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We construct a wide class of black hole solutions to the general theory of ghost-free multimetric gravity
in arbitrary spacetime dimension, extending and generalizing the known results in four-dimensional dRGT
massive gravity and bigravity. The solutions are split into three generic classes based on whether the metrics
can be simultaneously diagonalized—one of which does not exist in dRGT massive gravity nor bigravity,
and is only possible when one has more than two interacting metric fields. We also linearize the general
multimetric theory to determine the dynamics of the massive spin-2 modes, including examples where this
can be done analytically, and use the linear theory to discuss the stability of the four-dimensional multi-
Schwarzschild and multi-Kerr solutions. We explain how the instabilities that plague these solutions in
dRGT massive gravity and bigravity carry across to the general multimetric theory, touching upon ideas of
dimensional deconstruction to make sense of the results.
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I. INTRODUCTION

Over the past decade or so, our understanding of the
physics of interacting spin-2 fields has been revolutionized.
It has long been known that general relativity (GR) is
the unique local, two-derivative, nonlinear theory that
describes a single, self-interacting, massless spin-2 field—
the graviton—in four spacetime dimensions [1–5]. For over a
century, GR has remained our leading descriptor of the
gravitational interaction, passing most observational tests to
within a remarkable degree of precision. Despite its numer-
ous successes, viable alternatives to GR have long been
sought, as it is firstly a crucial task to develop theories of
gravity for us to test GR against, and secondly there remain
multiple outstanding problems at the interface between
gravity and particle physics (e.g. the nature of dark matter
and dark energy, the cosmological constant problem, renor-
malizability etc.). One such alternative proposal, motivated
originally by trying to explain the origin of the observed late-
time accelerated expansion of the Universe [6,7], but later
also by dark matter [8–11] and the hierarchy problem
[12–14], involves modifying gravity by introducing addi-
tional interacting spin-2 fields over and above the single

massless graviton of GR. These theories then go by the
helpful name of “multimetric gravity”, or simply, “multi-
gravity”. There is, however, a no-go theorem, stating that
theories that include multiple massless interacting spin-2
fields are inconsistent [15]; in these multimetric theories, all
but one of the spin-2 fields must be massive. Therefore, any
consistent multimetric theory must be built off the back of a
similarly consistent theory of massive gravity, which itself
has a colorful history.
The story of massive gravity dates back to 1939, when

Fierz and Pauli first wrote down the linearized theory
describing a massive, self-interacting spin-2 field [16]. For
a long while, it was the pervasive view that any nonlinear
completion of the linear Fierz-Pauli theory would be
pathological, owing to the emergence of the so-called
Boulware-Deser (BD) ghost—a problematic scalar mode
equipped with wrong-sign kinetic term, signalling an
instability of the vacuum—as soon as nonlinear interactions
were taken into account [17,18]. However, the original BD
analysis did not take into account all possible interaction
terms, and a breakthrough finally came much later in 2010
when a satisfactory nonlinear theory of massive gravity was
indeed constructed [19–21] and subsequently proved to be
free of the BD ghost [22–28]. The theory, built upon
groundwork laid earlier in [29,30], is now known as dRGT
massive gravity, after its progenitors; de Rham, Gabadadze
and Tolley (there were important contributions also by
Hassan and Rosen [21–24]). In four spacetime dimensions,
it describes the five degrees of freedom of a single
propagating massive graviton via a framework involving
interactions between the physical spacetime metric and an
auxiliary reference metric, which one inserts by hand
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(typically taken to be Minkowski, though this need not be
the case). By providing a kinetic term for the reference
metric, thereby promoting it to a second dynamical field,
one obtains the theory of bigravity [31], which, due to the
special structure of the dRGT interactions, is also ghost
free [32]. The generalization to multiple interacting metric
fields followed soon after in [33], although the general
multimetric theory is only devoid of the BD ghost up to
certain conditions, upon which we shall elaborate in Sec. II.
For further details regarding the development and phe-
nomenology of these theories, we refer the reader to the
excellent and comprehensive reviews [34,35] on massive
gravity, as well as [36] on bigravity.
Armed with a consistent ghost free framework for

multimetric gravity, the natural next step is to begin to
search for physical solutions that might describe our world.
Much work has focussed on such solutions in the realm of
cosmology, with a lot of initial excitement surrounding the
potential of the theories to address the dark energy problem
(see any of the reviews cited above and references therein
for details). However, work has also steadily been ongoing
to construct black hole solutions in these theories and
understand their properties; such an endeavor is of course
crucial to test the theory, since these objects do exist in our
universe and provide a natural arena to look for deviations
from GR [37].
In the multimetric theory, the simplest background

solutions are those in which each metric is proportional,
via a constant conformal factor, to some common GR
background [38,39]. Clearly, these proportional solutions
then contain multimetric analogs of all of the known GR
black hole solutions. In four-dimensional dRGT massive
gravity and bigravity, however, additional nonproportional
solutions are known to exist in which each metric individu-
ally is patterned as a GR solution, but the twometrics are not
simultaneously diagonal [40–47]. Furthermore, owing to the
absence of the GR no-hair theorems [48–50] in massive
gravity, these theories contain solutions that are known only
numerically and are completely foreign to GR, in which the
black holes are endowed with a cloud of massive graviton
hair [51,52].
The linear stability of a number of these dRGT and

bigravity black holes has also been studied, with some
intriguing results. In [53,54], it was shown that the solution
where both metrics are simultaneously proportional to the
(D ¼ 4) Schwarzschild(-dS) metric suffers from a radial
instability that is present for certain values of the graviton
mass. The instability takes the same form as the Gregory-
Laflamme instability afflicting five-dimensional black
strings [55–57]; we shall see later on why this result should
not be surprising. The proportional Kerr solution also suffers
from this radial instability [54], as well as a superradiant one
that is again dependent on the size of the graviton mass
[54,58–60]. On the other hand, the nonproportional
Schwarzschild solution appears to be linearly stable [61,62],

although whether or not it excites a (non-BD) ghost is
unknown. Likewise, the final state of any of the aforemen-
tioned instabilities of the proportional solutions remains to
be determined.
The above results—which are summarized nicely in the

review [63]—as we stated, are known only for dRGT
massive gravity and bigravity, which contain respectively
one and two dynamical metric fields. It remains an open
question as to how the relevant black hole physics carries
over to the general multimetric theory. In this work, we
close this gap somewhat, by explicitly constructing a wide
variety of black hole solutions to the general multimetric
theory (with both classes of allowed interaction structures;
see Sec. II) in an arbitrary number of spacetime dimensions,
generalizing and extending the known dRGT/bigravity
results in D ¼ 4. We also discuss the stability of the
proportional solutions in the D ¼ 4 multimetric theory,
determining how the Schwarzschild and Kerr instabilities
manifest when there are multiple massive spin-2 fields,
rather than just one. The extensions to the multimetric
theory are natural, in the sense that many of the bigravity
results carry over in the manner one might naively expect,
although there are some subtleties regarding the nonpropor-
tional solutions that do arise in the multimetric theory that
are not present in dRGT/bigravity. Throughout, we con-
struct a number of explicit example black hole spacetimes
to illustrate these points, as well as tie in to ideas of
dimensional deconstruction [13,64] to make clear the link
between the instabilities of multimetric black holes and
higher-dimensional black strings.
The structure of the paper, then, is as follows. In Sec. II

we review the general multimetric theory in arbitrary
spacetime dimension, and introduce its metric and vielbein
formulations that will both aid calculations later. In Sec. III
we construct a wide array of arbitrary dimension back-
ground black hole solutions in each of the proportional,
nonproportional and (new for multigravity) partially pro-
portional branches. In Sec. IV we linearize the general
multimetric theory to express explicitly the dynamics of
the spin-2 mass modes, providing examples where one
may do this analytically. In Sec. V we use this linear theory
to extend the dRGT/bigravity results regarding the insta-
bility of the proportional Schwarzschild and Kerr solutions
to the general multimetric theory. Finally we conclude
in Sec. VI.
We work with natural units c ¼ ℏ ¼ G ¼ 1 throughout,

and always use a mostly plus metric signature.

II. REVIEW OF MULTIMETRIC GRAVITY

The action for multimetric gravity, living on some
D-dimensional spacetime manifold MD, can be written
conveniently in the vielbein formalism as a sum of N
Einstein-Hilbert kinetic terms [65–67] together with an
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interaction potential of degree D coupling the various basis
1-forms (see e.g. [12,14,33,68]):

S ¼ SK þ SV þ SM; ð1Þ

SK ¼
XN−1

i¼0

MD−2
i

2

Z
MD

RðiÞ
ab ∧ ⋆ðiÞeðiÞab; ð2Þ

SV ¼−
XN−1

i1���iD¼0

Z
MD

εa1���aDTi1���iDe
ði1Þa1 ∧ � � �∧ eðiDÞaD: ð3Þ

The tetrad basis 1-forms are eðiÞa ¼ eðiÞaμ dxμ, where the
indices run from 0 to D − 1, with the vielbeins defined

through gðiÞμν ¼ eðiÞaμ eðiÞbν ηab, and the shorthand eðiÞab��� in the
kinetic term means eðiÞa ∧ eðiÞb ∧ � � �. We say that the (i)
labels refer to a particular “site” within the interaction
structure; indices are then raised/lowered sitewise; Latin

indices with ηab and Greek indices with gðiÞμν , while we can
swap between Latin and Greek indices using the vielbeins,

via changes of basis. RðiÞ
ab is the curvature 2-form associated

with the ith (Levi-Civita) connection, with one index
lowered by ηab, so that the kinetic term is just N copies
of the usual Einstein-Hilbert action, written in the conven-
ient language of differential forms. The Ti1���iD ¼ Tði1���iDÞ
are symmetric coefficients that characterize the interactions
between the tetrads. Finally, SM is the action for the
collective matter fields coupled to the theory.
We note that since we are working in an arbitrary

number of dimensions, in principle the higher-dimensional
Lovelock invariants (the Euler-Poincaré forms, in differ-
ential form language) may also be included in the kinetic
term SK [69,70], although we restrict ourselves to only
include the Einstein-Hilbert term for simplicity.
One can also express the theory described by Eq. (1) in

the more commonly used metric formalism [21,71,72],
where the interaction term is instead written in terms of the
characteristic building block matrices

Si→j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g−1ðiÞgðjÞ

q
; ð4Þ

with the matrix square root defined in the sense that

ðS2i→jÞμν ¼ gðiÞμλgðjÞλν . Explicitly, the metric version of the
potential term is

SV ¼ −
X
i;j

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gðiÞ

q XD
m¼0

βði;jÞm emðSi→jÞ; ð5Þ

where the βði;jÞm ¼ βðj;iÞm are arbitrary constants related to the
Ti1���iD of the vielbein formalism in a manner we shall soon
specify, and the emðSÞ are elementary symmetric poly-
nomials of the eigenvalues of S, given by

e0ðλ1; λ2;…; λDÞ ¼ 1; ð6Þ

e1ðλ1; λ2;…; λDÞ ¼
X
1≤i≤D

λi; ð7Þ

e2ðλ1; λ2;…; λDÞ ¼
X

1≤i<j≤D
λiλj; ð8Þ

..

.

ekðλ1; λ2;…; λDÞ ¼
X

1≤j1<j2<…<jk≤D
λj1…λjk ; ð9Þ

..

.

eDðλ1; λ2;…; λDÞ ¼ λ1λ2…λD: ð10Þ

They can also be constructed iteratively in terms of the trace
of S, as

emðSÞ ¼ −
1

m

Xm
n¼1

ð−1ÞnTrðSnÞem−nðSÞ: ð11Þ

The structure of the building block matrices means that
Si→j ¼ S−1j→i, so there is a sense in which the interactions are
oriented [39,73]; we say that a term in the potential, Eq. (5),
which contains Si→j (not Sj→i) is positively oriented with
respect to the ith metric and negatively oriented with
respect to the jth metric. The orientation will affect the
equations of motion for the ith and jth metrics differently,
as we will soon see, and it is accounted for in the vielbein
formalism within the structure of the Ti1���iD .
These metric interactions, as they must, take precisely

the special dRGT form that is required to remove the
Boulware-Deser ghost [19–21]. It was argued in [74] that
the vielbein theory described by the action (1) is therefore
ghost free only if it has an equivalent description in metric
form, which happens whenever the so-called Deser-van
Nieuwenhuizen symmetric vielbein condition,

eðiÞμae
ðjÞb
μ ¼ eðiÞμbeðjÞμa ; ð12Þ

is satisfied. The known vielbein models that satisfy this
condition are those involving only pairwise interactions
with no cycles (a cycle is e.g. 1 → 2 → 3 → 1), so such
models are manifestly ghost free [39,75,76], though more
recently constructions that evade the arguments of [74] yet
nevertheless remain ghost free were given in [77,78].
Both the metric and vielbein formalisms of multimetric

gravity prove useful calculational tools in different situa-
tions; indeed, we shall employ both at different points in
this work, depending on which is more appropriate. When
working with the vielbein formalism, we shall choose,
however, to restrict to those ghost-free vielbein theories that
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do permit a metric description, for simplicity. In particular,
we shall take “chain-type” interactions [39], where the ith
metric interacts only with its nearest neighbors, and the
interactions are always positively oriented from i to
(iþ 1).1 Such a choice is natural if one thinks of the
theory as arising from some sort of dimensional decon-
struction [13,14,64]. In terms of the Ti1���iD , this means that
one can only permit terms of the form Tiiii���, Tiþ1;iii���,
Ti−1;iii���, Tiþ1;iþ1;ii��� and so on.
Amongst the general class of theories described by

Eq. (1), a particular model is specified entirely by a choice
for both the number of metrics N and the Ti1���iD coef-
ficients. For chain-type interactions, one can always neatly
parametrize the Ti1���iD in terms of some new constants

βði;iþ1Þ
m , which characterize the interactions between the ith

and (iþ 1)th metrics, as [14]

D!Tiiii���i ¼ βði;iþ1Þ
0 þ βði−1;iÞD ð13Þ

D!Tfiþ1gmfigD−m ¼ βði;iþ1Þ
m ; ð14Þ

where i ¼ 0;…; N − 1 and m ¼ 0;…; D, with βð−1;0Þm ¼
βðN−1;NÞ
m ¼ 0 since on each of the two boundaries of the

interaction chain the corresponding metrics have only one
nearest neighbor. The factor of D! is included so that these

βði;iþ1Þ
m are then precisely the same βði;jÞm as in the metric

formalism Eq. (5). The sense of interaction orientation is
encoded in Tiiii���i, where positively oriented interactions
contribute a β0 term while negatively oriented interactions
contribute a βD term. In practice, we will often choose to

write βði;iþ1Þ
m ¼ αiβm, where α−1 ¼ αN−1 ¼ 0 but the rest of

the αi are equal, restricting to the case where the inter-
actions between all of the metrics in the chain are
characterized by the same set of parameters βm. This is
both to avoid having an abundance of free parameters in the
theory and because, again, such a choice is natural from the
deconstruction perspective. However, we shall keep the

generic set of βði;iþ1Þ
m in for most of our expressions in order

to be as general as possible.
The equations of motion for the general D-dimensional

theory are

MD−2
i GðiÞμ

ν þWðiÞμ
ν ¼ TðiÞμ

ν; ð15Þ

where TðiÞμ
ν are the energy-momentum tensors for the

various sites, and the new termW characterizes the effect of
the interactions over and above the standard GR inter-
actions. Explicitly, in vielbein form, WðiÞμ

ν reads [14] (see
Appendix A for the derivation):

WðiÞμ
ν ¼ D!eðiÞaν eðiÞμ½ae

ðiÞλ1
b1
� � � eðiÞλD−1

bD−1�

×
X

j1���jD−1

PðiÞTij1���jD−1
eðj1Þb1λ1

� � � eðjD−1ÞbD−1
λD−1

; ð16Þ

with PðiÞ counting the number of times the index (i)
appears in the interaction coefficients i.e. a term with
Tij1���jD−1

has PðiÞ ¼ 1, a term with Tiij2���jD−1
has PðiÞ ¼ 2,

and so on. The equivalent metric formalism expression is

WðiÞμ
ν ¼

X
j

XD
m¼0

ð−1Þmβði;jÞm Yμ
ðmÞνðSi→jÞ

þ
X
k

XD
m¼0

ð−1Þmβðk;iÞD−mY
μ
ðmÞνðS−1k→iÞ; ð17Þ

where (with respect to the ith metric) j denote positively
oriented interactions, k denote negatively oriented inter-
actions, and we define

YðmÞðSÞ ¼
Xm
n¼0

ð−1ÞnSm−nenðSÞ: ð18Þ

The TðiÞμ
ν are not completely arbitrary; in order to

remain ghost free, the forms of matter coupling that one
can permit are severely restricted. In general, one must
couple entirely separate matter sectors to separate viel-
beins, otherwise the BD ghost is resurrected [79–81]. There
is the notable exception, however, where a single matter
source can be coupled to multiple vielbeins in a ghost free
manner through the special “effective” vielbein considered
in [77,80,82–84].
The noninteracting theory possesses N copies of diffeo-

morphism invariance. Turning on the interactions, these
diffeomorphisms are broken to a single surviving diagonal
subgroup, so the theory propagates a single massless
graviton (invariant under transformations of this subgroup)
and N − 1 massive gravitons, which are linear combina-
tions of the original metric perturbations.
As a result of theBianchi identities for eachEinstein tensor,

as well as the surviving diagonal diffeomorphism invariance,
the W-tensor is subject to the Bianchi constraint [14]:

XN−1

i¼0

jeðiÞj∇ðiÞμWðiÞ
μν ¼ 0: ð19Þ

Whenever matter couples to one site only, or when there is
no matter coupling at all, the divergences of each W-tensor

1In principle, “star-type” interactions: where many metrics all
couple to some common central metric but not to each other, are
also allowed. The most general ghost free interaction one could
choose in multigravity (at least, from those vielbein theories
permitting a metric description) then consists of arbitrary combi-
nations of “star-type” and “chain-type” interactions (see Ref. [39]
for more details). We will look at how our calculations in the later
sections change for a star-type interaction in Appendix C.
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(i.e. each term in the above sum) must instead vanish
individually, telling us that there can be no flow of energy-
momentum across the chain of interactions.

III. BACKGROUND SOLUTIONS
AND BLACK HOLES

General solutions of the multimetric theory can deviate
markedly from solutions of GR, although it has long been
known that the simplest multimetric solutions are those
where all metrics are proportional to some common GR
background [38,39]. Such solutions are useful, because
they tell us about those multimetric solutions that are close
to what we already know from GR. They also admit a
sensible perturbative description that allows us to analyze
the mass spectrum (indeed, we shall see this in Sec. IV).
However, these simple solutions are also restrictive; viable
cosmological solutions, for example, necessarily do not
lie in this class [14,85] and, as we shall demonstrate
shortly, there exist numerous black hole solutions
where the metrics are not proportional (a fact that has
been known in bigravity for some time [45,46,63]).
Nevertheless, both types of solution are important, so
we shall consider each in turn, utilizing both metric and
vielbein formalisms where appropriate to aid in their
construction.

A. Proportional solutions

We look for solutions to the multimetric Eqs. (15) where
the metrics are conformally related to one another,

gðiÞμν ¼ a2i ḡμν; ð20Þ

where at this stage ḡμν is some arbitrary fixed metric
common to all sites. Since all of the metrics live on the
same manifoldMD, one only has the freedom to rescale the
coordinates to fix one of the ai, so their values are physical,
up to an overall normalization.
With the ansatz (20), the ith vielbein and its inverse are

given by

eðiÞaμ ¼ aiēμa; ð21Þ

eðiÞμa ¼
1

ai
ēμa: ð22Þ

Therefore, one may express the W-tensor in terms of ēμa

only, and so remove the vielbeins from the sum over the j’s
entirely:

WðiÞμ
ν ¼ D!ēνaēμ½aēλ1b1 � � � ēλD−1

bD−1�ē
b1
λ1

� � � ē bD−1
λD−1

×
X

j1���jD−1

PðiÞTij1���jD−1

aj1 � � � ajD−1

aD−1
i

: ð23Þ

Since all the vielbeins now belong to the same back-
ground geometry, they can be contracted. It is simple
enough to show that the vielbeins contract to

D!ēνaēμ½aē
λ1
b1
� � � ēλD−1

bD−1�ē
b1
λ1

� � � ē bD−1
λD−1

¼ ðD − 1Þ!δμν ; ð24Þ

and so the W-tensor takes the following simple, diagonal
form, irrespective of the precise identity of ḡμν,

WðiÞμ
ν¼ðD−1Þ!δμν

X
j1���jD−1

PðiÞTij1���jD−1

aj1 � � �ajD−1

aD−1
i

: ð25Þ

Taking chain-type interactions, using the symmetry of
the Ti1���iD coefficients, and parametrizing them as in
Eqs. (13) and (14), one finds that the components of the
W-tensor are explicitly given by

WðiÞμ
ν ¼ δμν

�XD
m¼0

βði;iþ1Þ
m

�
D − 1

m

�
amiþ1a

−m
i

þ
XD
m¼0

βði−1;iÞD−m

�
D − 1

m

�
ami−1a

−m
i

�
: ð26Þ

The Bianchi constraint Eq. (19) forces all the ai to be
constant [38]. Lowering an index in Eq. (26) tells us that

WðiÞ
μν ∝ gðiÞμν ; therefore, we should interpret our W-tensors as

effective cosmological constants on each site (i), which
arise due to the interactions. The downstairs index Einstein
tensor is scale invariant, that is, GμνðgÞ ¼ GμνðagÞ, so we
have that GðiÞμ

ν ¼ Ḡμ
ν=a2i . We can absorb these factors of

ai into the definitions of the effective cosmological con-
stants and energy-momentum tensors so that the multi-
metric equations reduce simply to N copies of the standard
Einstein equations for ḡμν:

Ḡμ
ν þ Λiδ

μ
ν ¼ M−ðD−2Þ

i T̄ðiÞμ
ν; ð27Þ

where the effective cosmological constants Λi are precisely
the contributions from WðiÞμ

ν. Explicitly, the appropriate
rescaled quantities are

Λiδ
μ
ν ¼ a2i

MD−2
i

WðiÞμ
ν; ð28Þ

T̄ðiÞμ
ν ¼ a2i T

ðiÞμ
ν; ð29Þ

so that all terms in Eqs. (27) now behave as if they lived on
the common background ḡμν i.e. have their indices manip-
ulated with ḡμν.
We can take differences of Eq. (27) to show that the

effective cosmological constants must satisfy:

Λi ¼ Λ̄ ∀ i; ð30Þ
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and similarly the energy-momentum tensors must all be
proportional [38],

T̄ðiþ1Þμ
ν ¼

�
Miþ1

Mi

�
D−2

T̄ðiÞμ
ν: ð31Þ

This restriction on the matter sources may not be
necessarily realistic in general, but it is certainly true in
vacuum, where all the energy-momentum tensors vanish.
Therefore, these proportional solutions describe perfectly
acceptable vacua at the background level in multimetric
gravity. We shall construct some examples shortly, though
before we get there, we note that the condition on the Λ’s is
not as simple as it may first seem, since on the “boundary”
sites of the interaction chain (i.e. i ¼ 0 and i ¼ N − 1) one
set of β’s vanishes, so only one sum is present in the

corresponding W-tensor. If we denote ΛðþÞ
i as a2i =M

D−2
i

times the sum involving aiþ1 and Λð−Þ
i as a2i =M

D−2
i times

the sum involving ai−1, then what we actually have is the
following:

ΛðþÞ
i þ Λð−Þ

i ¼ Λ̄ all i in bulk; ð32Þ

ΛðþÞ
0 ¼ Λ̄ i ¼ 0; ð33Þ

Λð−Þ
N−1 ¼ Λ̄ i ¼ N − 1: ð34Þ

As mentioned earlier, one may rescale the coordinates to
fix the value of exactly one of the conformal factors. In
vacuum, then, with all T̄ðiÞμ

ν ¼ 0, the equations of motion
(given a choice for the interaction coefficients and provided
that Ḡμ

ν ¼ −Λ̄δμν) specify a system ofN algebraic equations
for N variables; namely, Λ̄, as well as the N − 1 remaining
unfixed conformal factors [see Eq. (26)]. One may in
principle solve these equations to obtain the vacuum
structure of the corresponding multimetric theory (coor-
dinate rescaling can always be used to fix the overall
normalization). In general, there may be multiple solutions,
the physical ones being those where the conformal factors
are real; the number of such physical solutions is in general
dependent on both N and Ti1���iD .
We further note that the splitting of the Λ’s given in

Eqs. (32)–(34) means that, unless Λ̄ ¼ 0, or unless one
includes a bare cosmological constant not arising from the
W-tensor on the boundary sites to account for the missing
terms, it is impossible to find solutions where there is a
constant ratio between the conformal factors throughout the
chain of interacting metrics i.e. where aiþ1=ai ¼ C ∀ i.
These proportional solutions contain multimetric ana-

logs of all of the known GR black hole solutions. In
particular, in D-dimensions, if one takes any of the Myers-
Perry metrics [86] as their ḡμν, the proportional ansatz
Eq. (20) will be a solution of the multimetric theory,
provided that there exists a physical solution to the

equations for the conformal factors. Within this general
class of solutions, there are contained many special cases
that are interesting to consider on their own. We shall look
at a couple of concrete examples in D ¼ 4 for demonstra-
tive purposes.

1. Deconstructed black string in 4D

As a straightforward example, but one with an interest-
ing physical interpration, one may take ḡμν to be the
Schwarzschild metric. One then has the situation where
the multigravity metrics are

ds2ðiÞ ¼ a2i

�
−
�
1 −

rs
r

�
dη2 þ dr2

ð1 − rs
r Þ

þ r2dΩ2
ð2Þ

�
; ð35Þ

with rs the Schwarzschild radius and dΩ2
ð2Þ the line element

for the 2-sphere. This ansatz solves the vacuum equations,
provided that the conformal factors are such that Λ̄ ¼ 0.
The physical meaning of the various conformal factors

in this scenario is clear; suppose we make the coordinate
changes r → r̃ and η → t defined by r ¼ r̃=ai and
dη ¼ dt=ai, then the ith metric becomes:

ds2ðiÞ ¼ −
�
1 −

rsai
r̃

�
dt2 þ dr̃2

ð1 − rsai
r̃ Þ þ r̃2dΩ2

ð2Þ; ð36Þ

and we see that an observer minimally coupled to the ith
metric would see a black holewhose Schwarzschild radius is
scaled by ai. In principle, we can imagine having separate
observersminimally coupled to eachmetric, whowould each
report seeing a black hole with a different sized horizon
according to the vacuum structure dictated by WðiÞμ

ν ¼ 0.
This situation is reminiscent of the well-known black

string solutions in higher-dimensional gravity, where
Schwarzschild hypersurfaces are glued together to form
an extra dimension (see Ref. [87] for the general p-brane
solution). The multimetric solution where the metrics are
all conformally Schwarzschild is precisely the dimensional
deconstruction [13,64] of these black strings, where each
metric is to be thought of as corresponding to a discrete
location in the extra compact dimension (which must be an
interval, rather than an orbifold [14]), and the information
regarding the geometry of the extra dimension is encoded
in the structure of the conformal factors.
For example, one may choose to work with a clockwork

theory [12–14], which is special amongst the general
multimetric constructions in that it further imposes that
the vacuum structure is such that the conformal factors
possess a hierarchy, leading to one end of the chain of
metrics being exponentially suppressed compared to the
other i.e. something like,

ai ¼
a0
qi

; ð37Þ
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with q≳ 1. The idea is that by coupling matter to the
suppressed end of the chain, we engineer a suppressed
coupling to the surviving massless graviton, since one can
show that the structure of the zero-mode is directly
proportional to the vacuum structure [12,14]—we will
see this explicitly in Sec. IV. This way, one can imagine
a situation whereby the fundamental scale of the theory is
small, but matter interactions with the massless graviton are
still at the Planck scale, with a view to solving the hierarchy
problem (see Refs. [88–92] and references therein for an
overview of this idea in nongravitational contexts).
One must choose their β’s in the manner prescribed by

Eq. (27) to ensure that such a vacuum solution exists; two
example models were constructed in [14], one being
essentially a deconstruction of the 5D Randall-Sundrum
(RS1) braneworld model [93–96].
With this vacuum structure, we see that the system is

solved by a series of 4D Schwarzschild metrics whose
horizon sizes decrease by a factor q as one moves along the
chain of interacting metrics. This looks a lot like the anti–
de Sitter (AdS) black string in 5D [97], where the system is
solved by a metric with Schwarzschild hypersurfaces
multiplied by an exponential factor that decays smoothly
as one moves along the extra dimension. Indeed, for the
parameter choices corresponding to the deconstructed RS1
model considered in [14], the solution (35) is precisely the
deconstruction of the RS black string. The general 5D
continuum limit of 4D multigravity [13,14] is a more
complicated scalar-tensor braneworld, but the idea remains
the same, with the continuum theory admitting Ricci-flat
hypersurfaces.

2. Kerr-Newman–(anti–)de Sitter black holes in 4D

The most general black hole solution one is able to write
down in 4D GR, as a consequence of the various no-hair
theorems (see e.g. [48–50]), is the Kerr-Newman–(A)dS
metric, which describes a rotating, charged black hole
living in a universe with nonzero cosmological constant. It
is a solution to the Einstein-Maxwell equations, so for our
multimetric scenario we include the following matter
action:

SM ¼
XN−1

i¼0

Z
MD

FðiÞ ∧ ⋆ðiÞFðiÞ; ð38Þ

where the FðiÞ ¼ dAðiÞ are separate electromagnetic field
strengths on each site, given as exterior derivatives of the
corresponding Uð1Þ connections AðiÞ. In components, the

field strengths are FðiÞ
μν ¼ ∂μA

ðiÞ
ν − ∂νA

ðiÞ
μ and the corre-

sponding energy-momentum tensors are

TðiÞμ
ν ¼ FðiÞμ

αF
ðiÞα
ν −

1

4
δμνF

ðiÞ
αβF

ðiÞαβ: ð39Þ

The common metric ḡμν is typically written in Boyer-
Lindquist coordinates as [98–100]

ds̄2 ¼ −
Δr

ρ2Ξ2
ðdt − jsin2 θdϕÞ2 þ ρ2

Δr
dr2

þ Δθ

ρ2
dθ2 þ Δθsin2 θ

ρ2Ξ2
ðjdt − ðr2 þ j2ÞdφÞ2; ð40Þ

where j is the rotation parameter2 and the various functions
are defined as

Δr ¼ ðr2 þ j2Þ
�
1 −

Λ̄
3
r2
�
− rsrþ r2Q; ð41Þ

Δθ ¼ 1þ Λ̄
3
j2cos2 θ; ð42Þ

Ξ ¼ 1þ Λ̄
3
j2; ð43Þ

ρ2 ¼ r2 þ j2cos2 θ; ð44Þ

with rQ a scale related to the electric charge in a manner that
will be fixed below. If Λ̄ > 0, themetric isKerr-Newman-dS,
while if Λ̄ < 0 the metric is Kerr-Newman-AdS.
With this choice for ḡμν, the Einstein tensor acquires

contributions from both the cosmological constant and the
charge. The former is accounted for by the W-tensor in
exactly the manner previously described, while the latter is
supplied by the nontrivial electromagnetic fields:

AðiÞ ¼ Qir
ρ2Ξ

ðdtþ jsin2 θdφÞ; ð45Þ

provided that the charges are expressed in terms of rQ as

Qi ¼
ffiffiffi
2

p
MiairQ: ð46Þ

One can check that the field equations for the electromag-

netic fields, ∇ðiÞμFðiÞ
μν ¼ 0, are also satisfied for this choice

of AðiÞ
μ .

This solution contains all the other proportional black
hole solutions of the D ¼ 4 multimetric theory, in the
various limits where one takes combinations of the char-
acteristic parameters (rs; rQ; Λ̄; j) to 0. For example, taking
rQ → 0 gives us the Kerr-(A)dS solution, if we also take
j → 0 we get Schwarzschild-(A)dS, then taking Λ̄ → 0 we
recover the Schwarzschild (black string) solution from
earlier. If instead we keep rQ but send j and Λ̄ to 0, we
get Reissner-Nordstrom. Finally, keeping Λ̄ but sending all

2The rotation parameter is usually written a, but we choose j to
avoid confusion with the conformal factors.
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relevant black hole parameters to 0 we recover the static
coordinate form of the dS vacua that were previously
constructed in Friedmann-Lemaître-Robertson-Walker
(FLRW) coordinates in [14].

B. Nonproportional solutions

The existence of the charged black hole solutions
described above is reliant on one having N noninteracting
copies of the Maxwell action for entirely separate electro-
magnetic fields, each minimally coupled to its own separate
metric, yet each taking the same special field configuration
that cancels the Einstein tensor contribution given in
Eq. (45). As alluded to earlier, such a situation is not
necessarily realistic, so we are motivated to try and find
solutions where there is, say, a single matter sector coupled
to only one distinguished metric (such a situation, again, is
natural from the deconstruction perspective, where it is
analogous to placing matter on a brane at some distin-
guished location in the extra dimension).
In this scenario, the proportional ansatz breaks, so the

solutions that we find describe situations where the various
metrics cannot be simultaneously diagonalized. For bigrav-
ity (N ¼ 2), the corresponding nonbidiagonal solutions
were constructed in a series of works that established the
exact set of metrics describing static, charged, rotating and
asymptotically (A)dS black holes of this type in D ¼ 4
dimensions [44–47]. Here, we generalize the bigravity
results to the multimetric theory, establishing a wide class
of nonmultidiagonal black hole solutions in arbitrary
dimension. Unlike the proportional solutions from before,
the field equations do not reduce simply to equivalent
copies of the standard GR field equations; nevertheless, the
metrics are still patterned sitewise as GR solutions, so we
refer to these solutions as “GR-adjacent”.

1. Rotating (A)dS black holes
in arbitrary dimension

We first look for solutions describing rotating but
noncharged D-dimensional black holes that are asymptoti-
cally (A)dS. We do not include charge for the arbitrary D
case, as generally this changes the form of the metric
nontrivially whenever there is also rotation, although we
shall soon provide the D ¼ 4 solution where it is simple
enough to include both charge and rotation, as well as the
charged but nonrotating solution in arbitrary D. It proves
useful to work in the metric formalism here, and express the
metrics in Kerr-Schild coordinates, where the line elements
read [47,101]:

gðiÞμν ¼ a2i ðḡμν þ 2ϕilμlνÞ: ð47Þ

Here, ḡμν is taken to be the metric of D-dimensional (A)dS
space, ϕi are scalar functions whose form will be
given shortly, and l is a null vector that is tangent to a

null-geodesic congruence on (A)dS. Following the con-
ventions of [101], the (A)dS metric is best expressed in
ellipsoidal coordinates, where the line element takes the
following form:

ds̄2 ¼ −Wð1− λr2Þdt2 þFdr2 þ
Xn
k¼1

r2 þ j2k
Ξk

ðdμ2k þ μ2kdφ
2
kÞ

þ λ

Wð1− λr2Þ
�Xn
k¼1

ðr2 þ j2kÞμkdμk
Ξk

�
2

: ð48Þ

Some elaboration is required here; the coordinate system
comprises a time coordinate t, a radial coordinate r,
bðD − 1Þ=2c azimuthal coordinates φk, and bD=2c coor-

dinates μk that satisfy
PbD=2c

k¼1 μ2k ¼ 1. The sums then run to
n ¼ bD=2c, although if D is even then there is one fewer
azimuthal coordinate relative to when D is odd, so one
should in the even-dimensional case set φn ¼ dφn ¼ 0. The
jk are at this stage simply bðD − 1Þ=2c parameters that
describe the ellipticity of the spacetime foliation [jk ¼ 0
then just gives the (A)dS metric in spherical coordinates],
although they will become genuine rotation parameters
after extending the metrics by the null vector l. In the even-
dimensional case, one should also therefore set jn ¼ 0. The
various functions appearing in Eq. (48) are

λ ¼ 2Λ
ðD − 2ÞðD − 1Þ ; ð49Þ

Ξk ¼ 1þ λj2k; ð50Þ

W ¼
Xn
k¼1

μ2k
Ξk

; ð51Þ

F ¼ r2

1 − λr2
Xn
k¼1

μ2k
r2 þ j2k

; ð52Þ

and the required null vector (and its dual 1-form) that is
tangent to a null-geodesic congruence in this spacetime is

lμ∂μ ¼ −
1

1 − λr2
∂t þ ∂r −

Xn
k¼1

jk
r2 þ j2k

∂φk
; ð53Þ

lμdxμ ¼ Wdtþ Fdr −
Xn
k¼1

jkμ2k
Ξk

dφk: ð54Þ

Finally, the scalar functions ϕi are given by

ϕi ¼
rs;i
2U

; ð55Þ
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with each metric now allowed its own independent
Schwarzschild radius rs;i, and where the function U differs
between the even and odd-dimensional cases [47,101]:

U ¼
Xn
k¼1

μ2k
r2 þ j2k

Yn
s¼1

ðr2 þ j2sÞ ðD is oddÞ; ð56Þ

U ¼ r
Xn
k¼1

μ2k
r2 þ j2k

Yn−1
s¼1

ðr2 þ j2sÞ ðD is evenÞ: ð57Þ

In principle, one could similarly allow for (i) labels on
the rotation parameters and cosmological constants, though
the field equations force these to be equal on all sites [47],
else MD−2

i GðiÞμ
ν þWðiÞμ

ν ¼ 0 leads to an inconsistency
(unless one has all jk ¼ 0, as we shall see).
With the ansatz Eq. (47) for the metrics, the Einstein

tensors are simply,

GðiÞμ
ν ¼ −

Λ
a2i

δμν ; ð58Þ

as we had for the proportional solutions.
The utility of writing the metrics in Kerr-Schild form lies

in how it simplifies the calculation of the W-tensors: the

fact that l is null with respect to both ḡμν and gðiÞμν (i.e.
lμlμ ¼ 0) means that its contribution to the interaction
building block matrices Si→j is nilpotent, leading to an
early truncation in the expansion of the matrix square root.
In particular, one may show that, with the metrics given by
Eq. (47), the mth power of Si→j is simply [47]:

ðSmi→jÞμν ¼ amj a
−m
i ½δμν −mðϕi − ϕjÞlμlν�: ð59Þ

The next step is to substitute this into Eq. (18) to obtain the
form of the YðmÞ matrices that enter theW-tensors. The null
character of l helps us here also, since it means that the trace
of Si→j picks up only the contribution from δμν , so the
elementary symmetric polynomials are

enðSi→jÞ ¼ anja
−n
i

�
D
n

�
: ð60Þ

Using this in Eq. (18), along with the binomial coefficient
identities,

Xm
n¼0

ð−1Þn
�
D
n

�
¼ ð−1Þm

�
D − 1

m

�
; ð61Þ

Xm
n¼0

nð−1Þn
�
D
n

�
¼ Dð−1Þm

�
D − 2

m − 1

�
; ð62Þ

one finds that

Yμ
ðmÞνðSi→jÞ ¼ ð−1Þmamj a−mi

×

��
D − 1

m

�
δμν þ

�
D − 2

m − 1

�
ðϕi − ϕjÞlμlν

�
:

ð63Þ

One can then substitute into Eq. (17) to determine the
components of the W-tensors. Since for chain-type inter-
actions the only building block matrices present in the
potential are the nearest neighbor ones; namely, Si→iþ1 and
Si−1→i, Eq. (17) involves only two sums:

WðiÞμ
ν ¼

XD
m¼0

ð−1Þmβði;iþ1Þ
m Yμ

ðmÞνðSi→iþ1Þ

þ
XD
m¼0

ð−1Þmβði−1;iÞD−m Yμ
ðmÞνðSi→i−1Þ; ð64Þ

recalling from Sec. II that S−1i−1→i ¼ Si→i−1. With the YðmÞ
given by Eq. (63), and the ϕi given by Eq. (55), the explicit
expression for the components becomes

WðiÞμ
ν ¼ δμν

�XD
m¼0

βði;iþ1Þ
m

�
D − 1

m

�
amiþ1a

−m
i

þ
XD
m¼0

βði−1;iÞD−m

�
D − 1

m

�
ami−1a

−m
i

�

þ lμlν
2U

�
aiþ1

ai
ðrs;i − rs;iþ1ÞΣðþÞ

i

þ ai−1
ai

ðrs;i − rs;i−1ÞΣð−Þ
i

�
; ð65Þ

where we have defined

ΣðþÞ
i ¼

XD
m¼0

βði;iþ1Þ
m

�
D − 2

m − 1

�
am−1
iþ1 a

1−m
i ; ð66Þ

Σð−Þ
i ¼

XD
m¼0

βði−1;iÞD−m

�
D − 2

m − 1

�
am−1
i−1 a

1−m
i : ð67Þ

The part of the W-tensor proportional to δμν is exactly as
in Eq. (26) for the proportional solutions, but now there are
additional off-diagonal terms proportional to lμlν. Clearly,
for the ansatz Eq. (47) to be a solution to the multimetric
vacuum equations, since the Einstein tensor is diagonal, we
need these off-diagonal W-tensor components to vanish.
There are a few ways of achieving this, and we shall go
through them in order of increasing complexity.
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The simplest is to take all of the Schwarzschild radii to
be the same,

rs;i ¼ rs ∀ i; ð68Þ

which just recovers the proportional solution from before.
The second is to make all of the Σi’s vanish:

ΣðþÞ
i ¼ 0; ð69Þ

Σð−Þ
i ¼ 0 ∀ i: ð70Þ

These conditions are polynomial equations that fix the
ratios of neighboring conformal factors. Furthermore, due
to the recurrence relation for the binomial coefficients:�

n
k

�
¼

�
n − 1

k

�
þ
�
n − 1

k − 1

�
; ð71Þ

they cause part of the sum defining the diagonal compo-
nents of the W-tensors in Eq. (65) to vanish also. Thus, the
conditions (69) and (70) strengthen Eqs. (28), which give
the value of the cosmological constant, so as to include
only the nonvanishing parts of the diagonal W-tensor
components:

�XD
m¼0

βði;iþ1Þ
m

�
D − 2

m

�
amiþ1a

−m
i

þ
XD
m¼0

βði−1;iÞD−m

�
D − 2

m

�
ami−1a

−m
i

�
¼ ΛMD−2

i

a2i
: ð72Þ

For a solution to exist, the same ratios of conformal factors
that solve Eqs. (69) and (70) must also satisfy Eq. (72),

which can only happen when the βði;iþ1Þ
m are finely tuned to

allow for this possibility. That is to say, Eq. (72) acts as a
constraint on which multimetric theories permit this class
of solutions. If the parameters are chosen such that this
constraint is satisfied, then one has succeeded in construct-
ing their nonmultidiagonal black hole. For example, if one
wishes to find a solution with Λ ¼ 0, one only needs to fix
β0 and βD in terms of the other β’s and conformal factor
ratios to satisfy the constraint (72).
In bigravity, these are the only two available options. We

see this by realizing that the sum involving βD−m in the
(iþ 1)th off-diagonal W-tensor is proportional to the sum
involving βm in the ith off-diagonal W-tensor. Explicitly,
one has that

Σð−Þ
iþ1 ¼

�
ai
aiþ1

�
D−2

ΣðþÞ
i ; ð73Þ

so whenN ¼ 2 and the only terms present are ΣðþÞ
0 and Σð−Þ

1

[since βð−1;0Þm ¼ βðN−1;NÞ
m ¼ 0], one sum vanishing implies

the other does too. Indeed, our equations recover exactly
the bigravity results in e.g. [46,47] when one takes N ¼ 2,
D ¼ 4 and Λ ¼ 0.3

In the multimetric scenario, however, whenever one has

N > 2, there are more ΣðþÞ
i to play with, and these do not

necessarily all have to be 0 even if some of the others are.

More precisely, if one has vanishing ΣðþÞ
I−1 for some specific

i ¼ I, this implies only the vanishing of Σð−Þ
I and nothing

else, so the requirement that the off-diagonal parts ofWðIÞμ
ν

vanish may still be satisfied by either rs;I ¼ rs;Iþ1 or

ΣðþÞ
I ¼ 0 (which is independent of ΣðþÞ

I−1). Therefore, in
the multimetric theory with N > 2, the most general way to
solve the vacuum equations is to allow for combinations of

both ΣðþÞ
k ¼ 0 and rs;k ¼ rs;kþ1, for different k ⊂ i. This

corresponds to the situation where some—but not all—of
the metrics can be simultaneously diagonalized. Those sites

where ΣðþÞ
k ¼ 0 then each fix akþ1=ak only, and feed in to

modify only the kth and (kþ 1)th equations for the
cosmological constant in the manner described by
Eq. (72), while the rest of those equations are unchanged
i.e. still involve ðD−1

m Þ instead of ðD−2
m Þ. If there are n total

sites that have ΣðþÞ
k ¼ 0 (n can therefore be at most N − 1),

nþ 1 of the conformal factors are a priori fixed before
checking whether these cosmological constant equations
are satisfied (the additional 1 is fixed by rescaling the
coordinates). Then, the N diagonal equations split into
N − n algebraic equations for Λ and the remaining
N − n − 1 free conformal factors, as well as n equations

that become constraints on the βði;iþ1Þ
m parameters of the

theory. Again, this means that only for finely tuned
parameters can these solutions exist. Indeed, the solutions

form a set of measure zero in the βði;iþ1Þ
m parameter space.

This third and most general branch of solutions (which
we dub the “partially proportional” branch) is fiddly and
awkward to deal with; in practice, we shall stick to
considering the first two branches of solutions i.e. where
either all the Schwarzschild radii are the same (the propor-
tional solutions) or all the Σi’s vanish (the nonproportional
solutions). We note, however, that a subtlety arises on the
overlap of these first two branches, when one has both

rs;i ¼ rs;iþ1 and ΣðþÞ
i ¼ 0 for every i. In this scenario, one

cannot accept the solution as valid: as we will demonstrate
in Sec. IV, the masses of all the linearized perturbations
vanish, and as mentioned in Sec. I, theories involving
multiple interacting massless gravitons are known to be
pathological [15].

3In D ¼ 4, as we will shortly see, the coordinates of Eq. (48)
can be parametrized by μ1 ¼ sin θ and μ2 ¼ cos θ, leading to a
pair of metrics that are precisely those in [47], and are a
coordinate transformation away from those written in Edding-
ton-Finkelstein coordinates in [46].
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2. 4D Kerr-Newman-(anti–)de Sitter revisited

In D ¼ 4, as we mentioned, it is not difficult to extend
the above analysis to include charge, providing a non-
proportional generalization of the Kerr-Newman-(A)dS
metric from Sec. III A 2. In the D ¼ 4 case of Eq. (48),
there is only one azimuthal coordinate φ1 ¼ φ, only one
rotation parameter j1 ¼ j (hence one Ξ1 ¼ Ξ), and only
two μk coordinates, which we can parametrize without loss
of generality as [101]

μ1 ¼ sin θ; μ2 ¼ cos θ: ð74Þ

With these definitions, the (A)dS metric explicitly takes the
form:

ds̄2 ¼ −
ð1 − λr2ÞΔθdt2

Ξ
þ ρ2dr2

ð1 − λr2Þðr2 þ j2Þ

þ ρ2dθ2

Δθ
þ ðr2 þ j2Þsin2 θdφ2

Ξ
; ð75Þ

where Δθ and ρ2 are as in Eqs. (42) and (44). The null
vector and 1-form are given by

lμ∂μ ¼ −
1

1 − λr2
∂t þ ∂r −

j
r2 þ j2

∂φ; ð76Þ

lμdxμ ¼
Δθdt
Ξ

þ ρ2dr
ð1 − λr2Þðr2 þ j2Þ −

jsin2 θdφ
Ξ

; ð77Þ

while the function U becomes

U ¼ ρ2

r
: ð78Þ

As in Sec. III A 2, to incorporate charge we must include
copies of the Maxwell action for the matter sector,

SM ¼
X
k⊂i

Z
MD

FðkÞ ∧ ⋆ðkÞFðkÞ; ð79Þ

only now we allow the freedom to couple to only some
subset of sites k ⊂ i, rather than to all of them. This of
course breaks the proportional ansatz, but we are looking
for the non/partially proportional solutions anyway.
In D ¼ 4, the only effect of the charge is to modify the

scalar functions ϕi to [47],

ϕi ¼
1

2U

�
rs;i −

rQ;i

r

�
; ð80Þ

where each metric is now allowed an independent rQ;i as
well as rs;i. The coordinate transformation that retrieves
the Boyer-Lindquist form of the metric, Eq. (40), from the
Kerr-Schild form is given in [101]. We note that the

extension of ϕi to include charge while keeping rotation
is particularly simple in D ¼ 4; this is assuredly not the
case in higher dimensions, where even in standard GR the
analog of the Kerr-Newman metric forD > 4 is not known,
so there is no safe starting point to begin to look for the
corresponding multimetric solutions. This is why we treat
the charged and rotating cases separately outside of D ¼ 4.
To account for the additional contributions to the

Einstein tensors on the charged sites, the corresponding
electromagnetic fields must take the form:

AðkÞ ¼ Qkr
ρ2

lμdxμ; ð81Þ

where as before

Qk ¼
ffiffiffi
2

p
MkakrQ;k: ð82Þ

Of course, only the sites k ⊂ i that have an electromagnetic
field coupling have nonvanishing rQ;i, so the multimetric
system comprises Kerr-Newman-(A)dS metrics on those
sites with charge, and Kerr-(A)dS metrics on those without.
Since the only alteration wrought by the inclusion of

charge in the system is the new form of ϕi given by
Eq. (80), the only changes to the W-tensor components are
in the part multiplying lμlν, where rs;i is shifted to
rs;i − rQ;i=r. Therefore, in line with the discussion of the
previous subsection, there are again in principle (depending
on the parameters of the theory) three classes of solutions,
corresponding to the three ways in which one can make
these off-diagonal components vanish. The proportional
solutions have the same rs and rQ on every site, the

nonproportional solutions have ΣðþÞ
i ¼ 0 on every site, and

the partially proportional solutions have a combination of
the two for different k ⊂ i. These three classes of Kerr-
Newman-(A)dS solutions are then the most general GR-
adjacent black holes in the D ¼ 4 multimetric theory.
We note that the proportional solutions only exist in this

case when one has a separate matter sector coupled to each
metric in the chain, which we already argued is unrealistic.
If one wishes to solve the system with, say, a single copy of
the Maxwell action coupled to one metric only, then the
solution must lie in either the nonproportional or partially
proportional branch, as rQ;i − rQ;iþ1 cannot vanish when
only one rQ is present. Therefore, charged and rotating
black holes of this type only exist in the D ¼ 4 multimetric
theory if the interaction coefficients are finely tuned to
allow for this possibility.

3. Charged (A)dS black holes in arbitrary dimension

Finally, we look for the D-dimensional solution for an
asymptotically (A)dS, charged, but non-rotating black hole.
As alluded to earlier, when there is no rotation, one may in
principle allow for different cosmological constants on each
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site, and so replace λ → λi in Eq. (48). However, this then
spoils the utility of the Kerr-Schild ansatz, since the null
vectors pick up their own (i) indices, which means that the
expressions for the building block matrices Si→j no longer
simplify in the manner they did before. To proceed, we
must change tack; once again, the vielbein formalism
comes in handy.
Following [45], it proves useful to now express the

metrics in (advanced) Eddington-Finkelstein coordinates,
where the line elements read,

ds2ðiÞ ¼ a2i

�
−
�
1 − λir2 −

rs;i
rD−3 þ

r2Q;i

r2ðD−3Þ

�
dv2

þ 2dvdrþ r2ðdθ2 þ sin2 θdφ2Þ

þ r2cos2 θdΩ2
ðD−4Þ

�
; ð83Þ

with dΩ2
ðD−4Þ the unit round metric on the (D − 4)-sphere,

given by

dΩ2
ðD−4Þ ¼ dψ2

1 þ
XD−4

k¼2

�Yk−1
m¼1

sin2 ψm

�
dψ2

k; ð84Þ

As before, to account for the extra contribution to the
Einstein tensors on the sites with nonvanishing rQ;i, the
corresponding electromagnetic fields must take the profile:

AðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

2ðD − 3Þ

s
Qk

rD−3 dt; ð85Þ

again with,

Qk ¼
ffiffiffi
2

p
MkakrQ;k: ð86Þ

With the ansatz Eq. (83) for the metric, the tetrads have
the following form:

eðiÞ0 ¼ dr −
1

2

�
2 − λir2 −

rs;i
rD−3 þ

r2Q;i

r2ðD−3Þ

�
dv; ð87Þ

eðiÞ1 ¼ drþ 1

2

�
λir2 þ

rs;i
rD−3 −

r2Q;i

r2ðD−3Þ

�
dv; ð88Þ

eðiÞ2 ¼ rdθ; ð89Þ

eðiÞ3 ¼ r sin θdφ; ð90Þ

eðiÞ4 ¼ r cos θdψ1; ð91Þ

eðiÞ5 ¼ r cos θ sinψ1dψ2;

..

. ð92Þ

which one can use to determine the components of the W-
tensors by substituting into Eq. (16).
The diagonal part of the ith W-tensor is precisely as in

Eq. (26) and again gives (MD−2
i =a2i times) the ith effective

cosmological constant Λi, in the usual manner. The only
nonvanishing off-diagonal term is the rv component, which
becomes

WðiÞr
v ¼

1

2

�
aiþ1

ai

�
rs;i − rs;iþ1

rD−3 þ ðλi − λiþ1Þr2

−
rQ;i − rQ;iþ1

r2ðD−3Þ

�
ΣðþÞ
i

þ ai−1
ai

�
rs;i − rs;i−1

rD−3 þ ðλi − λi−1Þr2

−
rQ;i − rQ;i−1

r2ðD−3Þ

�
Σð−Þ
i

�
: ð93Þ

Remarkably, both the charge and cosmological constant
contributions factor nicely into the collection of terms

multiplying Σð�Þ
i . The solutions then split into the usual

three branches; the proportional solutions are those where
one has rs;i ¼ rs;Λi ¼ Λ and rQ;i ¼ rQ ∀ i, the nonpro-

portional solutions are those with ΣðþÞ
i ¼ 0 ∀ i, and the

partially proportional solutions are those with combinations
of either on different sites.
For the nonproportional case, all of the effective cosmo-

logical constants are fixed by the diagonal part of the vacuum

equations onceΣðþÞ
i ¼ 0 has fixed the ratios of all the adjacent

conformal factors.However, because theΛi no longer have to

be the same, the βði;iþ1Þ
m are now unconstrained.

For the partially proportional case, some, but not all, of
the adjacent sites do still need to have the sameΛ, which, as
previously, makes things more fiddly. The situation is as

follows: if there are n total sites k ⊂ i which have ΣðþÞ
k ¼ 0,

then nþ 1 conformal factors are a priori fixed before
considering the diagonal part of the vacuum equations.
Furthermore, there are only nþ 1 independent Λi, as the

sites that do not have ΣðþÞ
k ¼ 0 must have Λk ¼ Λkþ1.

Then, from the N total diagonal equations, n of them fix n
of the independent Λi, leaving only one free, so that one is
left with N − n algebraic equations for the remaining
N − n − 1 free conformal factors and remaining one free Λ.
Again, the βði;iþ1Þ

m are unconstrained here, as the n equa-
tions that constrained them in the rotating case now act
instead to fix the initially free Λi.
Because of the lack of constraints on which parameters

one must choose for these nonrotating solutions to exist,
one can imagine being able to choose their model in such a
way as to engineer essentially whatever effective cosmo-
logical constants one would like. In particular, taking the
limit where rs;i and rQ;i go to 0, one is faced with the
tantalizing prospect of finding a multimetric theory with a
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nonproportional dS vacuum whose effective cosmological
constant on the “physical” metric i.e. the one matter
couples to, is small but nonvanishing, with a view to
addressing the cosmological constant problem. However,
one expects that in order to do this, the present fine-tuning
problem regarding the size of the cosmological constant
would simply be transferred to a fine-tuning problem
regarding the potential coefficients and/or vacuum struc-
ture, so nothing is actually alleviated. Furthermore, as we
have seen, one requires the effective cosmological con-
stants on each metric to be the same anyway, if one wishes
the theory to admit rotating black holes, which likely
comprise the majority of real, physical black holes that
exist in nature. The argument is also a purely classical one;
there is nothing to be said about quelling the contribution of
the QFT vacuum energy. Therefore, it is unlikely that the
cosmological constant problem may be addressed in this
manner.

C. Other solutions and remarks on stability

As we mentioned previously, the wide class of analytic
black hole solutions constructed above were all built starting
from metrics that are known to GR. Even the non and
partially proportional solutions that do differ from GR in the
sense that the field equations are not simply N copies of the
standard GR equations, as is the case for the proportional
solutions, are patterned sitewise as GR solutions. However,
in dRGT massive gravity and bigravity there also exist
additional non-GR-adjacent black hole solutions, which one
would expect to carry over to the multimetric theory as well.
Firstly, however, there is one remaining GR-adjacent

solution we missed that is worth a mention. Although we
did not explicitly write down this solution, the Bañados-
Teitelboim-Zanelli (BTZ) black hole in D ¼ 3 [102] does
admit multimetric analogs in each of the proportional,
nonproportional and partially proportional branches. This
is most easily seen by expressing the BTZ metric in Kerr-
(A)dS-like coordinates (see e.g. [103]) and following
through exactly as before, the only changes resulting from
the fact that there is no longer a θ coordinate. If one wishes
to include charge in D ¼ 3, the electromagnetic field must
also take a logarithmic profile, required to supply the
Einstein tensor charge contribution [104].
As for the non-GR-adjacent solutions, owing to the

complexity of the field equations, solutions must generi-
cally be found numerically.4 An important such class of

numerically determined solutions, at least in bigravity,
describing a family of asymptotically AdS black holes
endowed with a cloud of massive graviton hair was found
in [51], in a comprehensive analysis that also studied (for
example) the case where the two metrics are diagonal but
not proportional. This result was extended to asymptoti-
cally flat hairy black holes in [52]. The solutions are found
by considering a generic static, spherically symmetric
ansatz for the metrics and utilizing the Bianchi constraint,
Eq. (19), to reduce the field equations to a set of coupled
first-order ordinary differential equations (ODEs) that are
then numerically integrated to determine the appropriate
metric functions. A detailed derivation of these equations
and their final form is publicly available in a Mathematica
notebook online [111]. Again, one expects that these
solutions should extend to the multimetric theory, just
with the precise form of the ODEs altered by the
extra interactions, though we leave this calculation to
future work.
The solutions we constructed earlier, together with the

proposed hairy solutions, comprise the full set of currently
known black hole solutions of multimetric gravity. It is
natural to ask of these solutions the question of their
stability, which (if any) of them are stable to perturbations,
and if so, in what regimes of parameter space are they
stable?
Again, significant progress in this direction has

already been made in both D ¼ 4 dRGT massive gravity
and bigravity. There, it is known that the bidiagonal
Schwarzschild(-dS) solution i.e. where both metrics are
proportionally Schwarzschild(-dS), suffers from a spheri-
cally symmetric radial instability for certain values of the
graviton mass [53,54,61]. The instability takes precisely the
same form as the Gregory-Laflamme (GL) instability that
notoriously plagues black string solutions in higher dimen-
sions [55–57]. This should be unsurprising—as we saw in
Sec. III A 1, the proportional Schwarzschild solutions are
just dimensionally deconstructed black strings. The bidiag-
onal Kerr solution also possesses this radial instability [54],
as well as a superradiant instability for the azimuthal
modes, again dependent on the graviton mass [54,58–60].
The nonbidiagonal Schwarzschild solution, on the other

hand, seems to be linearly stable to metric perturbations
[61,62], although the perturbations take an unconventional,
non-Fierz-Pauli form, and as of yet no analysis exists as to
whether these solutions may contain (non-BD) ghosts. It is
interesting to note that the particular combination of the
interaction coefficients, ΣðþÞ

0 ¼ 0, that gives rise to the
nonbidiagonal black hole solutions also shows up when
one considers the theory’s cosmological implications;
namely, it is one of two possible ways to satisfy the
Bianchi constraint when one tries to find FLRW solutions
in dRGT/bigravity [112–114] (the multimetric extension is
in [14], which further admits a partially proportional
branch). The nonproportional branch of cosmological

4Actually, there is a further class of analytic black hole
solutions in D-dimensional dRGT massive gravity, for a par-
ticular theory whose nondynamical reference metric takes a
special degenerate form, and where only the first four interaction
terms are included [105–107] (see also [108–110]). However,
when both metrics (or more) are dynamical, the degeneracy is of
course problematic, so we shall leave these solutions alone (they
are also not completely general i.e. do not include the full set of
ghost-free interactions when D > 4).
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solutions (in dRGT/bigravity) is littered with pathologies
e.g. not all massive graviton degrees of freedom propa-
gate at linear level, ghosts appear at nonlinear level etc.
[36,115–120]. However, these pathologies in cosmology
appear to be intimately related to the symmetries of the
FLRW background, which is potentially why they do not
show up for the nonproportional black hole solutions. Also,
the scale factors in the cosmological solutions are time
dependent, whereas for our black hole solutions they are
constant, so it is unclear whether one may even identify the

ΣðþÞ
i ¼ 0 branches in either scenario anyway.
One would expect that the dRGT/bigravity results for the

nonproportional black hole solutions extend naturally to
the full multimetric theory, with the perturbations taking the
same generic form as in [61,62].5 Therefore, the nonpropor-
tional multimetric solutions should still be linearly stable.
Determining the stability of the partially proportional branch
may bemore complicated, as on some sites the perturbations
will acquire a standard Fierz-Pauli mass termwhile on others
they will not. Due to the inherent complexity of these
calculations, and the fact that, as we found, the interaction
coefficients generally must be finely tuned to permit these
branches of solutions anyway, an explicit determination of
the stability of the non and partially proportional multimetric
black hole solutions is left to future work.
This leaves us with the task of extending the results

regarding the stability of the proportional solutions in
bigravity to the general multimetric scenario, which we
will eventually get to in Sec. V. To begin to address this
point, however, we must first determine the dynamics of the
graviton mass modes, which requires that we consider
linear perturbations around the proportional backgrounds.

IV. LINEARIZED PERTURBATIONS
AND MASS MODES

The notion of mass arises naturally inMinkowski space as
a Casimir invariant of the Poincaré group relating to space-
time translations. In more general spacetimes with fewer
symmetries, it is not always obvious how this notion should
generalize. However, around the proportional solutions only,
the spin-2 fluctuations all acquire a standard Fierz-Pauli mass
term, and so give rise to a well-defined mass spectrum.
The full details of the linearization procedure around a

generic proportional solution are laid out in Appendix B,
following the formalism developed in [38,121] for bigrav-
ity (it proves simpler to work in the metric formalism here).
The metrics are expanded as

gðiÞμν ¼ a2i ḡμν þ aiM
−D−2

2

i hðiÞμν ; ð94Þ

where the normalization is to ensure the kinetic terms are
canonical. The resulting equations of motion for the
perturbations read:

Ēαβ
μνh

ðiÞ
αβ þ Λ̄hðiÞμν þ

M2
ij

2
ðhðjÞμν − ḡμνhðjÞÞ ¼ aiM

−D−2
2

i T̄ðiÞ
μν ; ð95Þ

where the Lichnerowicz operator is given by [53]

Ēαβ
μνhαβ ¼

1

2
½−□hμν þ∇μ∇αhαν þ∇ν∇αhαμ

−∇μ∇νhþ ḡμν□h − ḡμν∇α∇βhαβ

− 2R̄α
μ
β
νhαβ�; ð96Þ

and all quantities have been rescaled by the appropriate
powers of ai, as in Sec. III A, so that all tensors in
Eq. (95) behave as if they live in the common background
of ḡμν. For chain-type interactions, the mass matrix,
M2, for the rescaled perturbations in this common back-
ground, is tridiagonal, with the following nonvanishing
components:

M2
ii ¼

a2i
MD−2

i

�
ΣðþÞ
i

aiþ1

ai
þ Σð−Þ

i
ai−1
ai

�
; ð97Þ

M2
iþ1;i ¼

�
aiþ1

ai

�
4−D

M2
i;iþ1 ¼ −

a2iΣ
ðþÞ
i

ðMiþ1MiÞD−2
2

: ð98Þ

As per the discussion in Sec. II, the mass eigenstates are

linear combinations of the hðiÞμν . To obtain them, we rotate to

the field basis Hμν ¼ ðHð0Þ
μν ;…; HðN−1Þ

μν Þ in which the mass

matrix is diagonalized, related to the original basis hμν ¼
ðhð0Þμν ;…; hðN−1Þ

μν Þ via some N × N orthogonal matrix O
whose columns are the mass eigenvectors; that is

hμν ¼ OHμν; ð99Þ

OTM2O ¼ diagðm2
0;…; m2

N−1Þ: ð100Þ

The structure of the potential means that the mass matrix
will always possess one zero eigenvalue, whose associated
eigenvector is proportional to the vacuum structure i.e.
Oi0 ∝ ai [12,14,39]. Generally, it is not possible (save for
an exceptional case that we will consider shortly) to
determine the higher mass eigenvalues/eigenvectors ana-
lytically [122,123], although the expressions (97) and (98)
for the components allow one to readily determine them
numerically on a case-by-case basis.

5Precisely, we expect that e.g. Eq. (11) in [61] has instead of the
termwrittenAðrS − rfÞ a term that involves both ðrs;i − rs;iþ1Þ andðrs;i − rs;i−1Þ, accounting for the interactions going in both
directions.

WOOD, SAFFIN, and AVGOUSTIDIS PHYS. REV. D 109, 124006 (2024)

124006-14



Regardless, by substituting Eq. (99) into the linearized
Einstein equations (95) and multiplying by OT from
the left, one finds the evolution equations for the mass
modes:

Ēαβ
μνH

ðiÞ
αβ þ Λ̄HðiÞ

μν þm2
i

2
ðHðiÞ

μν − ḡμνHðiÞÞ

¼ OjiajM
−D−2

2

j T̄ðjÞ
μν : ð101Þ

Whenever the effective cosmological constant is
nonvanishing, it is crucial that the masses satisfy m2 ≥
2Λ̄=ðD − 1Þ. This is the well-known Higuchi bound, below
which the helicity-0 graviton modes become ghostlike
[124–127]. It is a sufficient condition that the lightest
massive mode exceeds this bound, since all the heavier
modes then will do too.
At the point where the Higuchi bound is saturated, the

helicity-0 component of the corresponding mass mode
becomes pure gauge and so the number of propagating
degrees of freedom is reduced by 1; this is the linear
“partially massless” (PM) theory [128–133]. The PM
theory has been the subject of much interest in the context
of bigravity, since many of the linear instabilities that exist
when all graviton degrees of freedom propagate disappear
if the one massive mode exhibits PM invariance (see e.g.
[134]). However, there is strong evidence that the PM
gauge invariance does not survive to the full nonlinear level
within the dRGT framework [135–138], and in the general
multimetric theory even at the linear level only the lightest
mass mode can exhibit PM invariance anyway, so any
instabilities present still exist for the heavier modes
(although it should be stated that a nonlinear theory of
interacting PM spin-2 fields does exist within the realm of
conformal gravity [139–141]).
As a sanity check, one may compare the results of this

section against known results in bigravity, where the mass
matrix is simple enough to diagonalize explicitly. In bigrav-
ity, one has N ¼ 2 metrics, and usually denotes a0 ¼ 1;

a1 ¼ c. Only ΣðþÞ
0 and Σð−Þ

1 are present in the mass matrix,

and by Eq. (73) these are related as Σð−Þ
1 ¼ c2−DΣðþÞ

0 .
Therefore, one has explicitly that,

M2 ¼
�

M−ðD−2Þ
0 cΣðþÞ

0 −ðM0M1Þ−D−2
2 ΣðþÞ

0

−ðM0M1Þ−D−2
2 c4−DΣðþÞ

0 M−ðD−2Þ
1 c3−DΣðþÞ

0

�
;

ð102Þ

which one can check has eigenvalues:

m2
0 ¼ 0; ð103Þ

m2
1 ¼

cΣðþÞ
0

MD−2
0

�
1þ ðγcÞD−2

ðγcÞD−2

�
; ð104Þ

with the corresponding mass modes being

Hð0Þ
μν ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2γD−2
p ðhð0Þμν þ cγ

D−2
2 hð1Þμν Þ; ð105Þ

Hð1Þ
μν ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2ðD−3ÞγD−2
p ðhð1Þμν − cD−3γ

D−2
2 hð0Þμν Þ; ð106Þ

defining γ ¼ M1=M0 as the ratio of the gravitational cou-
plings. The equations of motion for the mass modes, as well
as the corresponding Fierz-Pauli mass m1, agree precisely
with the bigravity results [38,121], as they should [though in
[121] the perturbations were defined differently to in our

Eq. (94), as a2i ḡμν þ hðiÞμν , without the extra factors of ai and

Mi, so the precise structure of theirH
ðiÞ
μν in terms of the hðiÞμν is

slightly different to here; see Appendix B for more details].
As before, there are many special cases that are interest-

ing to consider in their own right, within this general
framework. A couple of illustrative examples in D ¼ 4 are
again useful to demonstrate, before we continue to inves-
tigate the stability of the black hole solutions. First, we
return to the clockwork scenario.

A. Clockwork gravity in 4D

We defined a clockwork theory back in Sec. III A 1 as a
member of a particular class of multimetric theories that
admit a vacuum structure with an exponential hierarchy i.e.
ai ¼ a0=qi for q≳ 1, the idea being that we would like to
generate a suppressed coupling of matter to the massless
mode without introducing such hierarchies in the param-
eters of the theory. Here, we shall see how this works
explicitly.
The simplestD ¼ 4model one may construct that admits

the desired vacuum structure is the single-scale model of
[14], which takes all Mi ¼ M and has potential coefficients

given by βði;iþ1Þ
m ¼ αiβm, where α−1 ¼ αN−1 ¼ 0, and6:

(i) αi ¼ M4 ∀ i ≠ −1; N − 1;
(ii) β0 ¼ −6q−1;
(iii) β1 ¼ 3;
(iv) β2 ¼ −q;
(v) β3 ¼ β4 ¼ 0.

6Actually, there was a sign error in the mass matrix in our
previous work [14], and we have also been more careful to match
the normalization of the corrected mass matrix, given by Eqs. (97)
and (98), to that of the kinetic term. This means that the single-
scale model we refer to now actually had gravitons with negative
mass-squared (the deconstructed RS model also in [14] was fine),
although the work there was only focused on the background
cosmology so this did not come into play in the corresponding
calculations. Regardless, we shall fix the error here and flip the
sign of the potential coefficients so that the masses are positive.
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With these choices, the mass matrix has components:

M2
ii ¼

a20q
−2i

M2
ðαiq−1 þ αi−1q3Þ; ð107Þ

M2
iþ1;i ¼ M2

i;iþ1 ¼ −
a20q

−2i

M2
αi; ð108Þ

in agreement with [14] (up to the minus sign and numerical
factor we have corrected here). Numerically, the lightest
massmode is found to roughly havemassm1 ∼ qM, with the
heavier modes distributed exponentially above this. The
massless eigenvector is given by Oj0 ¼ N =qj, where the
normalization is

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N−1
i¼0 q−2i

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q−2

1 − q−2N

s
: ð109Þ

If matter couples only to the metric gðN−1Þ
μν at the end of

the chain of interactions i.e. only T̄ðN−1Þ
μν is nonvanishing (to

engineer the greatest possible suppression of scales), and
one chooses to fix the overall normalization of the
conformal factors such that aN−1 ¼ 1, then it follows that
the massless mode has the following dynamics:

Ēαβ
μνH

ð0Þ
αβ ¼ 1

MPl
T̄ðN−1Þ
μν ; ð110Þ

where the effective Planck scale is

MPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q−2N

1 − q−2

s
qN−1M: ð111Þ

This can be much larger thanM if the number of fields in the
chain is big enough—indeed, generating this scale hierarchy
is precisely the purpose of the clockwork mechanism.

B. Deconstructed flat extra dimension

Another example, which is interesting to consider
because it is simple enough to analyze analytically, is
the multimetric model arising from the deconstruction of a
flat extra dimension. As we saw in Sec. III A 1, the 4D
multimetric (proportional) solutions correspond to dimen-
sionally deconstructed solutions of some 5D gravitational
theory (generically a scalar-tensor braneworld), with the
geometry of the extra dimension encoded in the vacuum
structure of the conformal factors. We saw this explicitly
for the black string solution, but the result is true more
generally i.e. for any ḡμν satisfying Einstein’s equations.
For example, the clockwork vacuum structure Eq. (37)
corresponds to an extra dimension that is warped (as there
is exponential damping through the chain of hypersurfa-
ces), though one could also consider the simpler situation

where all ai ¼ 1, corresponding to an extra dimension that
is flat.
In particular, one may choose their model parameters in

such away that the 4D theory, in its continuum limit, becomes
pure 5D GR without cosmological constant. Explicitly, the
model in question has again equivalent 4D gravitational
couplingsMi ¼ Mð4Þ, as well as potential coefficients given
again by βði;iþ1Þ

m ¼ αiβm with α−1 ¼ αN−1 ¼ 0, except this
time [13,14]:

(i) αi ¼ M3
ð5Þ=δy ∀ i ≠ 0; N − 1;

(ii) β0 ¼ −6;
(iii) β1 ¼ 3;
(iv) β2 ¼ −1;
(v) β3 ¼ β4 ¼ 0,

where δy is the spacing of the hypersurfaces upon which the
multigravity metrics live in the extra dimension, andMð5Þ is
the 5D gravitational coupling, related to the 4D coupling as
M2

ð4Þ ¼ M3
ð5Þδy. With these parameters, one recovers 5D GR

from the 4D multimetric theory upon taking the limit where
δy → 0 and N → ∞ while keeping the product Nδy ¼ L
fixed (corresponding to the size of the extra dimension). One
may check that substituting these parameters into the D ¼ 4
multimetric vacuum equations (27) gives a solution with
Λ̄ ¼ 0 and ai ¼ 1 ∀ i.
The form of the mass matrix here reflects the simplicity

of the vacuum, reading:

M2¼ 1

δy2

2
6666666666664

1 −1 0 0 … 0 0

−1 2 −1 0 … 0 0

0 −1 2 −1 … 0 0

0 0 −1 2 … 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 … 2 −1
0 0 0 0 … −1 1

3
7777777777775
ðN×NÞ

; ð112Þ

which one can diagonalize using the techniques developed
in [122]. The result is that the mass eigenvalues are given by

m2
n ¼

4

δy2
sin2

�
nπ
2N

�
; ð113Þ

the massless mode is simply

Hð0Þ
μν ¼ 1ffiffiffiffi

N
p

XN−1

n¼0

hðnÞμν ; ð114Þ

while the massive modes are

HðmÞ
μν ¼ Nm

XN−1

n¼0

�
sin

�ðnþ 1Þmπ

2N

�
− sin

�
nmπ

2N

��
hðnÞμν ;

ð115Þ
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with normalizations N m whose explicit expressions are
irrelevant but can easily be determined.
The mass eigenvalues and structure of the massless

mode take the expected functional forms [64,73], with
the masses of the lightest modes scaling as mn ∼ n=L and
the heaviest as mN−1 ∼ N=L. Similarly, if one again
couples matter to one of the metrics, then one recovers
the expected relations between the effective Planck scale of
the massless mode and the various gravitational couplings
i.e. M2

Pl ¼ NM2
ð4Þ ¼ NM3

ð5Þδy ¼ M3
ð5ÞL.

V. LINEAR STABILITY
OF PROPORTIONAL SOLUTIONS

Now we have all we need to discuss the linear stability of
the proportional black hole solutions. First, we note that the
linearized version of the Bianchi constraint in vacuum

implies that ∇νHðiÞ
μν ¼ ∇μHðiÞ, and so ∇ν∇μHðiÞ

μν ¼ □HðiÞ.
Using the latter in the trace of Eqs. (95), one is forced into
de Donder gauge for all the mass modes simultaneously:

∇νHðiÞ
μν ¼ HðiÞ ¼ 0 ∀ i: ð116Þ

With this restriction, the linearized equations for the mass
modes become,

□HðiÞ
μν þ 2R̄α

μ
β
νH

ðiÞ
αβ ¼ m2

i H
ðiÞ
μν ; ð117Þ

whose behavior can then be analyzed depending on one’s
choice for the background metric ḡμν.

A. Multi-Schwarzschild

Equations (117), with the common background ḡμν
taken as the D ¼ 4 Schwarzschild metric, are precisely
those equations studied in the context of the GL instability
[53–57,61]. In the original work, linear perturbations to the
5D black string were considered, and split into scalar,
vector and tensor contributions à la Kaluza-Klein. Fourier
decomposing around the extra dimension, it was shown
that the 4D tensor perturbations (i.e. the Fourier coeffi-
cients of the tensor contribution) satisfy precisely
Eqs. (117), just with the corresponding Fourier momentum
in place of the mass. Spherically symmetric s-wave
solutions, regular at the future event horizon, were found
of the form:

hð4Þμν ¼ eΩt

2
6664
httðrÞ htrðrÞ 0 0

hrtðrÞ hrrðrÞ 0 0

0 0 KðrÞ 0

0 0 0 KðrÞsin2 θ

3
7775; ð118Þ

and were shown to be unstable (i.e. have Ω > 0) within the
range:

0 < m < O
�
1

rs

�
: ð119Þ

In [53], it was argued in bigravity that since the one
massive mode satisfies the same equations as the 4D tensor
perturbations in the context of the black string, the bi-
Schwarzschild solutions in bigravity too are unstable if the
mass satisfies the inequality (119). This idea was made
more concrete in [54], who studied the dynamics of the
unstable mode in detail for bi-Schwarzschild-dS, and
determined that the instability turns on when mrs ≲ 0.86
(which, interestingly, is precisely the threshold at which the
hairy solutions discussed briefly in Sec. III C come into
existence [52], signaling that the hairy black holes may
actually be the end point of the instability; for a nice review
of this situation see Ref. [63]).
Since the mass modes in the multimetric theory all

independently obey Eqs. (117) for their respective mass
eigenvalues, it is clear how the arguments of [53,54]
generalize naturally; the multimetric theory possesses a
single massless mode and a tower of massive modes, whose
masses are given in terms of the parameters of the theory
through the mass matrix M2; all of the mass modes are
subject to the same stability condition, where the propor-
tional Schwarzschild solution becomes unstable if, for any
of the mi, mirs ≲ 0.86. Consequently, the solution is stable

if and only if the lightest massive mode Hð1Þ
μν sits above this

inequality. This is for the simple reason that if the lightest
mass mode evades the instability then necessarily so too do
all of the others. Conversely, unstable solutions may have
multiple unstable mass modes.
In principle, one could construct a multimetric theory

with whatever masses one wishes, depending on one’s
choice for the potential coefficients. In practice, however,
such choices are tightly constrained, particularly by
Solar System tests of gravity, as the additional degrees
of freedom associated with the mass modes can induce
marked deviations from GR even in the weak-field regime
[142]. Typically, the masses have been taken of order
the Hubble parameter today (m ∼H0 ∼ 10−33 eV) with the
goal of addressing the question of dark energy; the
Vainshtein mechanism then ensures that Solar System tests
are satisfied, as GR is restored due to nonlinear self-
interactions of the helicity-0 graviton modes [143–147].
However, this choice is not a necessary one stemming from
any sort of theoretical or observational requirement; in
particular, a multimetric theory whose masses are all very
heavy will also restore GR at the linear level, without the
need for any Vainshtein screening, since the Compton
wavelengths m−1 of the mass modes are small enough that
their effects would be invisible to current experimental
precision. More precisely, modifications to weak-field GR
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solutions (at least in bigravity) are suppressed by a factor
e−mr [52], implying that for largem the large scale behavior
in the Solar System should be indistinguishable from GR.7

This is possible due to the surviving massless mode in the
multimetric theory; in dRGT massive gravity, where the
only propagating graviton is massive, large masses are
ruled out, as predictions always differ from GR due to the
vDVZ discontinuity [148,149].
The black hole instability affects the two different mass

regimes in different ways. When the graviton masses are
ultralight, by virtue of Eq. (119) all astrophysically
relevant black holes are unstable; if m ∼H0 then any
Schwarzschild black hole weighing less than 1022M⊙
suffers from the instability [63]. However, for such light
graviton masses, Ω scales linearly with m [150–152], so
the characteristic timescale of the instability Ω−1 is of
order the Hubble time: while the instability may always be
present, it is not physically relevant over any observable
timescale. On the other hand, if the graviton masses
are very heavy, then while the instability is far more
efficient, it affects only the very lightest black holes. For
example, if the lightest graviton lies at the TeV scale
(which is optimal for a dark matter candidate [8,9] and is
also sensible in clockwork scenarios [12,14]), only black
holes weighing less than roughly 10−22M⊙ are unstable.
However, the instability timescale is now much shorter,
and potentially is physically relevant—some primordial
black holes, for example, may exist in the unstable
mass range, and as initially stable black holes evaporate
by Hawking radiation, they will inevitably cross over into
the unstable regime at some time. It is difficult to say
much more than this without knowing for definite the end
state of the instability (which requires a full nonlinear
analysis, though one possibility is the hairy solution of
[52]). However, it may be possible that such effects
possess observational signatures, or even signal at path-
ologies within the multimetric theory itself.

B. Multi-Kerr

If one now allows the black holes to rotate, and so
instead takes the common background ḡμν as the Kerr
metric, then the GL monopolar instability is still present
[54], but the value of mirs for which modes become stable
increases relative to the Schwarzschild case (mirs ∼ 0.86)
with increasing black hole spin [60] (though it still always
remains order 1). There are also additional instabilities
associated with the azimuthal modes that are not present in
the Schwarzschild case, as a consequence of the super-
radiant instability of rotating black holes against massive

bosonic excitations [153–155]. This effect occurs when the
frequency of the perturbation satisfies,

0 < ω < mAΩBH; ð120Þ

where mA is the mode’s azimuthal quantum number and
ΩBH is the angular velocity of the black hole horizon, and is
characterized by the bosons forming a condensate around
the black hole, which then spins down and deposits its
rotational energy into the condensate until the above bound
saturates at ω ¼ mAΩBH. The condensate then dissipates
via (almost monchromatic) quadrupolar gravitational wave
emission [156].
The superradiant instability described above turns out to

be most effective when the Compton wavelength of the
perturbation in question is comparable with the horizon size
of the black hole [58,59]. Therefore, like the GL monopolar
instability (mA ¼ 0), it is relevant for black holes that have
mirs ∼Oð1Þ. Unlike theGL instability, however, this is not a
hard bound atwhich the superradiant instability switches on,
rather a statement on when its rate is fastest; all black holes
with rotation velocities satisfying Eq. (120) suffer, but the
instability ratewill only be non-negligible for a certain range
of black holemasses (given a value formi). Consequently, in
the multimetric theory, a wider range of black hole masses
will be affected than would be with a single massive
graviton, with successively heavier mass modes having
potentially relevant superradiant instabilities for succes-
sively lighter black holes (mirs being order 1 corresponds
to mi ∼ 10−11ðM⊙=MBHÞ eV, in physical units).
The rates of the superradiant instabilities for massive

spin-2 fields have been studied semi-analytically for small
black hole spins in [54], analytically in the regime where
mirs ≪ 1 in [58], and fully numerically for mirs up to 0.8
and spins up to j ¼ 0.99 in [59], where it was found that the
dipole (mA ¼ 1) mode is the fastest growing—for certain
regions of parameter space it is so fast that it can even affect
black hole ringdown. The authors as a result argued that a
measurement of nonzero rotation in supermassive black
holes would rule out large swathes of ultralight graviton
masses. However, it was demonstrated in [60] that in most
of the parameter space (save for the very fastest spins and
largest mirs) the growth of the superradiant instabilities is
always subdominant to that of the GL monopolar mode, so
any such constraints must take into account the back-
reaction of the GLmode on the solution. Again, to do this, a
nonlinear analysis with knowledge of the end state of this
instability for Kerr black holes will be necessary. This of
course requires one to have a well-posed dynamical
formulation of the multimetric theory that is suitable for
such simulations, upon which the development is ongoing
(see Ref. [157] for the case of dRGT massive gravity with
flat reference metric). That said, as an initial toy model
for the nonlinear evolution of the instability, the authors
of [60] considered the linearized system as arising from

7This point, together with the fact that the heavy spin-2 still
gravitates in the same way as ordinary matter, was used (in
bigravity) in [8,9] to argue that the heavy mode could also
constitute an interesting dark matter candidate.
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Einstein-Weyl theory [158,159], which has a well-posed
dynamical formulation [160–162], but also contains a
ghost. They nevertheless found signatures of the linear
theory in their nonlinear analysis, and postulated that this
may be a general feature of all such nonlinear analyses i.e.
even in the ghost free nonlinear theories, including the
multimetric one.

VI. CONCLUSION

In this work, we have sought to extend and generalize
numerous results regarding four-dimensional black holes in
the theories of dRGT massive gravity and bigravity to the
general ghost free multimetric theory in arbitrary dimen-
sion. To that end, we have explicitly constructed various
example black hole spacetimes that solve the multimetric
equations of motion, including analogs in the proportional
branch of all the higher-dimensional Myers-Perry black
holes of GR, as well as multiple additional solutions in
which not all metrics are simultaneously diagonalizable
(including a class of solutions—the partially proportional
branch—which is not present in dRGT/bigravity). The
additional solutions we constructed describe, respectively;
asymptotically (A)dS rotating black holes in arbitrary
dimension, asymptotically (A)dS charged black holes in
arbitrary dimension, as well as asymptotically (A)dS
charged and rotating black holes in D ¼ 4 (also in
D ¼ 3, although we did not write it down explicitly).
We suspect that the hairy black hole solutions in bigravity
also carry across to the multimetric theory in a natural way,
despite not performing the explicit calculation here.
Furthermore, we related these multimetric black hole
solutions to the well-known black string solutions of
higher-dimensional GR, with the structure of the conformal
factors that defines the multimetric vacuum encoding
information about the geometry of the extra dimension
(we used the example of clockwork gravity to represent a
warped extra dimension in the dimensional deconstruction
limit, for example).
We later studied the linear stability of these multimetric

black holes. After linearizing the general theory to deter-
mine the dynamics of the spin-2 mass modes, we showed
that the GL and superradiant instabilities that plague four-
dimensional proportional black hole solutions in dRGT
massive gravity and bigravity carry over naturally to the
multimetric theory (as they should, given the relation to
black strings). More precisely, in dRGT/bigravity, in terms
of the one graviton mass, it is known that a bound exists at
which the GL instability turns on, as well as a regime for
which the superradiant instability is most efficient, both
occuring when mrs ∼Oð1Þ (differing slightly between the
Schwarzschild and Kerr cases). In the multimetric theory,
this relation holds for every graviton in the spectrum, which
translates to a stability bound on only the lightest massive
state for the GL mode, as well as a wider array of black hole
masses that are potentially affected significantly by the

superradiant modes, relative to the situation in dRGT/
bigravity.
Since observations favor either very light or very heavy

graviton masses (in order for the multimetric theory to
agree with GR), the consequences of these instabilities can
be vastly different, and can affect vastly varying sizes of
black hole depending on the particular theory one chooses
to work with (i.e. depending on a particular choice of
interaction coefficients and number of metrics). In order to
pin these consequences down, more work is required to
understand how the instabilities saturate. This will inevi-
tably rely on us having well-posed dynamical simulations
within the framework of ghost free multigravity, upon
which the development is ongoing. Nevertheless, we hope
that as a result of this work we are now a small step closer to
understanding such interesting questions.

No new data were created or analyzed in this study.
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APPENDIX A: DERIVATION OF THE
FIELD EQUATIONS

To derive the vielbein form of the field equations as
given in Sec. II, we determine the variation of the action,
Eq. (1), using the differential form framework prescribed in
[164]. For an equivalent derivation in the metric formalism,
we refer the reader to e.g. [121].
The variation of the kinetic term with respect to the ith

tetrad gives,

δSK ¼ MD−2
i

2

Z
MD

δeðiÞa ∧ RðiÞ
bc ∧ ⋆ðiÞeðiÞbca ðA1Þ

¼ −MD−2
i

Z
MD

δeðiÞa ∧ ⋆ðiÞGðiÞ
a ; ðA2Þ

where ⋆Ga ¼ − 1
2
Rbc ∧ ⋆eabc is the Hodge dual of the

Einstein (vector-valued) 1-formwhose components are those
of theusualEinstein tensor i.e.Ga ¼ Ga

be
b. To see that this is

indeed just the usual Einstein tensor, consider the component
expression for the dual (a (D − 1)-form):

⋆Ga ¼ −
1

4ðD − 3Þ!Rbcmnε
abc

d���emnd���; ðA3Þ
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from which we can use the fact that ek ∧ ⋆Ga ¼ Ga
k⋆1 to

extract the components. First, we have

ek ∧ ⋆Ga ¼ −
1

4ðD − 3Þ!Rbcmnε
abc

d���emnd���
k

¼ þ 1

4ðD − 3Þ!R
mn

bcε
abcd���εkmnd���⋆1

¼ −
1

4
Rmn

bcδ
abc
kmn⋆1;

using the symmetries of the Riemann tensor and the fact that
the epsilon tensors sum to

εμ1μ2μ3���ε
ν1ν2ν3��� ¼ ð−1Þsδν1ν2ν3���μ1μ2μ3���; ðA4Þ

for metric of signature ðs;D − sÞ, where δν1ν2ν3���μ1μ2μ3��� is the
generalized Kronecker delta defined by

δ
ν1���νp
μ1���μp ¼ p!δν1½μ1 � � � δ

νp
μp�: ðA5Þ

We see that the Einstein tensor has (tetrad basis) components
given by

Ga
k ¼ −

1

4
Rmn

bcδ
abc
kmn; ðA6Þ

or in more familiar form,

Ga
k ¼ −

1

4
Rmn

bc3!δ
a
½kδ

b
mδ

c
n�

¼ −
1

4
ð−4Ra

k þ 2δakRÞ

¼ Ra
k −

1

2
δakR: ðA7Þ

Now, for the potential term, the variation is

δSV ¼ −
Z
MD

δeðiÞa ∧ ⋆ðiÞWðiÞ
a ; ðA8Þ

in which we define the W-tensor 1-form in an analogous
way to our Einstein 1-forms above. Explicitly,

⋆ðiÞWðiÞ
a ¼ εab1���bD−1

×
X

j1���jD−1

PðiÞTij1���jD−1
eðj1Þb1 ∧ � � � ∧ eðjD−1ÞbD−1 :

ðA9Þ
To extract the components, we use the same trick as

before—namely, that dxμ ∧ ⋆ðiÞWðiÞ
a ¼ WðiÞμ

a⋆ðiÞ1, only
this time wedging with the coordinate basis 1-form dxμ,
since the tetrads in Eq. (A9) do not necessarily belong to
the same geometry (in order to make the calculation
tractable, we need to use the vielbeins to express everything
in a common basis in which we can then identify the
volume form ⋆ðiÞ1; we make the natural choice of the
coordinate basis). The result is that,

WðiÞμ
a⋆ðiÞ1 ¼ εab1���bD−1

X
j1���jD−1

PðiÞTij1���jD−1
eðj1Þb1λ1

� � � eðjD−1ÞbD−1
λD−1

dxμλ1���λD−1

¼ −εμλ1���λD−1εab1���bD−1

X
j1���jD−1

PðiÞTij1���jD−1
eðj1Þb1λ1

� � � eðjD−1ÞbD−1
λD−1

⋆ðiÞ1

¼ D!eðiÞμ½ae
ðiÞλ1

b1
� � � eðiÞλD−1

bD−1�
X

j1���jD−1

PðiÞTij1���jD−1
eðj1Þb1λ1

� � � eðjD−1ÞbD−1
λD−1

⋆ðiÞ1:

Contracting with eðiÞaν gives us the appropriate coordinate
basis expression, Eq. (16).
Finally, the variation of the matter action defines the

energy-momentum 1-form as

δSM ¼
Z
MD

δeðiÞa ∧ ⋆ðiÞTðiÞa: ðA10Þ

Putting the three variations together and taking the func-
tional derivative with respect to δeðiÞa gives us the differ-
ential form version of our Einstein equations,

⋆ðiÞð−MD−2
i GðiÞ

a −WðiÞ
a þ TðiÞ

a Þ ¼ 0; ðA11Þ
which in coordinate basis components becomes precisely
the equations of motion (15).

APPENDIX B: DERIVATION OF THE
LINEARIZED FIELD EQUATIONS

This time, the calculation is simpler in the metric
formalism, and follows closely the bigravity derivation
in [121]. First, recall that the metric form of the W-tensor
for chain-type interactions reads [cf. Eq. (64)],

WðiÞμ
ν ¼

XD
m¼0

ð−1Þmβði;iþ1Þ
m Yμ

ðmÞνðSi→iþ1Þ

þ
XD
m¼0

ð−1Þmβði−1;iÞD−m Yμ
ðmÞνðSi→i−1Þ: ðB1Þ

To see that this is entirely equivalent to the correpsond-
ing vielbein formalism result, Eq. (26), notice that the
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building block matrices with the proportional ansatz
(gðiÞμν ¼ a2i ḡμν) take the simple form Si→i�1 ¼ ðai�1=aiÞ1,
which means that the eigenvalues of Si→i�1 are simply D
copies of ðai�1=aiÞ. Therefore, the elementary symmetric
polynomials are

ekðSi→i�1Þ ¼
�
ai�1

ai

�
k
�
D
k

�
: ðB2Þ

Substituting into Eq. (18), and using the binomial coef-
ficient identity

P
m
k¼0ð−1ÞkðDkÞ¼ð−1ÞmðD−1

m Þ, one finds that:

YðmÞðSi→i�1Þ ¼ ð−1Þmami�1a
−m
i

�
D − 1

m

�
1; ðB3Þ

which recovers Eq. (26) upon substitution back intoEq. (B1).
To linearize the system, we perturb around our propor-

tional background. The metric and its inverse are
expanded as

gðiÞμν ¼ a2i ḡμν þ δgðiÞμν ; ðB4Þ

gðiÞμν ¼ a−2i ḡμν − a−4i δgðiÞμν; ðB5Þ

where we have included factors of ai so that δgðiÞμν behaves
as if it lived in the common background described by metric

ḡμν [if δg
ðiÞ
μν had its indices instead manipulated with a2i ḡμν,

the inverse would simply be gðiÞμν ¼ a−2i ḡμν − δgðiÞμν].
It is well-known (see e.g. [34]) that the Einstein tensor

linearizes to the Lichnerowicz operator acting on the
perturbation, that is

δGðiÞ
μν ¼ Ēαβ

μνδg
ðiÞ
αβ ; ðB6Þ

so we shall skip this part of the derivation here and focus on
the potential. To that end, the first-order variation of theW-
tensor is

δWðiÞμ
ν ¼ δgðiÞμλW̄ðiÞλ

ν þ
XD
m¼0

ð−1Þmβði;iþ1Þ
m δYμ

ðmÞνðSi→iþ1Þ

þ
XD
m¼0

ð−1Þmβði−1;iÞD−m δYμ
ðmÞνðSi→i−1Þ; ðB7Þ

where, around the proportional background, we know that
W̄ðiÞλ

ν ¼ δλνMD−2
i Λ̄=a2i (see Sec. III A). The variation of the

Y’s is given by [165]

δYðmÞðSÞ ¼
Xm
k¼1

ð−1Þk
�
Sm−kδekðSÞ

−ek−1ðSÞ
Xm−k

n¼0

SnδSSm−k−n
�
; ðB8Þ

where, by virtue of Eq. (11), we have

δekðSÞ ¼ −
Xk
n¼1

ð−1ÞnTrðSn−1δSÞek−nðSÞ: ðB9Þ

Since it is built from the metric variations, δSμν also has its
indices manipulated with the common background met-
ric ḡμν.
Equations (B7)–(B9) hold in general, but around the

proportional background things simplify greatly; as we
saw, the building block matrices take the simple form
Si→i�1 ¼ ðai�1=aiÞ1. After substituting this in above (and
using some properties of the binomial coefficients) one can
show that the Y variations become [121],

δYðmÞðSi→i�1Þ ¼ ð−1Þmam−1
i�1 a

1−m
i

�
D − 2

m − 1

�
× ½TrðδSi→i�1Þ1 − δSi→i�1�; ðB10Þ

and so the variation of the W-tensor is

δWðiÞμ
ν ¼

MD−2
i Λ̄
a2i

δgðiÞμλ þ ΣðþÞ
i ½δSi→iþ1δ

μ
ν − ðδSi→iþ1Þμν�

þ Σð−Þ
i ½δSi→i−1δ

μ
ν − ðδSi→i−1Þμν�; ðB11Þ

where Σð�Þ
i are precisely as in Eqs. (66) and (67).

All that remains, in order to determine the linearized
equations of motion, is to calculate the precise form of

δSi→i�1. By starting with ðS2i→i�1Þμν ¼ gðiÞμλgði�1Þ
λν and

substituting in Eqs. (B4) and (B5) for the perturbed metrics,
one can show that the desired variation is given by

ðδSi→i�1Þμν ¼
1

2a2i

ai
ai�1

�
δgði�1Þ

μν −
�
ai�1

ai

�
2

δgðiÞμν

�
: ðB12Þ

With this, the linearized (vacuum) equations take the
following form:

Ēαβ
μνδg

ðiÞ
αβ þ Λ̄δgðiÞμν þ a2i

MD−2
i

�
ΣðþÞ
i

�
aiþ1

ai
ðδgðiÞμν − ḡμνδgðiÞÞ

−
ai
aiþ1

ðδgðiþ1Þ
μν − ḡμνδgðiþ1ÞÞ

�

þ Σð−Þ
i

�
ai−1
ai

ðδgðiÞμν − ḡμνδgðiÞÞ

−
ai
ai−1

ðδgði−1Þμν − ḡμνδgði−1ÞÞ
��

¼ 0; ðB13Þ

One can check for bigravity, where only the i ¼ 0 and
i ¼ 1 terms are present, that these equations reduce to
precisely the linearized equations of [121].
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If one instead parametrizes their perturbations as

δgðiÞμν ¼ ai

M
D−2
2

i

hðiÞμν ; ðB14Þ

as we did in Sec. IV, then one recovers our linearized
equations (95), as well as our expressions for the mass
matrix components, Eqs. (97) and (98). The mass matrix

for the hðiÞμν of course has different components to the mass

matrix for δgðiÞμν , but since their respective equations are just
related by a simple field rescaling, they share the mass same
eigenvalues. Therefore, the equations for the mass modes
that one obtains after diagonalizing are equivalent regard-

less of whether one initially uses δgðiÞμν or h
ðiÞ
μν to express their

perturbations.
Finally, we note that if ḡμν is the D-dimensional (A)dS

metric, then one may additionally pull out the cosmological
constant from the R̄α

μ
β
ν background curvature contribution

to Ēαβ
μν , to express the first two terms in Eq. (B13) as

Ẽαβ
μνδg

ðiÞ
μν −

2Λ̄
D − 2

�
δgðiÞμν −

1

2
ḡμνδgðiÞ

�
þ � � � ; ðB15Þ

where Ẽαβ now contains only the covariant derivative
operators, if one wishes to match up exactly with the
corresponding equations as written in [39,121] for bigrav-
ity. For us, it is important to keep the background curvature
in explicitly, since it feeds into our discussion of black hole
stability, when ḡμν is either the Schwarzschild or Kerr
metric.

APPENDIX C: STAR-TYPE INTERACTIONS

Throughout this work, we have consistently worked with
chain-type interactions, due to their nice interpretation as
arising from dimensional deconstruction. As mentioned
briefly in Sec. II, however, the chain-type interaction is not
the only one that is devoid of the Boulware-Deser ghost;
“star-type” interactions, where many metrics couple to one
common central metric but not to each other, are also
allowed, as well as arbitrary combinations of both stars and
chains provided that no interaction cycles form between the
metrics.
We would like to see how our calculations and results are

altered for star-type interactions. Of course, the only
difference between multimetric gravity with chain-type
interactions and multimetric gravity with star-type inter-
actions lies in the structure of the interaction coeffi-
cients Ti1���iD .
For the chain, only terms of the form Tiiii���, Tiþ1;iii���,

Ti−1;iii���, Tiþ1;iþ1;ii��� etc. were allowed, corresponding to
the scenario where each metric interacts only with its
nearest neighbors on either side. This lead us to paramterize

the interaction coefficients nicely in terms of the βði;iþ1Þ
m of

Eqs. (13) and (14).
For the star, the situation is slightly different. If we let the

index i ¼ 0 label the common central metric and the
indices j ¼ ð1;…; N − 1Þ label the outer metrics, which

each couple only to gð0Þμν , then the only permitted interaction
coefficients are those that involve combinations of 0 with
any one distinguished j e.g. T0000���, T0111���, T0022���, T3333���
and so on.8 One may parametrize the allowed coefficients in
the following manner:

D!T0000���0 ¼
XN−1

j¼1

βð0;jÞ0 ; ðC1Þ

D!Tfjgmf0gD−m ¼ βð0;jÞm ; ðC2Þ

where m ¼ 1;…; D, the form of the coefficients now
reflecting the fact that the central zeroth metric interacts
with all N − 1 outer metrics while the outer j-th metrics
interact only with the central one, and that all interactions

are oriented outward from the central metric. These βð0;jÞm

again coincide with those of the metric formalism. With this
parametrization, one can substitute into Eq. (16) to deter-
mine the form of theW-tensors for a given set of vielbeins.
For the proportional metric ansatz, the result is that the

zeroth W-tensor has components:

Wð0Þμ
ν ¼ δμν

XN−1

j¼1

XD
m¼0

βð0;jÞm

�
D − 1

m

�
amj a

−m
0 ; ðC3Þ

while the corresponding expression for the jth W-tensor is

WðjÞμ
ν ¼ δμν

XD
m¼0

βð0;jÞD−m

�
D − 1

m

�
am0 a

−m
j : ðC4Þ

Again, the same arguments regarding the solvability of the
equations of motion for chain-type interactions apply here.
Namely, one requires that the cosmological constant con-
tribution must be the same for each W-tensor:

XN−1

j¼1

ΛðþÞ
j ¼ Λ̄; ðC5Þ

Λð−Þ
j ¼ Λ̄; ðC6Þ

defining Λð�Þ
j as (a2i =M

D−2
i times) the sums involving βð0;jÞm

and βð0;jÞD−m, respectively. The equations then reduce as before

8One cannot allow, for example, T012���, as this would imply an
interaction cycle between gð0Þμν , g

ð1Þ
μν and gð2Þμν , which as we said in

Sec. II renders the theory ghostly.
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to N copies of Einstein’s equations for the ḡμν common
background, which one may in principle solve for Λ̄ and the
N − 1 free conformal factors, after fixing one of them via
coordinate rescaling.
For the nonproportional metric ansatze, the surviving

off-diagonal parts of the W-tensors are also patterned as
above, reflecting this new structure of the interactions.
Explicitly, if one defines [cf. Eqs. (66) and (67)]:

ΣðþÞ
j ¼

XD
m¼0

βð0;jÞm

�
D − 2

m − 1

�
am−1
j a1−m0 ; ðC7Þ

Σð−Þ
j ¼

XD
m¼0

βð0;jÞD−m

�
D − 2

m − 1

�
am−1
0 a1−mj ; ðC8Þ

related as

Σð−Þ
j ¼

�
a0
aj

�
D−2

ΣðþÞ
j ; ðC9Þ

then the star-type analog of Eq. (65) for the chain
interactions is

Wð0Þμ
ν ¼

MD−2
0 δμν
a20

XN−1

j¼1

ΛðþÞ
j þ lμlν

2U

XN−1

j¼1

aj
a0

ðrs;0 − rs;jÞΣðþÞ
j ;

ðC10Þ

WðjÞμ
ν ¼

MD−2
j δμν

a2j
Λð−Þ
j þ lμlν

2U
a0
aj

ðrs;j − rs;0ÞΣð−Þ
j ; ðC11Þ

and similarly for the charged variants of the above
(cf. Sec. III B 3). In principle, solutions then exist in each
of the proportional (all rs;j ¼ rs;0), nonproportional (all

ΣðþÞ
j ¼ 0) and partially proportional (combinations of both)

branches.
As for the linearized equations, the star-type analog of

Eq. (B13) for the metric perturbations is

Ēαβ
μνδg

ð0Þ
αβ þ Λ̄δgð0Þμν þ a20

MD−2
0

XN−1

j¼1

�
ΣðþÞ
j

�
aj
a0

ðδgð0Þμν − ḡμνδgð0ÞÞ

−
a0
aj

ðδgðjÞμν − ḡμνδgðjÞÞ
��

¼ 0; ðC12Þ

Ēαβ
μνδg

ðjÞ
αβ þ Λ̄δgðjÞμν þ a2j

MD−2
j

Σð−Þ
j

�
a0
aj

ðδgðjÞμν − ḡμνδgðjÞÞ

−
aj
a0

ðδgð0Þμν − ḡμνδgð0ÞÞ
�
¼ 0: ðC13Þ

One may check, for example, that in D ¼ 4 spacetime
dimensions, and denoting a0 ¼ 1; aj ¼ cj; γj ¼ Mj=M0,

these equations imply a mass matrix for the δgðiÞμν that takes
the form:

M2 ¼ 1

M2
0

2
6666666666664

P
N−1
j¼1 ΣðþÞ

j cj − ΣðþÞ
1

c1
− ΣðþÞ

2

c2
� � � − ΣðþÞ

N−1
cN−1

− ΣðþÞ
1

c1
γ2
1

ΣðþÞ
1

c1γ21
0 � � � 0

− ΣðþÞ
2

c2
γ2
2

0
ΣðþÞ
2

c2γ22
� � � 0

..

. ..
. ..

. . .
. ..

.

− ΣðþÞ
N−1cN−1

γ2N−1
0 0 � � � ΣðþÞ

N−1
cN−1γ

2
N−1

3
7777777777775
:

ðC14Þ

This is precisely the star-type interaction mass matrix that
was derived for the D ¼ 4 multimetric theory in [39].
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