
Recalibrating a gravitational wave phenomenological waveform model

Kelvin K. H. Lam ,1,* Kaze W. K. Wong,2 and Thomas D. P. Edwards3
1Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

2Center for Computational Astrophysics, Flatiron Institute, New York, New York 10010, USA
3William H. Miller III Department of Physics and Astronomy, Johns Hopkins University,

Baltimore, Maryland 21218, USA

(Received 7 July 2023; accepted 19 April 2024; published 4 June 2024)

We investigate the possibility of improving the accuracy of the phenomenological waveform model,
IMRPhenomD, by jointly optimizing all the calibration coefficients at once, given a set of numerical
relativity (NR) waveforms. When IMRPhenomD was first calibrated to NR waveforms, different parts (i.e.,
the inspiral, merger, and ringdown) of the waveform were calibrated separately. Using ripple, a library of
waveform models compatible with automatic differentiation, we can, for the first time, perform gradient-
based optimization on all the waveform coefficients at the same time. This joint optimization process allows
us to capture previously ignored correlations between separate parts of the waveform. We found that after
recalibrating with a slightly restricted parameter subspace (q ≤ 8), despite the tail of the mismatch
distribution remaining similar, the median mismatch between the model and NR waveforms decreases by
50%. We further explore how different regions of the source parameter space respond to the optimization
procedure. We find that the degree of improvement correlates with the spins of the source. This work shows
a promising avenue to help understand and treat systematic error in waveform models.
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I. INTRODUCTION

Many data analysis tasks in gravitational wave (GW)
astrophysics, such as matched filtering [1,2] and parameter
estimation [3–9], rely upon accurate waveform models.
Since the generation of numerical relativity (NR) wave-
forms is prohibitively expensive, the community has
constructed waveform approximants that can be evaluated
much faster. There are three families of commonly used
GW approximants: the effective-one-body (EOB) [10–12],
NR surrogate [13–15], and phenomenological (Phenom)
models [16–19]. While the detailed construction of each
model is different, they all have a set of internal parameters
that can be calibrated to NR waveforms. The quality of the
waveform model is, therefore, determined by the ansatz
used and the accuracy of the calibrated parameters.
The LIGO-VIRGO-KAGRA Collaboration [20–24]

recently started their fourth observational run on May
26, 2023. Impressively, they are expected to double the
total number of observed binary black holes (BBHs) [25].
Moreover, the improved sensitivity also implies that we
expect to detect individual events with a higher signal-to-
noise ratio (SNR) than ever before. This means we can
resolve more features in the signal, therefore putting more
stringent requirements on the accuracy of our waveform
model [26,27].

Because of the large number of calibration parameters
(often a few hundred if not more), waveform models are
usually calibrated separately for the inspiral, merger, and
ringdown parts of the waveform [18,19,28]. This ignores the
correlation between different parts of the waveform model
and limits its quality. Recently, there has been an effort to
rebuildwaveformmodels [18] using programming languages
that support automatic differentiation (AD) [29–32]; AD is a
technique used to compute machine precision derivatives of
functions without the issues of scaling up to high dimension
or expression swelling. In particular, ripple [30] exposes the
calibration parameters to the user. This allows us to make use
of common techniques from machine learning, such as
gradient descent and backpropagation [33–35], to improve
the calibration of the waveform models.
In this paper, we investigate the possibility of

further improving the accuracy of a waveform model,
IMRPhenomD [17,18], by jointly optimizing all the
calibration coefficients for given a set of NR waveforms.
Using a similar set ofNRwaveforms to those used in [17,18],
we demonstrate that one can improve the match between
IMRPhenomD and NR waveforms over a decently sized
parameter space, up to a mass ratio q ¼ 8. We addi-
tionally explore how different parts of the source
parameter space (e.g., the primary and secondary spins)
respond to the optimization procedure by optimizing the
waveform separately for different regions. This can help
in understanding whether the waveform model ansatz*kelvin33550336@gmail.com
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performs equally well in different regions of the param-
eter space.
The rest of the paper is structured as follows: In Sec. II, we

review the parametrization of the IMRPhenomD model and
the mismatch function that is used as an objective or loss
function for the calibration, followed by outlining the speci-
fic optimization scheme used for recalibration. In Sec. III, we
give the optimization result by comparing mismatches of the
optimized waveforms with the original waveforms. We also
show how the optimization result differs as a function
of the source parameters. Finally, in Sec. IV, we discuss
the differences between our calibration procedure and the
procedure used in [18]. Additionally, we discuss some
caveats (such as the difference in training waveforms) that
limit our conclusions on themismatch improvement.We also
explain how the reduced spin parametrization affects the
accuracy of the model. Note that throughout this paper we
use the terms recalibration and optimization interchangeably.

II. OPTIMIZATION METHOD

In this section, we first briefly review the construction of
the IMRPhenomD model and discuss how the calibration
parameters enter the waveform. We then outline the mis-
match and how it can be used as a loss function. Finally, we
discuss the gradient descent algorithm and our stopping
criterion.

A. Waveform model

We start by giving a succinct summary of the
IMRPhenomD model and the relevant parameters.
Interested readers should refer to [18] for more details.
Aligned-spin, frequency-domain waveform models

(such as IMRPhenomD) can be written as a combination
of amplitude and phase functions (A and ϕ, respectively):

hðf; θ;ΛiÞ ¼ Aðf; θ;ΛiÞe−iϕðf;θ;ΛiÞ; ð1Þ

where f is the frequency, θ are the intrinsic parameters of
the binary, and Λi (i ¼ 1; 2;…; 19) is a set of 19 additional
parameters which will be discussed below. The phase
and amplitude functions are then split into three sections
which represent the inspiral, intermediate, and merger-
ringdown (MR) parts of the waveform. During inspiral, A
and ϕ are known analytically from post-Newtonian (PN)
theory; IMRPhenomD uses the TaylorF2 model [36,37],
which is known up to 3.5PN order augmented with the next
four higher-order PN terms. To model the intermediate and
MR regions, IMRPhenomD (and all waveforms in the
IMRPhenom family) uses a series of parametrizations [38]
which depend purely on Λi and can be calibrated to NR
simulations. The three sections are then stitched together
using step functions. Importantly, the parametrizations are
chosen such that they can be made C1 continuous at the
boundary between each section.

In practice, the Λi parameters are fit for each section
independently; i.e., intermediate coefficients are fit while
ignoring the MR region. Finally, to map the grid of tunedΛi

parameters back to the intrinsic parameter space,
IMRPhenomD uses the polynomial function:

Λi ¼ λi00 þ λi10ηþ ðχPN − 1Þðλi01 þ λi11ηþ λi21η
2Þ

þ ðχPN − 1Þ2ðλi02 þ λi12ηþ λi22η
2Þ

þ ðχPN − 1Þ3ðλi03 þ λi13ηþ λi23η
2Þ; ð2Þ

where the λ’s are the fitting coefficients we are going to
optimize below, η is the symmetric mass ratio, and χPN is
the post-Newtonian spin parameter, which is defined as

χPN ¼ m1χ1 þm2χ2
m1 þm2

−
38η

113
ðχ1 þ χ2Þ: ð3Þ

Here,m1;2 and χ1;2 are the primary and secondary mass and
spin, respectively.
Although initially independent, the stitching procedure

means that each section of the waveform intrinsically
depends on the full set of λ’s. A slightly inaccurate set
of λ’s can, therefore, lead to inaccuracies in the generated
waveforms. Thus, the calibration of these coefficients is
crucial to the accuracy of IMRPhenom GW models.
Importantly, since the fitting was performed on the indi-
vidual segments, the final waveform is not guaranteed to
have λ’s close to global minima.
At the time of construction, this piecewise approach was

necessary, since λ has 209 components, making the fitting
to NR simulations computationally prohibitive. Here, for
the first time, we recalibrate the λ coefficients jointly. This
is made possible by the use of gradient-based optimization
algorithms, enabled by AD from jax and ripple, which are
significantly more efficient in high dimensions.

B. Loss function

In order to optimize the coefficients, we need to define a
loss function that quantifies the difference between the
waveform model and the target NR simulations which we
want to match. Here, we adopt a quantity commonly used
in GW physics called the mismatch function [1,17]. It is
defined as

Mðh1; h2Þ ¼ 1 −max
t0;ϕ0

hĥ1; ĥ2i; ð4Þ

where h1;2 are the two GW waveforms we are comparing
and t0 and ϕ0 are a relative time and phase shift,
respectively. The inner product hh1; h2i is defined as

hh1; h2i ¼ 4Re
Z

fmax

fmin

h1ðfÞh�2ðfÞ
SnðfÞ

df; ð5Þ
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where ĥ ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffihh; hip

is the normalized GW strain, SnðfÞ
is the power spectral density (PSD), and fmax (fmin) is the
maximum (minimum) frequency for the integration. We
note here that the mismatch can be viewed as a mean square
error between the two waveforms.
Since we wish to optimize the model over the whole

parameter space, we need to compare multiple model-
generated waveforms with NR waveforms. However, the
mismatch is defined only for two input waveforms at a
particular set of intrinsic parameters. We, therefore, define
the loss function as an average of training waveforms in
two ways, the simple average of mismatches and the
normalized average of mismatches:

Lave ¼
1

N

XN
i¼1

Mi; ð6Þ

Lnorm ¼ 1

N

XN
i¼1

Mi

Mi;ini
; ð7Þ

whereMi represents the mismatch of an individual training
waveform,Mi;ini represents the mismatch between original
IMRPhenomDwaveforms and NR waveforms, andN is the
total number of training waveforms.
The two loss functions are chosen to give different

behavior during the optimization process. The simple
average Lave serves as the simplest choice of loss function
but is prone to be dominated by a single point in parameter
space with a large mismatch. Other points with smaller
mismatches would be insignificant comparatively and
might not be able to improve under such a loss function.
Alternatively, the normalized average Lnorm eliminates the
aforementioned issue by encouraging the waveform to
improve at each training point at a similar rate. The ratio
in Lnorm will, therefore, remain approximately the same for
each training point. Conversely, Lave allows the loss
function to automatically adjust and preferentially optimize
the largest mismatches, encouraging the waveform to have
similar mismatches everywhere. In this paper, we show the
results of using both loss functions and examine the
differences between them.

C. Optimization scheme

To compute the loss functions, we have to choose NR
waveforms for calculating the mismatch. Originally, 19 NR
simulations were used to calibrate IMRPhenomD [18]; nine
of these are from the Simulating eXtreme Spacetime (SXS)
catalog [39] and ten Bi-functional Adaptive Mesh (BAM)
simulations [40]. As BAM waveforms are not publicly
available, we cannot use a training set identical to the
original work. Instead, we take the same nine waveforms
from the SXS catalog plus two additional waveforms which
closely mimic two of the low mass ratio BAM simulations.
The remaining BAM simulations have no close SXS

counterparts and are, therefore, not included in the training
set. Our main results, therefore, use 11 NR waveforms for
calibration which are listed in Table I. Additional NR
waveforms which are used for further calibration are listed
in Table II.
The training set has a maximum mass ratio of eight due

to the lack of high mass ratio simulations in the SXS
catalog. In fact, the SXS catalog has only NR waveforms
with q ≤ 10. Nevertheless, we are interested in the behavior
of the IMRPhenomD model with small q, as most BBH
events observed by LIGO and Virgo have q ≤ 8.
The SXS NR waveforms are given as time-series strain.

Since IMRPhenomD is modeled in the frequency domain,
we need to Fourier transform the simulation results in order
to compute the mismatch, (4). For this, we taper the time
series using a Tukey window [41,42], before using standard
FFT routines to compute the fast Fourier transform.
In addition to choosing the NR waveforms for the

training set, one needs to choose a relevant PSD for
the mismatch. We have opted to use a flat PSD for the
mismatch calculation, as it provides results that are inde-
pendent of the detector sensitivity and mass scale. The use
of a flat PSD ensures that the improvement in accuracy is
due mainly to the difference in high-dimensional fitting.

TABLE I. List of NR waveforms used to recalibrate the model.
The mass ratio is defined as q ¼ m1=m2 ≥ 1, and the spins are
denoted by χ1;2. Out of the 11 waveforms listed here, two SXS
waveforms are analogs to two of the BAM NR simulations used
in the original calibration (SXS:BBH:1417 as A7 and SXS:
BBH:1418 as A9 in [18]). The rest of the SXS waveforms are also
used in the original IMRPhenomD calibration.

Code q χ1 χ2

SXS:BBH:0156 1.0 −0.95 −0.95
SXS:BBH:0151 1.0 −0.60 −0.60
SXS:BBH:0001 1.0 0.00 0.00
SXS:BBH:0152 1.0 0.60 0.60
SXS:BBH:0172 1.0 0.98 0.98
SXS:BBH:1418 4.0 −0.40 −0.50
SXS:BBH:0167 4.0 0.00 0.00
SXS:BBH:1417 4.0 0.40 0.50
SXS:BBH:0064 8.0 −0.50 −0.46
SXS:BBH:0063 8.0 0.00 0.00
SXS:BBH:0065 8.0 0.50 0.46

TABLE II. Additional NR waveforms used in further recali-
bration.

Code q χ1 χ2

SXS:BBH:0234 2.0 −0.85 −0.85
SXS:BBH:0235 2.0 −0.60 −0.60
SXS:BBH:0169 2.0 0.00 0.00
SXS:BBH:0256 2.0 0.60 0.60
SXS:BBH:0257 2.0 0.85 0.85
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Additionally, we are interested in examining the effect of
introducing a detector PSD on the optimization process.
For this, we have chosen the zero-detuned high-power
(ZDETHP) noise PSD [43]. Since the total mass of the
system scales with the frequency of the waveform, we
must choose a corresponding mass scale to match the
frequency range of our noise PSD. To demonstrate the
effect of introducing a detector-specific PSD, we selected
an arbitrary mass scale of M ¼ 50M⊙, as binaries of this
mass are commonly observed by the LIGO and Virgo
detectors [44–47].
We point out that our treatment of NR waveforms is

different from that of [17,18]. In the original calibration
process, the training waveforms are hybrids of NR and
SpinAlignedEOB (SEOB) waveforms. The low-frequency
inspiral part is taken from the SEOB waveforms, while the
rest is taken from NR simulations. Instead, we solely use
NR waveforms for calibration, since most NR waveforms
used (for both training and validation) have long enough
time-series data, i.e., > 15 orbits [39], to contain part of the
inspiral segment and all merger and ringdown frequency
information. We use the frequency limits fmin ¼ 0.1fRD
and fmax ¼ 1.2fRD, where fRD is the frequency at ring-
down. This range covers most of the IMRPhenomD
frequency range, except the minimum frequency is set
slightly higher than in the original calibration due to the NR
simulation length. When compared with IMRPhenomC,
the frequency range is slightly extended to have a higher
maximum frequency [28]. We use the dimensionless
frequency spacing MΔf ¼ 2.5 × 10−6, which is sufficient
to capture all features of the GW strain.
With the loss function evaluated, we apply gradient

descent to optimize the tunable coefficients as shown in
Algorithm 1. We take λi to be the original coefficients given
in [18], because they likely lie in the neighborhood of the
minimum that we wish to find. We fix our learning rate α to
be 10−6, which is small enough to ensure we do not move
far from the minimum. Finally, we stop the optimization
when the validation loss stops decreasing (see Sec. III for a

description of the validation set). This can be seen in Fig. 1
at around 12000 iterations.

III. RESULT AND COMPARISON WITH
ORIGINAL MODEL

To evaluate how well the optimization procedure gen-
eralizes to waveforms that are not in the training set, we
evaluate the mismatch between the fine-tuned model and an
additional 526 NR waveforms in the SXS catalog, i.e., the
validation set. We select waveforms that share the same part
of the parameter space with the training set, i.e., waveforms
with negligible eccentricity (e < 2 × 10−3) and precession
(χx;y < 5 × 10−3). Figure 2 shows how the training and
validation waveforms are distributed in the q − χPN space.

FIG. 1. Average loss Lave against the number of iterations. The
vertical dotted line indicates the minimum of the validation loss,
which is where we stop the optimization.

Algorithm 1: Gradient descent pseudocode.

FIG. 2. Distribution of training and validation NR waveforms
in the q − χPN space. The blue stars represent the waveforms used
to compute the training loss, green triangles represent extra
training data, and orange dots represent the waveforms used for
validation.
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To illustrate the effect of optimization on an individual
waveform level, in Fig. 3 we plot the phase and amplitude
of a particular waveform before and after optimization
together with the NR waveform taken directly from the
SXS catalog. In the bottom panel, one can see that,
compared to the original IMRPhenomD waveform, the
optimized waveform has smaller residuals in both ampli-
tude and phase, particularly in the inspiral region where the
amplitude displays a 50% reduction in error. For a fair
comparison, we selected the SXS:BBH:0154 NR wave-
form, which was also used in [18] to validate the original
waveform.
With the purpose of improving downstream tasks such as

parameter estimation in mind, the more relevant metric of
improvement is the distribution of improvement in mis-
match over the entire validation dataset. Figure 4 shows the
distribution of log mismatches for the validation waveforms
before and after the optimization procedure. Here, we show
results using a constant PSD in our loss function. One can
see the distribution of the optimized waveform is skewed
toward lower mismatches, with the peak of the distribution
being shifted by approximately an order of magnitude. The
median mismatch is reduced by 50% (see vertical dotted
lines), while the tail hardly changes. When using Lnorm, we

FIG. 3. Comparison between original and optimized IMRPhenomD waveforms. Here, we show the SXS:BBH:0154 NR waveform,
which has a mass ratio of q ¼ 1 and spins χ1 ¼ χ2 ¼ −0.8. The original mismatch is 2.8 × 10−4 and the optimized mismatch is
5.3 × 10−5. Top: Here, we show the amplitude (left) and phase (right) of the NR, original IMRPhenomD, and optimized IMRPhenomD
waveforms. Bottom: Here, we show the relative error between the NR and IMRPhenomD waveform amplitudes (left) as well as the
absolute error of the phases between the NR and IMRPhenomD waveforms (right).

FIG. 4. Distributions of mismatches before and after optimi-
zation using the Lave loss function. Mismatches are calculated
using the training waveforms listed in Table I and are weighted
with a constant PSD. The dotted lines represent the median of the
distributions, which decreased by 45.3% during optimization.
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observe a less pronounced improvement with a 22.9%
decrease in the median.
Note that the performance of the IMRPhenomD

model was initially tested using the ZDETHP weighted
mismatch [48]. We would, therefore, like to examine
whether using the ZDETHP PSD in our loss function
could lead to an improved mismatch. Performing the

optimization again, we find no significant difference
between the results using the two PSDs in the distribution
of mismatches.
To understand whether additional training data can

further improve the performance of the model, we
include waveforms that are not present in the original
IMRPhenomD calibration in our training dataset; the
parameters can be found in Table II. We specifically choose
to use q ¼ 2 events, since we have abundant q ¼ 2 NR
waveforms to validate the final result. The new set of
coefficients generated from this optimization process yields
only marginal improvements in the newly produced wave-
forms, as seen in Fig. 5. The high mismatch tail of the
newly optimized distribution remains comparable to the
distribution from the first optimization, indicating that
the original dataset is sufficient for this task. Similarly,
utilizing the ZDETHP PSD in the loss function together
with additional waveforms results in a similar level of
improvement.
To investigate the performance of recalibration over the

source parameter space, we plot the improvement of the log
mismatch as a function of the parameter space q − χPN in
Fig. 6. Red points indicate that the waveform is improved
by the optimization procedure, while blue points indicate
that the waveform mismatch increases during optimization.
We can see that waveforms with q ≤ 4 show the most
consistent average improvement. This is likely due to the
better coverage of training waveforms in that part of the
parameter space (see Fig. 2). On the spin axis, we can see
that the waveforms with χPN ∼ 0 show the most consistent
improvement. When we move away from χPN ∼ 0, the
improvement fluctuates but exhibits an overall trend. This
is particularly true in the q ≤ 4 region, where we see a
consistent improvement of the waveform for χPN < 0.
We also plot the parameter space χ1 − χ2 in Fig. 7.
Points along the diagonal axis, χ1–χ2, show good mismatch

FIG. 6. Fractional mismatch change of the validation wave-
forms in the q-χPN plane. We show results for the Lave loss
function with a constant PSD and training waveforms in Table I.
Here, the color bar represents the log10 difference between
optimized and original mismatches. Red points indicate that
the waveform is improved by the optimization procedure, while
blue points indicate that the waveform mismatch increases during
optimization.

FIG. 7. Fractional mismatch change of the validation wave-
forms in the χ1–χ2 plane. We show results for the Lave loss
function with a constant PSD and training waveforms listed
in Table I.

FIG. 5. Distributions of log10 difference in mismatch. The red
distribution uses the training waveforms listed in Table I, while
the green distribution uses waveforms listed in Tables I and II.
Mismatches are calculated using a constant PSD with the loss
function Lave. The dotted lines represent the median of the
distributions, which decreased by an additional 10.8% during
optimization with the additional data.
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improvements as discussed above. Meanwhile, the top-left
and bottom-right regions respond to the optimization
differently. In the top-left region, the waveform generally
improves after optimization. However, in the bottom-right
region, the waveform does not improve after optimization.
Given that the waveform model’s ansatz may not be

entirely compatible with NR, and the optimization pro-
cedure is carried out over a distribution of waveforms with
varying source parameters, it is conceivable that different
parts of the source parameter space may not share the same
set of optimal IMRPhenomD parameters. This would mean
that there are trade-offs in accuracy between different parts
of the parameter space. If this is the cause of the lack of
improvement in the high mismatch tail of the distribution,
segmenting the parameter space into smaller subspaces
should alleviate this problem. On the other hand, if the
ansatz lacks the correct parametrized form to capture the

NR waveforms’ behavior as a function of the source
parameters, the results will always be biased, and we
should not expect any improvement, even if we segment
the parameter space during training.
We divided the parameter space into four regions to

analyze the effect of the recalibration procedure on each
region separately (Figs. 8 and 9). The training waveforms
used for fitting in this scenario are listed in Table III, and
the loss functions are calculated using a simple average of
the mismatches, Lave. The top-left and bottom-right regions
have limited data for q > 4; hence, the result is valid only
up to q ≤ 4 and we use only waveforms with q ≤ 4 as
validation waveforms for these two regions. From Fig. 8,
we observe that both the top-right and bottom-left regions
improve significantly over the original model. This is
especially pronounced for the bottom-left region, where
the improvement is significantly better than optimizing all

FIG. 8. Distributions of mismatches for both split region optimization and all region optimization in all four regions. We use a constant
PSD to calculate the mismatch and Lave as the loss function. The medians of each distribution are indicated by dotted lines.
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regions simultaneously. This suggests the ansatz fits this
part of the parameter space well. The top-left region also
improves over the original model, although it is similar to
when optimizing all waveforms at once. On the other hand,
the bottom-right region does not improve over the original
model, indicating that a change to the ansatz is required to
fit the NR data better.

Overall, the improvement for both optimization schemes
is similar (Fig. 9). Although split region optimization uses
more training waveforms, some of the waveforms, e.g.,
opposite spins, hinders the optimization procedure and,
hence, gives a slightly worse result when comparing with
all region optimization.

IV. DISCUSSION AND CONCLUSION

The results in this work show a promising way to
understand and improve the accuracy of phenomenological
waveform models by jointly optimizing all coefficients at
once. However, there are a number of caveats as well as
multiple ways to improve upon the current work.
While this study focuses on the IMRPhenomD model

due to its availability as an automatically differentiable
waveform in ripple, other more sophisticated waveforms
such as IMRPhenomP [49,50] and IMRPhenomXAS
[19,51] can also potentially benefit from recalibration.
In fact, since these waveforms have a larger number of
calibration parameters and are fit to a larger number of NR
simulations, it is possible that the improvement will be
more dramatic than for IMRPhenomD. ripple is being
regularly updated with new waveforms, and future work
should carefully examine whether these more modern
waveforms can be improved.
The correlation we observe between the mismatches and

the waveform’s parameters can also be used to design more
physical ansatz. For example, we see the recalibration
process struggles to improve in the regime where χ1 is
positive and χ2 is negative. This means there is a depend-
ency between the two spins that is not captured in the
current ansatz. In fact, this issue can be explained by PN
theory, where the leading spin-orbit coupling term depends
on the effective spin while higher-order terms depend on
both χ1 and χ2. Nevertheless, we hope to show a systematic
scheme that could reveal hidden degeneracies, as illustrated

FIG. 9. Combined mismatch distributions for both optimization
schemes shown in Fig. 8. The medians of both distributions are
indicated by dotted lines.

TABLE III. List of NR waveforms used in recalibrating the
coefficients in the four χ1 − χ2 regions. From top to bottom, the
lines denote the top-right (χ1, χ2 > 0), top-left (χ1 < 0 < χ2),
bottom-left (χ1, χ2 < 0), and bottom-right (χ1 > 0 > χ2) regions,
respectively. Note that, for the top-right and bottom-left regions,
waveforms are chosen to have χ1 ≈ χ2, while the training wave-
forms for the other two regions are chosen to have χ1 ≈ −χ2.

Code q χ1 χ2

SXS:BBH:0172 1.0 0.98 0.98
SXS:BBH:0152 1.0 0.60 0.60
SXS:BBH:0001 1.0 0.00 0.00
SXS:BBH:1417 4.0 0.40 0.50
SXS:BBH:0167 4.0 0.00 0.00
SXS:BBH:1426 8.0 0.48 0.75
SXS:BBH:0063 8.0 0.00 0.00

SXS:BBH:0370 1.0 −0.20 0.40
SXS:BBH:2092 1.0 −0.50 0.50
SXS:BBH:0330 1.0 −0.80 0.80
SXS:BBH:2116 2.0 −0.30 0.30
SXS:BBH:2111 2.0 −0.60 0.60
SXS:BBH:0335 2.0 −0.80 0.80
SXS:BBH:0263 3.0 −0.60 0.60
SXS:BBH:2133 3.0 −0.73 0.85
SXS:BBH:0263 4.0 −0.80 0.80

SXS:BBH:0156 1.0 −0.95 −0.95

(Table continued)

TABLE III. (Continued)

Code q χ1 χ2

SXS:BBH:0151 1.0 −0.60 −0.60
SXS:BBH:0001 1.0 0.00 0.00
SXS:BBH:1418 4.0 −0.40 −0.50
SXS:BBH:0167 4.0 0.00 0.00
SXS:BBH:1419 8.0 −0.80 −0.80
SXS:BBH:0063 8.0 0.00 0.00

SXS:BBH:0304 1.0 0.50 −0.50
SXS:BBH:0327 1.0 0.80 −0.80
SXS:BBH:2123 2.0 0.30 −0.30
SXS:BBH:2128 2.0 0.60 −0.60
SXS:BBH:2132 2.0 0.87 −0.85
SXS:BBH:2153 3.0 0.30 −0.30
SXS:BBH:0045 3.0 0.50 −0.50
SXS:BBH:0292 3.0 0.73 −0.85
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by the effective spin degeneracy. Hence, such a systematic
scheme that incorporates our calibration method with
waveform design will be handy in constructing new
waveform models in the future.
We note that the parameter space we use is restricted to

q ≤ 8, while waveforms of q ¼ 18 are used in the original
calibration trial. Also, we have directly used NR waveforms
instead of hybridized SEOB-NR waveforms for training
and validation purposes. These choices may put the original
IMRPhenomD result at a disadvantage when assessing
accuracy, as both the parameter space and frequency range
are restricted. We tested our result by training the model
using a set of training waveforms of the same intrinsic
parameters but with BAMwaveforms replaced with SEOB-
NR waveforms. We can see the result in Fig. 10, where the
mismatch median decreases by about 8%. Nevertheless, it
is known that IMRPhenomD has a large inaccuracy in the
large mass-ratio regime and is rarely used in this region
of parameter space. Hence, we focus on showing that AD
with gradient descent, as a general and robust method,
can be used to further optimize GW waveform models
with arbitrary sets of training waveforms used. With more
publicly available data in the future, more systematic
studies should be made to precisely assess the improvement
one can get out of further optimization.

In making Figs. 8 and 9, we split the parameter space
into four regions purely for simplicity. These simple cuts
demonstrate the accuracy of the waveform can be further
improved, but they are almost certainly not the optimal way
to incorporate the extra information we have about the
waveform. A more general way such as adding new
functional dependency between the parameters should be
explored in the future.
In this work, we use the mismatch to quantify the

accuracy of the waveform model. A natural extension of
this work is to investigate how the recalibration process
affects downstream analyses such as parameter estimation
and population modeling. Differentiable samplers such
as [52], which have been recently introduced to the
community, potentially allow one to optimize the waveform
directly using metrics from parameter estimation. For
example, minimizing the bias in an injection-recovery
run could be used as a loss function. Overall, this approach
could help reduce systematic waveform error in parameter
estimation simply through recalibrated waveforms. We
plan to investigate these avenues in the future.
The results presented in Fig. 5 indicate that increasing

the number of training NR waveforms used in the wave-
form optimization yields only a marginal increase in
accuracy. This observation suggests that the parametrized
ansatz employed in IMRPhenomD struggles to capture the
full complexity of the NR waveforms. However, as the
accuracy requirements of waveform models increases
with more sensitive detectors, more NR waveforms will
be required to train more flexible Phenommodels. Accurate
NR simulations must, therefore, be developed in parallel
with waveform models to ensure we meet future detector
accuracy requirements.
Overall, the development of accurate waveform models

is crucial for the success of GWastronomy. In this work, we
have explored how modern computational tools (automatic
differentiation and gradient descent) can help with this task.
Our method is general and can be applied to any waveform
model that is differentiable. We, therefore, encourage the
waveform development community to utilize these tools
and hope that this work can effectively contribute to the
development of accurate waveform models.
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FIG. 10. Distributions of mismatches before and after optimi-
zation using the Lave loss function. Mismatches are calculated
using the training waveforms listed in [18], but BAM waveforms
are replaced by SEOBNRv4 waveforms of the same intrinsic
parameters. Mismatches are calculated with a constant PSD. The
dotted lines represent the median of the distributions, which
decreased by 8.2% during optimization.
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Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[19] G. Pratten, C. García-Quirós, M. Colleoni et al., Phys. Rev.
D 103, 104056 (2021).

[20] J. Aasi et al., Classical Quantum Gravity 32, 074001 (2015).
[21] R. Abbott et al., arXiv:2108.01045.
[22] R. Abbott et al., arXiv:2111.03606.
[23] F. Acernese et al., Classical Quantum Gravity 32, 024001

(2015).
[24] T. Akutsu et al., Prog. Theor. Exp. Phys. 2021, 05A101

(2021).
[25] B. P. Abbott, R. Abbott, T. Abbott et al., Living Rev.

Relativity 23, 1 (2020).
[26] Q. Hu and J. Veitch, Phys. Rev. D 106, 044042 (2022).
[27] M. Pürrer andC.-J. Haster, Phys. Rev. Res. 2, 023151 (2020).
[28] L. Santamaria, F. Ohme, P. Ajith et al., Phys. Rev. D 82,

064016 (2010).
[29] A. Coogan, T. D. P. Edwards, H. S. Chia, R. N. George, K.

Freese, C. Messick, C. N. Setzer, C. Weniger, and A.
Zimmerman, Phys. Rev. D 106, 122001 (2022).

[30] T. D. P. Edwards, K. W. K. Wong, K. K. H. Lam et al.,
RIPPLE: Differentiable and hardware-accelerated waveforms
for gravitational wave data analysis, https://github.com/
tedwards2412/ripple (2023).

[31] F. Iacovelli, M. Mancarella, S. Foffa, and M. Maggiore,
Astrophys. J. 941, 208 (2022).

[32] F. Iacovelli, M. Mancarella, S. Foffa, and M. Maggiore,
Astrophys. J. Suppl. Ser. 263, 2 (2022).

[33] M. Abadi, A. Agarwal, P. Barham et al., TensorFlow: Large-
scale machine learning on heterogeneous systems, https://
www.tensorflow.org/ (2015).

[34] J. Bradbury, R. Frostig, P. Hawkins et al., JAX: Composable
transformations of Pythonþ NumPy programs, 0.2.5,
http://github.com/google/jax (2018).

[35] A. Paszke et al., Adv. Neural Inf. Process. Syst. 32, (2019);
arXiv:1912.01703.

[36] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.
Sundararajan, Phys. Rev. D 71, 084008 (2005).

[37] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and B. S.
Sathyaprakash, Phys. Rev. D 80, 084043 (2009).

[38] The parametrizations for both the amplitude and phase
functions can be found in [18].

[39] M. Boyle, D. Hemberger, D. A. Iozzo et al., Classical
Quantum Gravity 36, 195006 (2019).

[40] We took the Center of Mass-corrected waveforms with
fourth-order extrapolation.

[41] S. A. Usman, A. H. Nitz, I. W. Harry et al., Classical
Quantum Gravity 33, 215004 (2016).

[42] Specifically, we choose α ¼ 2tRD=T, where tRD is the
duration of ringdown (maximum amplitude to the
end of the strain) and T is the duration of the entire GW
strain.

[43] J. Aasi, B. Abbott, R. Abbott et al., Classical Quantum
Gravity 32, 074001 (2015).

[44] B. Abbott, R. Abbott, T. Abbott et al., Phys. Rev. X 9,
031040 (2019).

[45] R. Abbott, T. Abbott, S. Abraham et al., Phys. Rev. X 11,
021053 (2021).

[46] R. Abbott, T. Abbott, F. Acernese et al., Phys. Rev. D 109,
022001 (2024).

[47] R. Abbott, T. Abbott, F. Acernese et al., Phys. Rev. X 13,
041039 (2023).

[48] Note, however, that the mismatch was never directly used
during the calibration process [18,50].

[49] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F.
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