tr, respectively. Analytical
expressions for the above quantities can be obtained in
the limit of small eccentricity (ϵ ≪ 1) only as power series
expansions. The leading-order terms turn out to be

Ωr ¼ e
−m4

8p4
m4

2p5 lnð2Þ πϵþOðϵ3Þ;

Ωϕ ¼ m2

p3 lnð2Þ
�
2 − 3 lnð2Þ − ð1 − lnð2ÞÞ m

4

2p4

�
ϵ2 þOðϵ4Þ:

ð3:55Þ

The bound orbit of Fig. 7(a) corresponds to the parameter
choice p ≈ 1.3646 and ϵ ≈ 0.2844. The particle bounces
many times between the pericenter and the apocenter
before completing a full revolution around the origin. It
is interesting to note that the orbit does not reduce to a
circular orbit in the limit ϵ → 0. In fact, in that limit r goes
to a constant value, with E → 1 and L → −m2=p, whereas
the frequencies Ωr and Ωϕ both vanish, implying that
eventually the particle comes to rest.
Finally, circular orbits are obtained by imposing the

condition ∂rVr�
eff ¼ 0, leading to analytical expression for

the corresponding radii

r1 circ¼−
m2

L
; r2 circ¼−

m
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4þ4m4

pq
; ð3:56Þ

for stable (r1 circ) and unstable (r2 circ) orbits, respectively,
with L necessarily negative (see also Fig. 6). The solution
r1 circ has associated energy E ¼ 1 and vanishing Uϕ

component, so that it actually describes the dust particles
which are at rest, as discussed above. The solution r2 circ
instead represents a true circular geodesic with four-
velocity

Ucirc ¼
r4 þm4

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 −m4

p
�
∂t −

m2r
r4 þm4

∂ϕ

�
: ð3:57Þ

The associated energy and angular momentum are given by

Ecirc ¼
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 −m4
p ; Lcirc ¼ −

2m2

r
Ecirc: ð3:58Þ

The angular velocity dϕ
dt ¼ − m2r

r4þm4 tends to the constant

value − 1
2m as the CTC boundary rctc ¼ m is approached.

Ucirc then becomes a null vector there (like ∂ϕ on the same
surface does).

4. Helical-like motion around the symmetry axis

Let us consider the helical-like motion around the
symmetry axis, i.e., on the cylindrical surface r ¼ const.

One can introduce an effective potential also in this case,
such that

gzzðUzÞ2 ¼ gϕϕ
r2

ðE − Vzþ
eff ÞðE − Vz−

effÞ; ð3:59Þ

with

gzzV
z�
eff ¼ −gtzL� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ gzz

q
: ð3:60Þ

In the limit z → �∞ the positive branch of the potential
goes to the value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ L2

p
=r. Turning points for z motion

are the real roots of the equation Uz ¼ 0, which are given
by Eq. (3.37) with r ¼ const. For instance, for L ¼ 0 there
are two turning points at z�� ¼ �½ð m2rEffiffiffiffiffiffiffiffi

E2−1
p Þ2=3 − r2�1=2, pro-

vided that the chosen value of the radial coordinate is such
that r=m < ½E2=ðE2 − 1Þ�1=4. The behavior of the (positive
branch of the) effective potential is shown in Fig. 8 for
different values of the particle’s angular momentum param-
eter. Incoming particles endowed with enough energy
generally cross the symmetry plane. Low energy particles
instead only approach the symmetry plane and are forced to
come back [see Fig. 8(a)]. There also exist conditions
allowing for confined motion around z ¼ 0 or even two
opposite values of z ≠ 0, if the particle starts moving
close to the symmetry plane with negative values of the
angular momentum parameter [see Figs. 8(a) and 8(b),
respectively].
One can check that the condition to reach the CTC region

writes coth β ¼ 1þ 2ξ=r̂ as before, but now r̂ is a fixed
parameter (for motion along z), which becomes 1 on the
symmetry plane.
Circular geodesics on a z ¼ const. (z ≠ 0) hyperplane

exist only for zcirc� ¼ �r=
ffiffiffi
2

p
. However, the latter condition

implies the vanishing of the angular velocity (with energy
parameter E ¼ 1 and angular momentum parameter

L ¼ − 2
ffiffi
6

p
m2

9r ), so that particles actually are at rest there.

(a) (b)

FIG. 8. Typical behavior of the (positive branch of the) effective
potential for motion parallel to the symmetry axis as a function of
z for m ¼ 1, r ¼ 2 (implying that the orbit does not cross the
CTC boundary) and different values of the particle’s angular
momentum parameter L ¼ ½−0.8; 0; 0.8� (a), and L ¼ −0.2 (b).
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This is in agreement with the condition ∂zV
z�
eff ¼ 0,

which gives

zcirc� ¼ �
�ðmrLÞ4=3

L2
− r2

�
1=2

; ð3:61Þ

with 0 < jLj ≤ m2=r (L < 0, see Fig. 8), once L is replaced
by the value specified above.

IV. NONGEODESIC MOTION UNDER
A FRICTION FORCE

Let us consider now the more realistic situation in which
the particle (with mass μ) moves along nongeodesic orbits
due the interaction with the background fluid. The latter
can be modeled by adding to the equations of motion a
friction force of the type

fðfricÞðUÞα ¼ −σPðUÞαμTμνUν; ð4:1Þ

where σ is the cross section of the process, PðUÞαν ¼
δαν þ UαUν projects orthogonally to U, and Tμν is the
energy-momentum tensor of the fluid given by Eq. (3.11).
Explicitly, we have

fðfricÞðUÞα ¼ −σρmðU · uÞ½uα þ ðU · uÞUα�; ð4:2Þ

and the overall minus sign is purely conventional. The
force (4.1) can be considered as the general relativistic
generalization of the Stokes force acting on a body
which moves in a fluid [26], even if nonviscous. It is of
the same form as that first introduced by Poynting and
Robertson [22,23] to study the effect of the radiation
pressure of the light emitted by a star on the motion of
small bodies moving around it. Recently, the role of the
Poynting-Robertson effect in the problem of scattering
of particles by a radiation field has also been investigated
(see, e.g., Refs. [27–31]).
The force (4.1) has been already adopted in different

contexts: to study nongeodesic motion in the spacetime of
self-gravitating fluids2 [26,32,33] and to discuss from a
cosmological perspective how (test) fluids describing either
ordinary or exotic matter and surrounding a nonrotating
source may scatter particles [34].
Our motivation here is to see whether the presence of a

friction force can slow down (rapidly enough) the motion,
so preventing particles from reaching the pathological
region containing CTCs. The equations of motions are
written as

dUα

dτ
¼ fðgravÞðUÞα þ fðfricÞðUÞα; ð4:3Þ

where

fðgravÞðUÞα ¼ −Γα
βσUβUσ;

fðfricÞðUÞα ¼ −σ̃κρmUt½uα þ UtUα�; ð4:4Þ

with our choice of coordinates (fluid at rest in the chosen
coordinate system, uα ¼ δα0), and σ̃ ¼ σ

κμ. Here fðgravÞðUÞ
depends on U but it is not orthogonal to U itself, different
from fðfricÞðUÞ which is orthogonal to U by definition.
Limiting our considerations to motion on the symmetry
plane (z ¼ 0, Uz ¼ 0), for simplicity, the equations of
motion (4.3) then read

dUr

dτ
¼ −σ̃

m4e−
m4

8r4

r6
E2Ur þ e−

m4

8r4

r2
ðm2E þ r3UϕÞUϕ

þ m4

4r5
ðUrÞ2;

dUϕ

dτ
¼ −σ̃

m4e−
m4

8r4

r6
E2Uϕ −

1

r4
ðm2E þ 2r3UϕÞUr;

dE
dτ

¼ −σ̃
m4e−

m4

8r4

r6
EðE2 − 1Þ; ð4:5Þ

where

E ¼ 1

r
ðrUt þm2UϕÞ; ð4:6Þ

with the normalization condition for U, U ·U ¼ −1,

−E2 þ r2ðUϕÞ2 þ e
m4

8r4ðUrÞ2 ¼ −1: ð4:7Þ

Here E reduces to the conserved energy E along geodesic
motion on the symmetry plane, see Eq. (3.31). As a typical
feature fðgravÞðUÞ and fðfricÞðUÞ compete among them-
selves, and one can usually find a “suspended orbit” radius
at which the particle can stay at rest, which is an
equilibrium solution for the above system in the asymptotic
regime. An example of numerical integration of the orbits is
shown in Fig. 9.
One can look for solutions of the system (4.5) in the limit

of small values of σ̃. The linear-in-σ̃ solution is straightfor-
ward and implies oscillating behaviors around r ¼ r0 and
ϕ ¼ ϕ0 with first-order modifications of the four-velocity
components given by

Uϕ
1 ðτÞ ¼ −

m2

Ω0r40
Ur

1ð0Þ sinΩ0τ þ Uϕ
1 ð0Þ cosΩ0τ;

Ur
1ðτÞ ¼ Ur

1ð0Þ cosΩ0τ þ
Ω0r40
m2

Uϕ
1 ð0Þ sinΩ0τ; ð4:8Þ

where Ω0 ¼ m2

r3
0

e
− m4

16r4
0 , and E ¼ 1þOðσ̃2Þ.2It also couples thematter-energy distributionwith the geometry.
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V. CONCLUDING REMARKS

For a fluid-sourced spacetime the possibility to study
gravitational effects as well as particle-particle interactions
should be put beside by gravitationally induced collective
motion of the fluid particles. This is the case of accreting
matter and radiation in the spacetime region around
compact objects, for example. In a realistic scenario the
thermodynamic properties of the fluid are expected to
strongly influence the motion of particles inside it.
The simplest approximation consists of considering a

test fluid superposed to the (fixed) gravitational field of
the compact object, e.g., a distribution of collisionless dust
surrounding a Schwarzschild black hole [35]. The inter-
action between test particles moving in the background
spacetime and the surrounding dust has been modeled there
by adding to the equations of motion a friction force built
with the stress-energy tensor of the dust, which is respon-
sible for a loss of both energy and angular momentum,
causing the particle trajectory to be deflected with respect
to the corresponding geodesic path.

In the case of a spacetime sourced by a fluid, instead, it is
the matter-energy content of the fluid itself which causes the
curvature of the spacetime (a completely different situation
with respect to the test fluid case). The interaction of test
particles with the background fluid in a first approximation
(i.e., by neglecting particle’s backreaction on the background
geometry) is thus described by (timelike) geodesics. While
test particle dynamics around black holes is well studied in
the literature, the same is not true in the case of fluid-sourced
spacetimes. In fact, the latter are in general plagued by the
presence of some pathological behavior, like the unphysical
behavior of thermodynamical quantities, and the existence of
spacetime regions where causality as well as energy con-
ditions are violated, besides singularities.
In this paper we have investigated test particle motion in

the spacetime of a rotating dust, known as Bonnor’s
spacetime. The dust particles form a congruence which
is geodesic and has vanishing expansion and shear, but
nonzero vorticity. The spacetime has a singularity at the
origin of the coordinates, which is the result of the
nonlinearities of the gravitational field due the kinematical
properties of the fluid; in particular, its vorticity field,
which diverges there. In addition, close to the singularity
there exists a toroidal region where CTCs are allowed,
which is usually discarded as unphysical. The boundary of
such a region reduces to a circle on the symmetry plane.
We have numerically integrated the geodesic equations

with initial conditions chosen such that particles are
released from a fixed space point and directed toward
the singularity. The study of the effective potential for
radial motion on the symmetry plane has shown that for
most of the allowed values of particle’s energy and angular
momentum there is a barrier typically preventing particles
to reach the CTC boundary (and the singularity). We have
identified indeed conditions on the space of the parameters
such that these orbits cannot enter the CTC region.
Moreover, to make this circumstance more favored we
have introduced a friction force (modeled á la Poynting-
Robertson [22,23]) which drags particles after their re-
leasing, eventually stopping them before they reach the
pathological region containing CTCs. Noticeably, we have
found conditions for the existence of circular orbits (which
are but all unstable), as well as bound motion between a
minimum and a maximum radius. The latter are well-
known features of motion around compact objects, but
a priori not expected in this case.
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APPENDIX: SEPARABLE SOLUTIONS
TO EQ. (3.3)

In this appendix we review the construction of separable
solutions to Eq. (3.3), namely

∂zzAþ ∂rrA −
1

r
∂rA ¼ 0; ðA1Þ

with A ¼ RðrÞZðzÞ, obtained in Refs. [3,5]. The above
ansatz gives

Zzz ¼ kZ;

Rrr −
1

r
Rr þ kR ¼ 0; ðA2Þ

with the separation constant k∈R. Imposing the reflection
symmetry property Aðr; zÞ ¼ Aðr;−zÞ leads to two pos-
sibilities, according to positive or negative values of k.
(1) One assumes a positive value for k ¼ u2 (with

u∈Rþ
0 ) and the falloff behavior at infinity can be

achieved by employing the nonsmooth modes
Zðk; zÞ ¼ e−

ffiffi
k

p jzj ¼ e−ujzj, which satisfy Eq. (3.3)
for z > 0 only. Consequently, because of the lack of
regularity in the metric at z ¼ 0, there are sources
localized at z ¼ 0. To find an explicit solution in this
case one starts from

Ũðu; zÞ ¼
Z

∞

0

Aðr; zÞJ1ðruÞdr; ðA3Þ

where JmðruÞ is the Bessel function of the order m.
Then,

∂zzŨ ¼
Z

∞

0

∂zzAðr; zÞJ2ðruÞdr

¼ −
Z

∞

0

�
∂rrA −

1

r
∂rA

�
J1ðruÞdr: ðA4Þ

Double integration by part gives

∂zzŨ ¼ u2
Z

∞

0

AJ1ðruÞdr ¼ u2Ũ: ðA5Þ

This implies that the required form is Ũðu; zÞ ¼
αþðuÞe−uz þ α−ðuÞeuz.
The asymptotic condition

lim
z→�∞

A ¼ 0 ðA6Þ

implies α−ðuÞ ¼ 0 for z > 0 and αþðuÞ ¼ 0 for
z < 0. Summarizing

Ũðu;zÞ¼αðuÞe−ujzj ¼
Z

∞

0

Aðr;zÞJ1ðruÞdr; ðA7Þ

with αðuÞ arbitrary. To obtain the final expression for
the function A now it suffices to invert the above
relation by using the Hankel transform. The result is

Aðr; zÞ ¼
Z

∞

0

ruαðuÞe−ujzjJ1ðruÞdu: ðA8Þ

Due to the arbitrariness of αðuÞ we can redefine a
new function using ÃðuÞ ¼ uαðuÞ such that

ψðr; zÞ ¼
Z

∞

0

re−λjzjÃðλÞJ1ðλrÞdλ: ðA9Þ

(2) Another possibility is Zðk; zÞ ¼ cosh ð ffiffiffi
k

p
zÞ. The

parameter k cannot be positive then, otherwise
these modes diverge exponentially for jzj → ∞,
which is an unphysical behavior. In this case we
assume k ¼ −λ2 with λ∈Rþ

0 yielding the modes
Zðλ; zÞ ¼ cos ðλzÞ. The solution can be found with
the same procedure as in the first case. The result is
given by

Aðr; zÞ ¼
Z∞
0

dλ cos ðλzÞðrλÞ½aðλÞK1ðλrÞ

þ bðλÞI1ðλrÞ�: ðA10Þ

The functions I1 and K1 are modified Bessel
functions of the first and second kind, respectively.
Since I1 blows up exponentially for large values of r
we set bðλÞ ¼ 0. The function K1 falls off exponen-
tially for large values of r and diverges like 1=r near
r ¼ 0. However, this divergence is compensated by
a linear prefactor, so the integrand is well defined
for any sufficiently regular aðλÞ. We can write the
result in a simpler form. We perform first a Fourier
transformation,

aðλÞ ¼ 2

π

Z∞
0

dxCðxÞ cos ðλxÞ; ðA11Þ

where aðλÞ is determined in terms of a (Fourier)
transformed spectral density CðxÞ. Using the property
Z∞
0

dxxK1ðxÞ cos
�
cx
r

�
¼ π

2

r3

ðc2 þ r2Þ3=2 ; ðA12Þ

the form of A becomes

Aðr; zÞ ¼ 1

2

Z∞
0

dζ
CðζÞr2

½ðzþ ζÞ2 þ r2�3=2 : ðA13Þ
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