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We compute bounds from atomic spectroscopy on chameleon fields that couple to the photon.
Chameleons are a wide class of scalar field models that generically lead to screened fifth forces and a host
of novel phenomenologies, particularly when the photon coupling is included. We account for
perturbations to the atomic energy levels from both the scalar field ‘fifth force’ and the scalar field’s
correction to the electric field. We also account for the electromagnetic interaction’s contribution to
the scalar charge of the proton, which enables a considerably wider class of models to be tested than
without this effect. We find bounds that cover different areas of chameleon parameter space. A range of
models spanning approximately one order of magnitude in chameleon coupling parameters (around
M;Mγ ≈ 10−16MPl) are excluded for the first time. We also show that improvements to the theoretical
uncertainty of hydrogen’s spectrum within the Standard Model would immediately rule out additional
chameleon theory space by this analysis.

DOI: 10.1103/PhysRevD.109.124007

I. INTRODUCTION

Scalar fields are commonly included in new theories of
gravity, dark energy, and dark matter. They represent a
minimal modification (i.e., a single degree of freedom) to
general relativity and the Standard Model. It is therefore of
paramount importance to have a good understanding of
what types of scalar fields can exist in nature and still
be compatible with the myriad experimental bounds on
new physics. For example, the principles of effective
field theory (EFT) teach us that when writing down the
Lagrangians for new physics, we must include all possible
couplings that are compatible with the symmetries of the
theory. For a scalar field, absent some special symmetry we
must include an explicit coupling between the scalar field ϕ
and (fermionic) matter fields ψ , the lowest-order being a
Yukawa interaction

Lint ⊃
mψ

M
ϕψ̄ψ ; ð1Þ

where mψ is the mass of the matter field and M is a
parameter controlling the coupling strength. This term

implies that the scalar field mediates a “fifth force”
between matter fields, with a range comparable to the
Compton wavelength of the scalar particle. Experimental
searches for fifth forces then imply strong bounds on the
mass of the scalar particle and its coupling strength to
matter fields [1–3].
The story becomes more complicated when there are

other interaction terms in the Lagrangian. The paradigm of
‘screened’ theories [4] has shown that relatively simple
additional interactions can render the fifth force difficult to
observe in nature, demonstrating that there remain wide
classes of light scalar field theories that are compatible with
existing experimental tests. There are three canonical
models of screening: (i) the chameleon [5], in which the
scalar particle’s mass can vary, making the fifth force short-
ranged in certain environments; (ii) the symmetron [6], in
which the scalar decouples from matter, making the fifth
force weak; and (iii) the Galileon [7], which suppresses
gradients in the scalar field. All of these mechanisms serve
to weaken the force in everyday environments, showing
that a very wide class of models are compatible with
traditional fifth force tests. In response to this, a great deal
of effort on both the experimental and theory sides has gone
into detecting the subtle signatures of screened theories. For
recent reviews, see [3,4,8–12].
It is important to bear in mind that the interaction in

Eq. (1) is not the only new interaction with Standard Model
fields that can be considered. One could just as easily
include a coupling to the photon, with the leading-order
term in the Lagrangian being
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Lint ⊃
ϕ

Mγ
F2; ð2Þ

where F is the photon’s field strength tensor and Mγ

controls the coupling strength. In fact, the inclusion of this
term opens up a wide range of new and interesting
phenomenologies for the theory, as well as a number of
new ways to detect the scalar particle. For example,
Ref. [13] has recently shown that chameleons emitted in
the solar tachocline can be detected directly using planned
electron-recoil dark matter direct detection chambers e.g.,
XENONnT.
This paper focuses on the scenario in which the new

particle couples both to matter fields and to the photon, and
includes a screening mechanism. Experimental constraints
on this specific scenario were reviewed in [9]. For con-
creteness, we focus on the chameleon mechanism, although
our formalism could be straightforwardly applied to the
symmetron as well.1 This scenario has been tested in a
variety of regimes, most significantly (for the chameleon)
by the CAST [14], GammeV [15], and electron g − 2
experiments [16].2 These are complemented by a host of
astrophysical tests as well. These tests work on different
length and energy scales, resulting in mostly complemen-
tary constraints in chameleon parameter space.
This paper is concerned with constraining the scalar-

photon interaction using atomic spectroscopy, particularly
the hydrogen 1s − 2s transition energy, which has been
measured to an accuracy of a few parts in 1015 [23]. To this
end, we solve for both the chameleon field around the
proton, as well as the modification to the electrostatic
potential sourced by the proton. Both of these then lead to
perturbations in the hydrogen spectrum, which we then use
to place bounds on the theory. We find bounds that cover a
wide regime of chameleon parameter space although many
of those regions are redundant with existing experiments.
However, we find a range of models spanning one order of
magnitude around M;Mγ ≈ 10−16MPl that are ruled out for
the first time. It should be noted that Ref. [24] also
examined atomic spectroscopy in the context of this
chameleon model. The key novelty of the present work
is that we account for the change to the scalar charge of the
proton due to the photon coupling, which leads to stronger
constraints. Atomic spectroscopy bounds on chameleons
were also recently considered in [25], but tested a model
that did not include a scalar-photon coupling.

This paper is organized as follows. In Sec. II we briefly
compute the perturbations to the electron’s Hamiltonian for
a generic scalar field. In Sec. III we focus on the scalar
field’s profile, allowing for scalar particles that admit a
screening mechanism. In Sec. IV we compute the pertur-
bation to the 1s and 2s energy levels by a screened scalar. In
Sec. V we specialize to a particular class of chameleon
models, as well as a particular atomic spectroscopy experi-
ment to produce bounds on that theory. Those bounds are
then compared to other experimental bounds in Sec. VI. We
conclude in Sec. VII.

II. SCALAR AND PHOTON
ELECTRODYNAMICS

Webeginwith a generic a scalar field theory that is defined
by the action3

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 þ AμJμ −

1

2
ð∂ϕÞ2

− VðϕÞ − ρ

M
ϕ −

ϕ

4Mγ
F2

�
: ð3Þ

We now solve for the scalar field around a spherical charge
of constant density (our model for the proton), and also for
the correction to the electromagnetic field Fμν. The
equations of motion are

Jν ¼ ∂μ

��
1þ ϕ

Mγ

�
Fνμ

�
;

□ϕ ¼ V;ϕþ
ρ

M
þ 1

4Mγ
F2: ð4Þ

The vector equation of motion (EOM) contains the equation,

ρq ¼ ∇! ·

��
1þ ϕ

Mγ

�
E⃗

�
; ð5Þ

whereρq is the electric charge.AGaussian sphere enclosing a
charge Qencl has an electric field of magnitude

E ¼ Qencl

4πr2
1

1þ ϕ=Mγ
≈
Qencl

4πr2

�
1 −

ϕ

Mγ

�
; ð6Þ

normal to its surface.We define the unperturbed electric field
Ē and its perturbation δE as

E ¼ Ēþ δE;

Ē ¼ Qencl

4πr2
; δE ¼ −Ē

ϕ

Mγ
: ð7Þ

1The same could not be said of the Galileon, as its reliance on
derivative operators makes the method of analysis used here
inapplicable to that case. Furthermore, although it is commonly
included the operator in Eq. (2) is not compatible with the
Galileon’s symmetry so is absent from the EFT.

2There are also older bounds coming from e.g., the PVLAS
experiment [17–20], but the area of parameter space that this
experiment tests has been superseded by more recent atom
interferometry experiments [21,22].

3We work in the mostly-positive metric convention, as well as
with units where ℏ ¼ c ¼ 1. We also define the reduced Planck
mass as MPl ¼ ð8πGÞ−1=2.
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We also define the electrostatic potential in the usual way

VðrÞ ¼ −
Z

r

∞
E⃗ · dl

!
; ð8Þ

so that we have V ¼ 0 at spatial infinity. We will again split
this up as V ¼ V̄ þ δV, and using Eq. (7) we have

V ¼ −
Q
4πr

þ δV;

δV ≡ 1

4πMγ

Z
r

∞

ϕQencl

r02
dr0: ð9Þ

In this work we are concerned with hydrogen, where a
single electron orbits a single proton. The proton is
modelled as a sphere of radius R with uniform mass and
charge densities, for a total mass mp and total charge Q. At
leading order, the electric field is

Ē ¼
( Qr

4πR3 r ≤ R;
Q

4πr2 r > R:
ð10Þ

Our aim is to perform nonrelativistic perturbation theory
on the electron with mass me and charge q, which has the
Hamiltonian,

H ¼ p2

2me
þme

M
ϕþ qV: ð11Þ

Using Eq. (9), we identify two perturbations to the
Hamiltonian:

δHm ¼ me

M
ϕ; δHγ ¼ qδV: ð12Þ

III. SCALAR FIELD SOLUTION

To proceed we must provide a particular solution of the
scalar field. To deal with the field’s potentially nonlinear
equation of motion, we solve in a piecewise manner inside
and outside the proton, where in each region we have
linearized the theory about some scalar field value:

ϕ ¼ ϕ̄þ φ: ð13Þ

The external field profile is simplest to deal with as ρ ¼ 0

there. We linearize about the ambient scalar field value ϕ̄out
far away from the atom. Furthermore, we assume that the
scalar field’s Compton wavelength is much larger than the
size of the atom, that is,m−1

out ≫ a0, wherem is the effective
mass of the scalar field, m2ðϕ̄Þ ¼ d2

dϕ2 VðϕÞjϕ¼ϕ̄ and a0 is

the Bohr radius. It follows that the external field equation of
motion is

□φ ¼ −
1

2Mγ
Ē2; ð14Þ

where we have used F2 ¼ 2ðB⃗2 − E⃗2Þ. The solution is

ϕðr > RÞ ¼ ϕ̄out −
B
r
−

Q2

64π2Mγr2
: ð15Þ

The integration constant B is the monopole of the proton’s
field configuration, and will be solved for by matching to
the interior solution.
There are two cases to consider for the interior solution.

In the first case, the scalar field’s Compton wavelength
inside the proton is smaller than the proton radius. In this
regime the field rolls to its equilibrium value in the central
region of the proton so we expand about the equilibrium
field value ϕ̄in, which is defined via

d
dϕ

Veffðϕ̄inÞ ¼ 0; ð16Þ

where VeffðϕÞ ¼ VðϕÞ þ ϕ
M ρ. Note that we are ignoring the

F2 term in the effective potential, which is only appropriate
if the electromagnetic coupling is sufficiently weak. Using
Eq. (10) for the magnitude of the electric field, this
condition is satisfied everywhere within the proton pro-
vided that Mγ=M ≫ E2=ρ ≈ 10−4, which corresponds to a
region of parameter space that is largely complementary to
existing constraints from other experiments. Having lin-
earized about ϕ̄in, the equation of motion is

□φ ¼ m2
inφ −

1

2Mγ
Ē2: ð17Þ

The solution to this equation is

ϕðr < RÞ ¼ ϕ̄in −
A sinhminr

r
þQ2ð6þm2

inr
2Þ

32π2Mγm4
inR

6
; ð18Þ

where A is an integration constant and we have enforced the
condition ϕ0ð0Þ ¼ 0. Matching ϕ and ϕ0 at the boundary
r ¼ R, we find, in the limitsminR ≫ 1 and jϕ̄inj ≪ jϕ̄outj, a
monopole

Bscreened ¼ ϕ̄outR −
Q2

64π2MγR
: ð19Þ

The first term is the standard monopole term for a strongly-
screened scalar field. The second term, however, is new and
depends solely on the photon coupling Mγ .
We now consider the other limit, in which minR ≪ 1,

such that the scalar field does not deviate significantly from
the ambient field value. In this case, we expand about the
external field value ϕ̄out. This is not an equilibrium field
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value, and consequently the equation of motion for the
scalar field in the interior region is

□φ ¼ J −
2

Mγ
Ē2; ð20Þ

where we have defined J ≡ d
dϕVeffðϕ̄outÞ. In this case the

interior scalar field is

ϕðr < RÞ ¼ ϕ̄out þ Aþ Jr2

6
−

Q2r4

640π2MγR6
: ð21Þ

Once again A is an integration constant, and we have
enforced the condition ϕ0ð0Þ ¼ 0. The same procedure of
matching ϕ and its first derivative at R gives a monopole

Bunscreened ¼
R3J
3

−
3Q2

80π2MγR
: ð22Þ

The quantity J is dominated by the density of the object ρ,
so the first term represents the usual monopole for an
unscreened scalar field coupled to matter, mp=M. We find
once again a monopole sourced by the electric field around
the proton.
We can cover both of these regimes by the single

expression,

ϕðr > RÞ ¼ ϕ̄out −
B
r
−

α

16πMγr2
; ð23Þ

where we have used Q ¼ e and the fine-structure constant
α ¼ e2

4π to simplify the last term. This covers both regimes
by writing the monopole as

B ¼ 1

4π

�
λmp

M
− fðλÞ α

MγR

�
; ð24Þ

where we have introduced the screening factor of the
proton

λ ¼ min

�
4πϕ̄outR

M
mp

; 1

�
; ð25Þ

and have introduced the factor

fðλÞ ¼
�
1=4 λ < 1;

3=5 λ ¼ 1:
ð26Þ

In both of these regimes we have found that there is a term
in the monopole that scales as α=ðMγRÞ. This term decays
more slowly than the 1=r2 term in Eq. (23) and is therefore
the dominant contribution from the photon coupling to the
scalar field configuration. This is the key result upon which
we will derive experimental constraints.

IV. PERTURBATION TO
ATOMIC ENERGY LEVELS

Our aim is to do perturbation theory on the nonrelativ-
istic electron with mass m and charge q (for an electron,
q ¼ −e). A nonrelativistic particle has a Hamiltonian

H ¼ p2

2m
þme

M
ϕþ qV: ð27Þ

We see that the scalar field contributes two perturbations to
the Hamiltonian. The first is via the explicit matter
coupling:

δHm ¼ me

M
ϕ ¼ meB

M
1

r
: ð28Þ

The second results from perturbing the electrostatic poten-
tial V, which in turn perturbs the Hamiltonian by an amount

δHγ ¼ qδV ¼ αB
Mγ

1

r2
: ð29Þ

Note that when substituting in the solution for ϕ we have
neglected the irrelevant constant term ϕ̄out, as well as the
subleading 1=r2 term. This approximation is justified via
explicit calculation in Appendix.
The perturbations to the electron’s energy levels are

computed via

δEn ¼ hψnjδHjψni: ð30Þ

The tightest experimental bounds from spectroscopy are on
the hydrogen 1s − 2s energy levels, which have wave
functions given by4

ψ1s ¼
1ffiffiffi
π

p
a3=20

e−r=a0 ;

ψ2s ¼
1

4
ffiffiffiffiffiffi
2π

p
a3=20

�
2 −

r
a0

�
e−r=ð2a0Þ: ð31Þ

The energy levels are shifted by an amount

δE1 ¼
meB
M

1

a0
þ αB
Mγ

2

a20
;

δE2 ¼
meB
M

1

4a0
þ αB
Mγ

4

a20
; ð32Þ

4Earlier we saw that including the finite size of the nucleus had
important consequences for the scalar charge of the object. The
finite size of the nucleus would also slightly modify these wave
functions. Including those modifications here would shift our
results by at most 1 part in 105, so for the present purposes we
stick to wave functions around an infinitely small proton. This is
shown explicitly in Appendix.

BENJAMIN ELDER and JEREMY SAKSTEIN PHYS. REV. D 109, 124007 (2024)

124007-4



where we have used the charges of the electron and proton
(q ¼ −e;Q ¼ þe, respectively), and have also made use of
the integrals given in Table I. The perturbation to the
transition energy between the 1s and 2s orbitals is

δE1−2 ¼ jδE2 − δE1j ¼
meB
M

3

4a0
þ αB
Mγ

2

a20
;

¼ 3meλmp

16πM2a0
−

3fðλÞmeα

16πMMγa0R
þ λmpα

2πMMγa20

−
fðλÞα2

2πM2
γa20R

: ð33Þ

The first term is purely a result of the matter coupling, and
has been explored in detail before [24–26]. Our interest is
the photon couplingMγ , so we will focus on the remaining
three terms. The third term has been studied previously, but
we can see that it is always smaller than the second term, as
fðλÞ ≈ 1 and λ is at most 1. The second and fourth terms are
new and will result in new bounds on the photon coupling.

V. EXPERIMENTAL CONSTRAINTS

The hydrogen 1s–2s energy level difference has been
experimentally measured to a relative accuracy of 4.2 ×
10−15 [23]. This can be combined with Eq. (33) to constrain
screened theories. It should be noted that the theoretical
uncertainty is much larger than this and in practice is the
limiting factor of this approach, which will be discussed at
the end of this section.
In order to proceed, we must specify a scalar potential.

For concreteness, we will focus on the typical chameleon
model:

VðϕÞ ¼ Λ5

ϕ
: ð34Þ

This enables us to determine the ambient scalar field value
ϕout far from the hydrogen atom.
The chameleon potential is shaped such that the field

rolls towards the minimum of its “effective potential”
which is the sum of its self-coupling potential VðϕÞ and
its couplings to other fields, such as to matter and to
photons. In the present work we focus on the regime in
which the coupling to matter dominates the coupling to
photons, so we have

VeffðϕÞ ¼
Λ5

ϕ
þ ϕ

M
ρ: ð35Þ

In a region of constant matter density ρ, such as a vacuum
chamber where the hydrogen spectroscopy measurement is
performed, the field rolls to a value that minimizes its
potential

ϕmin ¼
�
MΛ5

ρ

�
1=2

: ð36Þ

Scalar perturbations around any particular field value have
mass

meffðϕÞ ¼
�
2Λ5

ϕ3

�
1=2

: ð37Þ

However, inside a given vacuum chamber, the field may not
have sufficient room to reach ϕmin. The field profile is one
that minimizes its Hamiltonian, which means balancing

gradient energy (j∇!ϕj2) against its potential energy (Veff ).
If the field’s Compton wavelength about ϕmin is larger than
the vacuum chamber’s characteristic inner dimension Rvac,
then the lowest energy configuration available to the
chameleon field is to roll to a value ϕvac such that
meffðϕvacÞ−1 ≈ Rvac [27,28]. Explicitly, we have

ϕvac ¼ ξð2Λ5R2
vacÞ1=3; ð38Þ

for an Oð1Þ constant ξ which depends on the geometry of
the vacuum chamber. We approximate the vacuum chamber
to be spherical, so ξ ¼ 0.55 [27,28]. The vacuum chamber
and internal apparatus of [23] is not spherical, so we set
Rvac ¼ 1 mm which is approximately the distance between
the atoms and other parts of the internal measurement
apparatus [29]. We also take the density of the residual gas
in the vacuum chamber to be ρ ≈ 10−14 g=cm3 [23]. The
ambient field value in the center of the vacuum chamber
will be whichever of these two field values is smaller:

ϕamb ¼ minðϕmin;ϕvacÞ: ð39Þ

This is the field value we use when computing the
screening factor λ in Eq. (33) and comparing against
the experimental uncertainty of this quantity, stated at
the beginning of this section.
The resulting constraint on the chameleon’s parameter

space are plotted in Fig. 1. We have focused on two
particular choices for the chameleon self-coupling param-
eter, Λ ¼ 2.4 meV and Λ ¼ μeV. The first is a standard
choice, corresponding to the dark energy scale, and has
been extensively tested. Fifth-force searches have placed
powerful bounds that are independent of the photon
coupling Mγ. Atom interferometry and torsion balance
experiments are highly complementary and leave a small

TABLE I. Solutions to the integral hψnjr−mjψni for the s
orbitals of the hydrogen atom.

m ¼ 1 m ¼ 2

n ¼ 1 1
a0

2
a2
0

n ¼ 2 1
4a0

4
a2
0
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window of unconstrained parameter space between them.
This window has recently been tested using a levitated
force sensor [30], and may be further tested in the near
future with Casimir force sensors [31]. The second choice,
Λ ¼ μeV, corresponds to the region of parameter space
where solar chameleons could be detected using planned
electron-recoil dark matter direct detection chambers [13].
These plots show that hydrogen spectroscopy is comple-
mentary to existing tests in certain regions. In other regions,
it re-tests some areas that have been covered by previous
experiments, like electron g − 2, GammeV, and CAST.
When it comes to placing bounds on the theory, there

are two routes available. The first would be to compare
two experimental measurements of E1s−2s in hydrogen,
ideally each with a similar level of sensitivity. Differences
between the experimental parameters such as the vacuum
chamber size or residual density inside the vacuum
chamber could potentially lead to a difference in the
chameleon field values inside each experiment.
Comparisons between the two experiments’ spectroscopic
measurements could then be used to constrain the
chameleon theory. However, this is unlikely to be a
fruitful approach for the following reason. The dominant
terms in Eq. (33) are proportional to fðλÞ, which is the
only environmentally-dependent quantity in those terms.
But fðλÞ only takes one of two possible values, depending
on whether the hydrogen nucleus is screened. For the
chameleon contribution to be different between the two
experiments, it is necessary to have the hydrogen nucleus
be screened in one experiment and unscreened in the
other. This would require vastly different setups: for
example, a vacuum chamber density that differs by
many orders of magnitude between the two experiments.
For a vacuum chamber size of R ¼ 1 mm, within
the most accessible chameleon parameter space of
M ≈ 10−16MPl it follows from Eq. (25) that this scenario
would require one of the experiments to have a ρvac
that is 15 orders of magnitude smaller than what was used
in [23]. This approach then seems extremely unlikely to
be practical.
Alternatively, one could compare the measurement of

E1s−2s to the value that is calculated in the Standard Model.
Indeed, this is the approach previously taken by searches
for new physics with hydrogen spectroscopy [24,32]. The
main drawback is that one is limited not by the exper-
imental uncertainty of the measurement, but by the theo-
retical uncertainty of the calculation. This theoretical
uncertainty is due to uncertainties in the fundamental
constants and measured quantities that are used.
Importantly, the values for those constants must not be
derived from hydrogen spectroscopy experiments, as
hydrogen is being used as the new physics probe. The
largest sources of error are the Rydberg constant, the Lamb
shifts of the states, and the proton charge radius [32]. Until
recently, the uncertainty in the proton radius was the
dominant one, so we briefly recall the argument of [32].

The finite size of the proton produces a shift to the n, l
energy levels

ENS ¼
2m3

eα
4r2p

3n3
δl0: ð40Þ

We are interested in the 1s and 2s energy levels, so
δl0 ¼ 1. The proton radius rp has been a source of much
debate over the past fifteen years. In short, rp may be
measured with hydrogen spectroscopy, muonic hydrogen
spectroscopy, or electron-proton scattering. Until recently,
the values from electronic hydrogen and electron-proton
scattering disagreed with that of muonic hydrogen at the
level of 5σ or more, leading to the so-called proton radius
puzzle. However, recent experiments [33,34] have pro-
duced much closer agreement between the three tech-
niques, leading some to conclude that the puzzle has
been largely resolved [35,36]. See [35,36] for a brief
discussion of the various tensions and experimental
measurements.
We remain agnostic on the state of the proton radius

puzzle, and follow the approach of [32] to estimate the
contribution from rp to the theoretical uncertainty of
E1s−2s. That is, we estimate the uncertainty from rp by
comparing the contributions

δENS ¼ jENS;e − ENS;μj; ð41Þ

where the two values on the right hand side use a value for
rp from electron scattering and muonic hydrogen, respec-
tively. The most recent values are rp;e ¼ 0.831ð14Þ fm [34]
and rp;μ ¼ 0.84087ð39Þ fm [35,37]. This method enables
us to quantify the uncertainty due to different determina-
tions of rp while simultaneously avoiding values derived
from electronic hydrogen.5 It results in an uncertainty of
δENS ≈ 10−10 eV, bringing it in line with the uncertainties
due to the Rydberg constant and Lamb shift [32].
As such, we set the overall theoretical uncertainty at

E1s−2s ≈ 10−10 eV. Figure 1 shows that this results new
constraints on models within approximately one order of
magnitude of M;Mγ ≈ 10−16MPl. Also marked on the plot
is a dotted line corresponding to the experimental uncer-
tainty of 4.3 × 10−14 eV [23]. This represents the maxi-
mum constraining power of the experiment, should the
theoretical uncertainty be reduced.

5Of course, it is possible that the effects of the chameleon field
could also be active in the muonic hydrogen and electron
scattering experiments. Following [24,32] we estimate the effects
within electronic hydrogen experiments and leave a full analysis
and comparison of all relevant experiments to future work.
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VI. COMPARISON TO OTHER
EXPERIMENTAL BOUNDS

It will be useful to compare our constraints to existing
bounds. However, these bounds are often not presented in
full generality, either stating their bounds in terms of the
local chameleon mass or by fixing one of the chameleon
parameters (typically by settingΛ ¼ 2.4 meV). As we have
adopted neither of these approaches, it will be necessary to
reinterpret some of these constraints. A reader who is
already familiar with these experiments and their con-
straints may wish to skip ahead to our conclusions in
Sec. VII.

A. GammeV-CHASE

The GammeV-CHASE experiment uses a laser and a
magnetic field to produce chameleon particles inside a
vacuum chamber. After a period of time, the laser is
switched off and the conversion of chameleons back into
photons may be detected. This experiment is sensitive to
models where (i) the chameleon mass in the vacuum
chamber is sufficiently small to be produced by the laser,
and (ii) the chameleon mass inside the vacuum chamber
walls is sufficiently large to trap the chameleons inside the
chamber. Furthermore, it required that (iii) the chameleon-
photon coupling not be too large, otherwise the conversion

FIG. 1. Combined constraints on chameleon parameter space, with the chameleon self-coupling parameter Λ set to the dark energy
scale ΛDE ¼ 2.4 meV (top) and to Λ ¼ μeV (bottom). Figures on the right are zoomed in to the region of newly constrained parameter
space. The blue shaded region results from an estimate of the theoretical uncertainty of E1s−2s within the Standard Model, while the
dashed purple line shows the maximum constraining power of the experiment [23], should the theoretical uncertainty be reduced.
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of chameleons into photons occurs too quickly to be
observed. The constraints in Fig. 1(a) are taken directly
from the most recent publication [15]. This paper did not
report constraints at the Λ ¼ μeV scale, although some
constraints are expected to still apply within the appropriate
regime of parameter space in which the above-mentioned
criteria are satisfied. The constrained region in Fig. 1(d) is
the region in which conditions (i)–(iii) are satisfied, and
where the photon coupling is Mγ > 2 × 10−12MPl [38]. A
more detailed analysis, of the sort done in [15], would
likely exclude a slightly larger region of parameter space,
but is beyond the scope of the present work.

B. CAST

The CERN Axion Solar Telescope (CAST) is sensitive
to chameleons produced in the Sun. Strong electromag-
netic fields in the Sun produce chameleons via the
electromagnetic coupling, which then propagate inside
the CAST detector, which has a strong magnetic field to
convert the chameleon particles back into photons which
are then measured by the detector. Like the GammeV
experiment, this relies on a balance of different behaviors;
the chameleons must be too heavy to be produced in the
core of the Sun (otherwise they would cause stars to cool
too quickly) yet also be light enough to be produced in the
Sun’s tachocline, and sufficiently weakly coupled to
matter to be able to propagate through the lead shielding
of the detector. The latest constraint on chameleons [14] is
shown in Fig. 1(a). That paper did not provide constraints
for the Λ ¼ μeV model, although to be consistent with the
above requirements the constraint would exist within 1–2
orders of magnitude in M around M ≈MPl.

C. Particle colliders

Very similar models to the one considered here have
been constrained using data from particle colliders [39].
This analysis ruled out models with Mγ ≳ TeV. However,
there are two important caveats to note. First, the chame-
leon model was assumed to have a mass smaller than
10−8 eV inside the collider ring. The models considered
here are considerably heavier in that environment, and
therefore these bounds relax by an Oð1Þ factor [39].
Second, that study relied on a uniform coupling to all
Standard Model gauge fields, not just the photon as we
consider here. As such, this bound does not conclusively
rule out any of this parameter space.

D. Electron g− 2
Measurements of the anomalous magnetic moment of

the electron are capable of constraining the chameleon’s
couplings to matter and to photons [16]. The chameleon
contributes both a quantum and classical effect to the
measurement, although for the two values of Λ chosen here

only the quantum contribution is relevant. When the
chameleon mass is much smaller than the electron mass,
the contribution is

δaμ ¼ 3

�
me

4πM

�
2

þ 4
1

MγM

�
me

4π

�
2
�
Oð1Þ þ 3

2

�
: ð42Þ

The experimental constraint on the anomalous magnetic
moment is δaμ < 0.77 × 10−12 [40,41], yielding the con-
straints shown in Fig. 1.

E. Polarization

The chameleon-photon interaction can also result in the
polarization of light from distant stars [42]. It has been
shown that this results in a constraint that rules out Mγ <
1.1 × 109 GeV for chameleon models that have an effective
mass mϕ < 1.3 × 10−11 eV inside the Milky Way [9,42],
where the ambient density was taken to be 10−24 g=cm3.
This constraint, along with constraints coming from mea-
surements of active galactic nuclei [43,44] involve assump-
tions about generally poorly known variables like the
ambient densities and magnetic fields in astrophysical
environments, so although the regions are suggested to
be excluded one cannot say that they are conclusively ruled
out [9].

VII. DISCUSSION AND CONCLUSIONS

We have constrained a wide range of chameleon
models that couple to photons with existing experimental
bounds on the hydrogen spectrum. A window of theory
space spanning one order of magnitude around M;Mγ ≈
10−16MPl is now constrained for the first time. This was
achieved by solving for the chameleon field around a
hydrogen nucleus, as well as the shifts to the electron
energy levels. There are several effects that produce
perturbations: first, the scalar coupling to matter, which
mediates a fifth force between the proton and electron, as
well as a shift to the electrostatic potential due to the
presence of the scalar field profile. We focused on the case
in which the scalar field profile is determined by its matter
coupling, and thus there is the usual chameleon phenom-
enology in which the proton can be screened or unscreened
depending on a model’s specific values of the self-coupling
parameter Λ and the matter coupling Mγ . In future work it
would be interesting to relax this assumption, which would
widen the scope of constrainable parameter space and allow
the intriguing possibility for the photon interactions to
screen (or unscreen) the proton, and charged particles more
generally. This work also showed the possibility for the
chameleon to behave like a varying-α theory, although this
was not investigated. A thorough investigation of this
intriguing phenomenon would be of great interest.
We have placed new bounds on chameleon parameter

space, and shown that any improvements to the theoretical
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uncertainty on hydrogen’s 1s − 2s transition will automati-
cally rule out new chameleon parameter space, due to the
analysis in this work. At the dark energy scale,
Λ ¼ 2.4 meV, there are now a great deal of experimental
tests that put the simplest chameleon models considered
here under significant tension. We have shown how our
new bounds change with Λ by also presenting the param-
eter space at Λ ¼ μeV, which may also be probed with
planned dark matter direct detection experiments. Where
possible, we have included bounds from other experiments,
but were forced to make estimates of certain other experi-
ments’ capabilities in this regime, particularly GammeV
and CAST. It would be interesting to see a detailed analysis
of these experiments in this region of parameter space, and
how they compare to the bounds presented here.
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APPENDIX: SCALAR FIELD SOLUTION:
FINITE SIZED NUCLEUS, SCREENED CASE

When we computed the scalar charge of the proton, we
found that it was important to account for its finite size.
However, when we computed the perturbations to the
energy levels, we treated the exterior solution as valid
all the way down to r ¼ 0. We also neglected the sub-
leading r−2 term in the exterior solution when computing
these integrals. In this Appendix we show that both of these
approximations were justified.
We begin with the screened case, where the full

solution is

ϕðrÞ ¼
8<
:
ϕ̄in−

Asinhminr
minr

þ Q2ð6þm2
inr

2Þ
32π2Mγm4

inR
6 r≤R;

ϕ̄out− B
r −

Q2

64π2Mγr2
r > R:

ðA1Þ

The integration constants are

A ¼ 2min

minR coshminR

�
−B
2

þ Q2

64π2MγR

�
;

B ¼ ðϕout − ϕinÞR −
Q2

64π2MγR
: ðA2Þ

We have already used the limitminR ≫ 1 to simplify A and
B, but not ϕ. Doing so, we find

ϕðrÞ ¼
8<
:

ϕ̄in r ≤ R;

ϕ̄out − B
r −

Q2

64π2Mγr2
r > R:

ðA3Þ

We see that continuity of ϕ has been preserved, but now
there is a discontinuity in ϕ0 at r ¼ R. That being said, we

derived this result from expressions that were continuous at
R. It is only in the limit minR ≫ 1 that the kink develops.
Finally, we note that continuity of ϕ at r ¼ R, combined
with Eq. (A2) sets ϕ̄in ¼ 0, reducing the field solution to

ϕðrÞ ¼
(
0 r ≤ R;

ϕ̄out − B
r −

Q2

64π2Mγr2
r > R:

ðA4Þ

The perturbation from the matter interaction is

δHm ¼
8<
:

0 r < R;

me
M

�
ϕ̄out − B

r −
Q2

64π2Mγr2

�
r ≥ R:

ðA5Þ

The shift to the first energy level from δHm is

δEm
1 ¼ me

M
ϕ̄out

�
1 −

4

3

R3

a30

�
−
meB
Ma0

�
1 − 2

R2

a20

�

−
meQ2

64π2MγMa20

�
1

4
−

R
2a0

�
: ðA6Þ

Note that these expressions are not exact, as we have
expanded them in R=a0 and kept only the leading two
terms. This expression is to be compared with Eq. (32).
The first term is akin to a varying-α theory (see, for
example, [45]) and is therefore not considered in this
work. The second term shows that the finite proton radius
shifts the corresponding term in Eq. (32) by the entirely
insignificant amount R

2

a2
0

≈ 10−10. The third term results from

our inclusion of the r−2 term in the exterior solution of ϕ.
Clearly the finite radius correction is again negligible.
However, it is still unclear whether the leading-order term
can be neglected as was done in the main text. This is only
justified if the following is true:

B ≫
Q2

MγMa0
: ðA7Þ

Substituting our solution for B, given by Eq. (A2), we have

1

R
≫

1

a0
; ðA8Þ

which is certainly true and therefore our approach was
justified. The same argument holds true for the n ¼ 2
energy level perturbations as well.
Now we consider the energy level perturbations stem-

ming from δHγ . The perturbation to the Hamiltonian via the
electromagnetic interaction follows from Eq. (9) as

CONSTRAINING THE CHAMELEON-PHOTON COUPLING WITH … PHYS. REV. D 109, 124007 (2024)

124007-9



δHγðrÞ ¼

8><
>:
δHγðRÞ r < R;

qQ
4πMγ

�
−ϕ̄out
r þ B

2r2 þ Q2

192π2Mγr3

�
r≥R;

ðA9Þ

where δHγðRÞ the exterior solution evaluated at r ¼ R.
Once again we will expand the integrals for the shift to the
energy levels in R=a0, keeping only the leading terms. The
contribution from the interior part of the integrals, from 0 to
R, scales as ðR=a0Þ3, so this is once again strongly
suppressed. The same is true of the 1=r and 1=r2 pieces
in the exterior solution, confirming again that we were
justified in ignoring the finite size of the nucleus.
What is less clear is whether we were justified in

dropping the 1=r3 term in Eq. (A9). The integrands for
the energy perturbations diverge in the limit R → 0, so we
cannot easily Taylor expand in this limit as we did for the
other terms. Instead, we can note that the divergence is
logarithmic, so the numerical coefficient after integration
will be ≈ logðR=aÞ, so that the perturbation is

δE ≈Oð1Þ × Q4

768π2M2
γa30

: ðA10Þ

This is to be compared with the B=r2 term in δHγ, which
ends up scaling as

δE ≈
Q4

M2
γa20R

: ðA11Þ

Clearly the term in Eq. (A11) is much larger than the term
in Eq. (A10), so we confirm that it is not necessary to
include the 1=r3 exterior potential.

1. Unscreened case

When the proton is unscreened, the full solution for the
scalar field is

ϕðrÞ¼
8<
:
ϕ̄outþ 3Q2

128π2R2Mγ
þ J

6
ðr2−3R2Þ− Q2r4

640π2MγR6 r≤R;

ϕ̄out−B
r −

Q2

64π2Mγr2
r>R;

ðA12Þ

where

B ¼ JR3

3
−

3Q2

80π2MγR
: ðA13Þ

Unlike the screened case, where we assumed minR ≫ 1 in
order to simplify the expression, there is no need to do so in
this case. This is because we have already neglected the
scalar mass: when we expanded the Lagrangian, we used
VeffðϕÞ ¼ Vðϕ̄Þ þ Jφþ 1

2
m2

effφ
2, and we neglected meff as

it is not the leading term.
Most of the arguments for the screened case apply here

as well: we are generally not interested in effects following
from ϕ̄out by itself as this is tantamount to a varying-α
theory, and the 1=r2 term in the exterior solution may be
safely neglected. The only new effects for this case come
from the terms in the interior solution. However, these
contribute corrections that are suppressed by at least R=a0
relative to other terms, and therefore finite radius correc-
tions may be neglected in the unscreened case as well.
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