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Fermion soliton stars are a consistent model of exotic compact objects which involve a nonlinear
interaction between a real scalar field and fermions through a Yukawa term. This interaction results in an
effective fermion mass that depends upon the vacuum structure in the scalar potential. In this work we
investigate the tidal deformations of fermion soliton stars and compute the corresponding tidal Love
numbers for different model parameters. Furthermore, we discuss the existence of approximate universal
relations for the electric and magnetic tidal deformabilities of these stars, and compare them with other
solutions of general relativity, such as neutron stars or boson stars. These relations for fermion soliton stars
are less universal than for neutron stars, but they are sufficiently different from the ordinary neutron star
case that a measurement of the electric and magnetic tidal Love numbers (as potentially achievable by next-
generation gravitational wave detectors) can be used to disentangle these families of compact objects.
Finally, we discuss the conditions for tidal disruption of fermion soliton stars in a binary system and
estimate the detectability of the electromagnetic signal associated with such tidal disruption events.
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I. INTRODUCTION

Astrophysical binary systems undergo tidal interactions
that hold invaluable clues about the internal structure of
compact objects. These interactions intricately shape the
dynamics of binary sources, leaving distinct signatures
in the signals they emit, detectable across both the
gravitational-wave (GW) and electromagnetic spectra [1].
A robust analytical framework to understand tidal effects
is encapsulated in the concept of tidal Love numbers
(TLNs), which quantify the deformability properties of
self-gravitating bodies [2]. Initially devised in the context
of Newtonian gravity, TLNs have since been generalized in
a fully relativistic context [3–5].
Their significance has been particularly highlighted in

the study of binary neutron star (NS) mergers, offering
tantalizing prospects for constraining the equation of state
(EOS) of dense matter through GW observations [6–33]
(see [34,35] for reviews). Remarkably, these objects exhibit
nearly EOS-independent relations between their moment of
inertia, spin-induced quadrupole moment, and electric
quadrupolar tidal deformability, which are found to hold

with about 1% accuracy [36–38]. A similar approximate
universality exists between TLNs of different multipolar
order and different parity [39,40].
The TLNs have also been studied in the context of

asymptotically flat black holes (BHs), with the intriguing
finding that, in general relativity, they vanish in the limit of
static external perturbations for BHs in isolation [4,5,41–57].
However, this property is delicate, being violated for BH
mimickers [58,59], in the presence of a cosmological
constant [60] or extended gravitational theories [59,61,62],
in higher dimensions [63–68] or in nonvacuumenvironments
in the presence of secular effects, such as accretion or
superradiant instabilities of ultralight bosonic fields [69–73].
Furthermore, recently there has been an emerging interest in
computing dynamical Love numbers [74–77] and incorpo-
rating nonlinear effects [78,79].
The forthcoming next-generation ground-based GW

detectors [80], such as the Einstein Telescope [81,82] and
Cosmic Explorer [83,84], will improve the accuracy of
measurements of the tidal deformability [32,85], potentially
unveiling the existence of new physics in the gravitational
signals. This possibility comprises alternative end-states of
gravitational collapse known as “exotic compact objects”
(ECOs). Some of the simplest ECO models include
self-gravitating solitons, such as boson stars, which are
stable solutions of the Einstein-Klein-Gordon theory with a
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complex andmassive scalar field [86–88] (as opposed to real
scalar fields which, constrained by no-go theorems [89,90],
give rise to time-dependent solutions known as oscilla-
tons [91]). Similar solitonic configurations with nonzero
spin fields have been found. These include Dirac stars [92],
which stem from solutions of the Einstein-Dirac equations
with two neutral fermions, or Proca stars [93], self-
gravitating configurations supported by a complex spin-1
field. The TLNs of these objects have been previously
investigated in Refs. [59,94,95].
In this work, we focus on a class of solitonic solutions

known as fermion soliton stars (FSS). These are solutions of
general relativity featuring a real scalar field, with two (non)
degenerate vacua, coupled to massive fermions via a
Yukawa term [96–98]. For sufficiently strong coupling,
the fermions deform the true vacuum state and create
energetically preferred false-vacuum pockets wherein fer-
mions are trapped [99]. This scenario may play a role in
various contexts in and beyond the Standard Model,
providing a support mechanism for new compact objects
that can form in the early Universe and serve as dark matter
candidates. Remarkably, for natural model parameters
between the QCD and the electroweak scale, this model
predicts the existence of compact objects in the subsolar/
solar range [99], which could be relevant for current
and future LIGO-Virgo-KAGRA observations (see e.g.,
Refs. [100,101]).
Here we study the tidal deformability and the quad-

rupolar TLNs, both of electric-type and of magnetic-type,
of spherically symmetric FSSs. We derive the perturbation
equations and perform numerical calculations of the Love
numbers corresponding to specific background solutions.
We observe that both classes of Love numbers are quali-
tatively similar to those of NSs. Finally, we investigate the
existence of universality relations between the TLNs in the
two sectors.
The manuscript is organized as follows. In Sec. II we

outline the model and review the FSS solutions. In Sec. III
we give the equations governing the perturbations. In
Sec. IV we present our main findings. In Sec. V we discuss
the implications of our results and possible directions for
future work. In the following we use the metric signature
ð−;þ;þ;þÞ and natural units (ℏ ¼ c ¼ 1).

II. BACKGROUND

We are interested in FSSs [96–98], self-gravitating
solutions of general relativity in the presence of a real
scalar field coupled to a fermion field via a Yukawa term.
The action of the theory reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂
μϕ∂μϕ − UðϕÞ

− ψ̄γμDμψ − ðmf − fϕÞψ̄ψ
�
; ð1Þ

where R is the Ricci scalar of the metric gμν, ϕ is the scalar
field with potential UðϕÞ, ψ is the fermion with mass mf,
and f is the Yukawa coupling. With the normalization used
for the fermionic kinetic term, the Dirac matrices have an
extra −i factor with respect to the usual definition, but
satisfy the usual relation fγμ; γμg ¼ 2gμν. The Yukawa
coupling provides an effective mass, meff ¼ mf − fϕ, that
is crucial for the existence of these solutions [96,97], which
circumvent classical no-go theorems for the existence of
solitons [89,90]. The covariant derivative Dμ in Eq. (1)
takes into account the spin connection of the fer-
mionic field.
The scalar quartic potential reads

UðϕÞ ¼ μ2v2F
12

vF
vB

�
ϕ

vF

�
2
�
3

�
ϕ

vF

�
2

− 4

�
ϕ

vF

��
1þ vB

vF

�
þ 6vB

vF

�
; ð2Þ

and features two minima at ϕ ¼ 0 and ϕ ¼ vF, separated by
a maximum located at ϕ ¼ vB. The parameter μ is the mass
of the scalar field. By defining ζ ¼ vB=vF, it is possible to
control the energy difference between vacua. When
ζ ¼ 1=2 the two minima are degenerate. If ζ > 1=2, the
minimum at ϕ ¼ vF has more energy than the minimum at
ϕ ¼ 0; the opposite happens for ζ < 1=2.
We will focus on scenarios in which the fermion

becomes effectively massless (i.e., meff ¼ 0) when the
scalar field corresponds to the second vacuum, ϕ ¼ vF.
This condition implies fixing

f ¼ mf

vF
: ð3Þ

At the background level, we consider spherically symmet-
ric equilibrium configurations described by the line element

ds2¼−e2uðρÞdt2þe2vðρÞdρ2þρ2ðdθ2þ sin2θdφ2Þ; ð4Þ

in terms of two real metric functions uðρÞ and vðρÞ. We will
assume that the background scalar field is also static and
spherically symmetric, ϕðt; ρ; θ;φÞ ¼ ϕðρÞ.
Fermions are treated in the Thomas-Fermi approxima-

tion [96,97], i.e., they enter Einstein’s equations as a perfect
fluid characterized by an energy-momentum tensor of the
form

T ½f�
μν ¼ ðW þ PÞuμuν þ Pgμν; ð5Þ

where W is the energy density and P is the pressure of the
fluid, while they also enter the scalar field equation through
the scalar density S. These quantities are defined as follows:
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W ¼ 2

ð2πÞ3
Z

kF

0

d3kϵk; ð6Þ

P ¼ 2

ð2πÞ3
Z

kF

0

d3k
k2

3ϵk
; ð7Þ

S ¼ 2

ð2πÞ3
Z

kF

0

d3k
meff

ϵk
; ð8Þ

where ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

eff

p
. Notice that W ¼ WðxμÞ through

the spacetime dependence of kF and meff (the same holds
for P and S). The integrals in Eqs. (6), (7), (8) can be
computed analytically, as shown for example in Ref. [97].
The fermion fluid is fully characterized once the Fermi

momentum kF is given. At the background level, since the
spacetime is static and spherically symmetric, kF ¼ kFðρÞ
can only be a function of the radial coordinate. Minimizing
the energy at a fixed number of fermions ensures [96,97]

k2FðρÞ ¼ ω2
Fe

−2uðρÞ −
�
mf − fϕðρÞ�2; ð9Þ

where ωF is the Fermi energy at the origin (ρ ¼ 0), which
can be written in terms of the fermion central pressure
Pðρ ¼ 0Þ≡ Pc (see Ref. [97] for details).
In order to simplify the numerical integrations, and to

develop some physical intuition, it is convenient to write
the field equations in terms of dimensionless quantities. To
this end, we define

x¼ kF
mf

; y¼ ϕ

vF
; r¼ ρμ: ð10Þ

Therefore, the potential U and kinetic term V ¼
1
2
e−2vðρÞð∂ρϕÞ2 become

U ≡ μ2v2FŨðyÞ; V ≡ μ2v2FṼðyÞ: ð11Þ

Moreover, we introduce the following dimensionless fer-
mionic quantities:

W̃¼ W
m4

f

; P̃¼ P
m4

f

; S̃¼ S
m3

f

: ð12Þ

It is convenient to further introduce the dimensionless
combination of parameters

Λ ¼
ffiffiffiffiffiffi
8π

p
vF

mp
; η ¼ mf

μ1=2v1=2F

; ð13Þ

where mp ¼ 1=
ffiffiffiffi
G

p
is the Planck mass.

Finally, the field equations (i.e., the Einstein-Klein-
Gordon equations with the addition of the Fermi momen-
tum equation) take the compact form

e−2v−1−2e−2vr∂rv¼−Λ2r2½η4W̃þ Ũþ Ṽ�;
e−2v−1þ2e−2vr∂ru¼Λ2r2½η4P̃− Ũþ Ṽ�;

e−2v
�
∂
2
ryþ

�
∂ru−∂rvþ

2

r

�
∂ry

�
¼ ∂Ũ

∂y
−η4S̃;

x2 ¼ ω̃2
Fe

−2uðrÞ− ð1−yÞ2; ð14Þ

where Ũ, Ṽ, P̃, W̃, and S̃ depend on x, y, and r, and we also
introduced ω̃F ¼ ωF=mf. Static and spherically symmetric
configurations are solutions of the above system of ordi-
nary differential equations. More details about the boun-
dary conditions and the numerical procedure to obtain these
solutions can be found in Refs. [97,98].
A pictorial representation of these compact objects is

shown in Fig. 1. The inner region, dominated by fermions,
is surrounded by an outer layer from the scalar field
component. As the scalar field moves away from its central
value at ρ → 0, the fermion effective mass grows, resulting
into a quick drop of the pressure. The corresponding
macroscopic size R of the star is therefore found to be
very close to where the scalar field starts moving away from
the false vacuum. We will define this radius as the region
containing 99% of the total mass M [98].
In the top panels of Fig. 2 we show an example of a

background solution by plotting the radial profiles for the
metric, scalar field, and fermion pressure. We explicitly see
that the scalar field is in a solitonic configuration inter-
polating between the false and the true vacuum of the
theory. Finally, in the bottom panels of Fig. 2 we show the
mass-radius diagrams of fermion soliton stars for different
values of ζ. For ζ < 0.5 we highlight the existence of two
disconnected branches. This pathological behavior is a
consequence of the violation of the weak energy condition,
and it can result into an ill-defined mass (see Ref. [98] for a
detailed analysis).

FIG. 1. Pictorial illustration of a FSS. The inner region is
dominated by fermions, smoothly connected, and surrounded by,
an outer layer made of the scalar field.
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III. PERTURBATIONS

The tidal deformabilities of compact objects can be
computed using perturbation theory. This amounts to
considering fluctuations in both the background metric
and in the matter content of the theory, which in this case
consists of the scalar and fermionic fields. The perturbed
metric at first order reads

gμν ¼ ḡμν þ hμν; ð15Þ

where ḡμν is the background spacetime metric and hμν ≡
δgμν is a small tensorial perturbation. In the following we
use a bar superscript to denote the unperturbed quantities.
We assume that the perturbations are sourced by an

external stationary tidal field. Consequently, all the per-
turbations of the metric/fluid are independent of time.
The spherical symmetry of the system allows us to

decompose the first-order perturbation hμν in spherical
harmonics and to separate the perturbation into even (polar)
and odd (magnetic) parity sectors, hμν ¼ hevenμν þ hoddμν . In
the Regge-Wheeler gauge, hμν is decomposed as [102]

hevenμν ¼

0
BBBB@

e2uHlm
0 ðρÞYlm Hlm

1 ðρÞYlm 0 0

Hlm
1 ðρÞYlm e2vHlm

2 ðρÞYlm 0 0

0 0 ρ2KlmðρÞYlm 0

0 0 0 ρ2 sin2 θKlmðρÞYlm

1
CCCCA; ð16Þ

hoddμν ¼

0
BBBBB@

0 0 hlm0 ðρÞSlmθ hlm0 ðρÞSlmφ
0 0 hlm1 ðρÞSlmθ hlm1 ðρÞSlmφ

hlm0 ðρÞSlmθ hlm1 ðρÞSlmθ 0 0

hlm0 ðρÞSlmφ hlm1 ðρÞSlmφ 0 0

1
CCCCCA
; ð17Þ

with scalar and odd vector harmonics ðSlmθ ; Slmφ Þ≡
ð−Ylm

;φ = sin θ; sin θYlm
;θ Þ, and assuming an implicit sum over

the angular indices l, m. Similarly, we decompose the fluid
perturbations in spherical harmonics as δX ¼ X1ðρÞYlm,
where δX indicates a given matter perturbation and X1ðρÞ
its radial dependence (omitting the multipole dependence
on l, m and the sum over these indices). This results in an
analogous decomposition for the fluid stress-energy tensor:

Tμν ¼ T̄μν þ δTμν: ð18Þ

The corresponding Einstein equations then read δGμν ¼
8πGδTμν, in terms of the perturbed part of the Einstein
tensor. Since the background spacetime is spherically
symmetric, the two sectors are decoupled and can be
solved independently.
In the following we start by discussing the matter

content, and then we compute the metric perturbations
in the two sectors.

A. Fermionic perturbations

By assuming that also the perturbed fluid is perfect (i.e.,
by neglecting anisotropic stress), one can introduce the
perturbed quantities W ¼ W̄ þ δW;P ¼ P̄þ δP; uμ ¼
ūμ þ δuμ, to get

δT ½f�μ
ν ¼ ðδW þ δPÞūμūν þ ðW̄ þ P̄Þðδuμūν þ ūμδuνÞ

þ δPδμν ; ð19Þ

where the background four-velocity of the fluid is simply
ūμ ¼ ðe−u; 0; 0; 0Þ, while ūμ ¼ ð−eu; 0; 0; 0Þ. It is impor-
tant to stress that ūμ ∝ δμ0, so the only nonzero, nondiagonal
elements of Eq. (19) are the 0i components. On the other
hand, in the presence of anisotropic stress, the ij contri-
butions can also be different from zero.
Imposing gμνuμuν ¼ −1, one gets

δgμνūμūν þ 2ḡμνūμδuν ¼ 0 ⇒ δu0 ¼ 1

2
e−3uδg00; ð20Þ

while δu0 ¼ e−uδg00=2. The tt-component of the fermionic
perturbed energy-momentum tensor then reads

δT ½f�0
0 ¼ −ðδW þ δPÞ þ ðW̄ þ P̄Þ½δu0ð−euÞ

þ e−uδu0� þ δP ¼ −δW: ð21Þ
Similarly, it is straightforward to write down the remaining
components of the perturbed stress-energy tensor:

δT ½f�i
j ¼ δPδij ð22Þ

δT ½f�i
0 ¼ −ðW̄ þ P̄Þeuδui ð23Þ
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δT ½f�0
i ¼ ðW̄ þ P̄Þe−uδui; ð24Þ

where δui ¼ dξi=dτ, with ξi the spatial displacement of the
fluid element due to the perturbations, and τ the proper time.
As discussed in Ref. [103], in the zero-frequency limit of

the time-dependent response to an external gravitational
perturbation the perturbed fluid can either be static (i.e.,
characterized by zero three-velocity) or irrotational (i.e.,
characterized by zero vorticity). The latter is a more
realistic assumption in a binary system, as discussed in
Refs. [40,103,104]. Such different fluid configurations are
found to impact the magnetic TLNs in both their sign and
value, while the electric TLNs remain the same in both
cases [103,104]. Therefore, we write the spatial fluid
velocity as [105]

δui ¼
	
0; QlmðρÞSlmθ ðθ;φÞ; Q

lmðρÞ
sin θ2

Slmφ ðθ;φÞ


; ð25Þ

where i ¼ ρ; θ;φ and

QlmðρÞ ¼ −
e−u

ρ2
hlm0 ðρÞ; ð26Þ

as required to describe an irrotational fluid [106].
As already highlighted in the previous section, in the

Thomas-Fermi approximation the fermionic fluid is fully
characterized once the Fermi momentum kF is given at each
spacetime point. In the following we will assume a similar
perturbative decomposition

kF ¼ k̄F þ δkF: ð27Þ

Adopting the same decomposition also for the scalar field
ϕ ¼ ϕ̄þ δϕ, as discussed in the next subsection, we can
write down δW; δP; δS in terms of δkF and δϕ, assuming
that W, P, S can be computed as in the background case:
see Eqs. (6)–(8). This assumption is valid as long as the

FIG. 2. Top: Radial profiles of scalar field ϕ, metric functions u, v (left panel) and fermion pressure (right panel) for a typical
background configuration (Λ ¼ 0.15; η ¼ 3; ζ ¼ 0.53). Continuous lines represent numerical data, whereas dashed lines reconstruct the
asymptotic behavior of the solution by fitting with the Schwarzschild spacetime. The mass and radius of this configuration are
μM=m2

p ≈ 4.85 and μR ≈ 19.04, and the compactness is C ≈ 0.25. Bottom: Mass-radius diagrams describing background solutions for
FSSs with a positive effective cosmological constant in the interior (left panel, ζ ≥ 0.5) and a negative one (right panel, ζ ¼ 0.49). We
fixed Λ ¼ 0.15 and η ¼ 3 as representative values. The blue curves/points in the right panel correspond to background solutions
satisfying the weak energy condition, while the others violate it. The red circle corresponds to P̃c → 0, i.e., a purely-scalar solitonic
configuration in the absence of fermions that does not exist in the ζ ≥ 1=2 case [98].
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timescale of the tidal perturbation is much longer than that
of the fundamental fermionic degrees of freedom, which is
always the case.
In order to close the system of equations, we need a

further condition which relates δkF to the metric and scalar
functions, analogous to Eq. (9) for the background quan-
tities. In principle, such a condition can be derived by
generalizing the Thomas-Fermi approximation to a generic
spacetime. This task can actually be accomplished by using
the Einstein equations. In particular, adding up the θθ and
φφ components gives δP as a function of H0 and δϕ. We
can also use Eq. (7) to write

δP ¼ δP
δkF

δkF þ
δP
δϕ

δϕ: ð28Þ

At this point we have two independent expressions for δP,
which in turn gives δkF as a function of metric, scalar, and
background quantities only. In analogy with the back-
ground case, we therefore need to solve only the Einstein
equations and the scalar field equation. The additional
perturbations δW and δS are obtained by expanding
Eqs. (6) and (8) as done in Eq. (28). We give the explicit
expressions in Appendix.

B. Scalar perturbations

The energy-momentum tensor of a real scalar field reads

T ½ϕ�
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
gαβ∂αϕ∂βϕþUðϕÞ

�
; ð29Þ

such that its perturbation becomes

δT ½ϕ�
μν ¼ ∂μδϕ∂νϕ̄þ∂νδϕ∂μϕ̄−δgμν

�
1

2
ḡαβ∂αϕ̄∂βϕ̄þUðϕ̄Þ

�

− ḡμν

�
1

2
δgαβ∂αϕ̄∂βϕ̄þ ḡασ∂αδϕ∂βϕ̄þδU

�
; ð30Þ

where we have decomposed the scalar potential as
UðϕÞ ¼ Uðϕ̄Þ þ δU, and

δU ¼ ∂UðϕÞ
∂ϕ

����
ϕ̄

δϕ: ð31Þ

C. Perturbation equations

We now turn to the solution of the linearized Einstein
equations, focusing first on the polar sector and then on the
axial sector.

1. Polar perturbations

Taking the difference between the θθ and φφ component
reveals that H2ðρÞ ¼ H0ðρÞ. From δGt

ρ ¼ 8πGδTt
ρ we get

H1 ≡ 0. Also, the ρθ component can be used to relate K0 to

ϕ1; H0, and H0
0 as follows:

K0 ¼ H0
0 þ 2H0u0 − 16πGϕ1ϕ

0
0: ð32Þ

Finally, the difference between the ρρ and tt components
can be written as a master equation for H0, with no further
K dependence:

H00
0 þ 8πGe2vðP1 þW1Þ þ

�
2

ρ
þ u0 − v0

�
H0

0

þ 16πG

��
u0 þ v0 −

2

ρ

�
ϕ̄0 − ϕ̄00

�
ϕ1

þ
�
2

ρ2
−
e2vðl2 þ lþ 2Þ

ρ2
þ 16πGe2v

×

�
P̄þ W̄ −

1

2
ϕ̄02e−2v

�
þ 4u0

ρ
− 4u02

�
H0 ¼ 0; ð33Þ

where P1, W1, and U1 are the radial components of the
matter perturbations δP, δW and δU after decomposition in
spherical harmonics. The equation of motion for the scalar
field reads

ϕ1
00 þ ϕ0

1

�
u0 − v0 þ 2

ρ

�
þH0

��
u0 þ v0 −

2

ρ

�
ϕ̄0 − ϕ̄00

�

−
�
lðlþ 1Þe2v

ρ2
þ 16πGϕ̄02

�
ϕ1

¼ e2v
∂
2UðϕÞ
∂ϕ2

����
ϕ̄

ϕ1 − e2vfS1; ð34Þ

where, again, ϕ1 is the radial component of the scalar field
perturbation δϕ after expansion in spherical harmonics.

2. Axial perturbations

The ρφ component of the perturbed Einstein equations
implies h1 ¼ 0, and the ρθ component implies ϕ1 ¼ 0. We
are therefore left with a single radial equation for the
perturbed function h0 (the tφ component):

h000 − ðu0 þv0Þh00þ
½2− lðlþ1Þ�e2v−2þ2ρðu0 þv0Þ

ρ2
h0¼ 0:

ð35Þ

We numerically solve all the perturbed equations by
applying the transformation given by Eqs. (10)–(13), in
analogy with what we did for the background equations
in Sec. II.

IV. TIDAL LOVE NUMBERS

Nonspinning, spherically symmetric, FSSs immersed in
an external stationary tidal field will be deformed and
develop a multipolar structure in response to the external
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field. This phenomenon may occur in coalescing binary
systems, where each component tidally deforms its
companion because of gravity. The assumption of a sta-
tionary field holds only in the early inspiral phase, when the
orbital separation from the companion is very large and the
orbit is slowly varying in time. Furthermore, one can make
use of the approximation that the multipolar deformation
induced on the objects is linear in the strength of the
external tidal field to define the TLNs as the ratio between
the induced multipole moments and the tidal moments of
the external gravitational field:

QL ¼ λlGL; SL ¼ σlHL; l≳2: ð36Þ

Here the symbols QL (SL) denote the mass (current)
multipole moments of order l of the object (L being a
multi-index containing a number l of individual indices),
and GL (HL) the corresponding electric (magnetic) tidal
multipole moments.
The parameters λl (σl) are the electric (magnetic) tidal

deformabilities, related to the dimensionless TLNs kEl (kMl )
through the relations [3,39,105]

λl ¼ ðGMÞ2lþ1λ̄l ¼ 2R2lþ1

ð2l−1Þ!! k
E
l ;

σl ¼ ðGMÞ2lþ1σ̄l ¼ ðl−1ÞR2lþ1

4ðlþ2Þð2l−1Þ!! k
M
l ;

l ≥ 2; ð37Þ

in terms of the FSS mass M and radius R. The main
contribution to the star’s deformation comes from the
quadrupole (l ¼ 2), which will be the main focus of our
analysis.
The TLNs can be extracted by asymptotically expanding

the metric of the object, perturbed by the external tidal
source, at spatial infinity. In asymptotically Cartesian mass-
centered coordinates, the time-time and time-space com-
ponents of the metric read

g00 ¼ −1þ 2GM
ρ

þ
X
l≥2

�
1

ρlþ1

�
2ð2l − 1Þ!!

l!
QLnL

�

þ ρl
�
2

l!
GLnL

��
;

g0i ¼
X
l≥2

�
1

ρlþ1

�
−
4lð2l − 1Þ!!
ðlþ 1Þ! ϵijalSjL−1nL

�

þ ρl
�

l
ðlþ 1Þ! ϵijalHjL−1nL

��
; ð38Þ

where ni ¼ xi=ρ is the unit radial vector, nL ¼ na1…nal ,
and we absorb any factor of G in the definition of QL,
SL [105,107]. For simplicity we have neglected terms
independent of ρ and proportional to spherical harmonics
of order l0 < l. In this coordinate frame, the mass dipole of
the object vanishes identically. From this expansion it is
clear that the computation of the TLNs is based on the

separation between the radially decaying multipolar
response of the central object and the external growing
solution.
In the following subsections we compute the tidal

deformabilities of nonrotating FSSs in both the polar
(electric) and axial (magnetic) sectors. Since the back-
ground spacetime is spherically symmetric, these sectors
are completely decoupled from each other and can be
treated independently. Notice also that, while the electric
response is the relativistic generalization of the Newtonian
Love number, the magnetic sector is instead fully relativ-
istic [4], since current distributions do not gravitate in
Newtonian theory. Furthermore, one can expand the multi-
polar quantities in spherical harmonics, reducing the
problem to radial equations, which are independent of
the index m and do not couple perturbations with different
values of l. These equations must be solved in both the
exterior and interior regions of the object, matching the
solutions at a characteristic extraction radius Rext, as
discussed below.

A. Polar sector

In the polar sector, the perturbation equation for the field
H0 is given in Eq. (33). In the vacuum region outside the
object, it reduces to

H00
0þ

2ðρ−GMÞ
ρðρ−2GMÞH

0
0

−
�
4G2M2−2lðlþ1ÞGMρþ lðlþ1Þρ2�

ρ2ðρ−2GMÞ2 H0 ¼ 0: ð39Þ

The vacuum solution is given in terms of associated
Legendre polynomials as

H0ðρÞ ¼ cPPl2

�
ρ

GM
− 1

�
þ cQQl2

�
ρ

GM
− 1

�
; ð40Þ

where the integration constants cP and cQ are found in
terms of H0ðRextÞ and H0

0ðRextÞ by matching to the interior
solution. At spatial infinity, ρ → ∞, one gets

H0ðρÞ ≃ c̃Pρl þ c̃Q
1

ρlþ1
þO

�
GM
ρ

�
; ð41Þ

where the tilde is used to distinguish these coefficients from
the ones introduced in Eq. (40), since an additional
dependence on the mass M and numerical factors arise
from the asymptotic expansion. One can then plug this
expansion into the g00 component of the metric to get

g00∼−1þ2GM
ρ

þ
X
l≥2;m

�
1

ρlþ1
c̃Q;lmþρlc̃P;lm

�
Ylm; ð42Þ

which can be compared with the asymptotic expansion
shown in Eqs. (38) once the multipole moments are
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properly decomposed in terms of symmetric trace-free (STF) tensors Qlm and Glm.
By performing this matching, one can identify the growing solution in H0ðρÞ with the tidal field and the decaying one

with the response of the object, respectively, and then extract their multipole moments in terms of the coefficients cQ;lm and
cP;lm. For the leading multipole moment l ¼ 2, the electric TLN reads [3]

kE2 ¼
8ð1−2CÞ2C5ð2Cðy−1Þ−yþ2Þ

10CðCð2CðCð2Cðyþ1Þþ3y−2Þ−11yþ13Þþ3ð5y−8ÞÞ−3yþ6Þþ15ð1−2CÞ2ð2Cðy−1Þ−yþ2Þ logð1−2CÞ ;

ð43Þ

where we have defined C ¼ GM=Rext and y ¼ ρH0
0=H0,

both evaluated at the extraction radius Rext, which is taken
to be much larger than the FSS effective size R (in order for
the TLN to be independent from it). In the actual numerical
computation, we could not go further than Rext ∼ 2R due to
the high fine-tuning required by the shooting method used
to compute the initial displacement of the scalar field.
However, we checked that this yields sufficiently accurate
numerical results, due to the exponential decay of the scalar
field at ρ > R.
The matching variable y can be computed by integrating

Eq. (33) in the interior of the FSS, imposing the boundary
condition of regularity at the origin, ρ ¼ 0:

H0ðρÞ ¼ a0ρl½1þOðρ2Þ�; ρ → 0; ð44Þ

where the constant a0 does not affect the TLN, since the
problem is linear and this constant enters in both the
strength of the tidal field and the size of the induced
multipolar deformation, and therefore it cancels out when
computing their ratio.
In the upper panels of Fig. 3 we show the dimensionless

TLN for the leading quadrupolar (l ¼ 2) mode as a function
of the compactness, as we vary different parameters of the
model. Similarly to NSs, the characteristic mass-radius
diagram (shown in Fig. 2 of Ref. [98]) displays a turning
point at large compactness, which shows up also in the

FIG. 3. Electric (upper panels) andmagnetic (lower panels) TLNs for the quadrupolar (l ¼ 2)mode as a function of the FSS compactness
GM=R. The different curves correspond to different values of the model parameters. In the left panels, we fix η ¼ 3, ζ ¼ 0.53 and varyΛ.
In the right panels, we fix Λ ¼ 0.15 and vary η and ζ. We explicitly see that the curves depend only mildly on η and ζ.
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TLNs. We observe that in the phenomenologically inter-
esting range around GM=R ≃ 0.2 corresponding to the
critical solution, the TLN reaches values of the order of
Oð100Þ, growing at small compactness due to the depend-
ence λ̄2 ∝ C−5. The strongest dependence is on the param-
eter Λ, describing the scalar field vacuum expectation
value: in general, lower values of Λ give rise to larger
TLNs. The TLNs are almost independent of the degeneracy
parameter ζ, which is varied to span both degenerate and
nondegenerate vacua, if one considers vacua with positive
energy.
When ζ < 0.5, the interior region of the vacuum bubble

has negative energy, mimicking an effective anti–de Sitter
space [98]. This case, plotted in the left panel of Fig. 4 for
ζ ¼ 0.49, shows a different behavior of the TLN, reflecting
what happens at the background level for the mass-radius
diagram (see the bottom right panel of Fig. 2). Indeed, the
presence of two disjoint branches at the background level
gives rise to two distinct branches of the TLNs. In
particular, the small islands at large compactness (i.e.,
the blue curves in Fig. 4 magnified in the insets) represent
the TLNs of the upper branch of the mass-radius diagram
(continuous blue line in the bottom right panel of Fig. 2),
whereas the orange curves are associated to the lower
branch (dotted line in the bottom right panel of Fig. 2).
Turning points in the mass-radius diagram give rise to
turning points in the TLNs.

B. Axial sector

In the axial sector, the perturbation equation for the field
h0 is given in Eq. (35). As discussed in the previous section,
in the following we will work under the assumption of an
irrotational fluid also in the perturbed configuration. Under
this assumption, the perturbation equation at large distances
reduces to

h000 þ
ð4GM − lðlþ 1ÞρÞ

ρ2ðρ − 2GMÞ h0 ¼ 0: ð45Þ

In the external region, the solution of the perturbation
equation reads

h0ðρÞ ¼ dP

�
ρ

2GM

�
lþ1

2F1

�
−lþ 1;−l − 2;−2l;

2GM
ρ

�

þ dQ

�
2GM
ρ

�
l

2F1

�
l − 1; lþ 2; 2lþ 2;

2GM
ρ

�
;

ð46Þ

in terms of the hypergeometric function 2F1ða; b; c; xÞ. The
constants dP and dQ can be found by the matching
procedure in terms of h0ðRextÞ and h00ðRextÞ. In the large
distance regime ρ → ∞ the asymptotic solution is

h0ðρÞ ¼ d̃Pρlþ1 þ d̃Q
1

ρl
þO

�
GM
ρ

�
; ð47Þ

where, as we discussed in the electric case, the tilded
coefficients include additional dependence on the mass and
further numerical factors. From this expression one can
obtain the g0φ component of the metric as

g0φ ∼
X
l≥2;m

�
1

ρl
d̃Q;lm þ ρlþ1d̃P;lm

�
Slmφ : ð48Þ

By STF decomposing the spatial-temporal part of the
metric in Eqs. (38), one can again identify the growing
and decaying modes of the solutions, and extract the
magnetic TLNs. For the leading l ¼ 2 mode one gets

FIG. 4. Same as Fig. 3, but for a negative effective cosmological constant (ζ ¼ 0.49) and forΛ ¼ 0.15; η ¼ 3. In this case there are two
disjoint branches of solutions, related to the corresponding branches in the mass-radius diagram shown in Fig. 2 (the blue/orange lines
corresponding to the upper/lower branches, respectively) [97]. The insets are zoomed-in versions of the small islands at large
compactness, shown in blue.
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kM2 ¼ 96C5ð2Cðy − 2Þ − yþ 3Þ
10CðCð2CðCyþ Cþ yÞ þ 3ðy − 1ÞÞ − 3yþ 9Þ þ 15ð2Cðy − 2Þ − yþ 3Þ logð1 − 2CÞ ; ð49Þ

where we have defined the quantity y ¼ ρh00=h0, evaluated
at the extraction radius Rext. As in the electric case, y can be
found by numerically integrating Eq. (35), with boundary
conditions at the center of the FSS given by

h0ðρÞ ¼ b0ρlþ1½1þOðρ2Þ�; ρ → 0; ð50Þ

where the constant b0 cancels out in the definition of the
TLN.
Similarly to the even sector, the lower panels of Fig. 3

and the right panel of Fig. 4 show the magnetic TLN for the
quadrupolar mode (l ¼ 2) for ζ ≥ 1=2 and ζ < 1=2,
respectively. One can appreciate the same trends observed
in the electric case. The magnetic TLN is found to be about
an order of magnitude smaller than the electric one, as
observed for NSs [4,40].

C. Quasiuniversal relations

The TLNs of a NS depend on the underlying EOS of
nuclear matter. In particular, for a given mass, different
prescriptions for the EOS give rise to different radii and
tidal deformabilities. However, it was found that the
moment of inertia, the spin-induced quadrupole moment,
and the electric quadrupolar tidal deformability are related
to each other by nearly EOS-independent relations known
as the I-Love-Q relations. The latter are approximately
universal at the level of ∼1%, and hold even for strange
quark stars [36–38].
Similar approximately universal relations for NSs hold

also between their quadrupolar electric and magnetic tidal

deformabilities [39], with an accuracy of about ð1 ÷ 10Þ%.
In particular, the fitting function

log jσ̄2j ¼ ai þ bi log λ̄2 þ ciðlog λ̄2Þ2
þ diðlog λ̄2Þ3 þ eiðlog λ̄2Þ4 þ fiðlog λ̄2Þ5; ð51Þ

with fitting coefficients ai¼−2.03, bi¼ 0.487, ci¼ 9.69×
10−3, di ¼ 1.03 × 10−3, ei ¼ −9.37 × 10−5, fi ¼ 2.24 ×
10−6 is a good approximation for realistic NSs described by
an irrotational fluid [27]. This fit is shown by the red solid
line in the right panel of Fig. 5. As expected, as one
increases the compactness, NSs approach the BH limit with
vanishing tidal deformability.
Figure 5 also shows the corresponding approximate

universality relations for FSSs. In the left panel, one can
appreciate that for FSSs the σ̄2 − λ̄2 relations are less
universal than for NSs, since the curves display Oð1Þ
corrections in the small compactness regime for different
choices of the model parameters, while they are less
affected in the large compactness region. The emergence
of approximate universal relations can be understood by
inspecting Eqs. (43) and (49). They both depend on two
dimensionless parameters, C and y. Recall that both mass
and radius scale approximately as ∼1=Λα, where α ¼ 1 for
ζ ≠ 0.5, and α ¼ 2 for ζ ¼ 0.5 (see Fig. 5 of Ref. [99]),
while the dependence on η, ζ is weak. From the definitions
of C and y, we see that they are both left unchanged under
such a rescaling. Thus, the TLNs will also be mildly
dependent on the fundamental parameters of the theory.
This dependence may become weaker and weaker for small

FIG. 5. Left: universality relations for FSSs for different model parameters. In the ζ ¼ 0.49 case, the lower (upper) branch corresponds
to the large compactness, blue (small compactness, orange) line of Fig. 4. Right: comparison of the FSS curve with Λ ¼ 0.15;
η ¼ 3; ζ ¼ 0.53 with the universality curves for other compact objects, such as NSs in the irrotational (solid red line) and static
configurations (dashed red line), soliton boson stars (orange line), massive boson stars (yellow line), minimal boson stars (green line)
and an effective bag model (bag, water green line).
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values of Λ, which are however numerically challenging to
achieve. Indeed, as shown in Fig. 5 of Ref. [99], the
universal scaling of the mass-radius diagram becomes more
and more accurate for small Λ, and one expects to find a
similar behavior for the TLNs.
In the right panel of Fig. 5, we compare the σ̄2 − λ̄2

relations for FSSs with those for realistic NSs. We find that
the FSS relation differs from the NS curve, highlighting the
different nature of these objects. By comparing the left and
right panels of Fig. 5 we see that, although the TLNs of a
FSS are less universal than those of a NS, the difference in
the quasiuniversal relations among these classes of objects
are much larger then their individual spread. Thus, a
sufficiently accurate measurement can tell the two relations
apart.
The internal structure of FSSs allows for a comparison

with the bag model described by the EOS [108]

W ¼ W0 þ P=ω; ð52Þ

which corresponds to the stiffest possible EOS, as the speed
of sound cs ¼

ffiffiffiffi
ω

p
takes the maximal value throughout the

object. By renormalizing the pressure and density to the
central valueW0, one can show that this model allows for a
maximal compactness of [108]

CBag ≤
4

9

ωð4.18þ ωÞ
0.77þ 4.69ωþ ω2

; ð53Þ

quantifying the distance from the Buchdahl bound
(obtained in the incompressible fluid limit as ω → ∞).
Notice that a nonzero value of the central density W0 is
necessary to ensure a finite radius.
It is therefore interesting to compare the relativistic

TLNs of a FSS with those of the bag model assuming
large internal pressure and sound speed ω ¼ 1=3, which
has a maximum compactness of about CBag ≲ 0.4. This
comparison is motivated by the fact that, within its interior,
the FSS is dominated by relativistic fermions, and the scalar
field plays a negligible role. Following this comparison,
one can solve the corresponding perturbation equations for
the bag model to derive both the electric and magnetic
TLNs. Notice that the presence of a discontinuity in the
energy density at the object’s surface induces a change in
the boundary condition for the computation of the electric
TLNs, which corresponds to shifting the parameter y by
−4πW0R3=M [109]. The corresponding universality rela-
tions are shown by the water green curve in the right panel
of Fig. 5. Similarly to the findings of Ref. [36], they are not
only in agreement with the standard fit for NSs with
ordinary EOS, but the final result is also very mildly
dependent on the sound speed ω. This suggests that the bag
model does not capture the deformability properties of
FSSs: the presence of the scalar field makes a sizeable

contribution to the overall energy, and dominates the
object’s outer region.
The right panel of Fig. 5 also shows the universality

relations for different families of boson stars [59]. These
complex bosonic self-gravitating configurations experience
different tidal deformations compared to the other objects,
which strongly depend on the properties of the scalar field
potential.
Finally, we notice the presence of a hierarchy between

the tidal deformabilities of each compact object in the
configurations with maximal compactness (identified by
the lower edges of each curve in Fig. 5). In particular, the
bag model admits a higher (lower) electric (magnetic) TLN
compared to FSSs. Among the various families of boson
stars, the minimal model with no scalar interaction displays
the largest tidal deformability, while solitonic boson stars
are less (more) deformable than massive ones in the electric
(magnetic) sector. Accurate tidal deformability measure-
ments can be used to identify different families of compact
objects.
As discussed above, we focused on the most interesting

case of an irrotational fluid. For a static fluid, the magnetic
TLNs of a NS have the opposite sign and are quantitatively
different. They display an approximately universal relation
different from irrotational fluid NSs [40], as shown by the
red dashed line of Fig. 5 (obtained from the corresponding
fit of Ref. [85]). Interestingly, next-generation ground-
based GW detectors [80], such as the Einstein Telescope
and Cosmic Explorer, should allow us to measure σ2 and λ2
with sufficient precision to distinguish the irrotational-fluid
case from the static-fluid case [85]. Since the difference
between the NS curve and the FSS curve shown in Fig. 5 is
even larger, future detectors should be able to distinguish
FSSs from NSs based on tidal deformability measurements.
Furthermore, from Figs. 3 and 5 we see that FSSs have

lower deformability than other ECOs for certain model
parameters, so it could be difficult to tell them apart from
black holes through the measurement of tidal effects in
gravitational waveforms [100]. It would be interesting to
quantify these expectations with more detailed parameter
estimation calculations.

D. Tidal disruption

Let us consider a massive, nonspinning central object
whose mass and radius are denoted by MB and RB,
respectively. It is interesting to ask whether a FSS with
radius R and mass M, orbiting around the central object,
can be tidally disrupted, assuming M ≪ MB. To this end,
we need to estimate the Roche radius of the system

RRoche ∼ γRB

�
WB

W

�
1=3

; ð54Þ

where WB, W are the densities of the central object and
FSS, respectively, and the numerical coefficient γ takes
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values ranging from 1.26 for rigid bodies to 2.44 for fluid
bodies [110].
Whenever ζ > 1=2 (asymmetric vacua regime), hydro-

static equilibrium imposes (introducing q ¼ ffiffiffiffiffiffiffiffi
μvF

p
)

ωF ∼
mf

η
¼ q; ð55Þ

as long as we are above the minimal configuration in the
mass-radius diagram, corresponding to the minimum value
for ωF [99] (we do not take into account configurations
along the mass-radius diagram under the minimal one
because the initial displacement of the scalar field becomes
Oð1Þ, and thus true solitonic configurations describing
false vacuum pockets are not allowed: see Ref. [99]). Thus,
the density W is estimated as the central fermion energy
density Wc ∼ k4F ∼ ω4

F ∼ q4.
The physically most compelling scenario is when the

tidal disruption happens before the merger phase. Imposing
RRoche > RISCO ¼ 6GMB in Eq. (54), we find the condition
(ignoring Oð1Þ factors)

q ≲
�
mp

MB

�
1=2

mp ≈ 1.3 GeV

�
M⊙

MB

�
1=2

: ð56Þ

For an astrophysical solar-like object with MB ∼ 1M⊙, the
latter condition implies q≲ 1 GeV. Higgs false vacuum
balls and dark soliton stars [99] require q≳ 102 GeV, and
therefore do not get tidally disrupted before the merger.
Instead, neutron soliton stars (also known as quark nuggets)
correspond to q ≈ 0.2 GeV, potentially allowing for tidal
disruption of these nontopological solitons, in a range of
masses and radii starting from the (noncompact) minimal
configuration

Mmin≈10−19M⊙; Rmin≈1 cm; ð57Þ

up to the critical one

Mc≈2M⊙; Rc≈10 km; ð58Þ

with a compactness of GMc=Rc ∼ 0.27, which is slightly
larger than that of an ordinary NS. In the latter case, the
mass of the FSS becomes comparable to the mass of the
central object, and thus the previous estimates should be
taken with a grain of salt, although they should provide the
correct order of magnitude.
In a tidal disruption scenario, the quarks released in

the disruption event would produce jets of hadrons
and photons [111–113]. Assuming that the amount of
energy emitted during a collision is of the order of
fradðGMBM=RRocheÞ and considering an efficiency factor
frad for the energy going into visible Standard Model
radiation, the corresponding power output in one orbital
period is given by

P≃1021L⊙frad

�
M

0.1M⊙

��
MB

M⊙

�
2=3
�

q
0.2GeV

�
10=3

; ð59Þ

where L⊙ ¼ 3.8 × 1026 W is the luminosity of the Sun.
This power is comparable to the one emitted by super-
radiance (see Ref. [114] for a discussion).
To assess whether a telescope on Earth could detect this

radiation, we assume an angular resolution of δΩ ¼ 1° ×
1° ¼ ðπ=180Þ2 sr and that the binary is situated at a
distance d ≃ 1 Gpc. Then, the frequency-weighted spectral
density is estimated to be

νIν ¼
P

d2δΩ
≃ 10−9

W
m2sr

�
frad
10−10

��
d

Gpc

�
−2

×

�
MB

M⊙

�
2=3

�
M

0.1M⊙

��
q

0.2 GeV

�
10=3

: ð60Þ

For comparison, the observed cosmic backgrounds of
X-rays and gamma rays range from 10−10 W=m2 sr
at energies around 10 keV to 10−13 W=m2 sr around
10 GeV [115], implying that the tidal disruption of these
quark nuggets may produce detectable photons for an
efficiency factor as small as 10−10. If the central object
is a BH, a sizeable fraction of the emitted matter could be
accreted by the central object, giving rise to a subsequent
afterglow.

V. CONCLUSIONS

In this paper we studied the deformability properties of
FSSs, solutions of general relativity in which a real scalar
field is coupled to a fermionic field by a Yukawa coupling.
The coupling generates an effective mass for the fermions
as the scalar field transitions from a false vacuum to a true
vacuum configuration. The structure of vacua in the scalar
field potential determines the nature of the corresponding
compact objects, whose mass-radius curves exhibit differ-
ent phenomenology for different model parameters.
In this work we have studied both electric- and magnetic-

type perturbations of a FSS background. By perturbing
both the scalar and fermionic sectors (and assuming the
latter to be described by the Thomas-Fermi approximation
also in the perturbed configuration), we have derived the
corresponding perturbation equations and solved them to
obtain the conservative and irrotational TLNs. These are
found to depend on the model parameters, especially on the
scalar field vacuum expectation value. As in the case of
NSs, the magnetic TLNs are generally smaller than the
electric TLNs.
Using the tidal deformabilities computed in this way, we

have investigated the existence of approximately universal
relations between the Love numbers in both parity sectors,
showing a mild dependence on the model parameters and
therefore a solid prediction for these relations (even though
they are less universal than the ones for NSs). We then
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compared the quasiuniversal relations for FSSs with those
found for other compact objects, such as NSs and boson
stars, showing that the universality relations corresponding
to different classes of compact objects are significantly
different. This feature could be used as a novel probe to tell
apart various classes of compact objects using tidal deform-
ability measurements with next-generation detectors.
The characteristic values of the TLNs of FSSs (for model

parameters corresponding to objects in the solar mass
range) imply that these quantities may be measurable by
future gravitational wave interferometers, such as the
Einstein Telescope and Cosmic Explorer. In particular,
the results of Ref. [85] imply that these instruments could
measure both the electric and magnetic Love numbers with
an accuracy of a few percent, potentially allowing us to
distinguish FSSs from other compact objects in the solar
mass range, such as ordinary NSs or black holes [100].
Finally, we discussed the possible disruption of a FSS in

a binary system with another compact object, such as a
black hole, and derived a bound on the vacuum expectation
values that may allow for a tidal disruption event before the
ISCO frequency is reached. Such tidal disruption events
could happen for nontopological quark nuggets, which
could release jets of hadrons and photons during the event.
If this process occurs in nature, it would provide a
significant contribution to the observed cosmic back-
grounds of x-rays and gamma rays, and even to single
resolvable events.
This work is an initial step toward a full investigation of

the tidal interactions and tidal deformabilities of ECOs, and
it can be improved in various directions. It would be
interesting to perform a more detailed study to understand
how tidal effects could be used to distinguish different
classes of ECOs. It is important to generalize the compu-
tation beyond the simplifying assumption of spherical
symmetry, in order to assess if the I-Love-Q relations
are valid also for rotating FSSs. Finally, given the intrinsic
time dependence in the evolution of a binary system, it
would be interesting to investigate the FSS dissipative
coefficients and frequency-dependent TLNs, as recently

discussed in Refs. [74,77] for Kerr-like compact objects.
We leave these studies for future work.

ACKNOWLEDGMENTS

We thank Konstantinos Kritos and Kent Yagi for useful
discussions. E. B. is supported by NSF Grants No. AST-
2006538, No. PHY-2207502, No. PHY-090003, and
No. PHY-20043, by NASA Grants No. 20-LPS20-0011
and No. 21-ATP21-0010, by the John Templeton
Foundation Grant No. 62840, by the Simons Foundation,
and by the Italian Ministry of Foreign Affairs and
International Cooperation Grant No. PGR01167. V. D. L.
is supported by funds provided by the Center for Particle
Cosmology at the University of Pennsylvania. L. D. G.
acknowledges the Johns Hopkins University for hospitality
during the completion of this project and H2020-MSCA-
RISE-2020 GRU (Grant agreement ID: 101007855) for
financial support. P. P. is partially supported by the MUR
PRIN Grant No. 2020KR4KN2 “String Theory as a
bridge between Gauge Theories and Quantum Gravity”
and by the MUR FARE programme (GW-NEXT, CUP:
B84I20000100001).

APPENDIX: FERMIONIC PERTURBATIONS

In the axial sector, since ϕ1 ≡ 0, the θθ plus the φφ
component of the Einstein equations gives simply δkF ¼ 0.
Thus, δP ¼ δW ¼ δS ¼ 0. Conversely, in the polar sector,
the same combination of the Einstein equations gives

P1 ¼
1

2
H0ðP̄þ W̄Þ þU1 þ

�
fS̄ −

∂U
∂ϕ

jϕ̄
�
ϕ1: ðA1Þ

Following the procedure described in Sec. III A, we express
kF ¼ ðkFÞ1ðρÞYðθ;φÞ (omitting the multipolar indices) as

ðkFÞ1 ¼
1

4k̄4F

2
64−ϕ1

0
B@3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q 0
B@4π2∂U=∂ϕjϕ̄ þ fm3

eff

0
B@log

0
B@1 −

k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q
1
CA

− log

0
B@ k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̄2F þm2
eff

q þ 1

1
CA
1
CA − 4π2fS̄

1
CAþ 2fk̄3Fmeff þ 6fk̄Fm3

eff

1
CA

þ 6π2H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q
ðP̄þ W̄Þ þ 12π2U1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q 3
75; ðA2Þ
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where meff ¼ mf − fϕ̄.
Expanding Eqs. (6), (8) and substituting Eqs. (A1) and (A2), we obtainW1, S1 in terms of the background quantitiesmeff

and k̄F, as well as metric and scalar perturbations, as follows:

W1 ¼
1

4π2k̄2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q
2
643m2

eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q 0
B@ϕ1

0
B@−4π2∂U=∂ϕjϕ̄ þ fm3

eff

0
B@log

0
B@ k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̄2F þm2
eff

q þ 1

1
CA

− log

0
B@1 −

k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q
1
CA
1
CAþ 4π2fS̄

1
CAþ 4π2U1

1
CAþ k̄2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q 0
B@ϕ1

0
B@−12π2∂U=∂ϕjϕ̄

þ fm3
eff

0
B@−3 log

0
B@1 −

k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2
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q
1
CAþ 3 log

0
B@ k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̄2F þm2
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1
CAþ 2tanh−1

0
B@ k̄Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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1
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þ 12π2U1

1
CA − 4fk̄5Fmeffϕ1 − 10fk̄3Fm

3
effϕ1 − 6fk̄Fm5

effϕ1 þ 6π2H0ðk̄2F þm2
effÞ3=2ðP̄þ W̄Þ

3
75; ðA3Þ

S1 ¼
1

4π2k̄2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2F þm2

eff

q
2
6412π2meff
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0
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