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Force-free electromagnetic configurations in FLRW geometry
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Force-free electrodynamics is the theoretical paradigm used to describe electromagnetic fields in a
region where the inertia of plasma is negligible compared to the strength of the electromagnetic field. While
these fields are studied extensively around accreting black holes in an attempt to describe energy extraction,
force-free fields also routinely appear in the study of cosmological magnetic fields. Despite this, there are
no systematic studies of exact force-free fields in an expanding Universe. In this paper, we use geometric
methods to find a wide variety of force-free solutions in a fixed Friedmann-Lemaitre-Robertson-Walker
metric background. The method we use can be directly generalized to any arbitrary electrically neutral
spacetime, and hence provides a powerful tool to study force-free fields in general.
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I. INTRODUCTION

Magnetic fields are known to permeate the Universe
from the scales of planets and stars to those of galaxies and
even galaxy clusters [1]. At the scale of galaxies, magnetic
fields have a strength of order 107% G and are coherent over
kpc scales. Micro-Gauss magnetic fields have also been
observed in galaxy clusters [2,3]. Recent observations
suggest that intergalactic space may harbor magnetic fields
of strength 1071 G coherent over Mpc scales [4].

The currently accepted paradigm explaining the exist-
ence of this all-pervading magnetic field states that these
magnetic fields originated from the amplification of seed
magnetic fields via various astrophysical dynamos. While
at smaller scales (at the level of planets and stars), these
fields require constant rejuvenation to replenish the loss
from dissipation, the timescales for dissipation for large-
scale magnetic fields may be of the order of the age of the
Universe. While the amplification of the large-scale mag-
netic field is attributed to the gravitational collapse of flux-
frozen matter during structure formation, the dynamo effect
can only amplify a preexisting nonzero “seed” magnetic
field. The origin of such a seed magnetic field itself is not
well understood and is a subject of extensive study,
especially over the last two decades. Electroweak phase
transition [5,6] and inflationary generation of the seed
magnetic fields [7-9] are the most widely studied

“radhikari @troy.edu

2470-0010,/2024/109(12)/124010(10)

124010-1

phenomena for the generation of primordial magnetic fields
in the early Universe. Other mechanisms for the generation
of primordial magnetic fields include Lorentz invariance
violation [10], relativistic positron abundance [11], and
non-Gaussian perturbations to the baryon density, to name
a few [12].

A variety of methods exist for detecting and/or con-
straining magnetic fields in the Universe. At low redshifts,
these include the observation of Zeeman splitting [13] and
Faraday rotation of linearly polarized radio sources [14]. At
higher redshifts, the existence of magnetic fields can be
inferred from the effects of primordial magnetic fields on
the polarization of the cosmic microwave background
(CMB) [15-18], and the effects of magnetic pressure on
the abundance of light elements during big-bang nucleo-
synthesis [19], as well as the (non)detection of inverse-
Compton scattered CMB photons from blazar observations
[4,20]. Recently, it was shown that hydrodynamical sim-
ulations of structure formation in the Universe can also
constrain the primordial magnetic fields by studying their
ability to reproduce in the simulations the scaling relations
observed in dwarf galaxies [21].

When the energy stored in the electromagnetic field is
much greater than the plasma pressure, the Lorenz force
vanishes. Force-free electrodynamics is the framework that
describes such a system. Force-free fields can also be thought
of as the low-inertia limit of ideal magnetohydrodynamics—
i.e., the limit where the matter part of the stress-energy tensor
can be ignored in favor of a purely electromagnetic stress-
energy tensor.

© 2024 American Physical Society
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Force-free plasma occurs naturally in various astrophysi-
cal contexts. For example, the solar corona is permeated by
such strong magnetic fields that it is essentially force-free.
The study of force-free fields is also important in the study
of relativistic jets. The strong magnetic fields generated
around the accreting black hole and neutron stars render
these systems force-free, and the fields are believed to
extract rotational energy from these compact objects to
power the highly collimated relativistic jets.

Force-free fields often appear in the study of primordial
magnetogenesis [22-28]. Several studies of primordial
magnetic fields assume the vanishing of the Lorentz force
[29-33]. To our knowledge, there has been no significant
and systematic attempt to study the types of force-free
fields allowed in the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric. In this paper, we provide a
nonexhaustive list of solutions to the equations of force-
free electrodynamics (FFE) generated not by solving the
arising partial differential equations, but by using the
geometric study of the foliations of spacetime as laid out
in Refs. [34-36]. This method is suitable for generating
force-free fields not just in nonstationary spacetimes, but in
any arbitrary spacetime that is electrically neutral.

II. EQUATIONS OF FORCE-FREE
ELECTRODYNAMICS

Maxwell’s equation in an arbitrary spacetime is given by

dF =0, and xdx*xF=]j. (1)
Here, F' is the Maxwell field tensor, * is the Hodge star
operator, d is the exterior derivative on forms, and j denotes
the current density dual vector. Force-free electrodynamics
is defined by the constraint F,, ;¥ = 0. The Maxwell field
tensor F is said to be magnetically dominated whenever
F? > 0, F is electrically dominated whenever F? < 0, and
a force-free electromagnetic field F is null whenever
F? =0. As usual, F* = F, F*.

The kernel of F is the set of all tangent vectors that
annihilate F. In force-free electrodynamics, the current
density j is always such a vector field. It is well known that
the kernel of F forms the tangent space to a two-dimen-
sional submanifold. Starting with this fact, a comprehen-
sive study of geometric features of force-free fields was
done in Refs. [34-36], and we provide a concise summary
in the following sections.

A. The non-null force-free field

Details presented in this section were previously derived
in [34]. We will first consider the case of a magnetically
dominated field. In this case, about any point in spacetime,
we can construct an inertial frame field (e, e, €5, €3) such
that g(e,, e,) = 1,,, and further, e, and e, span the kernel

of F. Here, 5 is the Minkowski metric. We define vector
fields H and H by

2H = [-g(V, ep.e2) + g(V, ey, e;)]e,
+ [=9(Ve0.e3) +9(V, e, e3)]es (2)

and

2H = [—g(Vezez,eo) - g(ve363’ eo)]eo
+[9(Ve,en.e1) +9(V,e3.e1)]e. (3)

We are guaranteed a magnetically dominated force-free
solution if

d(H"+ H") = 0. (4)

In this case, the magnetically force-free F can now be
written as

F=ueéyneé, (5)
where
d(lnu) =2(H + H)". (6)

The b maps a tangent vector to its metrically equivalent
one-form. The difficulty of finding magnetically dominated
force-free fields is now reduced to finding a tetrad frame
field that satisfies the above requirements. Hidden in the
above statements is the fact that ¢, and e; span smooth two-
dimensional submanifolds. These submanifolds are
referred to as field sheets.

The electrically dominated field is very similar to the
above construction, except that it is e, and e; that span the
kernel of F.

B. The theory of null force-free fields

Solutions to null force-free electrodynamics satisfy a
different set of criteria, stemming from the fact that the
kernel of F in this case is spanned by a degenerate
distribution. For details, see [36].

Here, the kernel of F is spanned by a null geodesic vector
field / and a spacelike orthogonal vector field s. The tetrad
is completed by including another null vector n and a one-
form a such that

n-l=-1, O0=l-s=a(l)=n-s=a(n) =als),

Hy — 1 — oH
a'a, 1 shs,.

In this case, if the equipartition condition for the null mean
curvature is satisfied, i.e.,

9(Vil.s) = g(Vyl.ab),
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then the force-free null field takes the form
F=u-x)anl. (7)

Here, f is the inverse map of b. In an adapted chart

(x', x%, x3, x*) where field sheets are given by the condition

x', x2 = const,

k= (a3 ly—ay 3)7", (8)

(0)-(0)Ga) o

Here, u = u(x*,x*) is any smooth function of x°, x*.

where

III. FORCE-FREE SOLUTIONS

The conformal time coordinate chart often simplifies the
calculations in FLRW spacetimes. In this coordinate
system, the metric takes the following form:

dr?

d2: 2_d2
2= a(n)? | ~dnP+

+12(d6*+sin20dg?)|.  (10)

Since we will rely primarily on the tetrad formalism
described above, we begin by listing a set of the canonical
orthonormal tetrad for the metric given above:

e —0,, 11a
*alm) (112)
V1—Kr?
P S (11b)
a(n)
1
——— 0y, 11
€ aln)r 0 (11c)
1
=———— 0. 11d
“ a(n)rsing ? (11d)

A. Solution I

Consider a Lorentz transformation of the canonical
tetrads given by

_ asin(0)f, 0 rfifs rffa
() €o
. 0 1 0 0 .
1 - . . l
_ 0 frasin(0)f,  asin(@)ff, ’
Z \/B”fz \/ﬁ \/ﬁ e,
¢ o o L L e
3 \/ﬁ \//; 3
(12)

where f is any function of r, a and f are real constants, and

1
fi= \/ﬂ—f2 and fzz—m-

Then the pair of vector fields (e,,e;) are involutive, and
further,

2(H + 1) = 2a(n) . 2a°sin?0 — pr?
a(n) r(pr? — a*sin®0)
p*r?cotd
a’sin’0 — pr?

do. (13)

It is easy to verify that d(H + H) = 0. Then, from
Egs. (4) to (6),

ug\/ a? sin @ — pr?
u = 0 20 . ) (14)
a(n)*r*sind

and our electrically dominated solution is given by

— el A b
Fi=uey N e

Uy a ”o\/ﬁ—fz

_ MY gpndr NPT
V1 —=Kr? sinvV'1 — Kr?
+ ——=dr A dgp. (15)

uof
V1 -Kr?
Here, the current density is given by

. VI-KPf [ f
I ) P sin g N

The Lorentz-invariant quantity F2 in this case is given by

dr N do

dg—cscho,|. (16)

2u3(a? sin® 0 — pr?)

F? =
: a(n)*r*sin® @

(17)

From the above equation, we see that the solution is not
well defined when sin@ = 0. For completeness, we also
record the magnitude of the square of the current density
vector:

j2 — u(z)(Krz_ l)flzﬂ
La(n)rsin 0(f = )
This solution holds some intriguing features that deserve

closer inspection. First, we note that the Lorentz trans-
formation that generates the solution is not valid when

(18)

y=a’sin?0—pr2 <0.

Nonetheless, F'; does not depend on y. This means that the
solution F; is defined for all values of y (except when
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sin® = 0 for an entirely different reason). As it turns out,
examining F % tells us that our electrically dominated
solution smoothly transitions to a null solution when
x = 0, and further, to a magnetically dominated solution
when y < 0. The tetrad formalism is unsuitable to handle
such a transition. So, we shift to a different formalism using
a foliation-adapted chart which was developed in [35].
About any point in spacetime, there exists a coordinate
chart (x!,...,x*) that is adapted to field sheets, meaning
that the tangent space of the submanifolds defined by
constant values of x! and x? contains the kernel of F. Then,
F takes the form

F=u(x* x*)dx® A dx*. (19)

Here, we let

M’ = gr3934 _ g3Sgr4’ and N’ = gr3g44 _ g34gr4.
Then, as was shown in [35], the equations of FFE in this
coordinate system are given by

d
M4yln|u| = —V,M (20)
and

0
N-”@ln lu| = =V,N". (21)

To obtain a foliation-adapted chart for the case of this solution, we define the vector fields

X, = sin69, —7Vﬂf_fza

@

X3=0,+0,+ [(—ﬂln(cscéH— coth) 5

f\fﬁffﬁ ~an(i+ ) oo

and finally

X4:0

Xzza

a
——0,.
n r2f [

f 2 S

-

It is easily verified that all of the vector fields {X;} defined above commute with each other. Therefore, there exist
coordinate functions {x'} such that X; = d,; for each i. The dual bases {dx'} are such that

dx* = dn —dr,

flIn(cscO + cot @) f

dx® = dr,

VI—F

dr +

dx' = csc0do,
and
a a 2an  anf’
dx* = ——d -+ =
=t | et oAt
Then,

PVIF

o + do.
singp 0T

dx'(0) = &,

as required. This will help us compute the determinant of the metric in the adapted basis, and also the quantities M" and N”
as defined above. The relevant quantities in Eqs. (20) and (21) are given by

a*(n)r’sin’0
T k)
a*(n)r’sin®0f
(1-Kr)y
a*(n)r*sin?0f>
-(1-Kr?)
a*(n)r’sin®0f3

]

N3,

1:

,  —a(l- Kr?)
atmr’f

M3 =0,

[(fnr + (r +2n)f)ar/ B = > + BIn(csc € + cot ) /'],
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and finally

(Kr* —1)

N? =/ —————
a*(n)r’ fsin’0

Noting that u = u(x*, x* = ¢), Eq. (20) becomes

d
M*—In |u| = 0;
op

ie., u, =0, and Eq. (21) gives

f'(1=Kr*)+Krf
a*(n)rtsin®0f>

1-Kr? d
P 4( )

a*(n)r*sin®0f? dx* (22)

Infu| =y

Notice how the factor y cancels out in the above
equation, and hence we can smoothly transition from an
electrically dominated solution to a magnetically domi-
nated one.'

The above equation is satisfied by setting

_ uy f
V1-=Kr?
Therefore, in the adapted chart,
uof 3 4
F, = ———dx’ A dx".
: V1-Kr?

It has been pointed out [37] that there is no a priori
reason for F? to be preserved under time evolution, and
numerical simulations explicitly show this behavior. Here,
we have presented an analytic force-free field that tran-
sitions spatially from the magnetically dominated to null to
electrically dominated regions, and since this transition is
smooth without any discontinuity, there is no current sheet
where FFE approximation breaks down.

Using the method of tetrads and searching for Lorentz
transformations that satisfy Egs. (4)—(6), we have been able

| 0 to
[(a,, e M) in26raf’ — f(5r + 2atnsin®d)).

V-1

to generate several nontrivial solutions in FLRW space-
times. In the remainder of this section, we simply list the
solutions without referring to the generating Lorentz
transformation.

B. Solution II

Using a time-dependent Lorentz transformation, we
obtain the following electrically dominated solution:

Foe % ainar VP L n e
= r
? V1 —-Kr? 1 sin @ 1
+ fdn A dg. (23)

Here, f = f(1), and a and f are real constants. The current
density is then given by

A P (24)
2= A2 Gne N 9T sing)

The Lorentz-invariant scalars in this case are

2a%sin’0 + 2 r?
F2=—_-=-""_"' " 25
2 a*r*sin?0 (25)
and
5 f/2 ﬂ

J (26)

As in the previous case, this solution is not well defined
when sin@ = 0.

C. Solution III

For K =1 and f = f(6), and a real constant a, we obtain another type-changing solution of the form

(\/fr + \/m)“

F p—
3 sin @

Kr?—1

{(f sin (av'Kn) — /B — f2cos (av/Kn))dn A d6
S - (f cos (aV/Kn) + sin (av/Kn)\/p = f2)dr A dO

+ Csin@do A de. (27)

'"Henceforth, such solutions will be referred to as type-changing solutions.
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Here, the current density is given by

jy = (VK + VK —1)”’f{ (fcos (aVK?) —sm(a\/_t)\/ﬂ—fz)a,,

a(n)*sin(0)r2\/p - f2

+ (=fsin (aVKt) + /B — f?cos (aVKt)) VKr* — }

In this case,

2(VEr+ VK2 = 1)*prr —2C?sin? 0
a(n)*r*sin® 0 '

Fi=- (29)

Once again, this solution is not well defined when

(28)

|
D. Solution IV

We now present the following electrically dominated
force-free field:

sin@® = 0. Further, when K = 0, —1, the solution above Fy=fidn A dO+ frdn N d + f3d0 A dg, (30)
does indeed satisfy the force-free Maxwell equation.
However, the coefficient terms become complex, making
the solution physically irrelevant. where
|
fi= Senu)z ((2Bacos®d + (2ak, + 2pk,) cos O + k3)ewz — (cos OB + k;)? e — (cosfa + kz)z)l/z, (31)
i
f2 = (cosba + kz)e_% + e%(cos 0p + ki), (32)
and
f3 = —w, sin (e — ae ™). (33)
Here, ki, ky, @, and w, are real constants. The current density is given by
: 1 csc 6?
Ja = W —(f1cot@ + 9y f1)0, + (9,1)09 +—5—(0,f2 — 9pf3 + f3cotH)I, (34)
Here,
Fﬁz—m[Sinzgrzf%Jrer%—f%] (35)
and
ji= a(n)ors [esc O(r20,f2 = 0pf3 + f3cot0)* + (9,£1)* = r*(f1 cot + dyf1)?]. (36)

This solution is not valid during early and late times, in
addition to the usual pathology when sin@ = 0.

E. Solutions V and VI

We continue with our presentation by illustrating a few
null solutions in FLRW spacetimes. The tetrad formalism

|
for generating null solutions is substantially different from
that of non-null solutions. As described in the aforemen-
tioned section, we begin with a null pregeodesic congru-
ence defined by

0
(9, - V1-Kr%,).

(37)
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Here, [ is a null vector satisfying V,;l « I. A simple
calculation shows that

ain)r +a(m)V1 —kr?

V=
! r? sin Qa(n)*

l (38)

The relevant null tetrad (s, , a*, n) can be constructed by
defining the following vector fields:

a(n)rsin@

n= T(a,, +V1-Kr?o,), (39)
.1

“ o

= :Z‘E:) 0, (41)

Here, since

(n)r—a(n)Va—Kr

a(n)'r?

9(Vl,s) = g(Vyl,ab) == . (42)

sin @

we see that the equipartition condition for the null mean
curvature is satisfied. Additionally, since /, s forms an
involutive distribution, we are guaranteed the existence of a
null force-free field solution with a two-parameter prefac-
tor. To isolate the prefactor, we construct a foliation-
adapted chart with commuting vector fields, defined as
follows:

Xl:an+ vl—Krz,

X3 = 89, and X4 = [

X2 - 0¢,

Our adapted chart is then defined by the following
coordinate one-forms:

dr
dx' = dp — —, dx? = dg,
V1-Kr?
d
dd = do, and dx* = dy +—2

\/I—Kr2'

The null and force-free field is then given by
Fs=(u-x)a Al =u(xx*)

x (dn A dO+ dr A de). (43)

1
V1= Kr?

Here, k = — csc 0 and is given by Eq. (8), and the current
density is then given by

. agf—l—fcotH( 5
_ ) IRy L V1-K a,). 44
.]5 a(n)4r2 l’]+ r ( )

As required, F' g = 0, and since the current density is along
I, we have that j2 = 0. It turns out that this null geodesic

congruence also satisfies the uniform equipartition con-
dition described in [36]:

9(Vl.a?) + g(Vyal.s) = 0. (45)

This allows for the possibility of a generalized null
solution, which in this case is given by

_ d do
Fﬁzaef(r,e,qo)(dmdw 2 )

V1-Kr?

] dr A di

The ¢ in the above expression is the usual cosmic time given
by the relation

_ 1
t:n+/7dr. 47
V1-Kr? (47)

The current density in this case is given by

_cscl0%f + 05 f + cotfo,f
jo = ¢/ ) (9, — V1-Kr?,). (48)

For clever choices of f, the solution above is valid
when r # 0.

F. Solution VII

For f = f(7,0), where t is the cosmic time function
defined above, we have the following non-null force-free
solution with null current:

F7:fsin6<dn/\d9+ dr/\dQ)

1
V1-Kr?
+ asin0do A dg. (49)
Here, as usual, a is a real constant. This solution turns out to

be a non-null generalization of our previous null solution
F'5. The current density in this case is given by

2cosOf 4 sin0dyf
a(n)*r?

jr = (0, + V1—=Kr%,). (50)

We also have that

fsinf

a(n
a

* a(n)*r*sin@

fsinOV1 — Kr?
a(n)*r?

dg A 0. (51)

Fi= 0,

7/\()9“‘

d, N 0y

While it appears that the last term on the right-hand side of
the above equation is undefined when sind =0, the
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contraction of the Faraday tensor with itself does not suffer
from the same pathology—i.e.,

202

F? = .
7 a(”)4r4

(52)

This is an indication that the solution may just have a
coordinate singularity along sin & = 0. We demonstrate this
fact by explicitly transforming it into a Cartesian coordinate
system for the case when K = 0. In the usual (7, x,y,z)
coordinate system, where we have just transformed the
spatial spherical coordinates to Cartesian coordinates,

1
F, = F(zxfdn Adx+zyfdn Ady — (x> + ) fdn A dzazdx A dy — (ay + rxf)dx A dz + (xa—ryf)dy A dz).  (53)

The above expression is well defined along the z axis.

IV. SOLUTION VIII

The FLRW metric is further simplified when we set
K = 0, and in the Cartesian coordinates described above,
we are able to find two new non-null solutions. First, for the
constants ¢y, ¢,, ¢3, ¢4, We have the following force-free
field:

g o Yataftad,

(&)
+ 9 gy A dz+ fax A de, (54)
2
where
f=flein+cyx+cs). (55)

The current density is given by
(C% B C%)(anf)
a(n)*y/(c3 = e})f* + cac3
foa Ty NVE=—cD)f +ed
|-

Jg =

—0J,——20 56
x Cq K CH * + C1Co ( )

The Lorentz scalars of the theory are given by

2¢
F2=--" (57)
oal)!
and
2 _ 2\2(g f)2

j% _ _ C4(Cl CZ) ( nf) (58)

cia(m)°®((ef = 3)f + cac3)”

A. Solution IX

As in the Cartesian case of the above example, we now
provide a secondary non-null solution given by

_Veag = (G +)f
)

Fy

dx N dy

+ Y e N dz+ fay A de. (59)
(&)

Here, f =f(c1x+c,y+c3). The current density is given by

(1 +3)(0: /)
a(n)*v/ (el + 3)f* = cacy
f iay _ \/C4C% - (C% + C%)fz az , (60)

X |——0d, +
] (%) (S1%)

Jo =

and we have

2
5=y (61)
and
2 (9uf)* (et +c))’eq (62)

B= T Zam (2 + A = cacd)

A simple spatial rotation in the x, y plane can simplify
the expression for F. Consider the transformation given by

x 1 ¢ —ci][x
V=l DI e
y 1 + c5 Cq C2 y

After the transformation, f = f(c3 + y'\/c] + ¢3). The

constants can be absorbed by redefining f as f(c; +)').
The solution Fq then takes the form

o _Vad - @A
-

dx' A dy'
(%)
/ 2 2
LIVETD 4 g (64)

2

By redefining the constants, we can rewrite the solution as

Fy =1/ = f2dx' ndy + fdy A dz. (65)
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The comoving observer with four-velocity o =
a(n)~'0, does not see an electric field in Fj, while the

magnetic field is given by’

. f . /CZ_fZ
B——W and B* = W

This solution describes slabs of uniform magnetic field that lie
in the xz plane, and the field orientation varies in the
perpendicular (y) direction. As the magnetic field strength
is constant throughout space but the field direction changes,
this field configuration describes the magnetohydrodynamic
“tangential discontinuity.” Indeed, the structure is force-free,
since the field lines have no tension force (there is no field-line
bending) and there are no magnetic pressure gradients. Now,
a posteriori, it seems easy to understand that the tangential
discontinuity remains a force-free solution in the FLRW
spacetime, since uniform expansion does not change the field
topology, but instead simply rescales the field strength.

V. CONCLUSION

In this paper, we have demonstrated the geometric
methods of foliations to generate both null and non-null

’In the 3 + 1 formalism, the electric and magnetic fields are
given by the expressions E, = v'F,, and B, = v" x F,.

force-free electromagnetic fields for the FLRW spacetime.
The equations of force-free electrodynamics are in general
complex nonlinear partial differential equations, and exact
solutions are very difficult to come by. Even in the
extensively studied Schwarzschild and Kerr spacetimes,
where force-free electrodynamics is expected to describe
the tenuous plasma around accreting black holes, very few
exact solutions are known. In [38] we presented several
exact solutions to FFE in Kerr spacetime that were
generated by the study of foliations. Using the same
methods, a wide range of exact force-free fields allowed
by the FLRW geometry were found. The pathology along
the z axis seems to be a common feature of most of the
force-free solutions in both the spacetimes. We have
presented, to the best of our knowledge, the first force-
free field that transitions from electrically dominated to
null, and then to a magnetically dominated regime. We have
done so using a chart adapted to the foliation generating the
force-free field, as such solutions are not handled by the
tetrad formalism that describes the different geometrical
properties of the null and non-null solutions.
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