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We discuss the issue of perturbativity in single-field inflationary models with a phase of ultraslow-roll
(USR) tailor suited to generate an order-one abundance of primordial black holes (PBHs). More in detail,
we impose the condition that loop corrections made up of short-wavelength modes enhanced by the USR
dynamics do not alter the tree-level power spectrum of curvature perturbations. In our analysis, the USR
phase is preceded and followed by two stages of ordinary slow-roll (SR), and we model the resulting
SR/USR/SR dynamics using both instantaneous and smooth transitions. Focusing on scales relevant for
cosmic microwave background observations, we find that it is not possible, with these arguments, to rule
out the scenario of PBH formation via USR, not even in the limit of instantaneous transition. However, we
also find that loop corrections of short modes on the power spectrum of long modes, even though not large
enough to violate perturbativity requirements, remain appreciable and, most importantly, are not tamed in
realistic realizations of smooth SR/USR/SR transitions. This makes perturbativity a powerful theoretical
tool to constrain USR dynamics. We extend the analysis at any scale beyond those relevant for cosmic
microwave background observations. We find that loop corrections of short modes remain within the few
percent if compared to the tree-level power spectrum. However, we also find one notable exception of
phenomenological relevance: we show that the so-called dip in the power spectrum of curvature
perturbation is significantly reduced beyond the tree-level computation.
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I. INTRODUCTION

In this work, we consider the so-called standard scenario
of primordial black hole (PBH) formation [1–3]. In this
scenario, the formation of PBHs during the early Universe
is an exceptional phenomenon in which extremely dense
regions of radiation energy are tightly packed to the point of
gravitational collapse [4–6]. General relativity and the
inflationary stage preceding the radiation epoch offer a
mechanism to generate such overdensities: small-scale
curvature perturbations, stretched way beyond the horizon
by the inflationary expansion, are transferred to the
radiation fluid after the end of inflation at around the time
of their horizon reentry. In order to truly trigger a
gravitational collapse of the radiation fluid, the amplitude
of such small-scale curvature perturbations needs to be
greatly enhanced by some dynamics during the inflationary
stage. This statement can be made more quantitative by
introducing the dimensionless power spectrum PðkÞ which
gives the contribution to the variance of the curvature
perturbation field per bin of log k, with k the comoving

wave number in Fourier space. At scales relevant for
cosmic microwave background (CMB) observations (that
is, 0.005≲ k½Mpc−1�≲ 0.2) we typically have PðkÞ ¼
Oð10−9Þ; at smaller scales (1.5 × 1013 ≲ k½Mpc−1�≲
1.5 × 1014) asteroid-mass PBHs may comprise the totality
of dark matter (DM) observed in the Universe but their
formation requires PðkÞ ¼ Oð10−2Þ (for recent reviews see
[7–11]). Theory side, therefore, what makes the formation
of PBHs an exceptional phenomenon is the fact that it
requires a seven-order-of-magnitude enhancement of the
small-scale power spectrum with respect to the value
observed at large scales.
In the context of single-field models of inflation, the

above-mentioned enhancement can be dynamically realized
by introducing a phase of ultraslow-roll (USR) [12–34]
during which the inflaton field, after the first conventional
phase of slow-roll (SR) that is needed to fit large-scale
cosmological observations, almost stops the descent along its
potential (typically because of the presence of a quasi-
stationary inflection point) before starting rolling down again
in a final stage of SR dynamics that eventually ends inflation.
In this work, we shall refer to this three-stage dynamics as
SR/USR/SR.
A very legitimate question is whether the USR dynamics

is consistent with perturbativity. Technically speaking, the
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dimensionless power spectrum of curvature perturbation
PðkÞ is typically computed within the free theory.
However, curvature perturbations, being gravitational in
nature, feature an intricate architecture of nonlinear inter-
actions. The effect of nonlinear interactions is twofold. On
the one hand, they generate, in addition to the variance,
nonzero higher-order cumulants that may leave a peculiar
non-Gaussian pattern to the statistics of the curvature field.
On the other hand, the variance itself gets corrected with
respect to the value computed within the free theory. In this
paper, we focus on the second effect and, on very general
grounds, we define the perturbative criterion

PðkÞ≡ PtreeðkÞ½1þ ΔP1-loopðkÞ� ⇒ ΔP1-loopðkÞ<
!
1; ð1Þ

meaning that the power spectrum computed within the free
theory (the “tree-level” power spectrum in the above
equation) must be larger than the corrections ΔP intro-
duced by the presence of interactions. Such corrections can
be organized in a formal series expansion, and we will
focus in particular on the first-order term, dubbed “1-loop”
in the above equation.
The gut feeling is that, unless one is led to consider

PtreeðkÞ ¼ Oð1Þ, perturbativity should be under control.
However, Ref. [35] made the bold claim that, in the
presence of USR, the perturbativity condition in Eq. (1)
could be violated at scales k relevant for CMB observa-
tions; even more strikingly, Ref. [35] argues that USR
dynamics tailored to generate a sizable abundance of
asteroid- or solar-mass PBHs are ruled out. What makes
the claim of Ref. [35] so hard to accept is that it basically
says that loop of short modes alters the correlation of long
CMB modes. This is counterintuitive since it clashes with
the intuition that physics at different scales should be
decoupled.
Given the above, it is not surprising that Ref. [35]

sparked an intense debate mostly exclusively polarized on
defending or disproving the claim that PBH formation from
single-field inflation is ruled out [36–44]. In this paper, we
bury the hatchet and critically examine the consequences of
Eq. (1) in the presence of single-field inflation with USR
dynamics.
Our analysis is structured as follows. In Sec. II, we set

the ground for the one-loop computation; in particular, we
define all our conventions in Sec. II A, the SR/USR/SR
background dynamics in Sec. II B and the interaction
Hamiltonian in Sec. II C. In Sec. III, we compute the
one-loop correction to the curvature power spectrum within
the setup described in Sec. II A; in particular, in Sec. III A,
we focus on the case in which there is a large hierarchy
between the momenta running in the loop and the external
ones while in Sec. III B we consider the case in which the
external momenta are generic. In Sec. IV, we discuss the
implications of the perturbative bound in Eq. (1). In
particular, in Sec. IVA, we consider the case in which

the external momenta are long CMBmodes. In this section,
we critically compare our result with those of Ref. [35], and
discuss a number of crucial generalization. In Sec. IV B, we
extend the computation to the case in which the external
momenta are short modes. Finally, we conclude in Sec. V.

II. SETUP OF THE COMPUTATION USING
THE “IN-IN” FORMALISM

A. Conventions

First, we set our conventions. We set the reduced Planck
mass to one; t is the cosmic time (with ˙≡ d=dt) and τ the
conformal time (with 0 ≡ d=dτ) with dt=dτ ¼ a being a
the scale factor of the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric ds2 ¼ dt2 − a2ðtÞdx⃗2, with x⃗
comoving coordinates. The Hubble rate is H ≡ ȧ=a. The
e-fold time N is defined by dN ¼ Hdt from which we also
have dN=dτ ¼ aH. The Hubble-flow parameters ϵi (for
i ≥ 1) are defined by the recursive relation

ϵi ≡ ϵ̇i−1
Hϵi−1

; with∶ ϵ0 ≡ 1

H
: ð2Þ

As customary, we simply indicate as ϵ the first Hubble
parameter, ϵ≡ ϵ1 ¼ −Ḣ=H2. Instead of the second Hubble
parameter ϵ2, sometimes it is useful to introduce the
Hubble parameter η defined by1

η≡ −
Ḧ

2HḢ
¼ ϵ −

1

2

d log ϵ
dN

; with∶ ϵ2 ¼ 2ϵ − 2η: ð3Þ

We consider the theory described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
RðgÞ þ 1

2
gμνð∂μϕÞð∂νϕÞ − VðϕÞ

�
: ð4Þ

RðgÞ is the scalar curvature associated with the space-time
whose geometry is described by the metric g with line
elementds2 ¼ gμνdxμdxν. The classical background evolves
in the flat FLRW universe and the background value of the
scalar field is a function of time,ϕðtÞ. We tacitly assume that
the scalar potential features an approximate stationary
inflection point so as to trigger the transition SR/USR/SR.
We focus on scalar perturbations. We consider the

perturbed metric in the following generic form

ds2 ¼ N2dt2 − hijðNidtþ dxiÞðNjdtþ dxjÞ; ð5Þ

and choose the gauge in which

1We remark that in Ref. [35] the symbol η refers to the second
Hubble parameter ϵ2.
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N ¼ 1þ δNðx⃗; tÞ; Ni ¼ δij∂jBðx⃗; tÞ;
hij ¼ a2ðtÞe2ζðx⃗;tÞδij; δϕðx⃗; tÞ ¼ 0: ð6Þ
The field ζðx⃗; tÞ is the only independent scalar degree of
freedom since N and Ni are Lagrange multipliers subject to
the momentum and Hamiltonian constraints. It is important
to stress that the variable ζ as defined in Eq. (6) is constant
outside the horizon (more in general, outside the horizon
and after the end of possible nonadiabatic phases) and
represents the correct nonlinear generalization of the
Bardeen variable [45].
At the quadratic order in the fluctuations, the action is

S2 ¼
Z

d4xϵa3
�
ζ̇2 −

ð∂kζÞð∂kζÞ
a2

�
: ð7Þ

Comoving curvature perturbations are quantized by intro-
ducing the free operator

ζ̂ðx⃗; τÞ ¼
Z

d3k⃗
ð2πÞ3 ζ̂ðk⃗; τÞe

ix⃗·k⃗; with

ζ̂ðk⃗; τÞ ¼ ζkðτÞak⃗ þ ζ�kðτÞa†−k⃗; ð8Þ
and

½ak⃗; ak⃗0 � ¼ ½a†
k⃗
; a†

k⃗0
� ¼ 0; ½ak⃗; a†k⃗0 � ¼ ð2πÞ3δð3Þðk⃗ − k⃗0Þ;

ak⃗j0i ¼ 0; ð9Þ
where the last condition defines the vacuum of the free
theory j0i. We define the comoving wave number k≡ jk⃗j.
The scale factor in the FLRW universe corresponds to a
rescaling of the spatial coordinate; consequently, physically
sensible results should be invariant under the rescaling [46]

a→λa; x⃗→ x⃗=λ; k⃗→λk⃗; k→ jλjk; with λ∈R: ð10Þ
Furthermore, if we consider the conformal time τ instead of
the cosmic time t, we also have

τ → τ=λ: ð11Þ
Notice that, under the above rescaling, we have ak⃗ →
ak⃗=jλj3=2 (from the scaling property of the three-dimen-
sional δ function) and, consequently, ζk → ζk=jλj3=2 so that
ζ̂ðk⃗; τÞ → ζ̂ðk⃗; τÞ=jλj3 and ζ̂ðx⃗; τÞ invariant. In the case of
free fields, we have

h0jζ̂ðk⃗1; τ1Þζ̂ðk⃗2; τ2Þj0i
¼ ð2πÞ3δðk⃗1 þ k⃗2Þζk1ðτ1Þζ�k2ðτ2Þ: ð12Þ

In the presence of a time derivative, we simply have

h0jζ̂0ðk⃗1; τ1Þζ̂ðk⃗2; τ2Þj0i
¼ ð2πÞ3δðk⃗1 þ k⃗2Þζ0k1ðτ1Þζ�k2ðτ2Þ: ð13Þ

Note that the time dependence occurs in the mode function,
not in the raising/lowering operator. The mode function
ζkðτÞ is related to the linear-order Mukhanov-Sasaki (M-S)
equation. More in detail, if we define ζkðτÞ ¼ ukðτÞ=zðτÞ
with zðτÞ≡ aðτÞ ffiffiffiffiffiffiffiffiffiffiffi

2ϵðτÞp
, the mode ukðτÞ verifies the

equation

d2uk
dτ2

þ
�
k2 −

1

z
d2z
dτ2

�
uk ¼ 0: ð14Þ

We are interested in the computation of the quantity

lim
τ→0−

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞi ¼
Z

d3k⃗
ð2πÞ3 PðkÞe

ik⃗·ðx⃗1−x⃗2Þ; ð15Þ

at some late time τ → 0− at which curvature perturbations
become constant at superhorizon scales. Equivalently, we
write

lim
τ→0−

hζ̂ðx⃗; τÞζ̂ðx⃗; τÞi ¼
Z

dk
k

�
k3

2π2
PðkÞ

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

≡PðkÞ

¼
Z

dk
k
PðkÞ; ð16Þ

where PðkÞ is the a-dimensional power spectrum. At the
level of the quadratic action, we find

h0jζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞj0i

¼
Z

d3k⃗1
ð2πÞ3 d

3k⃗2δðk⃗1 þ k⃗2Þζk1ðτÞζ�k2ðτÞeiðx⃗1·k1þx⃗2·k2Þ

¼
Z

d3k⃗
ð2πÞ3 jζkðτÞj

2eik⃗·ðx⃗1−x⃗2Þ; ð17Þ

which of course gives the familiar result

PðkÞ ¼ lim
τ→0−

k3

2π2
jζkðτÞj2: ð18Þ

The goal is to compute corrections that arise from the
presence of interactions. This means that, in Eq. (15), the
vacuum expectation value should refer to the vacuum jΩi of
the interacting theory and the dynamics of the operator ζ̂ðx⃗; τÞ
is described by the full action that also includes interactions.
We compute the left-hand side of Eq. (15) by means of

the “in-in” formalism (see, e.g., [47–49]). Correlators are
given by

hΩjÔðτÞjΩi≡hÔðτÞi

¼h0j
�
T̄exp

�
i
Z

τ

−∞ð1þiϵÞ
dτ0Ĥintðτ0Þ

�	

×ÔIðτÞ
�
Texp

�
−i

Z
τ

−∞ð1−iϵÞ
dτ0Ĥintðτ0Þ

�	
j0i;

ð19Þ
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where on the right-hand side all fields appearing in ÔIðτÞ
and Ĥintðτ0Þ are free fields in the interaction picture. We
shall indicate free fields in the interaction picture with the
additional subscript I . It should be noted that the latter are
nothing but the operators of the free theory that we
quantized in Eq. (8).
T and T̄ are the time and antitime ordering operator,

respectively. As customary, the small imaginary deforma-
tion in the integration contour guarantees that jΩi → j0i as
τ → −∞ where jΩi is the vacuum of the interacting theory.
On the left-hand side, the operator ÔðτÞ is the equal-time
product of operators at different space points, precisely like
in Eq. (15). We expand in the interaction Hamiltonian, so
we use the Dyson series

T exp

�
−i

Z
τ

−∞−

dτ0Ĥintðτ0Þ
�

¼ 1 − i
Z

τ

−∞−

dτ0Ĥintðτ0Þ

þ i2
Z

τ

−∞−

dτ0
Z

τ0

−∞−

dτ00Ĥintðτ0ÞĤintðτ00Þ þ…; ð20Þ

where, for simplicity, we introduce the short-hand notation
∞� ≡∞ð1� iϵÞ. Each order in Ĥint is an interaction
vertex, and carries both a time integral and the space
integral (enclosed in the definition of Ĥint) which in Fourier
space enforces momentum conservation.
It is crucial to correctly identify the interaction

Hamiltonian. Before proceeding in this direction, let us
clarify our notation. We expand the action in the form

S ¼
Z

d3x⃗dtL½ζðx⃗; tÞ; ζ̇ðx⃗; tÞ; ∂kζðx⃗; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡L½ζðx⃗;tÞ�

¼
Z

d3x⃗dtL2ðx⃗; tÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡S2

þ
Z

d3x⃗dtL3½ζðx⃗; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡S3

þ
Z

d3x⃗dtL4½ζðx⃗; tÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡S4

þ…; ð21Þ

with S2 defined in Eq. (7). We also define (as a function of
conformal time)

HðkÞ
int ðτÞ≡

Z
d3x⃗Hk½ζðx⃗; τÞ�

⇒ ĤðkÞ
int ðτÞ≡

Z
d3x⃗Hk½ζ̂Iðx⃗; τÞ�: ð22Þ

At the cubic order, we simply have

H3½ζðx⃗; τÞ� ¼ −L3½ζðx⃗; τÞ�: ð23Þ

We shall construct the relevant cubic interaction
Hamiltonian in Sec. II C. At the quartic order, simply
writingH4 ¼ −L4 does not capture the correct result if the
cubic Lagrangian features interactions that depend on the
time derivative of ζ since the latter modify the definition of
the conjugate momentum.
Using, at the operator level, the notation introduced in

Eq. (22), we schematically write at the first order in the
Dyson series expansion

hζ̂ðx⃗1;τÞζ̂ðx⃗2;τÞi1st

¼h0jζ̂Iðx⃗1;τÞζ̂Iðx⃗2;τÞ
�
−i

Z
τ

−∞−

dτ0Ĥð4Þ
int ðτ0Þ

�
j0i

þh0j
�
i
Z

τ

−∞þ
dτ0Ĥð4Þ

int ðτ0Þ
�
ζ̂Iðx⃗1;τÞζ̂Iðx⃗2;τÞj0i: ð24Þ

At the first order, therefore, the first nonzero quantum
correction involves the quartic Hamiltonian. At the second
order in the Dyson series expansion and considering again
terms with up to eight fields in the vacuum expectation
values, we write schematically

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞi2nd ¼ h0jζ̂Iðx⃗1; τÞζ̂Iðx⃗2; τÞ
�
−
Z

τ

−∞−

dτ0
Z

τ0

−∞−

dτ00Ĥð3Þ
int ðτ0ÞĤð3Þ

int ðτ00Þ
�
j0i

þ h0j
�
−
Z

τ

−∞þ
dτ0

Z
τ0

−∞þ
dτ00Ĥð3Þ

int ðτ00ÞĤð3Þ
int ðτ0Þ

�
ζ̂Iðx⃗1; τÞζ̂Iðx⃗2; τÞj0i

þ h0j
�
i
Z

τ

−∞þ
dτ0Ĥð3Þ

int ðτ0Þ
�
ζ̂Iðx⃗1; τÞζ̂Iðx⃗2; τÞ

�
−i

Z
τ

−∞−

dτ00Ĥð3Þ
int ðτ00Þ

�
j0i: ð25Þ

The vacuum expectation values of interacting-picture fields can be computed using Wick’s theorem. Schematically,
Eqs. (24), (25) give rise to the following connected diagrams.
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ð26Þ

From the above classification, we see that, at the same loop
order, we have three classes of connected diagrams that, in
principle, should be discussed together. Notice that, con-
trary to the first two, the last diagram is not of 1-particle-
irreducible (1PI) type since it consists of a tadpole attached
to a two-point propagator.
To proceed further, we need to specify the background

dynamics, that shape the time evolution of the Hubble
parameters, and the interaction Hamiltonian, that specifies
which terms in the Dyson expansion contribute at a given
perturbative order.

B. The (minimal) dynamics of ultraslow-roll

We start with a discussion of the USR dynamics. In order
to make our discussion more concrete, in the following we
shall refer to Fig. 1, see the caption for details. In this
figure, we plot both the classical (top panel) and quantum
(bottom panel) dynamics that characterize a realistic model
of single-field inflation that features a phase of USR
because of the presence of an approximate stationary
inflection point in the inflationary potential. We refer to
Ref. [12] for more details about the model; we remark that
this model, without including loop corrections to the
computation of the curvature power spectrum, is compat-
ible with CMB constraints and gives ≈100% of dark matter
in the form of asteroid-mass PBHs.2 In Fig. 1, the relation
between e-fold time N (bottom x axis) and conformal time
τ (top x axis) is given by the integral

τ ¼ −
1

k⋆

Z
N0

N

HðN⋆Þ
HðN0Þ e

N⋆−N0
dN0; ð27Þ

where N0 indicates the end of inflation, with τ conven-
tionally set to 0 at this time, and N⋆ the instant of time at
which the comoving scale k⋆ ¼ 0.05 Mpc−1 crosses the
Hubble horizon. In Fig. 1, we set N⋆ ¼ 0, and the model

FIG. 1. Classical (top panel) and quantum (central panel)
dynamics in the context of an explicit single-field model of
inflation that exhibits the presence of a phase of USR in between
the time interval Nin < N < Nend (cf. Ref. [12]). In this specific
realization, we have Nin ¼ 36.3 and Nend ¼ 38.8. Top panel: we
plot the evolution of the background quantities ϵ, ϵ2 and ϵ02
[cf. Eqs. (2), (3)] together with the evolution of the Hubble rate
(normalized with respect to the value H� ≡HðN�Þ and scaled by
a factor of 10 for ease of comparison). Central panel: we plot the
solutions of the M-S equation in Eq. (33) for two different
curvature modes. The mode in black (blue) exits the Hubble
horizon well before (during) the USR phase. Bottom panel: we
plot the classicality parameter Ck for the same two modes (cf. the
main text for details). In the case of the black mode (Nk ≪ Nin)
the classicality parameter quickly vanishes after horizon crossing,
and remains negligible also during the USR phase. In the case of
the blue mode (Nq ≈ Nend) the classicality parameter remains
sizable during the USR phase, signaling that this mode retains its
quantum nature during USR.

2The model predicts the tensor-to-scalar ratio r ≃ 0.037 which
is still (barely) compatible, at 95% confidence level, with the
latest results released by the BICEP and Keck collaboration [50].

PERTURBATIVITY IN THE PRESENCE OF ULTRASLOW-ROLL … PHYS. REV. D 109, 123550 (2024)

123550-5



gives N0 − N⋆ ≃ 52. We can highlight few crucial proper-
ties of the dynamics presented above:
(1) We start from the classical analysis. During USR,

ϵ2ðτÞ changes according to the schematic

ϵ2 ≈ 0 ⇒
SR=USR at time τin jϵ2j > 3 ⇒

USR=SR at time τend

ϵ2 ≈Oð1Þ; ð28Þ

thus making ϵ02ðτÞ nonzero at around the two
transitions at conformal times τin and τend (equiv-
alently, at e-fold times Nin and Nend). The evolution
of ϵ2 and ϵ02 are shown in the top panel of Fig. 1, with
dotted green and dashed orange lines, respectively.

(2) During USR, the Hubble parameter ϵ decreases ex-
ponentially fast (the inflaton almost stops its classical
motion). The evolution of ϵ is shown in the top panel of
Fig. 1 (dot-dashed magenta line); in addition, we also
plot the time evolution of the Hubble rate H.

(3) We now consider the USR dynamics at the quantum
level. It is crucial to understand the typical behavior
of curvature modes (solid lines in the central panel of
Fig. 1) and their time derivatives (dashed lines). In
the central panel of Fig. 1, we plot two representative
cases: the black lines correspond to the case of a
mode ζk that exits the Hubble horizon at some time
Nk well before the USR phase (like a CMB mode)
while the blue lines correspond to a curvature mode
ζq that exits the Hubble horizon at some time Nq

during the USR phase. We notice that the derivative

jdζk=dNj decays exponentially fast, and, soon after
horizon crossing, becomes negligible, while jζkj
settles to a constant value. Consequently, we expect
that interaction terms that involve the time derivative
of CMB modes will be strongly suppressed.

(4) Finally, we consider the issue of the quantum-to-
classical transition. We define the so-called classi-
cality parameter [51] Ck ¼ jζkζ̇�k − ζ�kζ̇kj=jζkζ̇kj,
which goes to zero in the classical limit. In the
case of conventional SR dynamics, the classicality
parameter scales according to Ck ∼ 2kτ, and it
vanishes exponentially fast right after the horizon
crossing time. In the bottom panel of Fig. 1, we plot
the classicality parameter for two representative
modes of our dynamics. The black modes experi-
ences its horizon crossing well before the USR phase
(Nk ≪ Nin). Its classicality parameter quickly van-
ishes and remains ≪ 1 during the subsequent USR
phase. The blue line, on the contrary, represents the
classicality parameter for a mode that experiences its
horizon crossing during the USR phase. Its classi-
cality parameter remains sizable during the USR
phase, signalling that this short mode can not be
treated classically during USR.

With the aim of facilitating the numerical computations
of the following sections, instead of working with a
numerical description of USR, we now introduce a simple
semianalytical model [52–54]. We define the hyperbolic
tangent parametrization

ηðNÞ ¼ 1

2

�
−ηII þ ηII tanh

�
N − Nin

δN

��
þ 1

2

�
ηII þ ηIII þ ðηIII − ηIIÞ tanh

�
N − Nend

δN

��
; ð29Þ

where the parameter δN controls the width of the two transitions at Nin and Nend. The limit δN → 0 reproduces the step-
function approximation. Using the definition

δðxÞ ¼ lim
ϵ→0

1

2ϵ cosh2ðx=ϵÞ ; ð30Þ

we find

lim
δN→0

dη
dN

¼ ð−ηII þ ηIIIÞδðN − NendÞ þ ηIIδðN − NinÞ: ð31Þ

Using η ≃ −ð1=2Þd log ϵ=dN, we find the following expression

ϵðNÞ
ϵref

¼ e−ηIIIðN−NrefÞ
�
cosh

�
N − Nend

δN

�
cosh

�
N − Nin

δN

��
−δNηIII

2

�
cosh

�
Nref − Nend

δN

�
cosh

�
Nref − Nin

δN

��δNηIII
2

×

�
cosh

�
N − Nend

δN

�
sech

�
N − Nin

δN

��
δNðηII−ηIII

2
Þ�
cosh

�
Nref − Nend

δN

�
sech

�
Nref − Nin

δN

��δN
2
ð−2ηIIþηIIIÞ

; ð32Þ
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where ϵref ≪ 1 is the value of ϵ at some initial reference time Nref . For future reference, we define ϵ̄ðNÞ≡ ϵðNÞ=ϵref . In this
way we have an analytical description of the background dynamics; most importantly, Eqs. (29), (32) are almost all that we
need to know to solve the M-S equation [55,56]

d2uk
dN2

þ ð1 − ϵÞ duk
dN

þ
�

k2

ðaHÞ2 þ ð1þ ϵ − ηÞðη − 2Þ − d
dN

ðϵ − ηÞ
�
uk ¼ 0: ð33Þ

For consistency with Eq. (32), we consider the Hubble rate as a function of time according to

HðNÞ ¼ HðNrefÞ exp
�
−
Z

N

Nref

ϵðN0ÞdN0
�
: ð34Þ

We shall use the short-hand notation aðNiÞ≡ ai and HðNiÞ≡Hi. Consequently, we rewrite Eq. (33) in the form

d2uk
dN2

þ ð1 − ϵÞ duk
dN

þ
�
k̄2
�
Hin

H

�
2

e2ðNin−NÞ þ ð1þ ϵ − ηÞðη − 2Þ − d
dN

ðϵ − ηÞ
�
uk ¼ 0; ð35Þ

with k̄≡ k=ðainHinÞ. We solve the above equation for different k̄ with Bunch-Davies initial conditions

ffiffiffi
k

p
ukðNÞ ¼ 1ffiffiffi

2
p ;

ffiffiffi
k

p duk
dN

ðNÞ ¼ −
iffiffiffi
2

p k
aðNÞHðNÞ ; ð36Þ

at some arbitrary time N ≪ Nk with k ¼ aðNkÞHðNkÞ.
Modes with k̄ ≈Oð1Þ are modes that exit the Hubble horizon
at about the beginning of the USR phase, modes with k̄ ≪ 1
are modes that exit the Hubble horizon well before the
beginning of the USR phase, modes with k̄ ≫ 1 are modes
that exit the Hubble horizon well after the beginning of the
USR phase. In the left panel of Fig. 3, we show the tree-level
power spectrumthatweobtainbynumerically solvingEq. (35)
and using Eq. (18). Thanks to our parametrization in Eq. (29)
we control the sharpness of the transition varying δN.
In order to make contact with the analysis of Ref. [35],

we set ηIII ¼ 0. However, it should be noted that in more
realistic models we need ηIII ≠ 0 and negative so that the
power spectrum decreases for modes with k̄ ≫ 1. This

feature is necessary if we want to connect the USR phase to
a subsequent SR phase that ends inflation. Since we are
considering single-field models of inflation, in our analysis
this is a necessary requirement. Consequently, the power
spectrum at small scales—both before and after the peak—
does not respect the property of scale invariance. Before the
peak, the power spectrum of the short modes grows with a
maximum slope given by Pðk̄Þ ∼ k̄4; after the peak, the
power spectrum of the short modes decays approximately
as Pðk̄Þ ∼ k̄2ηIII . After the peak, therefore, the power
spectrum becomes approximately scale invariant only if
we take ηIII ≈ 0; however, in such case ϵ remains anchored
to the tiny value reached during the USR phase and
inflation never ends.

FIG. 2. Schematic evolution of ηðNÞ in Eq. (29) (left panel), ϵðNÞ in Eq. (32) (central panel) and dϵ2=dN (right panel) as function of
the number of e-folds N. We explore different values of δN with the limit δN → 0 that corresponds to instantaneous transitions SR/USR
at N ¼ Nin and USR/SR at N ¼ Nend. In the right panel, the limit δN → 0 corresponds to δ function transitions at Nin and Nend.
Furthermore, notice that the lines corresponding to dϵ2=dN and −2dη=dN superimpose, showing that −2dη=dN is a perfect
approximation of dϵ2=dN.
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In Ref. [35], the loop integration is restricted to the
interval of modes k̄∈ ½k̄in; k̄end�, where k̄in ¼ 1 and k̄end ¼
eΔNUSRðHend=HinÞ ≃ eΔNUSR with ΔNUSR ≡ Nend − Nin.
This interval of modes is limited by the two vertical dashed
lines in the left panel of Fig. 3. In Ref. [35], limiting the
integration to the range k̄∈ ½k̄in; k̄end� is justified by the fact
that the power spectrum of short modes peaks in this
window of modes.
For future reference, let us stress onemore important point.

In the left panel of Fig. 3 we indicate the growth of the power
spectrum given by the scaling ΔP ¼ ðkend=kinÞ2ηII . This
result immediately follows from the application of the SR
formulaPðkÞ ¼ H2=8π2ϵ if one accounts for the exponential
decay ϵ ∼ e−2ηIIN duringUSRand convertsN into k bymeans
of the horizon-crossing condition k ¼ aH. Therefore, not
surprisingly, the scaling ΔP ¼ ðkend=kinÞ2ηII captures well
the growth of the power spectrum if one directly jumps
from the initial to the final SR phase. However, as shown
in the left panel of Fig. 3, the above estimate does not

accurately describe the amplitude of the power spectrum at
the position of its peak; the latter can easily be one order of
magnitude larger thanwhat suggested byΔP¼ðkend=kinÞ2ηII.
This features has important consequences when estimat-
ing the PBH abundance, which rather sensitive to the
spectral amplitude. We will come back to this point in the
next section.
Finally, it is possible to check numerically that neglect-

ing the time dependence of the Hubble rate as in Eq. (34)
has a negligible impact. In the following, therefore, we
shall keep H constant (that is, H ¼ Href does not evolve in
time). Furthermore, if we take H constant and in the limit
δN ¼ 0, it is possible to get, for some special values of ηII
and ηIII, a complete analytical description of the SR/USR/
SR dynamics [12,52].

C. The cubic action

At the cubic order in the fluctuations, the action is

S3 ¼
Z

d4x

�
ϵ2a3ζ̇2ζ þ ϵ2aζð∂kζÞð∂kζÞ − 2ϵ2a3ζ̇ð∂kζÞ∂kð∂−2ζ̇Þ þ

ϵϵ̇2
2

a3ζ̇ζ2 −
a3ϵ3

2
½ζ̇2ζ − ζ∂k∂lð∂−2ζ̇Þ∂k∂lð∂−2ζ̇Þ�

þ
�
d
dt

ðϵa3ζ̇Þ − ϵa∂k∂kζ

��
ϵ2
2
ζ2 þ 2

H
ζ̇ζ −

1

2a2H2
ð∂kζÞð∂kζÞ þ

1

2a2H2
∂
−2
∂k∂lð∂kζ∂lζÞ

þ ϵ

H
ð∂kζÞ∂kð∂−2ζ̇Þ −

ϵ

H
∂
−2
∂k∂l∂

kζ∂lð∂−2ζ̇Þ
�	

: ð37Þ

As shown in Ref. [45], it is possible to simplify the cubic action by means of a field redefinition that introduces a non-linear
shift in the original field. Concretely, if we define

ζ≡ ζn þ fðζnÞ; ð38Þ

with

FIG. 3. Left panel: tree-level power spectrum in the minimal dynamics of Sec. II B. The numerical values of the other parameters are
ηII ¼ 3.5, ηIII ¼ 0 and Nend − Nin ¼ 2.5. In our parametrization, we go beyond the instantaneous transition approximation and we
explore different values of δN. The vertical double-arrow indicates the growth of the power spectrum given by the naïve scaling
ΔP ¼ ðkend=kinÞ2ηII ¼ e2ηIIΔNUSR . This scaling captures well the amplitude of the transition from the initial to the final SR phase but it
does not give a reliable estimate of the peak amplitude of the power spectrum, which can easily be one order of magnitude larger. Right
panel: time evolution of two representative modes with k̄ ¼ 1 and k̄ ¼ eΔNUSR for δN ∈ ½0.1 ÷ 0.5� (from darker to lighter colors,
respectively). The black lines represent the limit δN → 0.
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fðζÞ≡ 1

2

�
ϵ2
2
ζ2 þ 2

H
ζ̇ζ −

ð∂kζÞð∂kζÞ
2a2H2

þ 1

2a2H2
∂
−2
∂k∂lð∂kζ∂lζÞ þ

ϵ

H
ð∂kζÞ∂kð∂−2ζ̇Þ −

ϵ

H
∂
−2
∂k∂l∂

kζ∂lð∂−2ζ̇Þ
�
; ð39Þ

we find, by direct computation, that at the quadratic order the field ζn is described by the action

S2ðζnÞ ¼
Z

d4x ϵa3
�
ζ̇2n −

ð∂kζnÞð∂kζnÞ
a2

�
; ð40Þ

which has the same structure as the quadratic action for the original variable ζ. However, at the cubic order, we find

S3ðζnÞ ¼
Z

d4x
�
ϵ2a3ζ̇2nζn þ ϵ2aζnð∂kζnÞð∂kζnÞ − 2ϵ2a3ζ̇nð∂kζnÞ∂kð∂−2ζ̇nÞ þ

ϵϵ̇2
2

a3ζ̇nζ2n

−
a3ϵ3

2
½ζ̇2nζn − ζn∂k∂lð∂−2ζ̇nÞ∂k∂lð∂−2ζ̇nÞ�

	
; ð41Þ

in which, thanks to the above field redefinition, the second and third lines in Eq. (37) cancel out.

If we neglect terms with spatial derivatives and inter-
actions suppressed by two or more powers of the Hubble
parameter ϵ, then we find

S3ðζnÞ ∋
Z

d4x
ϵϵ̇2
2

a3ζ̇nζ2n: ð42Þ

Notice that we do not count the coupling ϵ2 as a slow-roll
suppression since we are interested in the USR phase
during which jϵ2j > 3 and ϵ̇2 ≠ 0. Equation (42) is the only
interaction included in Ref. [35]. This means that, implic-
itly, Ref. [35] computes the two-point function for the field
ζn. This is because, in terms of the dynamical variable ζ,
there is another interaction of order ϵϵ2 that should be
included, which is the one in the second line of Eq. (37).
However, as stressed in Ref. [45], ζn is not the right

dynamical variable to consider since it is not conserved

outside the horizon. This is a trivial consequence of
Eq. (38). Since ζ is conserved outside the horizon, ζn
can not be conserved simply because various coefficients in
the nonlinear relation in Eq. (38) are time dependent.
Alternatively, as discussed in Ref. [45], the above fact is
also evident from the very same structure of the interactions
that appear in Eq. (41). The interaction ϵϵ̇2ζ̇nζ

2
n only has

one time derivative acting on the field ζn; consequently, it
alters the value of ζn on superhorizon scales (if one
computes the equation of motion for ζn, it is easy to see
that the constant solution is not stable). Let us make the
above considerations more concrete. Eventually, we are
interested in the computation of the two-point function for
the original curvature field. Given the field redefinition in
Eq. (38), we write

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞi ¼ hfζ̂nðx⃗1; τÞ þ f½ζ̂nðx⃗1; τÞ�gfζ̂nðx⃗2; τÞ þ f½ζ̂nðx⃗2; τÞ�gi;
¼ hζ̂nðx⃗1; τÞζ̂nðx⃗2; τÞiþ ð43Þ

hζ̂nðx⃗1; τÞf½ζ̂nðx⃗2; τÞ�i þ hf½ζ̂nðx⃗1; τÞ�ζ̂nðx⃗1; τÞiþ ð44Þ

hf½ζ̂nðx⃗1; τÞ�f½ζ̂nðx⃗2; τÞ�i; ð45Þ

The first term, Eq. (43), corresponds to the two-point
function for the shifted curvature field whose cubic action
is given by Eq. (41); hζ̂nðx⃗1; τÞζ̂nðx⃗2; τÞi can be computed
perturbatively by means of the “in-in” formalism sketched
at the end of Sec. II A. Eqs. (44), (45) account for the
difference between ζ and ζn at the nonlinear level. Notice
that the first term in the functional form in Eq. (39) does not
die off in the late-time limit τ → 0− (in which the power

spectrum must be eventually evaluated) if we consider the
case in which ϵ2 ≠ 0 after the USR phase (as expected in
realistic single-field models, cf. Sec. II B). However, if we
limit to the case in which ηIII ¼ 0 the contribution from the
field redefinition vanishes. This limit was considered in
Ref. [35]. In order to make contact with the analysis
presented in Ref. [35], we shall also adopt in the bulk of
this work the assumption ηIII ¼ 0.

PERTURBATIVITY IN THE PRESENCE OF ULTRASLOW-ROLL … PHYS. REV. D 109, 123550 (2024)

123550-9



Let us now come back to the schematic in Eq. (26). The
cubic Hamiltonian interaction that follows from Eq. (42)
gives rise to the last two topologies of connected diagrams
illustrated in Eq. (26). As in Ref. [35], we will only focus on
the 1PI diagram, that is, the central diagram in Eq. (26). The
last diagram in Eq. (26) consists of a tadpole that is attached
to a ζ propagator and affects at one-loop its two-point
correlation function. The correct way to deal with tadpoles
is by changing the background solution, cf. Ref. [57] for a
discussion in the case of ordinary SR inflation and Ref. [46]
for the case in which there are additional spectator fields.
Recently, Ref. [58] estimated the tadpole correction to the
background evolution in the context of a model in which
there is a resonant amplification of field fluctuations.
Imposing the condition that such modification is negligible
could give rise to an additional perturbativity bound. We
postpone a comprehensive exploration of this issue in the
context of realistic USR dynamics to future work, cf. Sec. V.

D. Beyond the cubic action

Before proceeding, we comment about quartic inter-
actions since, as qualitatively discussed in Eq. (26), they
give rise to one-loop corrections which are of the same
order if compared to those generated by cubic interaction
terms. The derivation of the fourth-order action has been
discussed in Ref. [59]. Based on this result, Refs. [35,37]
claims that the relevant quartic interaction in the case of
USR dynamics (that is, the quartic interaction proportional
to ϵ̇2) gives a vanishing contribution when inserted in
Eq. (24). Reference [39] adopts an approach based on the
effective field theory of inflation and includes cubic and
quartic interactions. It finds that the latter gives a nontrivial
contribution, and finds a loop-corrected power spectrum
different from the one in Refs. [35,37]. It would be

important to perform a consistent comparison between
these two approaches, including the full cubic and quartic
interactions in both cases. Generally speaking, we expect
cubic and quartic interactions to be inextricably linked. For
instance, the quartic Hamiltonian receives a contribution
that arises from the modification of the conjugate momen-
tum if there are cubic interactions which depend on ζ̇.
Similarly, cubic interactions with spatial derivatives are
paired with quartic interactions induced by a residual
spatial conformal symmetry of the perturbed metric [46].
En route, we notice that interactions with spatial derivatives
are usually neglected for modes that are superhorizon.
However, in the spirit of the loop computation in Ref. [35],
the momenta over which the loop is integrated cross the
horizon during the USR phase, and, naïvely, their spatial
derivatives do not pay any superhorizon suppression.
In thiswork, as a preliminary step towards amore complete

analysis and in order to compare our results with the claim
made inRefs. [36–44], we only focus on the cubic interaction
in Eq. (42). However, we stress that all the arguments listed
above motivate the need for a more comprehensive analysis.
We postpone this task to future work, cf. Sec. V.

III. ONE-LOOP COMPUTATION

We consider in this section the cubic interaction
Hamiltonian given by (we omit the subscript I in the
interaction-picture fields)

Ĥð3Þ
int ðτÞ ¼

1

2

Z
d3x⃗ϵðτÞϵ02ðτÞa2ðτÞζ0ðx⃗; τÞζðx⃗; τÞ2: ð46Þ

We consider Eq. (25); this can be written in the com-
pact form

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞi2nd ¼ hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið1;1Þ2nd
− 2Re½hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið0;2Þ2nd

�; ð47Þ

where

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið1;1Þ2nd
≡

Z
τ

−∞ð1þiϵÞ
dτ1

Z
τ

−∞ð1−iϵÞ
dτ2h0jĤintðτ1Þζ̂Iðx⃗1; τÞζ̂Iðx⃗2; τÞĤintðτ2Þj0i; ð48Þ

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið0;2Þ2nd
≡

Z
τ

−∞ð1−iϵÞ
dτ1

Z
τ1

−∞ð1−iϵÞ
dτ2h0jζ̂Iðx⃗1; τÞζ̂Iðx⃗2; τÞĤintðτ1ÞĤintðτ2Þj0i: ð49Þ

This expansion is consistent with Eq. (16) of Ref. [46]. Consider the first contribution in Eq. (48), one finds

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið1;1Þ2nd
¼ 1

4

Z
τ

−∞þ
dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ

Z
τ

−∞−

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

d3y⃗d3z⃗

×
Z �Y8

i¼1

d3k⃗i
ð2πÞ3

�
eiy⃗·ðk⃗1þk⃗2þk⃗3Þeiðx⃗1·k⃗4þx⃗2·k⃗5Þeiz⃗·ðk⃗6þk⃗7þk⃗8Þ

× h0jζ̂0Iðk⃗1; τ1Þζ̂Iðk⃗2; τ1Þζ̂Iðk⃗3; τ1Þζ̂Iðk⃗4; τÞζ̂Iðk⃗5; τÞζ̂0Iðk⃗6; τ2Þζ̂Iðk⃗7; τ2Þζ̂Iðk⃗8; τ2Þj0i: ð50Þ
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The 36 connected Wick contractions can be expressed as

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið1;1Þ2nd
¼

Z
τ

−∞þ
dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ

Z
τ

−∞−

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

d3k⃗
ð2πÞ3

d3q⃗
ð2πÞ3 e

iðx⃗1−x⃗2Þ·ðk⃗þq⃗Þ

× ½jζkþqðτÞj2fζkðτ1Þζ0kþqðτ1Þζqðτ1Þζ�kðτ2Þζ0�kþqðτ2Þζ�qðτ2Þ
þ ζkðτ1Þζ0kþqðτ1Þζqðτ1Þζ�kþqðτ2Þ½ζ0�k ðτ2Þζ�qðτ2Þ þ ζ�kðτ2Þζ0�q ðτ2Þ�
þ ζ�kðτ2Þζ0�kþqðτ2Þζ�qðτ2Þζkþqðτ1Þ½ζ0kðτ1Þζqðτ1Þ þ ζkðτ1Þζ0qðτ1Þ�
þ ζ0kðτ1Þζkþqðτ1Þζqðτ1Þζ�kþqðτ2Þ½ζ�qðτ2Þζ0�k ðτ2Þ þ ζ�kðτ2Þζ0�q ðτ2Þ�
þ ζ0�k ðτ2Þζ�kþqðτ2Þζ�qðτ2Þζkþqðτ1Þ½ζqðτ1Þζ0kðτ1Þ þ ζkðτ1Þζ0qðτ1Þ�g�: ð51Þ

Consider now Eq. (49). One can write it in the form

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið0;2Þ2nd
¼ 1

4

Z
τ

−∞−

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

−∞−

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

d3y⃗d3z⃗

×
Z �Y8

i¼1

d3k⃗i
ð2πÞ3

�
eiy⃗·ðk⃗1þk⃗2þk⃗3Þeiðx⃗1·k⃗4þx⃗2·k⃗5Þeiz⃗·ðk⃗6þk⃗7þk⃗8Þ

× h0jζ̂Iðk⃗4; τÞζ̂Iðk⃗5; τÞζ̂0Iðk⃗1; τ1Þζ̂Iðk⃗2; τ1Þζ̂Iðk⃗3; τ1Þζ̂0Iðk⃗6; τ2Þζ̂Iðk⃗7; τ2Þζ̂Iðk⃗8; τ2Þj0i: ð52Þ

After Wick contractions, we find

hζ̂ðx⃗1; τÞζ̂ðx⃗2; τÞið0;2Þ2nd
¼

Z
τ

−∞−

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

−∞−

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

d3k⃗
ð2πÞ3

d3q⃗
ð2πÞ3 e

iðx⃗1−x⃗2Þ·ðk⃗þq⃗Þ

× ½ζ2kþqðτÞfζkðτ1Þζ0�kþqðτ1Þζqðτ1Þζ�kðτ2Þζ0�kþqðτ2Þζ�qðτ2Þ
þ ζkðτ1Þζ0�kþqðτ1Þζqðτ1Þζ�kþqðτ2Þ½ζ0�k ðτ2Þζ�qðτ2Þ þ ζ�kðτ2Þζ0�q ðτ2Þ�
þ ζ�kðτ2Þζ0�kþqðτ2Þζ�qðτ2Þζ�kþqðτ1Þ½ζ0kðτ1Þζqðτ1Þ þ ζkðτ1Þζ0qðτ1Þ�
þ ζ0kðτ1Þζ�kþqðτ1Þζqðτ1Þζ�kþqðτ2Þ½ζ�qðτ2Þζ0�k ðτ2Þ þ ζ�kðτ2Þζ0�q ðτ2Þ�
þ ζ0�k ðτ2Þζ�kþqðτ2Þζ�qðτ2Þζ�kþqðτ1Þ½ζqðτ1Þζ0kðτ1Þ þ ζkðτ1Þζ0qðτ1Þ�g�: ð53Þ

At this point we shift the momentum following the prescription k → k − q in such a way that k is identified with the external
momentum. The power spectrum at one loop can be therefore written as

PðkÞ ¼ lim
τ→0−

�
k3

2π2

��
jζkðτÞj2 þ

1

ð4πÞ2 ½ΔP1ðk; τÞ þ ΔP2ðk; τÞ�
	
; ð54Þ

with

ΔP1ðk; τÞ≡ 4

Z
τ

−∞þ
dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ

Z
τ

−∞−

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

∞

0

dq q2dðcos θÞjζkðτÞj2

× fζk−qðτ1Þζ0kðτ1Þζqðτ1Þζ�k−qðτ2Þζ0�k ðτ2Þζ�qðτ2Þ
þ ζk−qðτ1Þζ0kðτ1Þζqðτ1Þζ�kðτ2Þ½ζ0�k−qðτ2Þζ�qðτ2Þ þ ζ�k−qðτ2Þζ0�q ðτ2Þ�
þ ζ�k−qðτ2Þζ0�k ðτ2Þζ�qðτ2Þζkðτ1Þ½ζ0k−qðτ1Þζqðτ1Þ þ ζk−qðτ1Þζ0qðτ1Þ�
þ ζ0k−qðτ1Þζkðτ1Þζqðτ1Þζ�kðτ2Þ½ζ�qðτ2Þζ0�k−qðτ2Þ þ ζ�k−qðτ2Þζ0�q ðτ2Þ�
þ ζ0�k−qðτ2Þζ�kðτ2Þζ�qðτ2Þζkðτ1Þ½ζqðτ1Þζ0k−qðτ1Þ þ ζk−qðτ1Þζ0qðτ1Þ�g; ð55Þ
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ΔP2ðk; τÞ≡ −8Re
�Z

τ

−∞−

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

−∞−

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

∞

0

dq q2dðcos θÞζ2kðτÞ

× fζk−qðτ1Þζ0�k ðτ1Þζqðτ1Þζ�k−qðτ2Þζ0�k ðτ2Þζ�qðτ2Þ
þ ζk−qðτ1Þζ0�k ðτ1Þζqðτ1Þζ�kðτ2Þ½ζ0�k−qðτ2Þζ�qðτ2Þ þ ζ�k−qðτ2Þζ0�q ðτ2Þ�
þ ζ�k−qðτ2Þζ0�k ðτ2Þζ�qðτ2Þζ�kðτ1Þ½ζ0k−qðτ1Þζqðτ1Þ þ ζk−qðτ1Þζ0qðτ1Þ�
þ ζ0k−qðτ1Þζ�kðτ1Þζqðτ1Þζ�kðτ2Þ½ζ�qðτ2Þζ0�k−qðτ2Þ þ ζ�k−qðτ2Þζ0�q ðτ2Þ�

þ ζ0�k−qðτ2Þζ�kðτ2Þζ�qðτ2Þζ�kðτ1Þ½ζqðτ1Þζ0k−qðτ1Þ þ ζk−qðτ1Þζ0qðτ1Þ�g
�
: ð56Þ

A. Loop correction with a large hierarchy of scales

First, we will be concerned with external momenta that describe the large CMB scales, while the USR takes place when
modes kUSR ≫ k cross the horizon. The situation is summarized in the following schematic

ð57Þ

in which the blue horizontal band represents the interval of modes that cross the horizon during the USR phase, the vertical
band shaded in magenta. In other words, as we will restrict the integration over momenta q∈ ½qin; qend� that are enhanced by
the USR phase, we can assume q ≫ k. Consequently, as in Ref. [35], we approximate

k − q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 − 2kq cosðθÞ

q
≈ q;

Z þ1

−1
dðcos θÞ ¼ 2: ð58Þ

With these assumptions, we can further simplify the expressions. We collect each contribution depending on the number of
time derivatives acting on the long mode ζk. In each expression, the first line indicates terms with no derivative on the long
modes, the second one those with one derivative, while the last with two. One finds

ΔP1ðk; τÞ≡ 8

Z
τ

τin

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ

τin

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

qend

qin

dq q2jζkðτÞj2

× f4ζkðτ1Þζ�kðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ0�q ðτ2Þ
þ 2ζ0kðτ1Þζ�kðτ2Þζqðτ1Þζqðτ1Þζ0�q ðτ2Þζ�qðτ2Þ þ 2ζkðτ1Þζ0�k ðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ�qðτ2Þ
þ ζ0kðτ1Þζ0�k ðτ2Þζqðτ1Þζqðτ1Þζ�qðτ2Þζ�qðτ2Þg; ð59Þ
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ΔP2ðk; τÞ≡ −16Re
�Z

τ

τin

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

τin

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

qend

qin

dq q2ζkðτÞ2

× f4ζ�kðτ1Þζ�kðτ2Þζ0qðτ1Þζqðτ1Þζ�qðτ2Þζ0�q ðτ2Þ þ 2ζ0�k ðτ1Þζ�kðτ2Þζqðτ1Þ2ζ0�q ðτ2Þζ�qðτ2Þ

þ 2ζ�kðτ1Þζ0�k ðτ2Þζ0qðτ1Þζqðτ1Þζ�qðτ2Þ2 þ ζ0�k ðτ1Þζ0�k ðτ2Þζqðτ1Þ2ζ�qðτ2Þ2g
�
: ð60Þ

We can combine the two contributions using the properties of symmetric integrals for holomorphic symmetric functions
fðτ1; τ2Þ ¼ fðτ2; τ1Þ [60] Z

τ

τin

dτ1

Z
τ1

τin

dτ2fðτ1; τ2Þ ¼
1

2

Z
τ

τin

dτ1

Z
τ

τin

dτ2fðτ1; τ2Þ: ð61Þ

To shorten the notation, we introduce ΔPðk; τÞ ¼ ΔP1ðk; τÞ þ ΔP2ðk; τÞ and collect the individual contribution order by
order in derivatives:
(1) Zeroth order in time derivatives of the long mode. For ease of reading, we introduce the short-hand notation

ϵðτÞϵ02ðτÞa2ðτÞ≡ gðτÞ. Consider the sum of the two integrals

ΔP0thðk; τÞ ¼ 32

Z
τ

τin

dτ1gðτ1Þ
Z

τ

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2jζkðτÞj2ζkðτ1Þζ�kðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ0�q ðτ2Þ ð62Þ

− 64Re

�Z
τ

τin

dτ1gðτ1Þ
Z

τ1

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2ζkðτÞ2ζ�kðτ1Þζ�kðτ2Þζ0qðτ1Þζqðτ1Þζ�qðτ2Þζ0�q ðτ2Þ
�
: ð63Þ

We notice that, in the first integral in Eq. (62), the exchange τ1 ↔ τ2 transforms

ζkðτ1Þζ�kðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ0�q ðτ2Þ ⇒
τ1↔τ2

ζkðτ2Þζ�kðτ1Þζqðτ2Þζ0qðτ2Þζ�qðτ1Þζ0�q ðτ1Þ
¼ ½ζkðτ1Þζ�kðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ0�q ðτ2Þ��: ð64Þ

Therefore, the first integral in Eq. (62) is fully symmetric under the exchange τ1 ↔ τ2, and we rewrite ΔP0thðk; τÞ as

ΔP0thðk; τÞ ¼ 32

Z
τ

τin

dτ1gðτ1Þ
Z

τ

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2jζkðτÞj2Re½ζkðτ1Þζ�kðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ0�q ðτ2Þ� ð65Þ

− 64

Z
τ

τin

dτ1gðτ1Þ
Z

τ1

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2Re½ζkðτÞ2ζ�kðτ1Þζ�kðτ2Þζ0qðτ1Þζqðτ1Þζ�qðτ2Þζ0�q ðτ2Þ�: ð66Þ

and apply to the first integral in Eq. (65) the identity in Eq. (61). We arrive at

ΔP0thðk; τÞ ¼ 64

Z
τ

τin

dτ1gðτ1Þ
Z

τ1

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2fRe½ζkðτÞζ�kðτÞζkðτ1Þζ�kðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ0�q ðτ2Þ�

− Re½ζkðτÞ2ζ�kðτ1Þζ�kðτ2Þζ0qðτ1Þζqðτ1Þζ�qðτ2Þζ0�q ðτ2Þ�g: ð67Þ

We are now in the position of combining the two integrand functions. Schematically, we define the two
combinations

X ≡ ζ�kðτÞζkðτ1Þ; Y ≡ ζkðτÞζqðτ1Þζ0qðτ1Þζ�kðτ2Þζ�qðτ2Þζ0�q ðτ2Þ; ð68Þ

such that the integrand in Eq. (67) becomes

ReðXYÞ − ReðX�YÞ ¼ −2ImðXÞImðYÞ: ð69Þ

We thus arrive at the result
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Contribution with no time derivatives on the long mode k

ΔP0thðk; τÞ ¼ −128
Z

τ

τin

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

τin

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

qend

qin

dq q2

× Im½ζ�kðτÞζkðτ1Þ�Im½ζkðτÞζqðτ1Þζ0qðτ1Þζ�kðτ2Þζ�qðτ2Þζ0�q ðτ2Þ�:
ð70Þ

Given that we are interested in modes k that are much smaller than the USR-enhanced ones, they are superhorizon at
the time of USR phase. Thus, for any time τ ≳ τin of relevance for both time integrations, one has that

Im½ζkðτÞζ�kðτ1Þ� ≃ Im½jζkðτÞj2� ¼ 0; ð71Þ

which makes the above contribution negligible.
(2) First order in time derivatives of the long mode. Starting from the second lines of Eqs. (59), (60), we now consider the

sum

ΔP1stðk; τÞ ¼ 16

Z
τ

τin

dτ1gðτ1Þ
Z

τ

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2jζkðτÞj2

× ½ζ0kðτ1Þζ�kðτ2Þζqðτ1Þζqðτ1Þζ0�q ðτ2Þζ�qðτ2Þ þ ζkðτ1Þζ0�k ðτ2Þζqðτ1Þζ0qðτ1Þζ�qðτ2Þζ�qðτ2Þ�

− 32Re

�Z
τ

τin

dτ1gðτ1Þ
Z

τ1

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2ζkðτÞ2

× ½ζ0�k ðτ1Þζ�kðτ2Þζqðτ1Þ2ζ0�q ðτ2Þζ�qðτ2Þ þ ζ�kðτ1Þζ0�k ðτ2Þζ0qðτ1Þζqðτ1Þζ�qðτ2Þ2�
	
: ð72Þ

Manipulations analog to those discussed in the previous point allow one to combine the two integrals together. We
find

ΔP1stðk; τÞ ¼ −64
Z

τ

τin

dτ1gðτ1Þ
Z

τ1

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2fIm½ζ�kðτÞζkðτ1Þ�Im½ζkðτÞζ�kðτ2Þ2ζqðτ1Þζ0�k ðτ2Þζ0qðτ1Þ�

þ Im½ζ�kðτÞζ0kðτ1Þ�Im½ζkðτÞζqðτ1Þ2ζ�kðτ2Þζ�qðτ2Þζ0�q ðτ2Þ�g: ð73Þ

Again, since we are interested in modes k that are much smaller than the USR-enhanced ones, and are superhorizon
at the time of USR phase, the contribution within the curly brackets in the first line vanishes thanks to Eq. (71). This
leaves us with

Contribution with one time derivatives on the long mode k

ΔP1stðk; τÞ≡ −64
Z

τ

τin

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

τin

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

qend

qin

dq q2

× Im½ζ�kðτÞζ0kðτ1Þ�Im½ζkðτÞζqðτ1Þζqðτ1Þζ�kðτ2Þζ�qðτ2Þζ0�q ðτ2Þ�:
ð74Þ

(3) Second order in time derivatives of the long mode. Analog manipulations give

Contribution with two time derivatives on the long mode k

ΔP2ndðk; τÞ≡ −32
Z

τ

τin

dτ1ϵðτ1Þϵ02ðτ1Þa2ðτ1Þ
Z

τ1

τin

dτ2ϵðτ2Þϵ02ðτ2Þa2ðτ2Þ
Z

qend

qin

dq q2

× Im½ζ�kðτÞζ0kðτ1Þ�Im½ζkðτÞζqðτ1Þζqðτ1Þζ0�k ðτ2Þζ�qðτ2Þζ�qðτ2Þ�:
ð75Þ

We stress that the only approximation employed so far is to take the external momentum to be much smaller than the one in
the loop, i.e., k ≪ q, which is justified in presence of a large hierarchy between the CMB and the USR scales.

B. Loop correction at any scales

It will be useful in the following to remove the assumption that the external momentum is much smaller than the modes in
the loop, i.e., the large separation of scales k ≪ q. Starting again from Eqs. (54), (55), (56), we can proceed with analogous
steps as in the previous section and define
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X1 ≡ ζ�kðτÞζ0kðτ1Þ; Y1 ≡ ζkðτÞζk−qðτ1Þζqðτ1Þζ�k−qðτ2Þζ0�k ðτ2Þζ�qðτ2Þ;
X2 ≡ ζ�kðτÞζ0kðτ1Þ; Y2 ≡ ζkðτÞζk−qðτ1Þζqðτ1Þζ�kðτ2Þ½ζ0�k−qðτ2Þζ�qðτ2Þ þ ζ�k−qðτ2Þζ0�q ðτ2Þ�;
X3 ≡ ζ�kðτÞζkðτ1Þ; Y3 ≡ ζkðτÞζ�k−qðτ2Þζ0�k ðτ2Þζ�qðτ2Þ½ζ0k−qðτ1Þζqðτ1Þ þ ζk−qðτ1Þζ0qðτ1Þ
X4 ≡ ζ�kðτÞζkðτ1Þ; Y4 ≡ ζkðτÞζ0k−qðτ1Þζqðτ1Þζ�kðτ2Þ½ζ�qðτ2Þζ0�k−qðτ2Þ þ ζ�k−qðτ2Þζ0�q ðτ2Þ�
X5 ≡ ζ�kðτÞζkðτ1Þ; Y5 ≡ ζkðτÞζ0�k−qðτ2Þζ�kðτ2Þζ�qðτ2Þ½ζqðτ1Þζ0k−qðτ1Þ þ ζk−qðτ1Þζ0qðτ1Þ� ð76Þ

in such a way that ΔP≡ ΔP1 þ ΔP2 can be written in the schematic form

Generic loop correction at any scale k

ΔPðk; τÞ≡ −16
Z

τ

τin

dτ1gðτ1Þ
Z

τ1

τin

dτ2gðτ2Þ
Z

qend

qin

dq q2
Z

1

−1
dðcos θÞ ×

X5
i¼1

ImðXiÞImðYiÞ;
ð77Þ

thanks to the identity in Eq. (69) and where we again
introduced ϵðτÞϵ02ðτÞa2ðτÞ≡ gðτÞ. This expression is much
more intricate than the one obtained in the limit of a large
hierarchy of scales between the mode k and the USR loop
momenta. It will allow us to seize the loop correction to the
power spectrum also at the USR scales where the peak of
the power spectrum is generated.

IV. TIME INTEGRATION BEYOND THE
INSTANTANEOUS TRANSITION

AND AT ANY SCALES

A. Loop evaluation at the CMB scales

Let us try to simplify the structure of Eq. (54) in light of
the approximations introduced so far. First of all, let us
write Eq. (54) in the form

PðkÞ ¼ H2

8π2ϵref

�
1þ lim

τ→0−

4ϵrefk3

H2ð4πÞ2ΔP1stðk; τÞ

þ lim
τ→0−

4ϵrefk3

H2ð4πÞ2ΔP2ndðk; τÞ
	
; ð78Þ

where we used the slow-roll approximation for the first
term in Eq. (54) given that k is of the order of the CMB
pivot scale. We focus on the leading correction given by
ΔP1stðk; τÞ. Using the number of e-folds as the time
variable, we find that it can be written in the compact
form [cf. our definition in Eq. (1)]

ΔP1-loopðk�Þ≡ lim
τ→0−

4ϵrefk3

H2ð4πÞ2ΔP1stðk;τÞ

¼ 32

�
H2

8π2ϵref

�Z
NendþΔN

Nin−ΔN
dN1

dη
dN

ðN1Þ

×
Z

N1

Nin−ΔN
dN2ϵðN2Þ

dη
dN

ðN2Þe3ðN2−NinÞ

×
Z

dq̄
q̄4

Im

�
ζ̄qðN1Þ2ζ̄�qðN2Þ

dζ̄�q
dN

ðN2Þ
�
; ð79Þ

where we introduced the following manipulations:

(i) We use the approximation ϵ2ðNÞ ≈ −2ηðNÞ. This is
because in the relevant range of N over which we
integrate ϵ ≪ 1 while η ¼ Oð1Þ, cf. the right panel
of Fig. 2.

(ii) We define q̄≡ q=ainH. Furthermore, we use the two
relations

aðN1ÞH
k

¼ eN1−Nk; with aðNkÞH ¼ k; and

aðN2ÞH
q

¼ eN2−Nin

q̄
: ð80Þ

(iii) We introduce the short-hand notation

ζ̄qðNÞ≡ ϵ1=2ref q
3=2ζqðNÞ
H

: ð81Þ

The virtue of this definition is that ζ̄qðNÞ is precisely
the quantity we compute numerically by solving the
M-S equation, cf. the right panel of Fig. 3. Fur-
thermore, it should be noted that the definition in
Eq. (81) is automatically invariant under the rescal-
ing in Eq. (10). The same comment applies to the
definition of q̄ and the ratios in Eq. (80). Conse-
quently, an expression entirely written in terms of
barred quantities is automatically invariant under the
rescaling in Eq. (10).

(iv) Importantly, in the derivation of Eq. (79) we use
(cf. Appendix)

Im
�
ζ̄�kðNÞ dζ̄k

dN
ðN1Þ

�
≃ Im

�
ζ̄�kðN1Þ

dζ̄k
dN

ðN1Þ
�

¼ −
k̄3

4ϵ̄ðN1Þ
e3ðNin−N1Þ; ð82Þ

with ϵðNÞ given by Eq. (32) for generic δN. This is
because N1;2 vary at around Nend, and in this time
interval modes with comoving wave numbers k ≈ k�
are way outside the horizon and stay constant.
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For the very same reason, we also use the slow-roll
approximation

ζ̄kðN1Þζ̄�kðN2Þ ¼
1

4
: ð83Þ

(v) The range of integration in Eq. (79) is as follows. In
the case of a smooth transition, we take N1 ∈ ½Nin −
ΔN;Nend þ ΔN� and N2 ∈ ½Nin − ΔN;N1�, where
ΔN should be large enough to complete the SR/
USR/SR transition (that is,ΔN ≳ δN). In the limit of
instantaneous transition, we set N1 ¼ N2 ¼ Nend,

which corresponds to consider the dominant con-
tribution given by the first δ function in Eq. (31).
Moreover, we include a factor 1=2 since, with
respect to the integration over N2, the argument
of the δ function in Eq. (31) picks up the upper limit
of the integration interval at Nend. The integration
over q, on the contrary, is limited by q̄∈ ½1; eΔNUSR �.

1. The instantaneous transition

We consider the instantaneous limit (dubbed δN → 0 in
the following) of Eq. (79). We find

lim
δN→0

ΔP1-loopðk�Þ ¼
�

H2

8π2ϵref

�
η2II

�
kend
kin

�
−2ηIIþ3

lim
δN→0

ð16Þ
Z

eΔNUSR

1

dq̄
q̄4

jζ̄qðNendÞj2Im
�
ζ̄qðNendÞ

dζ̄�q
dN

ðNendÞ
�
: ð84Þ

This expression can be further simplified using [cf. Eq. (A12)]

Im

�
ζ̄qðNendÞ

dζ̄�q
dN

ðNendÞ
�
¼ q̄3

4
eð2ηII−3ÞðNend−NinÞ ¼ q̄3

4

�
kend
kin

�
2ηII−3

; ð85Þ

so that we write

lim
δN→0

ΔP1-loopðk�Þ ¼
�

H2

8π2ϵref

�
4η2II limδN→0

Z
eΔNUSR

1

dq̄
q̄
jζ̄qðNendÞj2: ð86Þ

We remark that this expression is valid for generic values of
ηII during USR.
We consider now the computation of the last integral.

The factor ζ̄q grows exponentially during the USR
phase. In the case of subhorizon modes, we have
ζ̄qðNÞ ∼ e−ð1−ηIIÞN , while in the case of superhorizon modes
we find ζ̄qðNÞ ∼ e−ð3−2ηIIÞN (cf. Appendix). However, the
precise estimate of the integral in Eq. (86) is complicated by
the fact that curvature modes ζ̄q with q̄∈ ½1; expðΔNUSRÞ�
are neither sub- nor superhorizon but they exit the horizon
during the USR phase, thus making the analytical esti-
mate of the argument of their exponential growth more
challenging.
The situation simplifies if we consider some special

values of ηII. We consider the case ηII ¼ 3 (that is ϵ2 ¼ −6,

it should be noted that this is also the case studied in
Ref. [35]). In this case, everything can be computed
analytically. We find the scaling

lim
δN→0

Z
eΔNUSR

1

dq̄
q̄
jζ̄qðNendÞj2≈

e6ΔNUSR

4
ð1þΔNUSRÞ

¼ 1

4

�
kend
kin

�
6
�
1þ log

�
kend
kin

��
;

ð87Þ

which becomes more and more accurate for larger kend=kin.
The final result is

Leading one-loop correction at CMB scales in the instantaneous SR=USR=SR transition

lim
δN→0

ΔP1-loopðk�Þ ≈
�

H2

8π2ϵref

�
η2II

�
kend
kin

�
6
�
1þ log

�
kend
kin

��
; with ηII ¼ 3; ηIII ¼ 0 ð88Þ

which perfectly agrees with the findings of Ref. [35] in the
same limit.
The above result has a number of limitations, which we

address separately in the following subsections:

(1) Dynamics during USR, Sec. IVA 2. We modify the
assumption ηII¼3 and we take δN→0 and ηIII ¼ 0.

(2) Dynamics at the SR/USR/SR transition, Sec. IVA 3.
We consider δN ≠ 0, with generic ηII but ηIII ¼ 0.
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Considering a nonzero value of δN is very important
because it corresponds to a more realistic smooth
SR/USR/SR transition, as opposed to the instanta-
neous limit with δN ¼ 0.

2. Dynamics during USR

We compute Eq. (86) for generic values of ηII, still
keeping δN → 0 and ηIII ¼ 0. From the computation of the
tree-level power spectrum (cf. Sec. II B and Fig. 3) we
define

PUSR

PCMB
≡ Pðk̄maxÞ

Pðk̄ ≪ 1Þ ; ð89Þ

where k̄max represents the position of the max of Pðk̄Þ
after the growth due to the USR dynamics. We compare
in the left panel of Fig. 4 contours of constant PUSR=PCMB
(dashed blue) and constant limδN→0ΔP1-loopðk�Þ
(solid red). We takeH2=8π2ϵref ¼ 2.1 × 10−9. Our analysis
shows that enhancements PUSR=PCMB ≳ 108 are
barely compatible with the perturbativity condition
limδN→0ΔP1-loopðk�Þ < 1, which roughly means “loops
< tree level.” The region limδN→0ΔP1-loopðk�Þ > 1 is
hatched in red in Fig. 4.
We can actually do better and compare with a careful

computation of the PBH abundance. The parameters of the
dynamics in Sec. II B (with ηIII ¼ 0 and δN → 0) are
chosen in such a way that the integral

fPBH ≡ ΩPBH

ΩCDM
¼

Z
fPBHðMPBHÞd logMPBH ≈ 1; ð90Þ

which means that we get ≈100% of DM in the form of
PBHs. More in detail, we tune, for each ηII, the value of
ΔNUSR so to get fPBH ≈ 1; we choose the numerical
value of kin in such a way that the peak of the PBH
mass distribution fPBHðMPBHÞ falls within the interval

MPBH=M⊙∈½10−14;10−13� in which the condition fPBH≈1
is experimentally allowed, the so-called asteroid-mass
PBHs [10]. We compute Eq. (90) using threshold statistics
and including the full nonlinear relation between the
curvature and the density contrast fields (cf. [61,62]).
The interested reader can find more details on the compu-
tation of the abundance in Ref. [54] and references therein.3

In the right panel of Fig. 4 we plot the line defined by the
condition fPBH ≈ 1. The comparison between the left- and
right-hand side of Fig. 4 shows that, in order to fulfil the
condition fPBH ≈ 1, one needs PUSR=PCMB ¼ Oð107Þ.4
We conclude that the condition fPBH ≈ 1 lies within the

region in which perturbativity is still applicable. This is in
contrast with the conclusion reached in Refs. [35,37,39] in
the limit of instantaneous SR/USR/SR transition. The
origin of the difference is the more accurate calculation
of the PBHs abundance performed in our work. In
particular, in previous analyses, estimates of fPBH ≈ 1

are based on requiring PUSR ≃ 10−2, and on the scaling
ΔP ¼ ðkend=kinÞ2ηII in order to capture the growth of the
power spectrum at small scales. However, as explained in
Sec. II B, this scaling does not accurately describe the
amplitude of the power spectrum at its peak, see the left

FIG. 4. In both panels, we consider a generic USR dynamics with varying ηII (x axis) and ΔNUSR (y axis). We take ηIII ¼ 0 and the
instantaneous limit δN ¼ 0. We plot in solid red contours of constant limδN→0 ΔP1-loopðk�Þ, defined in Eq. (79) and computed according
to Eq. (86) with H2=8π2ϵref ¼ 2.1 × 10−9. The region hatched in red is defined by the condition limδN→0 ΔP1-loopðk�Þ > 1. Left panel:
we superimpose contours of constant PUSR=PCMB as defined in Eq. (89) (dashed blue). Right panel: we superimpose the line defined by
the condition fPBH ¼ 1. Along this line, we get 100% of DM in the form of asteroid-mass PBHs.

3It is possible to further improve our analysis by including the
presence of primordial non-Gaussianity (e.g., [63–71]). In the
case of local non-Gaussianity parametrized by a positive non-
Gaussian parameter fNL, as expected in the case of USR, we
generically expect a larger abundance of PBHs compared to the
Gaussian case [72–76]. This means that, in order to achieve the
same abundance of PBHs, one needs a power spectrum with a
smaller peak amplitude. This argument implies that the presence
of primordial non-Gaussianity will tend to decrease the relevance
of the one-loop corrections.

4There is some difference between peak theory and threshold
statistics in the computation of the abundance, already present at
the Gaussian level (see, e.g., Refs. [62,77,78]). The approach
based on peak theory usually requires slightly smaller values of
PUSR=PCMB in order to get the same abundance of PBHs, thus
making our findings, based on threshold statistics, even stronger.
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panel of Fig. 3. Reference [79] computed one-loop cor-
rections in the limit of instantaneous SR/USR/SR transi-
tions in scenarios with ηII ≤ 3, finding that the
perturbativity bound is relaxed for ηII smaller than 3. At
a qualitative level, similar results are obtained in the left
panel of Fig. 4. In Ref. [79], the perturbativity bound is
traduced in an upper limit on the power spectrum at the
scale kend. However, as explained above, this procedure
underestimates the maximum amplitude of the power
spectrum, see again the left panel of Fig. 3.

3. Dynamics at the SR/USR/SR transition

We go beyond the instantaneous transition to check if
there are cancellations that affect the order-of-magnitude
of the result in Eq. (88). There are indeed compelling
reasons to believe that this is the case, as advocated in
Refs. [38–40]. The story goes as follows (the original
argument was proposed in Ref. [65] in which the role of
non-Gaussianity from nonattractor inflation models was
considered). From the Hubble parameters in Eq. (2) and the
background dynamics that follow from the action in
Eq. (4), it is possible to calculate the potential and its
derivatives exactly. Up to the third order in field derivatives,
we find (see also Ref. [80])

VðϕÞ ¼ H2ð3 − ϵÞ; ð91Þ

V 0ðϕÞ ¼ H2ffiffiffi
2

p ϵ1=2ð6 − 2ϵþ ϵ2Þ; ð92Þ

V 00ðϕÞ¼H2

�
6ϵ−2ϵ2−

3ϵ2
2

þ5ϵϵ2
2

−
ϵ22
4
−þϵ2ϵ3

2

�
; ð93Þ

V 000ðϕÞ ¼ H2

2
ffiffiffiffiffi
2ϵ

p
h
−8ϵ3 þ 6ϵ2ð4þ 3ϵ2Þ

− ϵϵ2ð18þ 6ϵ2 þ 7ϵ3Þ
þ ϵ2ϵ3ð3þ ϵ2 þ ϵ3 þ ϵ4Þ� ð94Þ

¼ 1

2
ffiffiffiffiffi
2ϵ

p
�
H2

�
ϵ̈2
H2

þ ð3þ ϵ2Þ
ϵ̇2
H

�
þOðϵÞ

	
; ð95Þ

where in Eq. (95) we expanded in the parameter ϵ and
wrote ϵ3;4 in terms of ϵ2. Consider the flat gauge in which
curvature perturbations are entirely encoded into field
fluctuations δϕ by means of the relation ζ ¼ Hδϕ=ϕ̇ ¼
−δϕ=

ffiffiffiffiffi
2ϵ

p
. In this gauge, the interactions come from

Taylor-expanding the quadratic action in field fluctuations
and, at the cubic order, one expects

L3 ⊃
a3

6
V 000δϕ3 ¼ −

a3ϵ
3

ð
ffiffiffiffiffi
2ϵ

p
V000Þζ3

¼ −
a3ϵ
6

�
H2

�
ϵ̈2
H2

þ ð3þ ϵ2Þ
ϵ̇2
H

�
þOðϵÞ

	
ζ3: ð96Þ

As shown in Ref. [64], the above interaction agrees
(modulo a surface term) with Eq. (42) if we integrate by
parts

Z
d4x

ϵϵ̇2
2

a3ζ̇ζ2 → −
Z

d4x
1

6

d
dt

ðϵϵ̇2a3Þζ3

¼ −
Z

d4x
a3ϵ
6

H2

�
ϵ̈2
H2

þ ð3þ ϵ2Þ
ϵ̇2
H

�
ζ3;

ð97Þ

where in the last step we used the exact identity

d
dt

ðϵϵ̇2a3Þ ¼ a3ϵH2

�
ϵ̈2
H2

þ ð3þ ϵ2Þ
ϵ̇2
H

�
: ð98Þ

The cubic interaction in Eq. (97) agrees with Eq. (96) up to
ϵ-suppressed terms. Rewriting the interaction as in Eq. (96)
is quite instructive. From Eq. (98), it seems plausible that
drastic variations in time of ϵ2 could enhance the cubic
interaction. However, Eq. (96) shows that these interactions
are ultimately controlled by V 000 so that in the case with a
smooth SR/USR/SR transition in which V 000 is expected to
be “small,” there must be cancellations at work within the
combination in Eq. (98) so that the relevant coupling in
Eq. (96) reduces to the term that is SR suppressed. This is
the main argument that was put forth in Refs. [38–40].
We shall elaborate further on this point. First of all, let us

clarify what “V 000 small” means. We rewrite Eq. (95) as
follows [we omit the OðϵÞ terms and, for clarity’s sake, we
write explicitly the reduced Planck mass]

V 000

H
¼

�
H

MPl

�
1

2
ffiffiffiffiffi
2ϵ

p
�
ϵ̈2
H2

þ ð3þ ϵ2Þ
ϵ̇2
H

�
: ð99Þ

On the left-hand side, the quantity V 000=H has the dimension
of a coupling. Consequently, imposing the condition
V 000=H < 1 corresponds to a weak coupling regime while
V 000=H > 1 corresponds to a strongly coupled one. Said
differently, from the perspective of the right-hand side of
Eq. (99), the condition V 000=H > 1 corresponds to a
situation in which the a-dimensional factor in front of
H=MPl becomes so large that it overcomes the natural
suppression given by H=M̄Pl ≪ 1. In the left panel of
Fig. 5, we compute the ratio V 000=H for two benchmark SR/
USR/SR dynamics with different values of δN. In the case
in which δN → 0 (sharp transition), we observe that V 000=H
dangerously grows towards the strongly coupled regime
while in the case of a smooth transition it safely takes
Oð≪1Þ values. As anticipated at the beginning of this
section, this argument confirms that in the case of a smooth
transition we expect a reduction in the size of the trilinear
interaction controlled by the factor in Eq. (98).
With this motivation in mind, we go back to the analysis

in Sec. IVA 1 and we perform the following calculation.
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We compute numerically the integral in Eq. (79) in order to check the validity of the scaling in Eq. (88) beyond the limit
of instantaneous transition. We define the quantity

J δNðηII;ΔNUSRÞ≡ ΔP1-loopðk�Þ=Ptreeðk�Þ

¼ 32

Z
NendþΔN

Nin−ΔN
dN1

dη
dN

ðN1Þ
Z

N1

Nin−ΔN
dN2ϵ̄ðN2Þ

dη
dN

ðN2Þe3ðN2−NinÞ

×
Z

eΔNUSR

1

dq̄
q̄4

Im

�
ζ̄qðN1Þ2ζ̄�qðN2Þ

dζ̄�q
dN

ðN2Þ
�
; ð100Þ

that we can directly compare, in the case ηII ¼ 3, with
η2IIðkend=kinÞ6½1þ logðkend=kinÞ� in Eq. (88) using the fact
that kend=kin ¼ eΔNUSR . First, we set δN to a very small
number, in order to mimic the limit δN → 0, and evaluate
J δNð3;ΔNUSRÞ as function of ΔNUSR. The comparison is

shown in the left panel of Fig. 6. We find an excellent
agreement in particular for large ΔNUSR. This is expected,
since the approximation in Eq. (87) is more accurate for
larger kend=kin. Then, we set ΔNUSR ¼ 3 and compare the
value of J δN→0ð3; 3Þ with J δNð3; 3Þ as function of δN.

FIG. 5. Left panel: graph of V 000=H as function of the background field value ϕ for two representative dynamics with, respectively,
δN ¼ 0.025 (dashed black) and δN ¼ 0.4 (solid black). Starting from the dynamics defined as in Sec. II B, we compute the potential by
means of the reverse engineering approach described in Ref. [54]. The values V⋆ and H⋆ of, respectively, the potential and the Hubble
rate at CMB scales are chosen in such a way that both dynamics are consistent with CMB observations (namely, V⋆ ≃ 3 × 10−9 and
H⋆ ≃ 3 × 10−5 with the reduced Planck mass set to 1). On the right (left) side of the field value ϕ ¼ ϕin, V 000=H is negative (positive).
Right panel: left-side y axis: time evolution of the curvature modes jζ̄qðNÞj for q̄ ¼ 2 in the case δN ¼ 0.025 (dashed black line) and
δN ¼ 0.4 (solid black line). Right-side y axis: profile of η in the case δN ¼ 0.025 (dashed red line) and δN ¼ 0.4 (solid red line). The
region shaded in red highlights the difference between the sharp and the smooth transition in terms of η: in the case of a sharp transition,
the curvature mode has more time to grow under the effect of the negative friction phase implied by the condition η > 3=2.

FIG. 6. Left panel: comparison between the value of the full integral in Eq. (100) and the analytical estimate in Eq. (88). To mimic the
instantaneous transition we take δN ¼ 0.025. Right panel: we plot the ratio J δNð3;ΔNUSRÞ as function of δN. In both figures
we take ηII ¼ 3.
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We plot the ratio J δNð3; 3Þ=J δN→0ð3; 3Þ in the right panel
of Fig. 6.
Realistic single-field models that feature the presence of

a phase of USR dynamics typically have δN ¼ 0.4 ÷ 0.5
(cf., e.g., Ref. [12,53]). This means that, according to our
result in the right panel of Fig. 6, we expect that in realistic
models the size of the loop correction gets reduced by one
order of magnitude with respect to what is obtained in the
limit of instantaneous SR/USR/SR transition. This con-
firms the intuition presented in Refs. [38].
It should be noted, however, as evident from our

discussion in Sec. II B, that in the case of smooth SR/
USR/SR transition the amplitude of the power spectrum
gets reduced with respect to the δN → 0 limit (cf. the left
panel of Fig. 3). The origin of this effect becomes evident if
we consider the right panel of Fig. 5. In this figure, we plot

the time evolution of the curvature mode jζ̄qj with q̄ ¼ 2 in
the two cases of a sharp and smooth transition (dashed and
solid lines, respectively, see caption for details). In the case
of a sharp transition, the curvature mode experiences a
longer USR phase, and its final amplitude is larger with
respect to the case of a smooth transition. As a conse-
quence, therefore, we expect that the smaller size of the
loop correction will be, at least partially, compensated by
the fact that finite δN also reduces the amplitude of the tree-
level power spectrum. In order to quantify this information,
we repeat the analysis done in Sec. IVA 2 but now for finite
δN. We plot our result in Fig. 7. For definiteness, we
consider the benchmark value δN ¼ 0.4 while we keep ηII
and ΔNUSR generic as in Fig. 4.
Our numerical analysis mirrors the previous intuition.

The perturbativity bound (the region hatched in red
corresponds to the conditionΔP1-loopðk�Þ > 0) gets weaker
because of the partial cancellation illustrated in the right
panel of Fig. 6. However, as previously discussed, the
drawback is that taking δN ≠ 0 also reduces the peak
amplitude of the power spectrum. Consequently, the con-
dition fPBH ¼ 1 requires, for fixed ηII, larger ΔNUSR.
As for the limit of instantaneous transition, the condition

fPBH ¼ 1 does not violate the perturbativity bound since the
two above-mentioned effects nearly compensate each other.
However, our analysis reveals an interesting aspect: model-
ing the SR/USR/SR transition (and, in particular, the final
USR/SR one) beyond the instantaneous limit reduces the
impact of the loop correction but, at the same time, lowers
the peak amplitude of the tree-level power spectrum, which
must be compensated by a larger ΔNUSR see Fig. 8. As
illustrated in Fig. 7, both these effects must be considered
together in order to properly quantify the impact of loop
corrections and the consequent perturbativity bound.
This is an interesting point. References [38–40] argue

that if one goes beyond the limit of instantaneous transition
then the loop correction to the CMB power spectrum
becomes effectively harmless. Technically speaking, in

FIG. 7. We consider a generic USR dynamics with varying
ηII (x axis) and ΔNUSR (y axis). We take ηIII ¼ 0 and the smooth
limit δN ¼ 0.4. The region hatched in red corresponds to
ΔP1-loopðk�Þ > 0. Along the line defined by the condition
fPBH ¼ 1, we get 100% of DM in the form of asteroid-mass PBHs.
The dotted blue line and the red dashed line correspond, respec-
tively, to the conditions fPBH ¼ 1 and limδN→0 ΔP1-loopðk�Þ > 0 as
derived in the limit of instantaneous transition.

FIG. 8. Left panel: value of ΔNUSR required in order to have fPBH ¼ 1 for ηII ¼ 3. Right panel: different examples of evolution of
ηðNÞ responsible for the USR, assuming various δN and fixing ηII ¼ 3. Dashed lines reports the scenario where δN is increased while
ΔNUSR is kept fixed to the value imposed to have unit PBH abundance in the limit δN → 0. Solid lines report the result when ΔNUSR is
instead adjusted to keep fPBH ¼ 1 fixed. We see that smoother transitions results in longer USR phases.
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our analysis the role of the parameter −6 < h < 0 that in
[38–40] (see also Ref. [65]) controls the sharpness of the
transition is played by our parameter δN (with h → −6 that
corresponds to our δN → 0 and h → 0 that corresponds to
increasing values of δN).
In light of our analysis, a very important remark naturally

arises: There is a nontrivial and crucial interplay between
the detail of the USR/SR transition and the amplitude of the
tree-level power spectrum that must be properly included
before drawing any conclusion about the relative size of the
loop corrections. On the one hand, it is true that a smooth
USR/SR transition reduces the size of the loop correction;
on the other one, the same smoothing also reduces the
amplitude of the power spectrum so that, in order to keep
fPBH fixed, one is forced to either increase the duration of
the USR phase or the magnitude of η during the latter. In the
end, the two effects tend to compensate each other if one
imposes the condition fPBH ¼ 1 (cf. Fig. 7).

B. Loop evaluation at any scales

We evaluate the loop correction at a generic external
momentum k, thus alleviating the assumption k ≪ q. The

dominant modes contributing to the loop integration remain
the ones that cross the horizon during the USR phase
q∈ ½kin; kend�. As done in the previous section, we are
interested in comparing the one-loop correction with the
tree level power spectrum at the end of inflation, and
therefore we perform the late time limit τ → 0−. Following
the notation introduced in Eq. (54), we define

PðkÞ ¼ lim
τ→0−

�
k3

2π2

��
jζkðτÞj2 þ

1

ð4πÞ2ΔPðk; τÞ
�

≡ PtreeðkÞð1þ ΔP1-loopÞ: ð101Þ

In order to simplify the computation we consider the
instantaneous limit δN → 0 of Eq. (77). We perform both
time integrations keeping the dominant contribution given
by the first Dirac delta in Eq. (31). This implies that we
evaluate the integrand function at τ1 ¼ τ2 ¼ τend. Notice
also that, since the second integration only gets contribu-
tions from half of the Dirac delta domain, we additionally
include a factor of 1=2. Finally, the jump in ϵ2 leaves a
factor ð2ηIIÞ for each time integration. Therefore, we find

ΔPðk; τÞ≡ −32η2II½ϵðτendÞa2ðτendÞ�2
Z

qend

qin

dq q2
Z

1

−1
dðcos θÞ

× fIm½ζ�kðτÞζk0ðτendÞ� × ½Im½ζkðτÞζ0�k ðτendÞjζqðτendÞj2jζk−qðτendÞj2�
þ Im½ζkðτÞζ�kðτendÞðjζqðτendÞj2ζk−qðτendÞζ0�k−qðτendÞ þ jζk−qðτendÞj2ζqðτendÞζ0�q ðτendÞÞ��
þ Im½ζ�kðτÞζkðτendÞ� × ½Im½ζkðτÞζ0�k ðτendÞðjζqðτendÞj2ζ�k−qðτendÞζ0k−qðτendÞ þ jζk−qðτendÞj2ζ�qðτendÞζ0qðτendÞÞ�
þ Im½ζkðτÞζ�kðτendÞðjζ0k−qðτendÞj2jζqðτendÞj2 þ ζ0k−qðτendÞζ�k−qðτendÞζqðτendÞζ0�q ðτendÞÞ�
þ Im½ζkðτÞζ�kðτendÞðjζ0k−qðτendÞj2jζqðτendÞj2 þ ζ0�k−qðτendÞζk−qðτendÞζ�qðτendÞζ0qðτendÞÞ��g: ð102Þ

We have collected the pieces such that each line corre-
sponds to the ith term in the sum of Eq. (77) and k − q≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 − 2kq cosðθÞ

p
as in the previous section.

In the left panel of Fig. 9, we show the resulting one-loop
correction as a function of the wave number k for a
representative set of parameters leading to fBH ≈ 1: ηII ¼
3 andΔNUSR ¼ 2.2. We find values ofΔP1-loop of the order
of few percent, barring small oscillatory features. A notable
exception is the scale where the tree level power spectrum
presents a dip, see Fig. 3, kdip=kin ≈

ffiffiffiffiffiffiffiffi
5=4

p
e−3ΔNUSR=2 [52].

At that scale the one-loop correction dominates, resulting in
a spike in ΔP1-loop. As a consequence, the dip is only
realized if the one-loop correction is neglected, see the right
panel of Fig. 9. We also observe that in the limit of small
k ≪ kin the result quickly converges towards the one
discussed in the previous section, as expected. Finally, it
is also interesting to notice that the correction ΔP1-loop

stays almost the same at any scale, except around kdip.

For this reason, we expect that a generalization of this
calculation to the case for δN ≠ 0will lead to results similar
to ones presented in the previous section for k ≪ q.
At first sight, our result that loop corrections impact the

tree-level power spectrum at the percent level seems at odds
with the findings of Ref. [58] in which it was found that the
one-loop power spectrum could dominate over the tree-
level one, thus indicating the breakdown of the perturbation
theory. Upon a closer look, however, there is no contra-
diction. Reference [58] considers a particular instance of
background dynamics in which curvature perturbations are
resonantly amplified due to a specific pattern of oscillatory
features in the inflaton potential. In such a model, we
checked that the condition V 000=H ≪ 1 [cf. Eq. (99) and the
related discussion] is not verified and, therefore, it is not
unexpected to find an amplification of loop effects.
It is instructive to consider also a different limit. Since we

are assuming that the USR is followed by a second period
of slow roll, characterized by a negligible ηIII and a small ϵ,
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modes in the range q∈ ½kin; kend� freeze around τend.
Therefore, the loop correction at τend is very close to its
limit at τ → 0−, as we verified through a numerical
calculation. For this reason, we set τ → τend in Eq. (102)
and drop the factors proportional to Im½ζ�kðτendÞζkðτendÞ�

which vanish identically. Next, we switch to the barred
fields and momenta notation introduced in Sec. IVA and
simplify the expression using the Wroskian identity (82).
Finally, we arrive at the expression

One-loop correctionat generic scales in the instantaneous SR=USR=SR transition

lim
δN→0

ΔP1-loopðk;τendÞ≈ 4η2II

�
H2

8π2ϵref

�
1

jζ̄kðNendÞj2
Z

eΔNUSR

1

dq̄
q̄

Z þ1

−1
dðcosθÞ

×

�
k̄3

ðk̄− q̄Þ3 jζ̄qðNendÞj2jζ̄k−qðNendÞj2þjζ̄kðNendÞj2
�
jζ̄qðNendÞj2þ

q̄3

ðk̄− q̄Þ3 jζ̄k−qðNendÞj2
�	

. ð103Þ

We stress that this result is exact in the limit of sharp
transition δN → 0 and only neglects the contribution from
the integration of the step function in Nin, which is
numerically subleading.
A number of important comments are in order.
(i) In the case in which k is a long CMB mode (k ≪ q),

the first term in the curly brackets is suppressed by
the factor ðk=qÞ3. This is nothing but the number of
independent Hubble patches of size q−1 in a box of
radius k−1. Intuitively, therefore, this contribution
represents the situation in which random small-scale
fluctuations lead by chance to a large-scale fluc-
tuation, and the suppression factor ðk=qÞ3 simply
indicates that it is very unlucky for short-mode to be
coherent over long scales. The meaning of this
term is very clear, and the above argument is so

compelling that it forces the intuition to believe that
there is no way in which CMB modes can be
affected by small-scale ones.

It is worth emphasizing that the computation of the
one-loop correction to the correlation of long-wave-
length modes k due to short modes q running in the
loop can be thought of as solving the nonlinear
evolutionequation for the longmode, cf.Refs. [36,46].
In the language of this source method, the first term in
the curly brackets of Eq. (103) corresponds to the so-
called cut-in-the-middle diagrams, cf. Ref. [81]. It also
corresponds to the Poisson-suppressed term identified
in Ref. [36] while, in the language of Ref. [37], it
corresponds to the correlation of two inhomogeneous
solutions. More in detail, the evolution of the long
mode in the presence of interactions reads

ζ̂ðk⃗; NfÞ ¼ ζ̂ðk⃗; NinÞ þ a3ðNinÞϵðNinÞ
dζ̂
dN

ðk⃗; NinÞ
Z

Nf

Nin

dN
1

a3ðNÞϵðNÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
homogeneous solution ðfree evolutionÞ

ð104Þ

FIG. 9. In both panels, we consider a USR dynamics with ηII ¼ 3, ΔNUSR ¼ 2.2, ηIII ¼ 0 and the instantaneous limit δN ¼ 0. These
values corresponds to a scenario producing fPBH ≃ 1. The vertical gridlines corresponds to k ¼ kin and kend in both panels. Left panel:
correction to the tree level power spectrum as a function of k in the limit of τ → 0−. Right panel: tree level power spectrum (black)
compared to the one-loop correction (red line) and their sum (blue dashed line).
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−
ηII
2

Z
d3q⃗
ð2πÞ3 ζ̂ðq⃗; NendÞζ̂ð−q⃗; NendÞ þ

ηII
3

Z
d3q⃗
ð2πÞ3

dζ̂
dN

ðq⃗; NendÞζ̂ð−q⃗; NendÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inhomogeneous solution ðinteractionsÞ

; ð105Þ

where Nf represents some final e-fold time after the
end of the USR phase. Consider the terms in the first
line, Eq. (104). This is the standard result in the
absence of interactions (the homogeneous solution in
Ref. [37]). Equation (104) tells us that the long mode
stays constant unless the duration of the USR phase is
so long to overcome the smallness of the time
derivative of the long mode, which decayed exponen-
tially fast during the phase preceding the USR.
Equation (104), therefore, gives the standard tree-
level power spectrum if one computes the correlator
hζ̂ðk⃗; NfÞζ̂ð−k⃗; NfÞi. The two terms in Eq. (105)
corresponds to the inhomogeneous solution in
Ref. [37], and encode the effect of the interactions
in the evolution of the longmode. The first term in the
curly brackets of our Eq. (103) corresponds to
the correlator of two inhomogeneous solutions. The
equivalence between the source method and the
“in-in” formalism has been discussed explicitly
in Ref. [37].

(ii) Consider now the second term in the curly brackets
of Eq. (103). Notice that this term always factorizes
jζkj2 that cancels the denominator in front of the
integral, which is present because of our definition
of ΔP1-loop, cf. Eq. (101). In the case in which k is a
long CMBmode (k ≪ q), this term does not pay any
ðk=qÞ3 suppression. In the language of the source
method, it corresponds to the so-called cut-in-the-
side diagrams, cf. Ref. [46]. These diagrams re-
present the evolution of the long mode due to the
effect that the long mode itself has on the expect-
ation value of quadratic operators made of short
modes [46] (cf. Sec. V). In Ref. [37], the second
term in the curly brackets of Eq. (103) follows from
the correlation between inhomogeneous and homo-
geneous solutions.

V. DISCUSSION AND OUTLOOK

In this work, we discussed the implications of perturba-
tivity in the context of single-field inflationary models that
feature the presence of a transient phase of USR. More in
detail, we defined the perturbativity condition

PðkÞ≡PtreeðkÞ½1þΔP1-loopðkÞ�⇒ΔP1-loopðkÞ<
!
1; ð106Þ

in which the one-loop correction is integrated over the
short modes that are enhanced by the USR dynamics.
We explored the consequences of Eq. (106) at any scale k

even though the main motivation for our analysis was the
recent claim of Ref. [35] according to which the relative
size of the loop correction at scales relevant for CMB
observations [that is, k ¼ Oðk⋆Þ with k⋆ ¼ 0.05 Mpc−1]
threatens the validity of perturbativity at the point of ruling
out the idea of PBH formation via USR dynamics in single-
field inflation.
In this section, we summarize the main results and

limitations of our analysis and we will discuss future
prospects:
(1) In the limit of instantaneous SR/USR/SR transition,

we confirm the computation of the 1-loop correc-
tions of Ref. [35]. However, we provide a more
detailed and precise discussion of the theoretical
bound that can be obtained by imposing the pertur-
bativity condition in Eq. (106) on the power spec-
trum of curvature perturbations at CMB scales.
As far as this part of the analysis is concerned, the

key difference with respect to Ref. [35] is that we
compare the size of the loop correction with an
accurate computation of the PBH abundance rather
that with the order-of-magnitude estimate of the
enhancement of the power spectrum, based on the
SR formula, used in Ref. [35]. Our approach,
therefore, includes the following effects. (i) First
of all, we generalize the USR dynamics for generic
values ηII ≠ 3 (cf. Sec. II B for our parametrization
of the background dynamics); (ii) the enhancement
of the power spectrum at scales relevant for PBH
formation is accurately computed by numerically
solving the M-S equation rather than using the SR
scaling; (iii) by computing the PBH abundance
fPBH, we automatically account for the fact that
the correct variable that describes PBH formation in
the standard scenario of gravitational collapse is the
smoothed density contrast rather than the curvature
perturbation field, and we include in our computa-
tion the full non-linear relation between the two.
As for this part of the analysis, our findings are

summarized in Fig. 4. We find that loop corrections
remain of the order of few percent and therefore it is
not possible to make the bold claim that PBH
formation from single-field inflation is ruled out—
not even in the limit of instantaneous SR/USR/SR
transition.

(2) We extend the analysis of Ref. [35] by considering a
more realistic USR dynamics. In particular, we
implement a smooth description of the SR/USR/
SR transition. Recently, Refs. [38–40] claimed that
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the presence of a smooth transition in the final USR/
SR transition makes the loop correction effectively
harmless. Our analysis shows that this conclusion
could be invalidated by the fact that there is an
interplay between the size of the loop correction and
the amplitude of the tree-level power spectrum that is
needed to generate a sizable abundance of PBHs. On
the one hand, it is true that a smooth USR/SR
transition reduces the size of the loop correction; on
the other one, the same smoothing also reduces the
amplitude of the tree-level power spectrum so that,
in order to keep fPBH fixed, one is forced to either
increase the duration of the USR phase or the
magnitude of η during the latter. In the end, the
two effects tend to compensate each other. As for
this part of the analysis, our findings are summarized
in Fig. 7.

(3) We consider the one-loop correction of short modes
to the tree-level power spectrum at any scale. We
find that perturbativity is always satisfied in models
that account for the condition fPBH ¼ 1.
More quantitatively, we find that the relative size

of the loop correction with respect to the tree-level
value of the power spectrum does not exceed the
level of a few percent. As for this part of the analysis,
our findings are summarized in Fig. 9. We point out
one notable exception of phenomenological rel-
evance. A generic feature of the USR dynamics is
that it produces a characteristic dip in the tree-level
power spectrum, as the one observed in the left panel
of Fig. 3. The phenomenological consequences of
such a putative dip range from CMB μ-space
distortions [82] to 21-cm signals [83]. Our analysis
shows that the existence of the dip is nothing but an
artifact of the tree-level computation, and it is
significantly reduced after including loop correc-
tions. This is because, due to the smallness of the
tree-level power spectrum around the characteristic
wave numbers of the dip, the nonvanishing loop
correction gives the dominant contribution. This is
illustrated in the right panel of Fig. 9.

At the conceptual level, it remains true that, in the
presence of USR dynamics, loop corrections of short
modes may sizably affect the power spectrum at CMB
scales. This result echoes an issue of naturalness—an
infrared quantity (the amplitude of the curvature power
spectrum at CMB scales) appears to be sensitive, via loop
effects, to physics that takes place at much shorter scales
(those related to PBH formation)—and clashes with the
intuition that physics at such vastly different scales should
decouple.
The coupling between short and long modes gives a

physical effect for the following reason. As discussed in
Sec. IV B, the relevant loop correction to the power
spectrum at CMB scales comes from the correlation

between homogeneous and inhomogeneous solutions.
This is most easily seen within the source method in which
one considers the correlation between a freely evolving
long mode and a second long mode which evolves in the
presence of interactions, cf. Eq. (105). Borrowing from
Ref. [81] (see also Ref. [36]), we write the formal solution
of the nonlinear evolution equations for a long wavelength
mode ζL as ζL ¼ Ô−1½S½ζS; ζS; ζL��, where S represents a
generic sum of operators that are quadratic in the short
wavelength mode ζS and that can also depend on ζL if one
considers the short modes in the background perturbed by
the long mode. More concretely, in our case such a solution
is the one given by Eq. (105). The one-loop power spectrum
is given by

hζLζLi ∼ hÔ−1½S½ζS; ζS; ζL ¼ 0��Ô−1½S½ζS; ζS; ζL ¼ 0��i
þ hÔ−1½S½ζS; ζS; ζL��ζLi: ð107Þ

The first term represents the effect of the short-scale modes
in their unperturbed state (that is, with ζL ¼ 0) directly on
the power spectrum of the long wavelength mode. This is
our first term in Eq. (103). As discussed in Sec. IV B, this
term does not alter the long-wavelength correlation since it
is very improbable that random short-scale fluctuations
coherently add up to induce a long-wavelength correlation.
The second term in Eq. (107), on the contrary, correlates a
freely evolving long mode ζL with the effect that the long
mode itself has on the expectation value of quadratic
operators made of short modes. Let us explain this point,
which is crucial. Consider the schematic in Fig. 10. The key
point is the following. In the comoving gauge, the short
modes evolve in the background that is perturbed by the
long mode. In the limit in which the long mode ζL has a
wavelength much longer than the horizon, it simply acts as
a rescaling of the coordinates since it enters as a local
change of the scale factor. This is schematically illustrated
in Fig. 10. This figure shows intuitively that the short scales
are modulated by the presence of the long mode. The
presence of the long mode acts as a rescaling of the
coordinates and we can absorb it by rescaling the short-
scale momenta q → q̃ ¼ eζLq [36]. If the power spectrum
of the short modes is scale invariant, then this rescaling
does nothing. However, if the power spectrum of the short
modes breaks scale invariance, we schematically have in
the loop integral over the short modes, expanding at the first
order

Z
dq
q
PðqÞ ⇒

q→q̃¼eζLq
Z

dq̃
q̃
Pðq̃Þ ¼

Z
dq
q
PðeζLqÞ

¼
Z

dq
q

�
PðqÞ þ ζL

dP
dq

q

�

¼
Z

dq
q

�
PðqÞ þ ζLPðqÞ

d logP
d logq

�
; ð108Þ
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so that the presence of the long mode affects the correlation
of short modes when their power spectrum is not scale
invariant. The second term in the above equation describes
precisely the effect put forth before: the presence of the
long mode alters the expectation value of quadratic oper-
ators made of short modes, in this case the short-mode two-
point function. This result seems to violate the separate
universe conjecture as also shown in Refs. [84,85]. This
conjecture states that, in single field inflation models,
the curvature perturbation in the superhorizon limit only
acts as a rescaling of the spatial coordinates (see, e.g.,
Refs. [86,87]) and therefore a local observer in a Hubble
horizon patch cannot measure the superhorizon-limit cur-
vature perturbations because it can be absorbed into a
rescaling of the spatial coordinates. Indeed the separate
universe conjecture is limited to the case of single-clock
inflation. The term single-clock inflation usually refers to
the most general form for the inflationary action (typically
constructed through the effective field theory approach)
that is consistent with unbroken spatial diffeomorphisms
and the presence of a preferred temporal coordinate that

represents the “clock” during inflation (time diffeomor-
phisms are spontaneously broken). Single-field slow-roll
inflation represents the prototypical example of single-
clock inflation. The single-clock background is an attractor,
and long-wavelength perturbations appear in short-wave-
length modes as a constant renormalization of the scale
factor that does not affect the local physics.
However USR violates the assumption of an inflationary

attractor solution which underlies single-clock inflation.
In USR, the field velocity is no longer uniquely determined
by the field position and the background is no longer an
attractor. To be concrete, we consider in Fig. 11 the phase-
space analysis of the SR/USR/SR dynamics presented in
Sec. II B, see also Ref. [67] for a similar discussion. First,
from the time evolution of ϵ and η we reconstruct the
inflationary potential VðϕÞ by means of the reverse engi-
neering approach described in Ref. [54]. We then solve the
inflaton equation of motion ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ 0 and plot
the corresponding phase space trajectory (for different initial
conditions) in the plane ðϕ;ΠÞ with Π≡ dϕ=dN. The
dynamics evolves from right to left in Fig. 11. In the left

FIG. 11. Left panel: dynamics evolution (from right to the left) of the initial SR phase. The black dotted lines represent two benchmark
solutions with large initial velocities, rapidly attracted by the SR trajectory (solid black line). Right panel: dynamics evolution in
presence of a USR phase. The background trajectory ceases to be an attractor. Here, the perturbation δϕ in the field direction has the
effect of altering the background trajectory in phase space, as indicated by the dashed black lines.

FIG. 10. Left panel: expansion in time of the unperturbed universe (time passes by along the y axis); the Universe expands by the same
amount at every point. Right panel: expansion in time of the perturbed universe. The long mode (ζL, blue) acts as a local rescaling of the
scale factor, and short scales are modulated accordingly. More specifically, if we consider the black dots we see that they experience a
different amount of expansion depending on the value of ζL.
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panel of Fig. 11 we plot the initial SR phase. The attractor
nature of SR is evident. The black dotted lines correspond to
two benchmark solutions with large initial velocities. As
shown in the plot, they are attracted exponentially fast by the
SR trajectory (black solid line). Consequently, if we con-
sider some perturbation δϕ in the field direction (which can
be thought as a long-wavelength curvature perturbation in
the flat gauge) we remain anchored to the background
trajectory since small deviations in momentum are quickly
reabsorbed. As a result, the perturbation δϕ can be simply
traded for a shift in the number of e-folds (red lines in the
right panel of Fig. 11) that allows one to move on the
background trajectory. A shift in the number of e-folds is
nothing but a constant renormalization of the scale factor.
The situation is different when we enter in the USR phase,
right panel in Fig. 11. In this case, the background trajectory
is no longer an attractor and the perturbation δϕ in the field
direction has the effect of changing the background trajec-
tory in phase-space (dashed black lines).
Back to Eq. (107), one expects the one-loop

correction [36]

ΔP1-loopðkÞ ∼ PðkÞ
Z

dq
q
PðqÞ d logP

d log q
: ð109Þ

The above discussion shows that the one-loop corrections
on long modes do not decouple when the power spectrum
of the short modes is not scale invariant. This explains why
our correction vanishes in the limit ηII ¼ 0 in which indeed

the power spectrum does become scale invariant. The
breaking of scale invariance is the hallmark of the USR
dynamics and, more importantly, a necessary feature in all
models of single-field inflation that generate an order-one
abundance of PBHs (cf. the intuitive schematic in Fig. 12).
The last, and most important, remark that we would

like to stress is the following. The analysis of Ref. [35]
triggered an intense debate about ruling out or not the
mechanism of PBH formation via USR in single-field
inflation (Refs. [37–44]). Following these analysis, we have
estimated the one-loop correction to the curvature power
spectrum including the contribution of loop momenta
between qin and qend, i.e., the window of momenta where
the power spectrum peaks. Within this procedure, we find
corrections to the tree-level power spectrum at the percent
level in the region of parameter space where fPBH ≈ 1.
Therefore, at first glance, a sizeable abundance of PBHs in
USR single-field inflation is not in conflict with perturba-
tivity constraints. On the other hand, the aforementioned
corrections are sizeable, and the contribution of short
wavelengths to the power spectrum at large scales does
not decouple. This suggests that theoretical constraints
dictated by the requirement of perturbativity might be
important. As a concrete example, we have shown that loop
corrections affect the dip in the tree-level power spectrum.
Therefore, a more comprehensive analysis is needed.
We identify the following relevant directions. (i) More

realistic modeling of the USR dynamics. As discussed in
Sec. II B, in realistic single-field inflationary models we

FIG. 12. Illustrative schematic of the correction induced on the two-point correlator of long modes by a loop of short modes. On the
right side, we plot the prototypical tree-level power spectrum of curvature perturbations as a function of the comoving wave number k in
the presence of SR/USR/SR dynamics (with ηIII ¼ 0 in the language of the parametrization given in Sec. II B). The power spectrum
features a strong violation of scale invariance at small scales which is needed in order to produce a sizable abundance of PBHs. For
illustration, we plot the region excluded by CMB anisotropy measurements, Ref. [88], the FIRAS bound on CMB spectral distortions,
Refs. [89,90] and the bound obtained from Lyman-α forest data [91]. If PðkÞ≳ 10−2, then the abundance of PBHs overcloses the
Universe. The plot is rotated in such a way as to share the same y axis with the left part of the figure. On the left side, we schematically
plot the evolution of the comoving Hubble horizon RH ¼ 1=aH during inflation. Observable CMB modes (horizontal green band) cross
the Hubble horizon earlier (bottom-end of the figure) and, at the tree level, their correlation remains frozen from this time on. At a much
later time, the dynamics experience a phase of USR. Modes that cross the horizon during the USR phase have their tree-level power
spectrum greatly enhanced and the latter strongly violates scale invariance. Loop of such short modes may induce a sizable correction to
the tree-level correlation of long modes, cf. Eq. (109).
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expect ηIII < 0 and sizable; this is because at the end of the
USR we are left with ϵ ≪ 1 but we need ϵ ¼ Oð1Þ to end
inflation. Since ϵ ∼ e−2ηN , we need η large and negative after
USR. Consequently, after USR we do not expect a scale-
invariant power spectrum and Eq. (109) applies. (ii)
Understanding the role of quartic interactions, tadpoles
and interactions with spatial derivatives. So far, most of
the attention has been focused on the role of the cubic
interaction Hamiltonian in Eq. (46). However, as schemati-
cally shown in Eq. (26), quartic interactions and non-1PI
diagrams involving tadpoles are also present. In particular,
the schematic inEq. (26) shows that tadpole diagramsmaybe
relevant because, by attaching them to propagators, they
modify the two-point correlator. The correct way to deal
with tadpoles is by changing the background solution
(cf. Ref. [46]; see also Ref. [58]). Since it is well-known
that background solutions inUSRmodels for PBH formation
suffer a high-level of parametric tuning (cf. Ref. [92]), the
role of tadpole corrections may have some relevance.
Furthermore, all interactions with spatial derivatives have
been so far discarded. However, the short modes running in
the loop cross the horizon precisely during the USR phase
and, therefore, their spatial derivatives do not pay any super-
horizon suppression. (iii) Renormalization. An essential
future step is to implement a thorough renormalization
procedure in the context of USR dynamics, a topic that
has not yet been addressed in the existing literature.
We will tackle all the above points in a forthcom-

ing work.
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APPENDIX: DYNAMICS OF CURVATURE
MODES, SOME ESSENTIAL RESULTS

The main purpose of this appendix is to understand, both
numerically and analytically, the behavior of the time
derivative dζk=dN.
We rewrite the M-S equation in the form

d2ζk
dN2

þ ð3þ ϵ − 2ηÞ dζk
dN

þ k2

ðaHÞ2 ζk ¼ 0: ðA1Þ

Assuming ϵ ≈ 0, constant η and constant H, this equation
admits the solution

ζkðNÞ ∝ e−ð32−ηÞN
�
c1J3

2
−ηðk̄eNin−NÞΓ

�
5

2
− η

�
þ c2J−3

2
þηðk̄eNin−NÞΓ

�
−
1

2
þ η

��
; ðA2Þ

where JαðxÞ are Bessel functions of the first kind and ΓðxÞ is the Euler gamma function. Consequently, we find

dζk
dN

ðNÞ ∝ e−ð52−ηÞN
�
−c1J1

2
−ηðk̄eNin−NÞΓ

�
5

2
− η

�
þ c2J−1

2
þηðk̄eNin−NÞΓ

�
−
1

2
þ η

��
: ðA3Þ

This approximation is applicable for N < Nin with η ¼ 0, for Nin < N < Nend with η ¼ ηII and for N > Nend with η ¼ ηIII.
We have the following asymptotic behaviors

JαðxÞ ∼
�
1=

ffiffiffi
x

p
for x ≫ 1

xα for x ≪ 1
where x≡ k̄eNin−N ¼ eNk−N: ðA4Þ

Consequently, we highlight the following scalings.

PERTURBATIVITY IN THE PRESENCE OF ULTRASLOW-ROLL … PHYS. REV. D 109, 123550 (2024)

123550-27



(i) On subhorizon scales, we find

sub-horizon scales; N ≪ NkζkðNÞ ∼ e−ð1−ηÞN and
dζk
dN

ðNÞ ∼ e−ð2−ηÞN: ðA5Þ

The above scaling implies, for instance, that before the USR phase (that is, for N < Nin with η ¼ 0) subhorizon
modes decay according to ζk ∼ e−N and dζk=dN ∼ e−2N .

(ii) On superhorizon scales, we find

superhorizon scales; N ≫ NkζkðNÞ ∼ c1e−ð3−2ηÞN þ c2 and
dζk
dN

ðNÞ ∼ −c1e−ð3−2ηÞN þ c2e−2N: ðA6Þ

Consider a mode that is superhorizon after the end
of the USR phase (that is, for N > Nend with
η ¼ ηIII < 0). Equation (A6) tells us that dζk=dN
is given by the superposition of two functions: the
first one decays faster, as e−ð3−2ηIIIÞN , while the
second one decays slower, as e−2N . On the contrary,
ζk quickly settles to a constant value.

(iii) Consider the evolution during the USR phase. We
have η ¼ ηII > 3=2 and Nin < N < Nend. We have
two possibilities that are relevant to our analysis.

(1) If the mode is way outside the horizon at the
beginning of the USR phase, it stays constant even
though its derivative exponentially grows because of
the term ∼e−ð3−2ηIIÞN .

(2) Consider a mode that crosses the Hubble horizon
during the USR phase. The curvature perturbation
(and its derivative) grows because of the factor
e−ð3=2−ηIIÞN . However, it is not immediate to find
the exact scaling in time because in this case none of
the approximations in Eq. (A4) can be applied.

All the above features, even though obtained in the
context of the over-simplified framework given by
Eqs. (A2) and (A3), are valid in general. In Fig. 13, we
plot jζkj and jdζk=dNj using the dynamics presented in
Sec. II B. We checked that all the relevant scaling properties
discussed above are indeed verified. It is possible to derive
some useful analytical approximations.

First of all, we consider the Wronskian condition

i½u0kðτÞu�kðτÞ − u0kðτÞukðτÞ� ¼ 1; ðA7Þ

which we rewrite as

iðaHÞ
�
duk
dN

ðNÞu�kðNÞ − du�k
dN

ðNÞukðNÞ
�
¼ 1: ðA8Þ

As far as duk=dN is concerned, we find

duk
dN

¼ a
ffiffiffiffiffi
2ϵ

p
ð1þ ϵ − ηÞζk þ a

ffiffiffiffiffi
2ϵ

p dζk
dN

; ðA9Þ

so that the Wronskian condition reads

Im

�
ζkðNÞ dζ

�
k

dN
ðNÞ

�
¼ H2

4ϵref ϵ̄ðNÞðaHÞ3 : ðA10Þ

If we introduce the field ζ̄k as in Eq. (81), we find

WðNÞ≡ Im

�
ζ̄kðNÞ dζ̄

�
k

dN
ðNÞ

�
¼ −Im

�
ζ̄�kðNÞ dζ̄k

dN
ðNÞ

�

¼ k̄3

4ϵ̄ðNÞ e
3ðNin−NÞ; ðA11Þ

FIG. 13. Comparison of the time evolution of jζ̄kj and jdζ̄k=dNj computed numerically (solid lines) and with the analytical
approximation (dashed lines) within the minimal dynamics presented in Sec. II B. We take k̄ ¼ 10−3 (left panel) and k̄ ¼ 1 (right panel).
To draw this figure we consider the benchmark values ηII ¼ 3.5, ηIII ¼ 0, ΔNUSR ¼ 2.5 and δN ¼ 0.3.

FRANCIOLINI, IOVINO, TAOSO, and URBANO PHYS. REV. D 109, 123550 (2024)

123550-28



with ϵðNÞ given by Eq. (32) for generic δN. In the limit
δN → 0 and at time N ¼ Nend, we find

lim
δN→0

WðNendÞ ¼
k̄3

4
eð2ηII−3ÞðNend−NinÞ ¼ k̄3

4

�
kend
kin

�
2ηII−3

¼ k3

4

�
k2ηII−3end

k2ηIIin

�
: ðA12Þ

If we further take ηII ¼ 3, then the above equation is
compatible with Ref. [35].
We now consider the limit δN → 0 and the case ηII ¼ 3.

In this case, it is possible to compute the function ζ̄qðNÞ by
solving analytically the M-S equations in both the SR (for
N ≤ Nin) and USR (for Nin ≤ N ≤ Nend) regime and then
matching the solutions at Nin, as done in Ref. [35] (see also
Refs. [12,52]). We find (x≡ eΔNUSR)

jζ̄qðNendÞj2 ¼
x6

8q̄6

�
9þ 18q̄2 þ 9q̄4 þ 2q̄6 þ 3ð−3þ 7q̄4Þ cos

�
2q̄ −

2q̄
x

�
− 6q̄ð3þ 4q̄2 − q̄4Þ sin

�
2q̄ −

2q̄
x

��

þ x5

8q̄6

�
12q̄2ð−3 − 4q̄2 þ q̄4Þ cos

�
2q̄ −

2q̄
x

�
− 6q̄ð−3þ 7q̄4Þ sin

�
2q̄ −

2q̄
x

��

þ x4

8q̄6

�
q̄2ð9þ 18q̄2 þ 9q̄4 þ 2q̄6Þ þ q̄2ð9 − 21q̄4Þ cos

�
2q̄ −

2q̄
x

�
− 6q̄3ð−3 − 4q̄2 þ q̄4Þ sin

�
2q̄ −

2q̄
x

��
;

ðA13Þ

which enters into the computation of Eq. (87).
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