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We investigate the differences between a test timelike particle’s motions around scale-dependent Planck
stars and its motions around renormalization group improved Schwarzschild black holes in detail. By
introducing the positive or negative sign of the parameter s (with s ¼ −1 and s ¼ þ1 denoting scale-
dependent Planck stars and renormalization group improved Schwarzschild black holes, respectively), we
present the circular orbital characteristics of both scale-dependent Planck stars and renormalization group
improved Schwarzschild black holes. This shows the existence of stable and unstable circular orbits and the
dependence of the innermost stable circular orbit on a dimensionless parameter jω̃jðγ; λ∓Þ, where jω̃j comes
from the theory of nonperturbative renormalization groups, γ is the identification of the cutoff for the distance
scale, and λ∓ are two new dimensionless normalized parameters. In comparison to the black holes, the
parameter γ has more influence on stable and unstable circular orbits for the scale-dependent Planck stars.
Specifically, we calculate the particle’s relativistic periastron advance for the two models and give a
preliminary bound on scale-dependent Planck stars and the renormalization group improved Schwarzschild
black holes by using the result of the S2 star’s precession with observations from GRAVITY. The bound we
obtain in the presentwork is sjω̃j ¼ ð−0.80� 1.53Þ × 1092. By using the shadow result fromEHT, the bound
on sjω̃j is improved by up to 3 or 4 orders of magnitude, which is −1.36 × 1088 ≲ sjω̃j≲ 2.32 × 1089. It
suggests that a primordial black hole or even a mini–black hole can give a tighter bound on two spacetimes in
the future.Whilewe need to break the parameters’degeneracy for the twomodelswith future observations, the
negative value in our bound suggests that the existence of Planck stars may be possible. We also intensively
compare the particle’s periodic orbits around Planck stars with those around the black holes. It is found that
small variations in λ∓ make the particle’s orbits alternate back and forth from periodic to quasiperiodic orbits,
or even jump to nonbound orbits in two spacetimes.We discuss briefly the gravitational waveforms generated
from the periodic motions for a small body which orbits a supermassive Planck star or a supermassive black
hole, which exhibit some distinct phases and amplitudes for the twomodels. Our results show that it might be
possible to aid in the identification between two spacetimes by using the particle’s motion.
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I. INTRODUCTION

After more than a century, Einstein’s general relativity is
an extraordinarily successful theory of gravity and has passed
a wealth of tests from our Solar System to binary pulsar
systems and exoplanets [1–4]. These great successes, how-
ever, have never stopped alternatives from being proposed
due to some problems in classical general relativity, such as
the singularity and the event horizon of the Schwarzschild
black hole. Especially, thanks to technical advancements that
have resulted in the detection of gravitational waves from
binary black hole mergers [5–10], in images of the super-
massive black holes in the centers of M87 and our Galaxy
[11–22], and in the detection of Schwarzschild precession in

the orbit of the star S2 around Sgr A* [23], probing general
relativity and newphysics beyond the current paradigm in the
strong gravitational field have recently opened a new era in
astronomy and gravitational theory [24–68].
Inspired by a well-accepted and self-consistent quantum

gravity theory, scale-dependent gravity is of great interest,
and these modified metrics are thought to automatically
incorporate the effects of quantum gravity. As for the
subclass scale-dependent gravity, renormalization group
improved Schwarzschild black holes [69,70] and scale-
dependent Planck stars [71] have been proposed by
introducing a “running” Newton’s constant G through
the relationship between the arbitrary renormalization
energy scale k and the radial coordinate r. One benefit
from the “running” constant is the removal of the central
singularity and its replacement with one (anti–)de Sitter*xmd@pmo.ac.cn
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core by some quantum influences. The parameter ω̃, which
comes from nonperturbative renormalization group theory,
appears in the “running” constant. Although the value of
theoretical prediction for ω̃ is not unique [72–77] the semi-
classical Newtonian potential, the number is nearly order 1
by comparing the semi-classical Newtonian potential with
an effective theory (see Table 1 in Ref. [78] for more
details, but with a different symbol). When ω̃ is positive,
the scale-dependent gravity turns to the renormalization
group improved Schwarzschild black hole scenario [69,70]
and keeps the gravity “asymptotically safe” from diver-
gences. Some interesting properties for these black holes
have been well investigated in strong deflection lensing
[45], in thermodynamics [69], in the quantum gravitational
effects on accretion [79], in cosmological perturbations
[80], and in the dynamics of test particles around the black
holes [81].
By contrast, if one relaxes the sign of ω̃ and allows the

parameter to be negative, it leads to a specific metric called
scale-dependent Planck stars [71]. This new metric is able
to describe some important characteristics for Planck stars
without further assumptions (see Ref. [71] for details). For
instance, the stars can be identical with classical
Schwarzschild black holes at a large radial coordinate and
match with the Donoghue quantum-corrected potential
[72,73,75,76]. The size of the anti–de Sitter core turns out
to be exactly that of the Planck stars [82] in a quite natural
way. Furthermore, its Hawking temperature, specific heat,
emission rate equation, and thermodynamic entropy have
been considered intensively in Ref. [71], whereas bound
orbits around scale-dependent Planck stars and a comparison
between a test timelike particle’smotions aroundPlanck stars
and its motions around renormalization group improved
Schwarzschild black holes are still missing in the literature.
A timelike particle’s bound orbits around black holes are

a useful tool for understanding gravitation and some
remarkable properties of black holes. As the most simple
bound orbits, circular orbits play an important role in
astrophysics and contribute to modeling a rotating/charged
black hole and constraining the parameters of the spin and
the charge. A lot of previous research focuses on circular
geodesics and their dynamical characteristics (see [83–105]
and references therein). Circular orbits around scale-
dependent Planck stars and black holes will be examined
in this paper. It is worth noting that the circular orbits of
massive/massless particles have been fully considered in
regular black holes [106] recently. It has been found that the
characteristics of these circular orbits are classified into
four cases depending on the strength of the charge. The
corresponding method in Ref. [106] will be adopted in the
present work.
As one subclass of bound orbits, the precessing ones—

more specifically, the periastron advances of our Solar
System’s planets [107–113], of binary pulsars [114–119],
and of exoplanets [4,120–122]—are paving the way for

probing the general relativity and modified gravity scenar-
ios in the weak gravitational field. Particularly, with
GRAVITY’s observation [23], the precession of the S2
star around Sgr A* lays the foundation for testing alter-
natives and new physics in the gravitational field of a
supermassive black hole. It motivates us to test the scale-
dependent Planck stars and the renormalization group
improved Schwarzschild black holes and distinguish the
Planck stars from the black holes in the Galactic Center
using the precessing orbit of the S2 star.
When a timelike particle locates in the vicinity of one

black hole, on the other hand, its bound orbits exhibit the
zoom-whirl behaviors [123–126], which correspond to
periodic orbits and belong to the strong gravitational field
feature. This feature is described by the ratio of the average
angular frequency to the radial frequency per radial cycle
[127]. Periodic orbits can offer computational advantages
for an extreme-mass-ratio inspiral system [128] and are
devoted to studying the gravitational radiation in the system
[129–131]. Besides this, the zoom-whirl behaviors may be
observed in the future and will provide unique insights into
some properties of the spacetime in the strong gravitational
field. Given this, the periodic orbits have been examined in
the vicinities of classical black holes [127,132], of some
modified black holes [131,133–155], and of binary black
holes [156,157]. Recently, it has been suggested that the set
of all periodic orbits could be charted in the energies and
angular momenta plane [158].
Triggered by the above observational and theoretical

progresses, and for the sake of distinguishing the scale-
dependent Planck stars from the renormalization group
improved Schwarzschild black holes by the timelike
particle’s motions—namely, ω̃—we will mainly explore
the circular, precessing, and periodic orbits around two
spacetimes in the present paper, providing some informa-
tion about their signatures in the timelike particle’s
motions. However, these approaches in the present work
are phenomenological. In the quantum system, there are
three general constants, which are the Planck length lP, the
Planck mass mP, and the Planck time. These are very small
quantities. Considering that strong gravity effects are only
just being studied by existing experiments, such as the
GRAVITY and Event Horizon Telescope (EHT) observa-
tions, it is possible that quantum corrections to general
relativity can arise at these large scales. We want to start
with some rough estimates first for these quantum-
corrected effects at such large scales.
We define one deviation quantity η≡ ðOQuan −OSchwÞ=

OSchw, whereOSchw andOQuan represent the observables for
the Schwarzschild black hole and the quantum-corrected
one, respectively (e.g., scale-dependent Planck stars or the
renormalization group improved Schwarzschild black
holes). For scale-dependent and mass-dependent experi-
ments, we hypothesize
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η ∼ ω̃

�
lP
L

��
mP

m•

�
ð1Þ

in the steady system at the leading term. In Eq. (1), ω̃ is the
dimensionless parameter we mention above and can be
regarded as the strength of coupling between gravity and
the quantum system. m• is the mass of the central body in
one experimental system and L is the experimental system
scale. Due to the steady system, the Planck time does not
appear in Eq. (1). For the present high-precision experi-
ments, the central bodies that have been observed are
almost supermassive black holes, which leads to
mP=m• ≃ 10−45. For the other ratio lP=L, it yields to
10−49 for GRAVITY’s observation and to 10−46 for
EHT’s observation. It makes the value of ω̃ very large in
these large scales if the quantity η ∼ 1. Even now, there
exist some observations for stellar-mass black holes
(10m⊙), and for the experimental system scale located
on their event horizons, we still obtain mP=m• ≃ 10−39 and
lP=r ≃ 10−40. It also suggests that, detecting such a modi-
fication, the quantum corrections would have to come
about at scales much larger than the Planck length.
However, such an experiment has not yet been done.
The paper is organized as follows: In the next section, we

concentrate on the timelike particle’s circular orbital
characteristics for scale-dependent Planck stars and
renormalization group improved Schwarzschild black
holes. Section III describes the particle’s relativistic peri-
astron advance and the shadow size for two spacetimes, and
it estimates a preliminary bound using the data detected by
GRAVITY and EHT. Section IV exhibits the particle’s
periodic motions and the corresponding gravitational wave-
forms around the Planck stars and black holes in the strong
gravitational field. Finally, Sec. V presents conclusions and
prospects for future work.

II. METRIC, GEODESICS,
AND CIRCULAR ORBITS

The metric for the scale-dependent Planck stars [71] and
the renormalization group improved Schwarzschild black
holes [69,70] with m• reads

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2; ð2Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and ðt; r; θ;ϕÞ are the
Schwarzschild coordinates with a ð−;þ;þ;þÞ metric
signature. In metric (2), we have

AðrÞ¼ ½BðrÞ�−1

¼ 1−
2Gm•

c2r

�
1þ sjω̃j Gℏ

c3r2
þ γsjω̃jG

2ℏm•

c5r3

�
−1
; ð3Þ

CðrÞ ¼ r2; ð4Þ

in which the dimensionless parameter γ is positive and
comes from an identification of the cutoff of the corre-
sponding distance scale [69,70]. Another dimensionless
parameter ω̃ belongs to the nonperturbative renormalization
group theory and could be positive or negative [69–71]. We
introduce the sign “s” in front of jω̃j in Eq. (3) for
convenience. Therefore, s ¼ −1 and s ¼ 1 denote the
scale-dependent Planck stars and the renormalization group
improved Schwarzschild black holes, respectively. When γ
and ω̃ become zero, the metric (2) is exactly the same as the
prediction by the general relativity. In the present work, we
adopt G ¼ c ¼ ℏ ¼ 1 and Ω ¼ jω̃j=m2

• ≥ 0. The lapse (3)
yields

AðrÞ ¼ ½BðrÞ�−1

¼ 1 −
2m•

r

�
1þ sΩ

m2
•

r2
þ γsΩ

m3
•

r3

�
−1
: ð5Þ

Note that G, c, and ℏ can be returned to Eq. (5) at all times
according to dimension analysis. For instance, m• →
Gm•=c2 and sjωj ¼ sΩðGm2

• Þ=ðℏcÞ in SI units. And
sjωj < 0 represents the scale-dependent Planck stars
[71], while sjωj > 0 denotes the renormalization group
improved Schwarzschild black holes [69,70].
For the scale-dependent Planck stars and the renormaliza-

tion group improved Schwarzschild black holes, the exist-
ence of the event horizon(s) has been investigated in
Refs. [69–71] through the lapse function AðrÞ. There exists
only one event horizon for the scale-dependent Planck stars,
while the renormalization group improved Schwarzschild
black holes may have one, two, or no event horizon(s).
AðrÞ ¼ 0 gives the following cubic equation [45]:

r3 − 2m•r2 þ sΩm2
• rþ γsΩm3

• ¼ 0; ð6Þ

and the discriminant of the above formula [45] is

Δ3 ¼ −m6
•ΩsðΩ − sΩþÞðΩ − sΩ−Þ; ð7Þ

with

Ω� ¼ −
27

8
γ2 −

9

2
γ þ 1

2
� 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ þ 2Þð9γ þ 2Þ3

q
: ð8Þ

We then obtain that Ωþ > 0 and Ω− < 0 because of γ > 0.
For the scale-dependent Planck stars (s ¼ −1), Eq. (7)

becomes Δ3 ¼ m6
•ΩðΩþ ΩþÞðΩþ Ω−Þ. We have Ωþ

Ω− ≥ 0 in order to ensure Δ3 ≥ 0. Thus, a dimensionless
parameter λ− can be defined as follows:

λ− ≡ Ω
Ω−

≤ 0: ð9Þ

It means that Eq. (7) for s ¼ −1 has one or two roots when
−1 ≤ λ− ≤ 0 (e.g., Δ3 ≥ 0) and no roots for λ− < −1
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(e.g., Δ3 < 0). Clearly, the event horizon(s) only locates in
the physical region for r > 0. It is not difficult to find that
there exists only one event horizon for the case of s ¼ −1
graphically (see the blue solid line in the left figure of
Fig. 1), which is consistent with the result in Ref. [71]. For
a large distance scale, namely m• → ∞, the behavior of the
event horizon for the scale-dependent Planck stars is
2Gm•=c2 þ ð2þ γÞjω̃jℏ=ð4cm•Þ. For a small distance
scale, however, the event horizon becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ=c3

p
þ

ð1þ γ=2ÞGm•=c2 (see Ref. [71] for details). Here, we
switch the dimension back.
The similar theoretical analysis has been done for the

renormalization group improved Schwarzschild black holes
(s ¼ 1) according to the cubic equation (7) [45]. By
introducing the dimensionless parameter

λþ ≡ Ω
Ωþ

≥ 0; ð10Þ

it is found that Eq. (7) has one or two positive roots when
0 ≤ λþ ≤ 1 in order to ensure Δ3 ≥ 0. And there are no
roots for the condition of λþ > 1 (see Refs. [45,69] for
details). These roots are all located in the physical region
for r > 0, which corresponds to the event horizon(s) in
renormalization group improved Schwarzschild black
holes. The behavior of the event horizon has been shown
in the right panel of Fig. 1 with the blue solid line.

In summary, when s ¼ −1, there is always one event
horizon with λ− < 0. When s ¼ 1, the existence of the
event horizon(s) depends on the value of λþ. There are two
event horizons with λþ ∈ ð0; 1Þ: when λþ ¼ 1, two event
horizons merger into one; and when λþ > 1, there is no
event horizon. See the blue solid lines in Fig. 1. It should be
noted that the scale-dependent Planck stars and the
renormalization group improved Schwarzschild black holes
reduce to Schwarzschild black holes when λ− ¼ λþ ¼ 0.
With the introduction of two dimensionless parameters λ−
and λþ, we can see that the scale-dependent Planck stars
depend on λ− and γ [e.g., Ωðγ; λ−Þ or jω̃jðγ; λ−Þ], and the
renormalization group improved Schwarzschild black holes
depend on Ωðγ; λþÞ or jω̃jðγ; λþÞ. In the present work, in
order to distinguish the scale-dependent Planck stars from
the renormalization group improved Schwarzschild black
holes by the timelike particle’s motions, we mainly study
the influences of the parameters Ωðγ; λ∓Þ on the corre-
sponding circular orbits, on the advances of the periastron
in the weak gravitational field, and on the periodic orbits
and their gravitational waveforms in the strong gravita-
tional field. We suppose that these will provide some
helpful information and insights.
The Lagrangian for a test particle governed by the metric

(2) in the equatorial plane (θ ¼ π=2) is derived as follows:

2L ¼ −AðrÞṫ2 þ BðrÞṙ2 þ CðrÞϕ̇2 ¼ κ; ð11Þ

FIG. 1. Existence of circular orbits for a timelike particle with (a) scale-dependent Planck stars (s ¼ −1) and (b) renormalization group
improved Schwarzschild black holes (s ¼ 1), plotted in (λ∓; x)-space for γ ¼ 1. (c) Zoomed-in view of (b). A particle located in the light
red region has stable circular orbits, and a particle located in the light blue region belongs to unstable circular orbits. In the white regions,
however, there exist no circular orbits. Blue solid lines depict the event horizon(s). The red solid lines correspond to lightlike orbits
based on Ref. [106], and the lines only for the model s ¼ 1 split into two branches at λ� (see the closeup in the right panel). The green
and black solid lines represent the innermost stable circular orbit (ISCO), and the lines only for s ¼ 1 split into two branches at λ�� (see
the closeup in the right panel).

LI HUANG and XUE-MEI DENG PHYS. REV. D 109, 124005 (2024)

124005-4



with κ ¼ 0 and −1 for a lightlike or a timelike particle,
respectively. An overdot denotes the derivative with respect
to an affine parameter—e.g., λ. Here, we are not imposing
on AðxÞBðxÞ ¼ 1 temporarily just for the sake of giving a
more general expression. Along the path of the test particle,
we obtain two conserved quantities

Pt ¼
∂L
∂ṫ

¼ −AðrÞṫ≡ −E; ð12Þ

Pϕ ¼ ∂L

∂ϕ̇
¼ CðrÞϕ̇≡ L; ð13Þ

where E and L indicate, respectively, the conserved energy
and the orbital angular momentum of the particle.
Substituting Eqs. (12) and (13) into Eq. (11), we have

ṙ2 ¼ E2

BðrÞAðrÞ −
1

BðrÞ
�
−κ þ L2

CðrÞ
�
: ð14Þ

For convenience, we define the following dimensionless
quantities:

x≡ r=m•; l ¼ L=m•: ð15Þ

Then, Eq. (14) is reexpressed as

ẋ2 ¼ E2

BðxÞAðxÞ −
1

BðxÞ
�
−κ þ l2

CðxÞ
�
≡ RðxÞ: ð16Þ

For the timelike particle, κ ¼ −1, we obtain one-dimen-
sional motion for RðxÞ from Eq. (16). The metric coef-
ficients (3) can be simplified as

AðxÞ ¼ ½BðxÞ�−1

¼ 1 −
2

x
ð1þ sΩx−2 þ γsΩx−3Þ−1; ð17Þ

CðxÞ ¼ x2; ð18Þ

with s ¼ −1 for the scale-dependent Planck stars and s ¼ 1
for the renormalization group improved Schwarzschild
black holes.
Considering that circular orbits condition and a more

general expression for Eq. (16), the timelike particle should
satisfy

RðxÞ ¼ 0; ð19Þ

RðxÞ;x ¼ 0; ð20Þ

where the above expressions reduce to the formula for
circular orbits with AðxÞBðxÞ ¼ 1 [159,160]. The orbital
angular momentum and the energy are derived by functions
of the circular orbit radius xc,

l2ðxcÞ ¼
A0ðxcÞC2ðxcÞ

AðxcÞC0ðxcÞ − A0ðxcÞCðxcÞ
; ð21Þ

E2ðxcÞ ¼
A2ðxcÞC0ðxcÞ

AðxcÞC0ðxcÞ − A0ðxcÞCðxcÞ
; ð22Þ

where a prime denotes the derivative with respect to x. It is
worth noting that the above more general expressions are
independent of the metric coefficient BðxÞ.
As Ref. [106] points out, the physical circular orbits for

the timelike particle must satisfy the conditions of l2 ≥ 0

and E2 ≥ 0. Therefore, the signature of dl=dxc is opposite
to that of R;xx ½xc; lðxcÞ� due to

RðxÞ;xx ¼ −RðxÞ;xl
dl
dxc

; ð23Þ

−RðxÞ;xl ¼ −
2lC0ðxÞ

BðxÞCðxÞ½CðxÞ þ l2� < 0; ð24Þ

where we use E2=AðxÞ ¼ 1þ l2=CðxÞ based on Eq. (19).
The above conditions are identical with those of Ref. [106],
where the relationship between the effective potential U in
Ref. [106] and RðxÞ is RðxÞ ¼ E − U, with AðxÞBðxÞ ¼ 1.
This means that the stable circular orbit can be described by
RðxÞ;xx < 0 or dl=dxc > 0. It can be further derived that

dE2

dxc
¼ dl

dxc

2lAðxÞ
CðxÞ ; ð25Þ

which indicates that dE2=dxc has the opposite signature
to RðxÞ;xx.
The innermost stable circular orbit (ISCO) describes the

minimum radial distance of a test timelike particle around
one black hole. When the particle lies in the innermost
stable circular orbit [161], its motion cannot enter the event
horizon and maintain a stable circular orbit, which satisfies
the following conditions:

RðxÞ ¼ 0; RðxÞ;x ¼ 0; RðxÞ;xx ¼ 0 ð26Þ

for the case of the existence of the event horizon(s). From
the above discussion, this suggests that the condition of
RðxÞ;xx ¼ 0 is equivalent to that of dl=dxc ¼ 0. This means
that, in order to describe the innermost stable circular orbit
for the existence of the event horizon(s), dl=dxc ¼ 0 can
replace RðxÞ;xx ¼ 0 in Eq. (26). Besides this, by using
AðxÞBðxÞ ¼ 1 and RðxÞ ¼ E2 −U, Eq. (26) returns to the
result in Ref. [106].
For horizonless black holes, only the renormalization

group improved Schwarzschild black holes (s ¼ 1) have
this situation when λþ > 1; the corresponding innermost
stable circular orbit is found as [106]
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RðxÞ ¼ 0; RðxÞ;x ¼ 0; l ¼ 0: ð27Þ

This indicates that the innermost stable circular orbit for the
horizonless case is described by such specific orbits with
zero angular momentum. Furthermore, it is derived that the
innermost stable circular orbit radius for l ¼ 0 can be
obtained from RðxÞ;x ¼ 0.
For the lightlike particle, κ ¼ 0. Equation (16) then

becomes

ẋ2 ¼ E2

BðxÞAðxÞ −
l2

BðxÞCðxÞ≡ RðxÞ: ð28Þ

From Ref. [106], the circular orbits for the lightlike particle
read

RðxÞ ¼ 0; RðxÞ;x ¼ 0; l ¼ ∞: ð29Þ

Then, it is found that the radius of the circular orbit for
the lightlike particle is obtained from AðxÞ;xCðxÞ−
AðxÞCðxÞ;x ¼ 0. It gives the radius of the sphere, which
will be considered in Sec. III B. This result also reduces to the
one in Ref. [106] by using AðxÞBðxÞ ¼ 1.
To compare the difference between circular orbits around

scale-dependent Planck stars and those around renormal-
ization group improved Schwarzschild black holes, the
metric coefficients (17) and (18) are now substituted into
the above general analysis expressions. Then, we plot
Fig. 1, which displays the existence and stability of the
circular orbits in the scale-dependent Planck stars ðs ¼ −1Þ
and the renormalization group improved Schwarzschild
black holes (s ¼ 1) for γ ¼ 1. The blue, red, green, and
black solid lines depict the event horizon, the circular orbit
of the lightlike particle, the innermost stable circular orbit
of the timelike particle with the existence of the event
horizon(s), and the innermost stable circular orbit of the
timelike particle with no horizon, respectively. It suggests
that the red and black solid lines are all split into two
branches at λ� and λ�� separately only for the case of s ¼ 1
(see the closeup in the right panel of Fig. 1 for details). For
the case of s ¼ −1, however, the situation is quite different,
and the three solid lines are all monotonically decreasing.
This demonstrates that there exist different behaviors of
circular orbits for timelike and lightlike particles between
scale-dependent Planck stars and renormalization group
improved Schwarzschild black holes. Further analysis
reveals that the particles located in the light red regions
have stable circular orbits, while the particles located in the
light blue regions belong to unstable circular orbits. The
regions colored by white show where there exist no circular
orbits.

FIG. 2. Existence of circular orbits for a timelike particle with
scale-dependent Planck stars (s ¼ −1) and with renormalization
group improved Schwarzschild black holes (s ¼ 1), plotted in
(λ∓; x)-space for γ ¼ 9=2; 5; 15; 20; 40. The meanings of differ-
ent regions and solid lines in this figure correspond to those of
Fig. 1. Note that two vertical coordinates have different scales in
two columns in order to study the effect of γ on two spacetimes
(s ¼ −1 and s ¼ 1).
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Figure 1 indicates that the scale-dependent Planck stars
and the renormalization group improved Schwarzschild
black holes will be identical with the Schwarzschild black
holes when λ− ¼ λþ ¼ 0. Meanwhile, the radius of the
event horizon, the circular orbit of lightlike particles and the
innermost stable circular orbit for timelike particles for two
models (s ¼ −1 and s ¼ 1) reduce to the corresponding
values of the Schwarzschild case, which are 2Gm•=c2,
3Gm•=c2, and 6Gm•=c2, respectively (see Fig. 1). We
switch the dimension back here. It is worth mentioning that
other situations are almost qualitatively the same when the
parameter γ goes to different values. However, we still plot
Fig. 2 just to show the influence of γ on the existence and
stability of circular orbits in two models (s ¼ −1 and
s ¼ 1) for different values ð9=2; 5; 15; 20; 40Þ. From Fig. 2,
it can be seen that, as to the renormalization group
improved Schwarzschild black holes, the various values
of γ have little effect on the regions for stable circular
orbits, for unstable circular orbits, and for no circular orbits.
Conversely, for the scale-dependent Planck stars, the
regions for the circular orbits and for no circular orbits
decrease with the increase of γ, but the region for unstable
circular orbits increases with the increase of γ. This
suggests that there are different effects of the parameter
γ on the existence and stability of circular orbits for two
spacetimes. These results might provide hints for distin-
guishing the scale-dependent Planck stars from the renorm-
alization group improved Schwarzschild black holes by the
timelike particle’s bound orbits.

III. PRELIMINARY BOUND ON THE
STRENGTH OF COUPLING PARAMETER

A. Periastron advance

As one kind of bound orbits, periastron advance points the
way to the confirmation of Einstein’s general relativity [1]
and testing competitive modified gravity scenarios [107–
113]. In this subsection, we will derive the relativistic
periastron advance for timelike particles around scale-de-
pendent Planck stars and renormalization group improved
Schwarzschild black holes. A preliminary bound on the
scale-dependent Planck stars and the renormalization group
improved Schwarzschild black holes will be first given by
using the result of the GRAVITY observations for the S2
star [23].
For the timelike particle, the bound orbits can be written

by a rational or an irrational number q [127] as

Δϕ ¼ 2πðqþ 1Þ: ð30Þ

In Eq. (30), q can describe periodic or precessing orbits.
During a radial period, the accumulated azimuthΔϕ between
successive periastron or apastron can be described as

Δϕ ¼ 2

Z
rap

rpe

ϕ̇

ṙ
dr ¼ 2

Z
rap

rpe

dϕ
dr

dr ¼ 2

Z
π

0

dϕ
dχ

dχ; ð31Þ

where rpe and rap are the periastron and apastron, respec-
tively, of the bound orbtis. When q is an irrational number,
the bound orbits display precession (namely, periastron
advance) [127].
The radial coordinate can be parametrized as [160]

r ¼ að1 − e2Þ
1þ e cos χ

; ð32Þ

with a, e, and χ being the semimajor axis, the eccentricity,
and the relativistic true anomaly. The periastron rpe and
apastron rap can be obtained by χ ¼ 0 and χ ¼ π as
follows:

rpe ¼ að1 − eÞ; rap ¼ að1þ eÞ: ð33Þ

From Eqs. (13), (14), and (32), we derive

dϕ
dχ

¼ aeð1 − e2ÞL
�

E2

BðrÞAðrÞ −
1

BðrÞ
�
1þ L2

CðrÞ
��

−1=2

× ½CðrÞ�−1ð1þ e cos χÞ−2 sin χ: ð34Þ

With the fact that the radial velocity ṙ2 at rpe and rap is zero,
E2 and L2 are determined by Eq. (14) as

E2 ¼ AðrapÞAðrpeÞ½CðrapÞ − CðrpeÞ�
CðrapÞAðrpeÞ − CðrpeÞAðrapÞ

; ð35Þ

L2 ¼ CðrapÞCðrpeÞ½AðrapÞ − AðrpeÞ�
CðrapÞAðrpeÞ − CðrpeÞAðrapÞ

: ð36Þ

Substituting Eqs. (35) and (36) into Eq. (34), we expand
Eq. (34) as the term m•. One analytic approximation for
Eq. (34) is found as

dϕ
dχ

¼ 1þ e cos χ þ 3

að1 − e2Þ m•

þ 1

2

½e cos χ þ 3�½3e cos χ − 2sΩþ 9�
a2ð1 − e2Þ2 m2

•

þOðm3
• Þ: ð37Þ

The periastron advance of the timelike particle around the
scale-dependent Planck stars and the renormalization group
improved Schwarzschild black holes can be derived as
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ΔωSDPSs=RGIBHs ≡ Δϕ − 2π

≃
6πm•

að1 − e2Þ þ
3πð18þ e2Þm2

•

2a2ð1 − e2Þ2

−
6πsΩm2

•

a2ð1 − e2Þ2 þOðm3
• Þ: ð38Þ

In the above formula, the first and second terms are the first
post-Newtonian (1PN) and the second post-Newtonian
(2PN) periastron advances of the Schwarzschild black
hole in spherical Schwarzschild coordinates [162,163],
which are

ΔωGR ¼ 6πm•

að1 − e2Þ þ
3πð18þ e2Þm2

•

2a2ð1 − e2Þ2 þOðm3
• Þ: ð39Þ

The third term in Eq. (38) is the effect of the scale-dependent
Planck stars and the renormalization group improved
Schwarzschild black holes on the periastron advance. In
order to compare two spacetimes bymeasuring the periastron
advance of the S2 star orbiting Sgr A* and to give the
preliminary bound on the spacetimes, we keep the terms at
the 2PNorder (m2

• ), because the third term inEq. (38) appears
in the 2PN order.
By means of the four-VLT-telescope interferometric

beam combiner instrument, GRAVITY reported the first
result of the periastron advance in the orbit of the S2 star
orbiting Sgr A* under the Schwarzschild black hole model
with the combination of astrometric and spectroscopic
measurements of the star [23]. The ratio fsp of the
measured periastron advance Δω to the value ΔωGR
predicted by the Schwarzschild black hole [23] is

fsp ≡ Δω
ΔωGR

¼ 1.10� 0.19: ð40Þ

Supposing that Sgr A* fits the model of scale-dependent
Planck stars or the renormalization group improved
Schwarzschild black holes, the periastron advance of the
star orbiting the supermassive black hole at the Galactic
Center can be modeled by Eq. (38), so that we have the
following expression:

fsp ≡ ΔωSDPSs=RGIBHs

ΔωGR

≃ 1 −
sΩm•

að1 − e2Þ þOðsΩm2
• ; m3

• Þ; ð41Þ

where we only keep the leading term of sΩ and neglect the
terms of sΩm2

• and m3
• . We can see that fsp in scale-

dependent Planck stars and renormalization group
improved Schwarzschild black holes only depends on
sΩ or sjω̃j. The other parameter, γ, is not sensitive to
fsp at the leading term. Therefore, when G, c, and ℏ are

returned to Eq. (41), we deduce the following dimension-
less parameters:

sΩ ≃ ð1 − fspÞ
�

a
RSchw

�
2ð1 − e2Þ

¼ ð−0.53� 1.01Þ × 103 ð42Þ

or

sjω̃j ≃ ð1 − fspÞ
�
a
lP

��
m•

mP

�
ð1 − e2Þ

¼ ð−0.80� 1.53Þ × 1092; ð43Þ

where RSchw is the Schwarzschild radius. From Eq. (43), it
is shown that we obtain the same relationship between the
Planck length/mass and the scale/mass in the experimental
system shown in Eq. (1).
In the theoretical point of view, under a quantum-corrected

Newtonian potential, sjω̃j can be determined by comparing
the semiclassical Newtonian potential ½AðrÞ − 1�=2. The
value of this theoretical prediction is not unique and is
nearly order 1 in various literature. For example, sjω̃j ¼
127=ð30π2Þ in [72,73], sjω̃j ¼ 122=ð15πÞ in [74], sjω̃j ¼
−41=ð10πÞ in [75,76], and sjω̃j ¼ −167=ð30πÞ in [77]; see
Table 1 in Ref. [78] for more details, but with a different
symbol. In the practical point of view, high-precision data for
black holes come from supermassive black holes at present,
such as the GRAVITY observation [23]. Because the
experimental system scale a ≃ 12264RSchw is much larger
than the Planck length, and the mass of Srg A* is also much
larger than the Planck mass, this makes the bound on sjω̃j
many orders of magnitude larger. In Eq. (43), it is noted that
tighter constraints on sjω̃j should be given on a smaller
experimental system scale with a smaller central compact
body.
In Eqs. (42) and (43), the best-fit orbit parameters of the S2

star are provided in Ref. [23]—e.g., a ¼ 125.058� 0.041
mas, e ¼ 0.884649� 0.000066, and so on. This suggests
that our preliminary bound on thevalue of sΩ is negative, and
the negative value corresponds to the scale-dependent Planck
stars. According to Eq. (42), the preliminary bounds onΩ or
ω̃ for scale-dependent Planck stars and renormalization
group improved Schwarzschild black holes are shown in
Table I. We give the preliminary bound on the scale-
dependent Planck stars, for the first time, by using the result
of the GRAVITY observations for the S2 star. For the
renormalization group improved Schwarzschild black holes,
the previous work [45] gives the rough and tentative bound
on γ and λ based on the measured diameter for M87*’s
shadow [11], which is γ ∈ ½0.2; 10� and λþ ∈ ½0.02; 0.22�
(indicated as λ in Ref. [45]). When γ ∈ ½0.2; 10�, our
preliminary bound on λþ gives the range from 0.004 to
0.04 (see Fig. 3), which is tighter than the previous result [45]
constrained by the shadow size.
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Since Ω≡ jω̃j=m2
• > 0, we can reduce the ranges of Ω

further for two spacetimes with the results of GRAVITY.
The range of Ω for s ¼ −1 becomes ð0; 1.54 × 103Þ, while
the range for s ¼ 1 turns into ð0; 0.48 × 103Þ. The allowed
ranges of Ωðγ; λ∓Þ have been depicted in Fig. 3. In the
figure, light blue shaded regions are the allowed ones for γ
and λ∓, and the white regions are excluded for the
parameters γ and λ∓ based on our preliminary bound.
This indicates that the variation range of γ increases slowly
with the growth of λ−; see the blue shaded region of the left
panel in Fig. 3. For the renormalization group improved
Schwarzschild black holes, however, the range for
Ω∈ ð0; 0.48 × 103Þ is too large to be represented by the
right panel in Fig. 3. In the theoretical point of view, from
Eq. (8), it is found that Ωþ → 1 when γ → 0, and Ωþ → 0
when γ → ∞. It turns out that Ω ¼ λþΩþ is always
between 0 and 1 when the event horizons exist for the
black holes. When we consider the smaller allowed range
with Ω∈ ð0; 0.04Þ, the allowed range of Ωðγ; λþÞ has been
plotted in the inset of the right panel in Fig. 3. We can see
that the variation range of γ increases sharply with λþ. We
also find that there is still a white region for a larger allowed
range of Ωðγ; λþÞ with Ω > 0.04.
It is worth emphasizing that, in our estimation and the

uncertainty for sΩ in Eq. (42), we consider the variances of

the variables in Eq. (41). Besides this, although Ref. [23]
presents the orbit fit’s posterior distribution, we ignore the
relevant covariance in these variables because these corre-
lation coefficients cannot be obtained directly. In our work,
the bound given in Eq. (42) is derived with the best-fit orbit
parameters. The orbital parameters (e.g.,a, e,mSgr A�) should
be correlated to sΩ, more or less. The modified periastron
advance of the S2 star [e.g., Eq. (38)] due to sΩ may be
reabsorbed in our result of sΩ partially. Given that, our result
might overestimate the bound on sΩ because of the par-
meters’ correlations. For this issue, Ref. [164] gives some
more discussion in more detail. Thus, we only give the
preliminary bound on sΩ instead of a genuine constraint on
the scale-dependent Planck stars and the renormalization
group improved Schwarzschild black holes based on a full
statistical analysis by using the whole observational dataset.
In our futurework, wewill consider this issue carefully if the
data can be made publicly available. Besides, there exists a
strong parameter degeneracy between γ and λ∓ in sΩðγ; λ∓Þ
[e.g.,Ω ¼ λ−Ω−ðγÞ for s ¼ −1 andΩ ¼ λþΩþðγÞ for s ¼ 1;
see Eqs. (8)–(10)]. In order to constrain the various param-
eters γ and λ∓ simultaneously, the best that we can do is to
combine the other new data with other observations into the
GRAVITY data to break the parameter degeneracy in the
future.

FIG. 3. The allowed ranges of Ωðγ; λ∓Þ with various s under our preliminary bound based on GRAVITY. Here, s ¼ −1 denotes the
scale-dependent Planck stars (left), where Ωðγ; λ−Þ∈ ð0; 1.54 × 103Þ based on Table I, and it depicts different colored regions. The other
case represents the renormalization group improved Schwarzschild black holes (right), and the preliminary bound gives
Ωðγ; λþÞ∈ ð0; 0.48 × 103Þ, which displays the allowed range with a small region based on our preliminary bound. The light blue
shaded regions are the allowed ones, while the white regions are excluded based on our preliminary bound (see Table I). The subpanel in
the right figure corresponds to the smaller allowed range with Ωðγ; λþÞ∈ ð0; 0.04Þ and shows different colored regions.

TABLE I. Bounds on the scale-dependent Planck stars (SDPSs) and the renormalization group improved
Schwarzschild black holes (RGIBHs) using the results from the periastron advance and the shadow size.

Observation GRAVITY EHT

sΩ ð−0.53� 1.01Þ × 103 −0.09≲ sΩ≲ 1.53
sjω̃j ð−0.80� 1.53Þ × 1092 −1.36 × 1088 ≲ sjω̃j ≲ 2.32 × 1089
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B. Photon sphere and shadow

According to Eq. (1), it is shown that the bound on sjω̃j
will be improved with EHTobservation by up to 3 orders of
magnitude, since the experimental system scale L for the
EHT is nearly 3RSchw=2. Therefore, we will consider the
photon sphere and shadow size of the scale-dependent
Planck stars and the renormalization group improved
Schwarzschild black holes in this subsection.
The radius of the photon sphere xm is defined as the

circular orbit for the lightlike particle based on Eq. (29)—
namely, AðxÞ;xCðxÞ − AðxÞCðxÞ;x ¼ 0. The impact param-
eter u is given by [165]

u ¼
ffiffiffiffiffiffiffiffiffiffi
CðxÞ
AðxÞ

s
; ð44Þ

and um is the shadow size evaluated at xm. In contrast with
the S2’s periastron advance, the photon sphere and shadow
in two spacetimes depend on both parameters: sjω̃j and γ.
Supposing that γ ≃ sΩ in the metric (5), we deduce

−0.09≲ sΩ≲ 1.53 ð45Þ

or

−1.36 × 1088 ≲ sjω̃j≲ 2.32 × 1089; ð46Þ

based on the shadow resuts of Sgr A* from VLTI [17–22].
In comparison to the bound from the periastron advance
[Eqs. (42) and (43)], the bound on sjω̃j from EHT
observation is improved by up to 3 or 4 orders of
magnitude; see Table I. Even so, it also makes the bound
many orders of magnitude larger.

IV. PERIODIC ORBITS

In the strong gravitational field, one specific subclass of
bound orbits for the timelike particle are periodic or
quasiperiodic ones, which possess the rational or irrational
number q [see Eq. (30)] [127]. In this section, we will seek
the periodic or quasiperiodic motions for timelike particles
around two spacetimes. An attempt is made to distinguish
the scale-dependent Planck stars from the renormalization
group improved Schwarzschild black holes by the periodic
orbits in the strong gravitational filed.
The bound orbits of a timelike particle usually lie

between the innermost stable circular orbit (ISCO) and
the marginally bound orbit. In Sec. II, when taking the
circular orbital characteristics of two spacetimes into
account, the innermost stable circular orbit has been studied
for the cases with the event horizon(s) [Eq. (26)] and
horizonless [Eq. (27)] by the radial motion RðxÞ [Eq. (16)].
As the name indicates, the ISCO is the last stable circular
orbit for a particle revolving around the Planck stars or the
black holes [161]. The marginally bound orbit, on the other

hand, is defined as a unstable circular orbit whose energy is
equal to the rest mass of the particle [161]. Therefore, the
marginally bound orbit satisfies E2 ¼ 1 and RðxÞ;x ¼ 0. It
is important to note that small perturbations can cause a
particle moving in the marginally bound orbit to ultimately
escape from the gravity of the Planck stars or black holes.
When the timelike particle is located between the innermost
stable circular orbit and the marginally bound orbit, the
radial motion RðxÞ can be used to analyze the relevant
bound orbital characteristics.
When γ ¼ 10, Fig. 4 demonstrates the variation of RðxÞ

with different values λ∓ for l ¼ ðlISCO þ lMBOÞ=2 and
various values of E (shown by different colors). Here,
lISCO and lMBO represent the angular momentums of the
innermost stable circular orbit and the marginally bound
orbit for the particle, respectively. “Schw” denotes the
Schwarzschild case. There exist three extremal points in the
panel labeled ðd2Þ at bottom right due to the horizonless
situation for the renormalization group improved
Schwarzschild black holes, while the other cases in
Fig. 4 admit two extremal points. A value for the energy
E that is either too small too big makes the curves of RðxÞ
only a root, which can never have bound orbits. The bound
orbits around the Planck stars and the holes can be
allowable only if the radial motion RðxÞ at least has two
roots with opposite signs. For example, the light purple
curves in Fig. 4 panels labeled ða1Þ–ðd1Þ and ða2Þ–ðc2Þ
have two roots, and the intersection parts of the light purple
curves with RðxÞ ¼ 0 permit such bound orbits. For panel
ðd2Þ of Fig. 4, however, the light purple curves have three
roots, and the parts between the last two roots can allow
bound orbits. As a result, for one given energy E, the
turning points can be derived by solving RðxÞ ¼ 0.
According to the above characteristics, one can plot the
ðl; EÞ allowed regions corresponding to the timelike par-
ticle’s bound orbits, as shown in Fig. 5.
The left column in Fig. 5 depicts the ðl; EÞ allowed region

of the bound orbits for a timelike particle around scale-
dependent Planck stars (s ¼ −1) with different values of γ
and λ−, while the right column in Fig. 5 shows the orbits
around renormalization group improved Schwarzschild
black holes (s ¼ 1). The lower and upper curves in each
shaded region stand for the lower and upper bounds,
respectively. This suggests that, for the scale-dependent
Planck stars, the ðl; EÞ allowed regions of the bound orbits
are extremely sensitive to the parameter γ, and their
energies and angular momenta increase with the increase
of γ. Besides this, the parameter λ− has an visible impact on
the change of the ðl; EÞ allowed region. It also shows that
the shaded area for the ðl; EÞ allowed region decreases as λ−
when the parameter γ is fixed. For renormalization group
improved Schwarzschild black holes, the parameters γ and
λþ have a smaller effect on the ðl; EÞ allowed region of the
bound orbits in comparison to the case for the Planck stars.
The above properties can equip us to seek possible
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differences between the periodic orbits around scale-
dependent Planck stars and those around renormalization
group improved Schwarzschild black holes.
In a strong gravitational field, the periodic or quasiperi-

odic orbits can be described by q, which can be specified by

three integers ðz; w; vÞ as q ¼ wþ v=z. The integers z and
w are the zoom number and the whirl number, while the
integer v represents the vertex number (see Ref. [127] for
details). Based on Eqs. (30), (31), and (34), it can be seen
that q depends on the angular momentum l, the energy E,

FIG. 4. The radial motion RðxÞ varies with x for a timelike particle around the scale-dependent Planck stars [s ¼ −1 for panels labeled
(a1),(b1),(c1), and (d1)] and the renormalization group improved Schwarzschild black holes [s ¼ 1 for panels labeled (a2),(b2),(c2), and
(d2)] with various values λ∓ and E when γ ¼ 10 and l ¼ ðlISCO þ lMBOÞ=2. Note that “Schw” denotes the Schwarzschild case.
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and the metric functions (17) and (18). This means that
given the same values of E and l, two different sets of
ðγ; λ∓Þ can generate very different periodic orbits repre-
sented by q. Similar behavior in the periastron advance in
the weak gravitational field was also discussed in Sec. III A.
When the various ðl; EÞ regions in Fig. 5 overlap with

different values of ðγ; λ∓Þ, the bound orbits for the (quasi)
periodic orbits can be present when E and l take the same
values; see Fig. 5. Otherwise, with given values of ðγ; λ∓Þ,
we cannot simultaneously plot bound orbits with the same
values of E and l under a nonoverlapping areas for the
ðl; EÞ allowed regions in Fig. 5. In order to reveal the
characteristics for the periodic orbits for two spacetimes,
we plot Fig. 6 with a fixed γ. The first and second rows in
Fig. 6 show the periodic and quasiperiodic orbits of a
timelike particle around scale-dependent Planck stars, and
the third and fourth rows give its orbits around renormal-
ization group improved Schwarzschild black holes. The
orbits in each row share the same l and E. For instance, all

orbits have E ¼ 0.993841 and l ¼ 8.8 in the first row of
Fig. 6. The particle’s orbit around scale-dependent Planck
stars gives a perfect periodic orbit with λ− ¼ −1.2 and has
only one zoom number. Although the orbit for λ− ¼ −1.0
also has a periodic orbit in the same row, its zoom number
is changed to 3. As the value of λ− increases further (to, say,
−0.8) the zoom number becomes nearly 5. Conversely, a
slight decrease in λ− can make the particle’s orbit into a
nonbound one (denoted as “N.A.”). Also, in the third row of
Fig. 6 shared with E ¼ 0.963354 and l ¼ 3.6, there exists a
nonbound orbit for the Schwarzschild case ðλþ ¼ 0Þ.
However, the (quasi)periodic orbits appear in the renorm-
alization group improved Schwarzschild black holes with
the same values of l and E. With the slight increase of λþ,
the zoom-whirl behaviors change from q ≈ 2þ 4=5 to
q ≈ 3þ 1=2, and even to q ¼ 1þ 2=3.
With a fixed γ, Fig. 6 demonstrates that small variations

of λ∓ might not only make bound orbits change from
quasiperiodic to periodic ones, but also cause them to jump

FIG. 5. The ðl; EÞ allowed regionsof a timelike particle’s boundorbits around scale-dependent Planck stars [s ¼ −1 for panels labeled (a)–
(c)] and renormalization group improved Schwarzschild black holes [s ¼ 1 for panels labeled (d)–(f)] with different values of γ and λ∓.
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to nonbound orbits. In particular, the orbits for scale-
dependent Planck stars and for renormalization group
improved Schwarzschild black holes present quite distin-
guishable behaviors. Different values of λ∓ can cause
particles to change from a periodic orbit to a quasiperiodic
one even out of the bound orbits. This may provide the

possibility to distinguish between the scale-dependent
Planck stars and the renormalization group improved
Schwarzschild black holes using information from the
(quasi)periodic orbits in the strong gravitational field.
The future of radio astronomy with the Square
Kilometre Array (SKA) [166], with the observations of a

FIG. 6. The periodic orbits (denoted by “PO”) and quasiperiodic orbits of a timelike particle around scale-dependent Planck stars and
renormalization group improved Schwarzschild black holes with the same values of l and E on each row, for two different sets of λ∓
when γ ¼ 9=2. Cases of nonbound orbits are marked by “N.A.”.
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few radio stars in the central region of our Galaxy, may
provide an opportunity to test two spacetimes with unprec-
edented astrometric accuracy and angular resolution. This
will be a huge challenge due to the high density and strong
turbulence of the plasma in the central region of the Galaxy,
which can strongly affect the light propagation in a curved
spacetime.
Based on Refs. [129–131], on the other hand, the

gravitational waves emitted from periodic orbits around
(non)classical black holes can be used for probing alter-
native theories of gravity in the strong gravitational field.
This motivates us to investigate a preliminary study of the
gravitational waveforms generated by the periodic orbits of
a small body around scale-dependent Planck stars or
renormalization group improved Schwarzschild black
holes, such as an extreme mass ratio inspiral system.
This kind of binary system will be one of the main targets
of some spaceborne gravitational wave detectors in the
future—e.g., LISA [167], Taiji [168], and Tianqin [169].
With the same method as Refs. [129–131], we derive the
corresponding periodic orbit by treating the small body as a
timelike particle. Then, considering “kludge” gravitational
waveforms developed in Ref. [170], one can obtain the
corresponding gravitational waves by using the equation

hij ¼
4GηM
c4DL

�
vivj −

m
r
ninj

�
; ð47Þ

up to the quadratic order [129–131] by adopting the
adiabatic approximation. In Eq. (47), m and M are the
masses of the small body and the supermassive one,
respectively. η ¼ Mm=ðM þmÞ2. DL is the luminosity
distance. vi is the spatial velocity of the small body around
the scale-dependent Planck star or the renormalization
group improved Schwarzschild black hole. Finally, ni is
the direction of the separation vector between the small
body and the Planck star or the black hole.
In order to construct two tension polarizations, the

gravitational wave can be projected onto a detector-adapted
coordinate system [171], where the coordinate directions
are given by

ex ¼ ðcos ζ; sin ζ; 0Þ; ð48Þ

ey ¼ ðcos ι sin ζ; cos ι cos ζ;− sin ιÞ; ð49Þ

ez ¼ ðsin ι sin ζ; sin ι cos ζ; cos ιÞ; ð50Þ

where ζ is the longitude of the periastron and ι is the
inclination angle. These two angles can be set to any
value—e.g., π=4. Based on the above basis, the transverse
traceless tensor polarizations, hþ and h×, arewritten as [171]

hþ ¼ −
2η

DL

G2M2

c4r
ð1þ cos2ιÞ cos ð2ϕþ 2ζÞ; ð51Þ

h× ¼ −
4η

DL

G2M2

c4r
cos ι sin ð2ϕþ 2ζÞ: ð52Þ

In panels (a1) and (a2) of Fig. 7, as an example, we plot the
gravitational waveforms generated by the periodic orbits
around scale-dependent Planck stars and renormalization
group improved Schwarzschild black holes with
ðz; w; vÞ ¼ ð3; 1; 2Þ. Here, the masses of the small body
and the supermassive one arem ¼ 10M⊙ andM ¼ 107M⊙,
respectively, and DL ¼ 200 Mpc.
In panels (b1) and (b2) of Fig. 7, the transverse-traceless

tensor polarizations are displayed with respect to the proper
time τ (s). The purple, green, and red curves correspond to
(γ ¼ 9=2, λ− ¼ −1.0), (γ ¼ 10, λ− ¼ −0.5), and (γ ¼ 10,
λ− ¼ −1.0), respectively. In panels (b3) and (b4), hþ and h×
are also shown with respect to τ (s), where the purple and
green curves correspond to (γ ¼ 10, λþ ¼ 1.0) and
(γ ¼ 9=2, λþ ¼ 1.0), and the red curve represents the
Schwarzschild case (λþ ¼ 0). The plus hþ and the cross
h× clearly show the zoom-whirl behaviors of the corre-
sponding periodic orbits. The number of quiet phases of
gravitational waves is the same as the number of leaves in
the periodic orbit, while the number of louder glitches
between the phases is the same as the number of whirls in
the periodic orbits. In particular, changes in γ and λ∓ cause
a shift in the phase and amplitude of the gravitational
waveform. The increase of γ and the decrease of λ− result in
an increase in the time τ for one orbital period, and in a
reduction in amplitude. These properties suggest that the
gravitational wave signals radiated by the periodic orbit can
also help us to distinguish the scale-dependent Planck stars
from the renormalization group improved Schwarzschild
black holes.
In the present work, by adopting the adiabatic approxi-

mation, we neglect the influence of gravitational radiation
on one periodic orbit. This kind of neglect is justified, since
the timescale for the orbit’s decay due to gravitational wave
emission [172] is

τGW ∼
c5a4

96G3mMðM þmÞfðeÞ ; ð53Þ

fðeÞ ¼ ð1 − e2Þ−7=2
�
1þ 73

24
e2 þ 37

96
e4
�

ð54Þ

in the extreme mass ratio inspiral system. If we take the
small body’s orbital period T to be periodic, then the small
body on an eccentric e ¼ 0.8, T ¼ 0.1 yr orbit around the
supermassive body based on Eq. (53) has

τGW
T

∼ 108 ≫ 1: ð55Þ

Then, the influence of gravitational radiation on the
periodic orbits can be neglected during one whole orbital
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period. Even for one small semimajor axis (a ¼ 50RSchw)
and more eccentric orbits (e ¼ 0.9), it can be approximated
as stationary—e.g., τGW=T ∼ 105. Although the effect of
gravitational radiation on the periodic orbits are not
important for a single periodic orbit, such effects for
observations over longer periods of time will need to be
considered. We will leave the detailed research on this issue
to future work.

V. CONCLUSIONS AND DISCUSSION

In this paper, we mainly focus on the difference between
a test timelike particle’s motions around scale-dependent
Planck stars (s ¼ −1) and its motions around renormaliza-
tion group improved Schwarzschild black holes (s ¼ þ1).

We first concentrate on their circular orbital characteristics,
and we find the existence of stable and unstable circular
orbits and the dependence of the innermost stable circular
orbit on the parameters γ and λ∓. This shows that, in
comparison to black holes, the parameter γ have more
influence on the stable and unstable circular orbits for
scale-dependent Planck stars. Subsequently, by deriving a
particle’s relativistic periastron advance for two spacetimes
in the weak gravitational field, a preliminary bound on the
scale-dependent Planck stars and the renormalization group
improved Schwarzschild black holes is estimated by using
the precession of the S2 star around Sgr A* detected by
GRAVITY. The bound we obtain in this work is
sjω̃j ¼ ð−0.80� 1.53Þ × 1092. With consideration of the
shadow result from EHT, the bound is improved by up to

FIG. 7. Panels (a1) and (a2) show the periodic orbits around scale-dependent Planck stars and renormalization group improved
Schwarzschild black holes with the zoom-whirl behavior of ðz; w; vÞ ¼ ð3; 1; 2Þ ðq ¼ 1þ 2=3Þ. In panels (b1) and (b2), the transverse-
traceless tensor polarizations are displayed with respect to the proper time τ (s). The purple, green, and red curves correspond to
(γ ¼ 9=2, λ− ¼ −1.0), (γ ¼ 10, λ− ¼ −0.5), and (γ ¼ 10, λ− ¼ −1.0), respectively. In panels (b3) and (b4), hþ and h× are also shown
with respect to τ (s). The purple and green curves correspond to (γ ¼ 10, λþ ¼ 1.0) and (γ ¼ 9=2, λþ ¼ 1.0). The red curve represents
the Schwarzschild case (λþ ¼ 0).
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3 or 4 orders of magnitude: −1.36 × 1088 ≲ sjω̃j≲
2.32 × 1089. This indicates that the existence of Planck
stars may be possible due to a negative value of sjω̃j.
Furthermore, by using the particle’s radial equation of
motion, the allowed regions ðl; EÞ for the bound orbits
under two models are taken into account. It is found that the
allowed regions ðl; EÞ are strongly dependent on the
parameter γ for the scale-dependent Planck stars, while
the contrary is the case for the renormalization group
improved Schwarzschild black holes. We also exhibit a
particle’s periodic orbits around Planck stars and black
holes. It is found that small variations in λ∓ make the
particle’s orbits alternate back and forth from periodic to
quasiperiodic orbits, or even jump to a nonbound orbit in
two spacetimes. We discuss briefly the gravitational wave-
forms radiated from one single periodic motion for a small
body which orbits a scale-dependent Planck star or the
renormalization group improved Schwarzschild black hole
by adopting the adiabatic approximation. Our results reveal
that the existence of Planck stars affects both the phases of
gravitational waves and their amplitudes, while the exist-
ence of black holes mainly affects the waves’ phases. These
results may provide a valuable clue for distinguishing scale-
dependent Planck stars from renormalization group
improved Schwarzschild black holes by using the motions
of a test timelike particle.
Our approaches in the present work are phenomeno-

logical. By comparing with the effective field theory, the
value of the theoretical prediction for the strength of
coupling sjω̃j is nearly order 1. However, our bound on
sjω̃j according to existing observations is many orders of
magnitude larger than the theoretical prediction due to the
large size of L and the huge mass of m•. Even now, there
exist some observations for stellar-mass black holes, where
the bound on sjω̃j will be up to ∼1079, and it is still a large
one. In order to give the tightest bound on sjω̃j in the strong
gravitational field, corresponding experiments would have
to be conducted at scales much larger than the Planck
length. This kind of experiment has not yet been done. As
we know, it is not easy to greatly improve the experiment’s
precision. In order to detect such quantum-corrected effects
experimentally in the near future, if a small black hole is

observed, we can give a tighter bound on sjω̃j. For this
reason, a primordial black hole or even a mini–black hole
would be a beneficial observation target, because these tiny
black holes’ masses might be much less than the mass of
the Sun. It also makes their shadow size much smaller.
On the other hand, the two spacetimes we considered

here are all nonspinning, whereas astrophysical black holes
will nearly always have some spin. Although this kind of
nonspinning limit might be suitable for bound orbits
adequately far from the black hole/Planck star, or even
for very slowly spinning cases, one still needs to consider
the spin for those much closer to its center, resulting in
more novel and challenging properties. In addition, the
bound on sΩ in this paper is obtained by using the least-
squares method, which gives the roughest and the most
preliminary estimation of the parameter sΩ. A more
complete statistical analysis would be a genuine constraint
on scale-dependent Planck stars and renormalization group
improved Schwarzschild black holes based on a full
statistical analysis with the whole observational dataset.
It should be emphasized that the only GRAVITY data (even
if the data can be made publicly available) cannot break the
parameter Ωðγ; λ∓Þ degeneracy. We look forward to the
ultraprecise and ultrasensitive astrometry to be conducted
by the future observations (including the Square Kilometre
Array [166] and the next-generation Very Large Array
[173], etc.). Although the effects of gravitational radiation
on the periodic orbits are not important for a single orbital
period, such effects for observations over longer periods of
time will need to be considered. These issues we mention
will be our future prospects.
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