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Disformal transformations of Friedmann-Lemaitre-Robertson-Walker and Bianchi geometries are
analyzed in the context of scalar-tensor gravity. Novel aspects discussed explicitly are the 3 + 1 splitting,
the effective fluid equivalent of the gravitational scalar, Bianchi models, stealth solutions, and de Sitter
solutions with nonconstant scalar field (which are signatures of scalar-tensor gravity). Both pure disformal
transformations and more general ones are discussed, including those containing higher derivatives of the

scalar field recently introduced in the literature.
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I. INTRODUCTION

Einstein’s theory of gravity, general relativity (GR), is
plagued by spacetime singularities, such as those inside
black holes or the big bang singularity in cosmology [1].
There is hope that quantum mechanics and the uncertainty
principle on which it is based will someday cure these
singularities. However, as soon as one tries to quantum-
correct GR, deviations from it are introduced in the form
of extra degrees of freedom [2-6], quadratic terms in the
curvature invariants appearing in the action [7,8], and
higher-order equations of motion. For example, the first
scenario of early universe inflation, and the one currently
favored by observations [9], i.e., Starobinski inflation [10],
is due to quadratic corrections to the Einstein-Hilbert
action. The low-energy limit of the bosonic string theory,
the simplest of string theories, does not reproduce GR
but gives w = —1 Brans-Dicke gravity instead [11,12].
Therefore, it is not a matter of if, but of where, GR fails and
the study of alternative theories of gravity is motivated by
fundamental physics.

From a completely different point of view, astronomers
are also invoking modified gravity. The 1998 discovery that
the cosmic expansion accelerates today left us in the need of
an explanation. Dark energy, in the form of a fine-
tuned cosmological constant, quintessence scalar fields,
or a plethora of other models, was invoked to explain
the cosmic acceleration (see Ref. [13] for a review). The
standard model of cosmology based on GR, the Lambda—
cold dark matter (ACDM) model is now suffering severe
tensions and was never satisfactory because approximately
70% of the energy content of the universe is postulated to be

“vfaraoni @ ubishops.ca
Tcarla.zeyn@web.de

2470-0010,/2024/109(12)/124002(15)

124002-1

dark energy, which was introduced in a completely ad hoc
manner and whose nature is unknown. Dissatisfied with this
state of affairs, theorists and astronomers alike have resorted
to modifying Einstein gravity as an alternative to introducing
dark energy [14,15]. The most popular class of theories for
this purpose is probably f(R) gravity (see Refs. [16-18] for
reviews), which includes the Starobinski action and is
ultimately reduced to a scalar-tensor gravity.

Scalar-tensor gravity introduces the simplest degree of
freedom in addition to the two massless spin two modes of
GR: a massive propagating scalar field that has a gravita-
tional nature. The prototype of the alternative to GR was the
Brans-Dicke theory, in which the gravitational scalar field
¢ essentially plays the role of the inverse of the effective
gravitational coupling strength G4~ 1/¢ replacing
Newton’s constant G. This effective coupling strength
becomes a dynamical field sourced by the trace of the
matter stress-energy tensor [2]. The Brans-Dicke theory
was later generalized to other “first-generation” scalar-
tensor gravities. In the past decade, the search for scalar-
tensor theories containing field equations with order not
higher than second led to the rediscovery of Horndeski
gravity [19], which has been the subject of extensive
literature (e.g., [20-25] and references therein). More
recently, it was found that certain higher-order scalar-tensor
theories, when subject to a degeneracy condition, lead to
even more general second order equations of motion. These
are the so—called degenerate higher order scalar-tensor
(DHOST) theories [26-37] (see Refs. [38,39] for reviews).

The field equations of DHOST and Horndeski theories are
complicated, and itis very difficult to find nontrivial analytic
solutions. Many of the known exact solutions of Horndeski
and DHOST gravity have been obtained by direct integra-
tion of the field equations (e.g., [40—42]). Others, instead,
have been obtained by disformal transformations of the
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metric tensor g,,, sometimes with the disformal transfor-
mation reducing to a conformal one. A disformal trans-
formation takes a seed metric and scalar field solution
(9w @) of a Horndeski theory and maps it into a DHOST
solution. Here we are interested in the disformal trans-
formation of cosmological metrics. The transformation of a
spatially homogeneous and isotropic Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric has been discussed in
Ref. [43] (see also [44,45] and references therein). Here we
extend that analysis and consider several aspects not
previously discussed in relation with disformal transforma-
tions, including the explicit 3 4+ 1 splitting, Bianchi cos-
mologies, and the effective fluid equivalent of the scalar
degree of freedom ¢. We also discuss certain exact solutions
typical of scalar-tensor gravity which are impossible in GR,
namely stealth solutions, as well as de Sitter solutions with a
nonconstant scalar field which, in a sense explained below,
generalize stealth solutions.

There is further motivation for studying the disformal
transformation of cosmological spacetimes. Black holes
interacting with their environment are dynamical, and their
horizons are not event horizons, but apparent horizons
instead, which makes them much more complicated from
the point of view of black hole mechanics and thermo-
dynamics [46,47]. Similarly, dynamical cosmological hori-
zons have thermodynamics that is far from trivial [46]. One
way to make black holes dynamical is to embed them in a
nonstatic cosmological “background.” This possibility is of
great astrophysical interest since the interaction of black
holes with the FLRW space in which they are embedded,
over cosmological timescales, has been tentatively reported
in recent observations [48,49]. If supermassive black holes
at the centers of galaxies are taken to be nonsingular objects
with an extended de Sitter core, as in most models of
regular black holes, then the possibility arises that dark
energy could be effectively segregated inside these black
hole horizons [48-53]. Aside from its cosmological
implications, the possibility of cosmological coupling
tentatively reported in [48] has already been the subject
of a lively theoretical and observational debate in the
literature [54-75]. Problem is, the theory behind this
cosmological coupling of black holes is underdeveloped
and exact solutions of the relevant field equations could
help understanding the basic physical principles behind this
phenomenon. The scarcity of relevant solutions in GR [46]
prompts the search for new solutions in more general
scalar-tensor and Horndeski theories. The easiest way to
generate new solutions is by using disformal transforma-
tions of GR “seeds.” The first step in this program consists
of understanding the transformation properties under dis-
formal transformations of the FLRW or Bianchi “back-
grounds” in which such black holes are embedded. The
present work addresses this first step.

We adopt the notations of Ref. [1]. The metric signature
is — + -+, units are used in which the speed of light ¢ and

Newton’s constant G are unity, and (1= ¢V, V  is the
curved space d’ Alembert operator. Greek indices run from
0 to 3 and Latin indices from 1 to 3.

II. DISFORMAL TRANSFORMATIONS

The general form of a disformal transformation with first
order derivatives of the scalar field [76] is

9w = g/w = Qz(¢’ X)g;w + F(¢’ X)vﬂ¢vl/¢’

where

(2.1)

1
X = _Egﬂ»vﬂfpqus (2.2)
and ¢ denotes the scalar field (see Ref. [77] for a summary
of the transformation properties of various geometrical
quantities under disformal transformations). In the case
Q =1, one obtains a pure disformal transformation, to
which we restrict for most of this paper until Sec. VIII:

Guv = g;w = Y + F(¢’ X)vu¢vu¢ (23)

Assuming that V#¢ is timelike, one can always use the
“uniform—¢ slicing” of spacetime in which ¢ = ¢(1),
where ¢ is the time coordinate. In this gauge, the line
element assumes the familiar form

ds> = Gudx! dx”

= —N%di* + g;;(dx' + N'dr)(dx’ + Nidt), (2.4)

where N and N’ are the lapse and the shift vector,
respectively. The disformed line element is
ds> = G dxtdx”

= —N?dr* + g;;(dx' + N'dt)(dx/ + N'dr), (2.5)

where N? = N?a?, N' = N, g;; = g;; in the disformed (or
barred) world, and [43]

o =1-2F(. X)X. (2.6)

To preserve the metric signature, it must be F < 1/2
everywhere throughout the spacetime manifold, which
we assume in the following.
Equation (2.5) is easily proved. Using the notation
¢ = d¢p/dt, we have
ds? = (g + FV, @V, p)dx*dx*
=ds* + F(¢.X)(V,pdx*)?
= —N?di* + g;;(dx' + N'dt)(dx/ + N/dt) + F¢?dr?
= —(N? = F§?)dP* + g;;(dx' + N'dt)(dx’ + N'dt).
(2.7)
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Since
B goo - d)z
X_—7¢2_W, (2.8)
it is
N? — F(¢h, X)* = N*[1 = 2F (¢, X)X] = N*a?. (2.9)

From
ds? = —=(N?a?)dt* + g;;(dx' + N'dr)(dx/ + Nidr) (2.10)
it then follows that

N =N'.

N? = N?@?, 9ij = 9ij» (2.11)

The inverse of the disformed metric g, is [43,77]

F
g¥ =g"¥ - vava: (2.12)

to wit,
F
.awgvy = <g/w - ;vﬂqﬁquﬁ) (gvy + Fvu¢vy¢)

1
= gﬂyguy + F<gﬂyvu¢vy¢ - ?guyvﬂd)qub)

F2
- ? (vv¢vy¢) vﬂ¢vy¢

VEHV
=8 + F(¢.X) (V”qﬁquﬁ —%>

F2(¢.X) y
T2 (g 0X (V, oV ) VPV,

F(1-2FX —1) - F*(=2X) _,
+ 1 —2FX VigV,$

s (2.13)

I
N3

Let us proceed to adapt these transformations to FLRW
geometries.

III. FLRW UNIVERSE AND DISFORMAL
TRANSFORMATIONS

The FLRW line element in comoving coordinates
(t,r,9,¢) is

d 2
ds* = —di? + a2(z)< M r2d9<22)>

1 - Kr?

= —di* + g;;dx'dx, (3.1)

where the constant K is the curvature index, N =1,
N =0, and dﬂé) = d9* + sin”® 9d¢? is the line element

on the unit 2-sphere. The pure disformal transformation
(2.3) changes the FLRW line element into
ds? = —=(1 = 2FX)dr* + g;;dx'dx/. (3.2)

The uniform-¢ slicing corresponds to the comoving FLRW
slicing in which ¢ = ¢(t). In this gauge X = ¢?/2 and
ds? = —(1 = ¢*F)dr* + g;;dx'dx/ (3.3)

after the disformal transformation. By redefining the time
coordinate according to

df? — dt* = [1 — $*(1)F(1))dP, (3.4)
or
o(t) = /dt\/l - P*()F(1), (3.5)
we rewrite the disformed line element as
ds* = —d7* + g;;dx'dx) (3.6)

and ¢(7) = ¢(#(z)). Therefore, a pure disformal transfor-
mation of a FLRW metric written in the uniform-¢ gauge
always generates another FLRW geometry, in addition to
preserving the uniform-¢ slicing.] In essence, a pure dis-
formal transformation of a FLRW metric is equivalent to a
rescaling of the comoving time [43]. For example, for
spatially flat FLRW metrics

ds® = —dP® + a*(1)(dx® + dy? + dz?) = —di* + a*(1)d3?,

(3.7)
for which
ds? = (g, + FV, ¢V, p)dx"dx”
= g dx'dx’ + F$*dr*
= —(1 = F¢*)dr* + a*(t)dx>
= —dr* + a*(r)dx*. (3.8)

The pure disformal transformation yields another spatially
flat FLRW line element with comoving time (3.5) and scale
factor a(z) = a(#(z)).

Both in GR with a minimally coupled scalar field ¢
[79-82] and in “first-generation” scalar-tensor gravity [83]
[including f(R) gravity [84]], spatially flat FLRW uni-
verses are described by the dynamical variables H = a/a
and ¢. That is, for these K = 0 FLRW universes, the scale
factor a(t) enters the Einstein-Friedmann equations only

It (Y- @) is a GR solution with minimally coupled scalar ¢,
then (g,,.¢) is a solution of “class Ia” DHOST gravity [78].
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through the Hubble function ¢/a, which is a cosmological
observable. Hence, the phase space is the (H, ¢, qb) space
but the Friedmann equation

) (3.9)

constitutes a first order constraint on the dynamics. As a
consequence, the region of the phase space accessible to the
orbits of the solutions is a two-dimensional subset of
this three-dimensional space. Effectively, these orbits move
on a curved two-dimensional subset of the three-space
(H, ¢, ), which may consist of multiple sheets and
possibly have “holes” inaccessible to these orbits, as
explained in Refs. [83,84]. This phase space structure
extends to spatially flat FLRW cosmology in Horndeski
gravity [85].

In both GR and scalar-tensor gravity, if fixed points exist,
with this choice of dynamical variables they are unavoid-
ably de Sitter spaces with

(H,¢) = (Hy = const, ¢py = const). (3.10)
The values of H, and ¢, are related by the field equations
[83,84]. A disformal transformation of a K =0 FLRW
metric maps these fixed points into FLRW universes
with

_ (FLRW
9w = Guv

"L EV GV, ) = (i(2)),

where dr =+/1—2FXdt but, since for fixed points

Vo = Vo = 0, it is simply g,, = gie*™). Therefore,

a pure disformal transformation (2.3) maps de Sitter fixed
points into de Sitter fixed points of the phase space of
K = 0 FLRW cosmology.

de Sitter spaces with nonconstant scalar fields do not
exist in GR with minimally coupled scalar, but are a
signature of scalar-tensor gravity. They are not mapped
into de Sitter spaces, as discussed in Sec. VIL

(3.11)

IV. EFFECTIVE IMPERFECT FLUID OF SCALAR-
TENSOR GRAVITY AND DISFORMAL
TRANSFORMATIONS

It is well-known that the scalar field ¢ of scalar-tensor
gravity can be seen as an imperfect fluid when its gradient
VA ¢ is timelike and future-oriented, i.e., 1*V, ¢ < 0, where
" = (0/0t)" is the time direction of observers comoving
with this effective fluid [86—89]. As is customary, we write
the vacuum field equations of scalar-tensor gravity in the
form of effective Einstein equations,

G, =TY, (4.1)

then, we assume V#¢ to be timelike and future-oriented.
One can then define the effective fluid four-velocity

_V'¢

ut N (4.2)
which satisfies the usual normalization condition for time-
like fluids u”u, = —1. The effective stress-energy tensor of
the gravitational scalar field ¢ has the form

T,(;,/j) = pu,u, + Phy, + 7, + q,u, + q,u,, (4.3)
where

p=T,u'u” (4.4)
is the effective energy density,

1
P = gh"”Tﬂy (4.5)
is the effective isotropic pressure,
7 = T,sh,/h° = Ph,, (4.6)
is the effective anisotropic stress tensor, and
Gy = —Ty(guyhaﬁ (4.7)
is the effective heat flux density [86—-89]. Here,
hy = G + u,u, (4.8)

is the Riemannian metric in the three-space orthogonal to
u® and the pressure P is the sum of nonviscous and viscous
contributions,

P - PO + PViS' (49)
hy, 7., and g, are purely spatial:
hyw' = hyu' =m0 = g,u” = qu' =0. (4.10)

Let us adapt this effective fluid analogy to FLRW
geometries.

Since a FLRW universe is spatially homogeneous and
isotropic, the shear tensor 7' ;j and the heat flux density q
(which would introduce a preferred spatial direction if it
were nonvanishing) are identically zero and the only
dissipative quantity that can remain is the viscous pressure
P In Eckart’s thermodynamics, viscous pressure arises
because of bulk viscosity, according to the constitutive
relation P;; = —CV ,u” [90,91], where  is a bulk viscosity
coefficient. When one applies Eckart’s first order thermo-
dynamics to the effective fluid of the scalar field ¢, this
relation is satisfied in the context of “old” scalar-tensor
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gravity [2-6]), but is usually invalid in more general
Horndeski gravity [89,92].

Next, one wonders how the effective ¢-fluid quantities
transform under disformal transformations, but does this
question make sense? In general spacetimes, it does not, as
explained in the following. In general, solutions of a theory
of gravity (say, “theory A”) are mapped into solutions of a
new theory (say, “theory B”) by a disformal transformation.
Then, the effective stress-energy tensor of ¢ obtained by
recasting the field equations of theory A as effective
Einstein equations will have a different form in the new
theory B. For example, solutions of GR with a minimally
coupled scalar field, or of “first-generation” scalar-tensor
gravity (theory A), are mapped into solutions of a
Horndeski or a DHOST theory (theory B) [78]. In this

case, it no longer makes sense to consider the original T,(,(f),

which is replaced by a more complicated expression [78].
However, if one restricts one’s attention to FLRW metrics
in the uniform-¢ gauge, the disformal transformation
amounts to a mere time rescaling and it still makes sense

(#)

to consider the same 7,,’. Here we restrict to the “old”
scalar-tensor theories for simplicity; however, the extension
of this analysis to the effective dissipative stress-energy
tensor of Horndeski gravity is straightforward. The deri-
vation of this effective stress-energy tensor of ¢ is rather
laborious and is performed in Refs. [88,89]. A similar
situation occurs with purely conformal transformations. In
this case, starting with a solution (g,,,.¢) of the coupled
Einstein-Klein-Gordon equations, a conformally trans-
formed metric §,, = Q*(¢)g,, is no longer a solution of
the Einstein equations with the same matter content.”
However, for FLRW metrics and ¢ = ¢(t) dependent only
on time, the conformal transformation amounts again to a
rescaling of the comoving time, and a perfect fluid is
mapped again into a perfect fluid with the same equation of
state [94].

With this caveat, let us proceed to derive the trans-
formation of the various effective fluid quantities in FLRW
spaces, which are the subject of interest in this article. The
contravariant four-velocity is

_ o\* 1 [o0\* ut
uﬂ = _— = — —_— = —.
ot a \ ot a

The covariant four-velocity is computed as

(4.11)

2Indeed, the new metric and scalar field obtained in this way
are solutions of a different theory of gravity. Given an electro-
vacuum solution g, of GR and an arbitrary scalar field y > 0,
one can always perform a conformal transformation so that
G = Gu/+/W is a solution of an @ = —3/2 Brans-Dicke theory
with that scalar y as its Brans-Dicke scalar [93]. This theory is
pathological since y is not dynamical.

_ _ u
u, = /wuy = (gﬂl/ + Fqubvv(ﬁ);

v

u F
o + p u,u, (=V'V, p)u¥

- g;w
u, F u,(1 -2FX)
=K (vy(pvyd,)uﬂ S A S——
a  a a
= au,,. (4.12)
Using the 3 + 1 splittings
G = —U, U, + h/wv g/w = _ﬁuﬁv + }_luw (413)
the disformal transformation (2.3) gives
g/w = 9w + Fvﬂ¢vv¢
= —u,u, + hy,, +2XFu,u,
= —(1 =2FX)u,u, + hy,
= _azﬂﬂ + h;w
a a
= _aﬂuy + hﬂy; (414)

the spatial three-metric is not affected by the disformal
transformation (2.3).

Next, we determine how TL{,/,’)
disformal transformations:

transforms under pure

T,(f,/,)) = puyu, + Phy,
P _ _ _
= gl + Ph,
= pit, i, + Ph,, = T\0, (4.15)
where the individual fluid quantities transform as
__ P P 5
==, P = P. 4-16
P= @ 1-2FX (4.16)

Clearly, the scaling of the energy density with « is a
consequence solely of the scaling of time, which appears
twice because p = T,(ff) utu’ is quadratic in the four-
velocity, which transforms according to Eq. (4.12). This
scaling of u, is responsible for the factor a?. Purely spatial
quantities, including the pressure P, are left unchanged by
time rescalings. Equations (4.16) are analogous to the well-
known transformation relations for energy density and
pressure under a purely conformal transformation of a
perfect fluid in FLRW spaces

G = G = L (D) G- (4.17)

These transformation relations are P =Q™*P, p=
Q~4p [94].

The equation of state
¢—fluid in the barred world is

parameter of  the
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|~

w

=a’—=a’w. (4.18)

P _ )
P P
Therefore, w has the same sign of w and scales only
because of the scaling of p with a. If @ > 1, a quintessence
scalar field, which by definition has —1 <w < —1/3, can
be mapped into an effective phantom field which has
instead an equation of state parameter w < —1.

To summarize, we have

uﬂ
= —, u = ai*, (4.19)
i ty (4.20)
i, =au,, u, =+, .

u u .
Fy = Iy (4.21)

_p p _
_r__P _ p_p 422
P= 2 T 122Fx’ (4.22)

As an example, consider a free, minimally coupled scalar
field in GR (which is well-known to behave as a stiff
fluid [95]) in a spatially flat FLRW universe. The effective
energy density and isotropic pressure of this ¢-fluid

12 12
p= 7 +V, P = ¢ _ 1%

5 5 (4.23)

coincide when V(¢) = 0, giving the effective equation of
state parameter w = P/p = 1 and

a(t) = apt'?, (4.24)

where p, and a are constants. The Klein-Gordon equation
satisfied by this minimally coupled scalar field

O¢ = —(¢p +3Hp) =0 (4.25)

has the solution ¢(1) = ¢ In (/1)) + ¢, where ¢ ; and £,
are constants. Moreover, we have

. # BF

=2, F@X)=F(), o&=1-—2., (426
2t t
and
2F(1
wit)=aw=1- ¢°t2( ) . (4.27)
For example, the choice
Fy  2F,f
F(X)=2="02—, (4.28)
X b

where F, is a constant, gives another constant equation of
state parameter w = 1 —2Fj # w = 1. In GR, a disformal

transformation can create any constant equation of state
with w > O starting from a stiff fluid with w = 1.

V. BIANCHI UNIVERSES AND DISFORMAL
TRANSFORMATIONS

Although not mentioned explicitly in the literature, the
previous discussion applies almost without changes to
spatially homogeneous but anisotropic Bianchi cosmolo-
gies [96]. The line element can be written in the form

ds? = —di* +y;;jdx'dx/ (5.1)
in the uniform-¢ gauge, which is possible because Bianchi

cosmological models are spatially homogeneous. In this
gauge ¢ = ¢(t), we have

ds* = g, dx*dx” = (g,, + FV,V,¢)dx*dx"
= ds* + F§*di> = —(1 — F$*)d* + y;dxidx/, (5.2)

where, again, F(¢(t),X(t)) = F(t), so

ds? = —d7* + y;dx'dx/. (5.3)
As for FLRW geometries, a disformal transformation (2.3)
of a Bianchi metric is equivalent to a time rescaling,
produces another Bianchi metric, and preserves the uni-
form—¢ gauge.

As an example, consider the spatially flat Bianchi I
geometry with line element

ds?

T = —dt* + a}(t)dx* + a3(t)dy* + a%(l)dz2

(5.4)

in comoving Cartesian coordinates (z, x, y, z), where a;(t)
(i =1, 2, 3) are the scale factors corresponding to the three
spatial directions, and ¢ = ¢(¢). The disformal transfor-
mation of the metric (2.3) then yields

ds? = —(1 = F*)dr* + a}(t)dx> + a5(1)dy* + a}(t)dz?
= —dr* + @3 (v)dx* + a3(r)dy? + a3(r)dz? (5.5)

with 7(f) = [dt\/1 — F¢? and @;(t) = a;((7)). Since F
and ¢ depend only on ¢, the new time coordinate 7(¢) is

well-defined, because dr = /1 — F¢>dr is an exact
differential.

VI. STEALTH SOLUTIONS OF SCALAR-TENSOR
GRAVITY

Stealth solutions [97-107] cannot occur in GR but are
typical of scalar-tensor gravity." They have G = N>

’Somehow similar solutions, i.e., hairy Schwarzschild black
holes in which the scalar field does not gravitate, are known in
more general Horndeski gravities [108-116].
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where 77, denotes the Minkowski metric, but ¢ # const. In
other words, the gravitational scalar field ¢ does not
gravitate.

Two types of stealth solutions are most commonly
encountered in the literature. They have the form

(1) G = N and (1) = e, or

) Gu = N and $(1) = doltl’,

where ¢, ay, and f are constants. Since stealth solutions
are special cases of FLRW geometries in which the scale
factor reduces to a constant, they belong to our study. We
discuss these two cases separately.

A. Stealth solutions ¢ (¢) = ¢ye**
In this case X = aj¢p?/2, yielding

g/w =N + Fvﬂ¢vu¢ = Nw + a(2)F¢25258 (61)

and
ds? = —(1 -

aZF2P?)dr + dx* (6.2)

where F(¢,X) = F(¢,a3¢*/2) = F

ds* = —dr? + dx2.

(), which produces
(6.3)

This is another Minkowski line element with time repar-
ametrized. We need 1 > a3¢’F (¢, X), or

P <o =S (6.4)
NN<—-55=—555. .
awd®  aghy
B. The case ¢ (t) =lt/*
In this second case we have ¢ = /1, with
242 242
— ﬂ;g — ] 2(6-1) (6.5)
2t 2
and the disformed line element reads
ds* = (1, + FV, ¢V, ¢)dx*dx”
B . F 2 12
= —d* + dx* + F*di* = —(1 - ﬁ;f >dz2 + dx*
= —dr* + dX°, (6.6)

yielding another Minkowski metric with reparametrized
time 7(¢).

VII. DE SITTER SOLUTIONS WITH
NONCONSTANT SCALAR FIELD

Typical of scalar-tensor gravity is the “stealth—de Sitter”
metric

ds*> = —di* + aje* o' dx? (7.1)
with a(, H constants, while the scalar field depends on the
comoving time, ¢ = ¢(1).

In GR with a minimally coupled scalar field, de Sitter
solutions are obtained only for a constant scalar field
¢ = ¢, and they are equilibrium points of the dynamical
system formed by the Einstein-Friedmann equations
describing FLRW cosmology [79-82]. In scalar-tensor
gravity, where the scalar ¢ has a gravitational nature and
couples explicitly to the Ricci scalar, de Sitter solutions
with nonconstant ¢(¢) are possible, but they are not fixed
points of the phase space of FLRW cosmology.

For de Sitter spacetimes with nonconstant scalar ¢(¢) in
scalar-tensor gravity, the disformed line element is

ds? = —di* + aje*™'dx? + F¢*dr®

—(1 = F$*)dr* + ade*™'dx> (7.2)
or
ds? = —d7*> + ade*to'(7) qx? (7.3)
with
(1) = / dt\/1 — F¢?, (7.4)

which, in general, constitutes a nonlinear relation between
t and 7. A disformal transformation maps a stealth—de Sitter
geometry into a less symmetric FLRW geometry with

ds? = —d7* + a*(r)dx?, Hot(o),

a(r) = ape (7.5)
This solution is a de Sitter geometry only if F¢h? is constant,
i.e., F = const/X.

In the literature there are also stealth solutions with
an inhomogeneous scalar field ¢ = ¢(z,X) and g,, = 1,,
(e.g., [98]), leading to

V.p = ¢+ ¢85, (7.6)
and
V.V = (93 + §:8.) (93 + ,5.)
= $*8000 + ¢(¢ 808, + i008L) + ¢ih ;.6
(7.7)

where ¢, = d¢p/0x'.
element is

Additionally, the disformed line

ds? = (,, + FV, ¢V, p)dx*dx*
= —di® + d¥> + F(¢*di* + 2pgp;dtdx’ + ;p;dx’dx’)
(7.8)
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or
ds* = —(1 — F§?)di* + 2F p¢p;dtdx’
+ (8;j + Fpich;)dx'dx/ . (7.9)
Now
X = =2 (= + Sipy) = # T (7.10)
2 R 2 '

depends on the spatial coordinates x'. Since F (¢, X )¢p> now
depends on x' as well, it is not possible to redefine the time

coordinate 7 as we did before because dr = \/1 — Fp>dt is
no longer an exact differential. The disformal transforma-
tion then sends the Minkowski metric into an inhomo-
geneous nonstationary geometry.

VIII. MORE GENERAL DISFORMAL
TRANSFORMATIONS

Instead of pure disformal transformations (2.3), one can
allow for disformal transformations of the more general
form [78]

Guw = g/w = A(¢’X)g/w + B(d)’ X)vﬂ¢vb¢’ (81)

which we discuss in this section for FLRW and Bianchi
geometries. Several, but not all, of the results valid for pure
disformal transformations still hold.

The inverse of the disformed metric (8.1) is [77,78]

1 B
Y PR N R
and the invertibility condition is [77,78]
A#0, A+2XA, —4X°B, #0,
A —-2BX #0, (8.3)
where the last equation is needed to guarantee that
- X
X = A_2BX (8.4)

remains well-defined. For a line element of the form

ds? = —di* + g;;dx'dx/ (8.5)

in the uniform-¢ gauge, we have X = ¢2/2, A(p.X) =
A(1), B(¢p,X) = B(t), and the disformed line element is
ds* = g, dx*dx" = (Ag,, + BV, ¢V, p)dx*dx*

= —(A - BJ?)di* + Ag,jdx'dx’

= —dv® + g;;dx'dx!, (8.6)

where g;; = A(t)g;; and

(1) :/\/A(t)—B(t)(ﬁzdt.

This integral is well-defined as long as A — Bgp? > 0
since the integrand depends only on time, dz is an exact
differential, and g;; = A(t)g;;. For FLRW metrics with
g;j = a*(1)y;;(x*), the Hubble function in the disformed
world is

(8.7)

lda 1 d(VAa)dt

 VAa dt dr

L (A
VA = Bp? \2A

The fixed points (Hy, ¢py) of the phase space are mapped
into new fixed points of the disformed phase space

Q|
ﬂ

(8.8)

_ H
(Ho, ¢o) — (Ho = —\/Aio’ o> (8.9)
since Xo = 0 and A(¢h, X) = A(¢y,0) = Ay.
Setting
r*=A-B¢* >0, (8.10)
we have X = X/7?,
. u
=TGP W (8.11)
V2X 4
while
i, = g, " =yu,. (8.12)

The Riemannian three-metric 4, on the three-spaces
orthogonal to u#* changes under disformal mappings of the
type (8.1) according to

hy, = Gy + w4, = Ag,, + 2XBu,u, + yzu#u,/

= —Au,u, + Ah,, +2XBu,u, + (A — 2BX)u,u,

= Ah,,,. (8.13)
When V¥#¢ is timelike and future-oriented, the stress-

energy tensor of the effective fluid equivalent of ¢ in
FLRW universes is

T/(ff) = puy,u, + Phy,

u,u, P
=pHL X4 _h
= pii,it, + Ph,,, (8.14)
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where

P =
p:—’ P:
7/2

|~

. (8.15)

The equation of state parameter of the effective ¢p—fluid in
the disformed world is now

W=—=—Ww.

P y?
5 A

(8.16)

On the lines of what was already done in Sec. V, consider
a Bianchi universe with line element ds? = —dr* +
gijdx'dx’) in the uniform-¢ gauge in which ¢ = ¢(1).
This universe is mapped into another Bianchi universe
with line element

ds? = —dv* + g;;dx'dx!, (8.17)
where dr = ydt and g;; = A(t)g;;.
Unless A = const, stealth solutions
(gyw ¢) = (77;41/’ ¢(Z)) (818)

are not mapped into stealth solutions because now the
disformal transformation maps the Minkowski line element
ds*> = —dt*> + dx? into the spatially flat FLRW geometry

ds* = —di® + a*(7)dx2. (8.19)

with the rescaled comoving time defined by dz = ydt and

scale factor a(z) = \/A(¢(1), X(1))|,—yz)-

IX. HIGHER-ORDER DISFORMAL
TRANSFORMATIONS

Yet more general disformal transformations have been
introduced recently, which contain second order derivatives
of the scalar field instead of a first order one [117], and even
more general ones, containing derivatives of higher order
than second, are contemplated [118]. To extend the scope
of the previous discussion, and of the future search for exact
solutions, let us extend the previous considerations to
second order disformal transformations of the form

I =Ag + Bvﬂq’)qub + 2CV(#¢VD)X + DVﬂXV,,X,
(9.1)

where A, B, C, and D are functions of ¢, X, Y,Z with*

X =V, pVHe, (9.2)

*For ease of comparison with Ref. [117], in this section we
define X with a different sign and normalization than in the
previous sections.

Y = V,pV¥X, (9.3)

Z=V,XVFX. (9.4)
It is useful to define the quantity

F =A[A+ XB+2YC + ZD] + (C* - BD)(Y* - XZ),
(9.5)

which will appear in several formulas. Invertibility of the
disformal transformation corresponds to [117]

A;EO, .7:750, Xx$éo, XY:XZZO, (96)
oY, Z)
'O(Y, Z)' #0, (9.7)
where [117]
— XA-D(Y?-XZ)
X=g"V, ¢V, ¢ = = . (9.8)
_ - YA Y2-XZ) - -
Y =gV,¢V,X = X + C(f ) + XX, (9.9)
_B(Y2—
Z=g"V,XV, X=X} ZA - B(” - X7) +2X,Y - X3X,
(9.10)

where X, =0X/0;, Xy =0X/dx. The inverse of the
disformed metric (9.1) is

Y PRLEY (KL R
5 [AC + Y(;‘Z — BD)] Vv X
_ab _X(f _BD)]V”XV”X}. (9.11)

Let us specialize these formulas to the line element of
interest in cosmology
ds* = —di* + g;;dx'dx/ (9.12)

in the uniform ¢-gauge in which ¢ = ¢(¢). It follows
immediately that

X =—¢°, Y =2¢%¢, Z = —4¢*¢*,  (9.13)

F = A(A — B§? +4CP*p — 4DP*?), (9.14)

yielding
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ds’> = G dxdx”
= —(A — BJ? + 4CP*§ — ADP*¢?)di* + Ag,jdx’ dx’

F o
= —Zdt2 + Ag;;dx'dx’. (9.15)

To preserve the metric signature, it must be A > 0 and
F > 0.Since A, B, C, D, and ¢ and its derivatives depend

only on time, dz = \/j‘zdt is an exact differential and the

time coordinate 7 = [ \/];rdt is well-defined. Using z, one

rewrites the line element (9.15) as
ds? = —de* + A(t) g;;dx'dx/, (9.16)

where A(7) = A(#(z)). For FLRW metrics g;; = a?(1)y;;(x*)
and
ds* = —d7* + a*(z)y,;;(x*)dx'dx/ (9.17)

with a(z) = a(t(r))/A(#(z)). The Hubble function in the
disformed world is

lda_ d(fa)ﬂz\ﬁ 2 H). (9.18)
adr  \fAa dt dt F\24

Here Y2 — XZ = 0 and F reduces to

H

F = A[A — B§? + 4¢*(C — D)), (9.19)
while
o A
X = - (9.20)

Assuming V#¢ to be timelike and future-oriented, the
four-velocities of the ¢ fluid before and after the disformal
transformation are

9"V,

ut = s = —sign(¢)#, (9.21)
and (see Appendix)
PV
ut =
V-X
B F P .
= { F+W[A(B—2C¢)
+2¢A(2D¢ — C)] }u"; (9.22)

that is, #* is parallel to u*. Then, by comparing Eq. (9.15)
with

ds* = g, dxtdx’ = (=i, + h,)dx"dx’,  (9.23)
one obtains immediately
' _
i, = \/;uﬂ, hy, = Ah,. (9.24)

The fluid sourcing the homogeneous cosmological space-
time has the form

= pii,it, + Ph,,, (9.25)

where

- P

P=—. 9.26
. (926)

If w= P/p is the equation of state parameter of the fluid
before the transformation, its disformed cousin is

o
S

w=

(9.27)

XN

When it acts on Bianchi universes with line element

ds* = —di* + g;;(t, x")dx'dx’/ (9.28)
in the uniform—¢ gauge, the second order disformal trans-
formation (9.1) produces the new line element

F o
ds* = — Zdt2 + Ag;;dx'dx’. (9.29)
Since F/A = A — B§?* +4Cd*p — 4D*¢* depends only
on the time ¢, one can introduce the new time coordinate

defined by dz = \/’;Tdt (an exact differential) to write

ds? = —de® + §;;(7, x")dx'dx/ (9.30)
with g,;(z. x*) = A(1(7))g;;(¢(z). x*), which is again a
Bianchi geometry with the same symmetries of the seed
metric g,,, in the uniform-¢ gauge.

Finally, under the disformal transformation (9.1), stealth
solutions (g,,.¢(t)) = (1,,.¢(t)) of the field equations
become again the spatially flat FLRW geometries

ds* = —d7* + A(t(7))dx?, ¢ = (1) (9.31)
with the uniform-¢ gauge coinciding with the comoving
gauge.
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X. CONCLUSIONS

Disformal transformations have been introduced in gravity
long ago [76], but their use has been greatly revamped only
recently in the context of Horndeski and DHOST scalar-
tensor gravity. Pure disformal transformations of FLRW
spaces have been studied in [43], whose discussion we
expand here. We have discussed disformal transformations
of cosmological spaces, making explicit the 3 4 1 splitting,
which is essential for the understanding of the dissipative fluid
equivalent of the scalar field ¢ of scalar-tensor—gravity. The
latter is well-defined only when the gradient V#¢ of the scalar
field is timelike, which is the case of FLRW and Bianchi
cosmologies. Bianchi universes and the effective dissipative
fluid were not considered explicitly in the literature on
disformal transformations. Novel aspects of scalar field
cosmology under disformal transformations presented here
include the transformation properties of de Sitter solutions as
fixed points of the phase space (which have constant scalar),
stealth solutions, and de Sitter solutions with a nonconstant
scalar field typical of scalar-tensor gravity. We have answered
the question of whether these solutions are mapped into
solutions of the same kind, first considering pure disformal
transformations, and then more general transformations.

In the phase space of spatially flat FLRW cosmology,
which is favored by observations, the physical variables can
be chosen to be (H.,¢.¢). Then, necessarily, the fixed
points of the Finstein-Friedmann dynamical system are de
Sitter spaces with a constant scalar field. They are invariant
under pure disformal transformations. These results extend
straightforwardly to Bianchi universes.

As we have seen in Sec. IV, when its gradient V#¢ is
timelike and future-oriented, the gravitational scalar ¢ is
equivalent to a dissipative effective fluid. This effective
fluid is the basis for the recent formalism dubbed first-order
thermodynamics of scalar-tensor gravity in which an
effective “temperature of gravity” is introduced to describe
the deviations of gravity from GR, which is then regarded
as the state of zero temperature and thermal equilibrium
[119,120]. An equation describing the approach to equi-
librium is also provided [119,120] (see Ref. [121] for a

review). In FLRW spaces, the analysis of the 3 + 1 splitting
of FLRW spacetimes given explicitly here provides the
transformation properties of the effective ¢-fluid quantities.
This derivation provides a parallel to well-known trans-
formation formulas of perfect fluids (including scalar field
fluids) under conformal transformations.

Stealth solutions and de Sitter solutions with nonconstant
scalar fields are forbidden in GR and are typical of scalar-
tensor gravity. They can be regarded as degenerate cases of
FLRW universes and can, therefore, be analyzed in the
same way, as done here in Secs. VI and VIIL.

Finally, most of the results derived here for pure
disformal transformations survive under more general
(i.e., not “pure”) disformal transformations of the form
(8.1). We have extended the study to the disformal trans-
formations containing second order derivatives of ¢
recently introduced in [117,118].

This study adds to the current knowledge of disformal
transformations in scalar-tensor theories of gravity, which
has seen a very significant increase in the past decade and are
useful when searching for examples and counterexamples
related to disformal transformations in cosmology.
Furthermore, we have in mind the application of disformal
transformations to the search for exact solutions of the
scalar-tensor field equations which describe black holes and
other objects embedded in cosmological spacetimes. Such
solutions are difficult to find in GR and “first-generation”
scalar-tensor gravity [46] and will be searched for in more
general scalar-tensor theories using disformal transform-
atons of GR “seeds.” The first step to understand their
properties will be the knowledge of how the FLRW or
Bianchi “backgrounds,” in which they are embedded,
behave under disformal transformations. This first step
has been completed here.
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APPENDIX: CALCULATION OF THE DISFORMED FOUR-VELOCITY u#

A,
VX

[AD-X(C?*-BD)]

_1f . [AB-Z(C>-BD)|, o, [AC+YZ(C*=BD)| (, o 1 Vo

—Z{g” = ViV —2 = Vv x -~ VIXV X}W
F ¢V, 1 VHPVYXV p+ XVHX

- A3g\/3 —|¢|\/}__A3{[AB—Z(C2—BD)]XV”¢+2[AC+Y(C2—BD)] :

+[AD-X(C* —BD)]V”XV”XV,,d)}.
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Using

VXV, = 247, (A2)

one obtains

. F 1 || 2ia ~ 2o . - 22
{\/;|¢|+\/}__A3{[AB+4¢¢(C BD)] — [AC + 2¢*¢(C* — BD)|(2¢) + 4¢*[AD + ¢*(C* — BD))]

2GAC + 22(C? BD)]}}IdJIu”

:{ §+ ";A3[A(B—zc&})+2¢A(2D¢—C)]}u"~

(A3)
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