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We show that the abundance of primordial black holes, if formed through the collapse of large
fluctuations generated during inflation and unless the power spectrum of the curvature perturbation is very
peaked, is always dominated by the broadest profile of the compaction function, where the corresponding
threshold is 2=5, even though statistically it is not the most frequent. This result exacerbates the tension
when combining the primordial black hole abundance with the signal seen by pulsar timing arrays and
originated from gravitational waves induced by the same large primordial perturbations.
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I. INTRODUCTION

Primordial black holes (PBHs) have emerged as one of
the most interesting topics in cosmology in the last years
(see Ref. [1] for a recent review). PBHs could explain both
some of the signals from binary black hole mergers
observed in gravitational wave detectors [2] and be an
important component of the dark matter in the Universe.
One of the crucial parameters in PBHs physics is the

relative abundance of PBHs with respect to the dark matter
component. This quantity is not easy to calculate in the
scenario in which PBHs are formed by the collapse of large
fluctuations generated during inflation uponhorizon reentry.
Indeed, the formation probability is very sensitive to tiny
changes in the various ingredients, such as the critical
threshold of collapse, the non-Gaussian nature of the
fluctuations, the choice of the window function to define
smoothed observables (see again Ref. [1] for a nice
discussion on such issues), the nonlinear corrections enter-
ing in the calculation of the PBH abundance from the
nonlinear radiation transfer function and the determination
of the true physical horizon crossing [3], and the appearance
of an infinite tower of local, nonlocal, and higher-derivative
operators upon dealing with the nonlinear overdensity [4].
One intrinsic and therefore unavoidable source of uncer-

tainty in calculating the PBH abundance arises from the
inability to predict the value of a given observable with zero
uncertainty, e.g., the compaction function or its curvature at
its peak, in a given point or region. This is due to the fact that
the theory delivers only stochastic quantities, e.g., the
curvature perturbation, of which we know only the power
spectrum and the higher-order correlators. Therefore, we are
allowed to calculate only ensemble averages and typical

values,which comewith intrinsic uncertainties quantified by,
for example, root-mean-square deviations.
Since the critical PBH abundance depends crucially on

the curvature of the compaction function at its peak, the
natural question that arises is the following: in order to
calculate the PBH abundance, which value of the critical
threshold should we use? In other words, which value of
the curvature should one adopt to derive the formation
threshold?
A natural answer to this question might be to use the

average profile of the compaction function, and this is done
routinely in the literature. After all, most of the Hubble
volumes are populated by peaks with such average profile
at horizon reentry.
In this paper we wish to make a simple, but relevant

observation: only if the power spectrum of the curvature
perturbation is very peaked is the critical threshold for
formation determined by the average value of the curvature
of the compaction function at the peak; in the realistic cases
in which the power spectrum of the curvature perturbation
is not peaked, the critical threshold for formation is
determined by the broadest possible compaction function.
This is because the abundance is dominated by the smallest
critical threshold, which corresponds to the broadest
profile. In such a case, the threshold for the compaction
function is fixed to be 2=5.
This paper is organized as follows. In Sec. II we briefly

summarize the properties of the compaction function; in
Secs. III and IV we prove our observation, and in Sec. V we
make a comparison with the recent literature and its
implication with pulsar timing array experiments. In
Sec. VI we provide some final comments.
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II. THE COMPACTION FUNCTION

The key starting object is the curvature perturbation ζðxÞ
on superhorizon scales which appears in the metric in the
comoving uniform-energy density gauge

ds2 ¼ −dt2 þ a2ðtÞe2ζðxÞdx2; ð1Þ

where aðtÞ is the scale factor in terms of cosmic time.
Cosmological perturbations may gravitationally collapse to
form a PBH depending on the amplitude measured at the
peak of the compaction function, defined as the mass
excess compared to the background value within a given
radius (see, for instance, Ref. [5])

CðxÞ ¼ 2
Mðx; tÞ −Mbðx; tÞ

Rðx; tÞ ; ð2Þ

whereMðx; tÞ is the Misner-Sharp mass andMbðx; tÞ is its
background value. The Misner-Sharp mass gives the mass
within a sphere of areal radius

Rðx; tÞ ¼ aðtÞr̃eζðxÞ; ð3Þ

with spherical coordinate radius r̃, centered around position
x, and evaluated at time t. The compaction directly
measures the overabundance of mass in a region and is
therefore better suited than the curvature perturbation for
determining when an overdensity collapses into a PBH.
Furthermore, the compaction has the advantage to be time
independent on superhorizon scales. It can be written in
terms of the density contrast as

CðxÞ ¼ 2ρb
Rðx; tÞ

Z
d3xδðx; tÞ; ð4Þ

where ρb is the background energy density. On super-
horizon scales, the density contrast is related to the
curvature perturbation in real space by the nonlinear
relation

δðx; tÞ ¼ −
4

9

1

a2H2
e−2ζðxÞ

�
∇2ζðxÞ þ 1

2
ð∇ζðxÞÞ2

�
: ð5Þ

Assuming spherical symmetry and defining ζ0 ¼ dζ=dr,
the compaction function becomes

CðrÞ ¼ 8πρb
Rðr; tÞ

Z
R

0

dR̃R̃2ðr; tÞδðr; tÞ ¼ CζðrÞ −
3

8
C2
ζðrÞ;

CζðrÞ ¼ −
4

3
rζ0ðrÞ: ð6Þ

Suppose now that there is peak in the curvature perturbation
ζðxÞ with a given peak value ζð0Þ and profile ζðrÞ away
from the center, which we arbitrarily can set at the origin of
the coordinates. The corresponding compaction function

will have a maximum at the distance rm from the origin of
the peak. Since

C0ðrmÞ ¼ C0
ζðrmÞ

�
1 −

3

4
CζðrmÞ

�
¼ 0; ð7Þ

the extremum of the compaction function CðrÞ coincides
with the extremum of CζðrÞ. Furthermore, since

C00ðrmÞ ¼ C00
ζðrmÞ

�
1 −

3

4
CζðrmÞ

�
; ð8Þ

the maximum of the compaction function CðrÞ coincides
with the maximum of CζðrÞ as long as CζðrmÞ < 4=3 (the
so-called type I case). We will focus therefore mainly on
this quantity. Notice that sometimes we will call CζðrÞ the
“linear” compaction function for simplicity, where the term
linear stems from the fact that its expression is linear in the
curvature perturbation ζðrÞ. However, CζðrÞ is not neces-
sarily Gaussian if the curvature perturbation ζðrÞ is not.
The maximum of the compaction function is fixed by the

equation

C0ðrmÞ ¼ C0
ζðrmÞ ¼ 0 or ζ0ðrmÞ þ rmζ00ðrmÞ ¼ 0: ð9Þ

Consider now a family of compaction functions that have in
common the same value of rm, but a different curvature at
the maximum parametrized by [6]

q ¼ −
1

4

r2mC00ðrmÞ
CðrmÞ

: ð10Þ

Numerically, it has been noticed that the critical threshold
depends on the curvature at the peak of the compaction
function [6–8]

CcðqÞ ¼
4

15
e−1=q

q1−5=2q

Γð5=2qÞ − Γð5=2q; 1=qÞ ; ð11Þ

such that Ccðq → 0Þ ≃ 2=5 and Ccðq → ∞Þ ≃ 2=3. We
also notice that

q ¼ −
1

4

r2mC00
ζðrmÞ

h
1 − 3

4
CζðrmÞ

i

CζðrmÞ
h
1 − 3

8
CζðrmÞ

i

≃ −
1

4

r2mC00
ζðrmÞ

CζðrmÞ
h
1 −

3

8
CζðrmÞ

i

≡ qζ
h
1 −

3

8
CζðrmÞ

i
: ð12Þ
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A. The average profile

One question to pose is the following: which profile
should one make use of to calculate the critical value for
PBH abundance, given that it depends on the peak profile?
The natural answer, routinely adopted in the literature,
would be the average profile of the compaction function
with the constraint that there is a peak of the curvature
perturbation at the center of the coordinates with value
ζð0Þ. This is the most obvious answer, as the average
profile is the most frequent, statistically speaking.
Supposing for the moment that ζðrÞ is Gaussian, such
an average profile would be

hCζðrÞiζð0Þ ¼ −
4

3
rhζ0ðrÞiζð0Þ ¼ −

4

3
rhζðrÞi0ζð0Þ

¼ −
4

3
r
ξ0ðrÞ
ξð0Þ ζ0; ð13Þ

where

ξðrÞ ¼
Z

dk
k
PζðkÞ

sin kr
kr

ð14Þ

is the two-point correlation of the curvature perturbation.
In such a case the value of rm where the most likely
compaction function has its maximum would then be fixed
by the equation

ξ0ðrmÞ þ rmξ00ðrmÞ ¼ 0: ð15Þ

A standard choice is therefore to calculate the curvature of
the peak of the compaction function as1

q ¼ −
1

4

r2mhC00
ζðrmÞiζð0Þ

hCζðrmÞiζð0Þ

�
1 −

3

8
hCζðrmÞiζð0Þ

�
: ð16Þ

The crucial point is that, the smaller the value of the
curvature, the smaller the value of the threshold. Since the
PBH abundance has an exponentially strong dependence
on the threshold, one expects that broad compaction
functions should be very relevant in the determination of
the abundance of PBHs even though they are more rare than
the average profiles. This is what we discuss next.

III. THE RELEVANCE OF BROADNESS:
THE GAUSSIAN CASE

In this section we assume CζðrmÞ and C00
ζðrmÞ to be

Gaussian (and correlated) variables. This will allow us to
gain some analytical intuition. We define

σ20 ¼ hC2
ζðrmÞi; σ21 ¼ −

1

4
r2mhC00

ζðrmÞCζðrmÞi; and

σ22 ¼
1

16
r4mhC00

ζðrmÞ2i: ð17Þ

Such correlations are easily computed knowing that the
Fourier transform of the linear compaction function reads

Cζðk; rÞ ¼
4

9
k2r2WðkrÞζðkÞ;

WðxÞ ¼ 3
sin x − x cos x

x3
; ð18Þ

where WðxÞ is the Fourier transform of the Heaviside
window function in real space. Wewill use the conservation
of the probabilities

P½CðrmÞ; C00ðrmÞ�dCðrmÞdC00ðrmÞ
¼ P½CζðrmÞ; C00

ζðrmÞ�dCζðrmÞdC00
ζðrmÞ

¼ P̃½CζðrmÞ; qζ�dCζðrmÞdqζ; ð19Þ

where

P
�
−
1

4
r2mC00

ζðrmÞ;CζðrmÞ
�
¼ 1

2π
ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp ð−V⃗TΣ−1V⃗=2Þ;

V⃗T ¼
�
−
1

4
r2mC00

ζðrmÞ;CζðrmÞ
�
;

Σ¼
�
σ22 σ21
σ21 σ20

�
: ð20Þ

We find it convenient to define the parameter

γ ¼ σ21
σ2σ0

; ð21Þ

which will play an important role in the following and
indicates the broadness of a given power spectrum of the
curvature perturbation. The closer γ is to unity, the more
spiky is the peak of the curvature perturbation.

A. The average of the curvature

The average curvature of the linear compaction function
Cζ can be computed by using the conditional probability to
have a peak at rm

2

hqζi ¼
Z

∞

0

dqζqζP½qjCζðrmÞ > Cζ;cðqζÞ�; ð22Þ

with

1This is clearly not correct as, for instance, the average of the
ratio of two stochastic variables is not the ratio of their averages.

2In fact, we use threshold statistics rather than peak statistics to
elaborate our point. However, regions well above the correspond-
ing square root of the variance are very likely local maxima [9].
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P½qjCζðrmÞ>Cζ;cðqζÞ�¼
P̃½qζ;CζðrmÞ>Cζ;cðqζÞ�
P̃½CζðrmÞ>Cζ;cðqζÞ�

: ð23Þ

The conditional probability, in the limit of large thresholds,
becomes

P½qζjCζðrmÞ > Cζ;cðqζÞ�

≃
ð1 − γ2Þ1=2σ2Cζ;cðqζÞffiffiffiffiffiffi

2π
p

σ0½ðqζ − γσ2=σ0Þ2 þ ð1 − γ2Þσ22=σ20�1=2

· exp

�
−
ðq − γσ2=σ0Þ2C2

ζ;cðqζÞ
2ð1 − γ2Þσ22

�
: ð24Þ

For a monochromatic power spectrum of the curvature
perturbation, that is γ ≃ 1, we recognize the Dirac δ and the
value of qζ, which minimizes the exponent and maximizes
the PBH abundance, is the average value hqζi ¼ σ2=σ0.
Departing from γ ≃ 1, and integrating numerically, one

discovers departures from the value γσ2=σ0 for the average
of qζ, but not dramatically, and one has

hqζi ≃ γ
σ2
σ0

: ð25Þ

Hence for very broad spectrum, γ → 0, one has hqζi → 0.

B. The PBH abundance

The PBH abundance is given by3

β ¼
Z

∞

CcðqÞ
dCðrmÞ

Z
0

−∞
dC00ðrmÞP½CðrmÞ; C00ðrmÞ�

¼
Z

∞

0

dqζ

Z
∞

Cζ;cðqζÞ
dCζðrmÞP̃½CζðrmÞ; qζ�: ð26Þ

Going back to the initial probability, it can be written as

P
�
−
1

4
r2mC00

ζðrmÞ;CζðrmÞ
�

¼ 1

2π

1

σ2σ0
ffiffiffiffiffiffiffiffiffiffiffi
1− γ2

p exp

�
−
r4mC00

ζðrmÞ2
16 ·2σ22

�

· exp

�
−

1

2ð1− γ2Þ
�
CζðrmÞ
σ0

þ γ
r2mC00

ζðrmÞ
4σ2

�2�
: ð27Þ

For a monochromatic, very peaked power spectrum of
the curvature perturbation, where γ ≃ 1, the probability
reduces to

lim
γ→1

P
�
−
1

4
r2mC00

ζðrmÞ; CζðrmÞ
�

¼ 1ffiffiffiffiffiffi
2π

p 1

σ2σ0
exp

�
−
r4mC00

ζðrmÞ2
16 · 2σ22

�

× δD

�
CζðrmÞ
σ0

þ r2mC00
ζðrmÞ
4σ2

�
; ð28Þ

which fixes

qζ ¼
σ2
σ0

¼ σ2σ0
σ20

¼ σ21
σ20

¼ hqζi; ð29Þ

and

β ¼
Z

∞

0

dqζ

Z
4=3

Cζ;cðqζÞ
dCζðrmÞP

�
−
1

4
r2mC00

ζðrmÞ; CζðrmÞ
�

¼
Z

4=3

Cζ;cðhqζiÞ
dCζðrmÞ

1ffiffiffiffiffiffi
2π

p
σ0

exp

�
−
C2
ζðrmÞ
2σ20

�

¼ 1

2
Erfc

�
Cζ;cðhqζiÞffiffiffi

2
p

σ0

�
; ð30Þ

where

Cζ;cðqζÞ ≃
4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3CcðqζÞ

2

r �
: ð31Þ

Therefore, for monochromatic spectra of the curvature
perturbation the PBH abundance is fixed by the value of
the threshold corresponding to the average value of the
curvature of the compaction function at its peak

Cpeaked
ζ;c ¼ Cζ;cðhqζiÞ: ð32Þ

For a generic power spectrum, we change the variables
from ð−r2mC00

ζðrmÞ; CζðrmÞÞ to ðqζ; CζðrmÞÞ and making use
of the conservation of the probability we obtain

βðqζÞ ¼
Z

4=3

Cζ;cðqζÞ
dCζðrmÞjCζðrmÞjP½qCζðrmÞ;CζðrmÞ�

≃
ffiffiffiffiffiffiffiffiffiffiffiffi
1− γ2

p
σ2

2πσ0½ðqζ − γσ2=σ0Þ2þð1− γ2Þσ22=σ20�

· exp

�
−
½ðqζ − γσ2=σ0Þ2þð1− γ2Þσ22=σ20�C2

ζ;cðqζÞ
2ð1− γ2Þσ22

�
:

ð33Þ
We see that the square of the critical threshold is replaced
by an effective squared critical threshold

C2
ζ;cðqζÞjeff ¼ ½ðqζ − γσ2=σ0Þ2 þ ð1 − γ2Þσ22=σ20�C2

ζ;cðqζÞ:
ð34Þ

3We do not account for the extra factor counting the mass of
the PBH with respect to the mass contained in the horizon volume
at reentry as we give priority to getting analytical results. We will
reintegrate it in the next section.
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Its minimum is determined by the equation

ðqζ − γσ2=σ0ÞCζ;cðqζÞ þ ½ðqζ − γσ2=σ0Þ2 þ ð1− γ2Þσ22=σ20�

×
dCζ;cðqζÞ

dqζ
¼ 0: ð35Þ

For peaked profiles where γ ≃ 1 we have

ðqζ−σ2=σ0Þ
�
Cζ;cðqζÞþðqζ−σ2=σ0Þ

dCζ;cðqζÞ
dqζ

�
¼0 ð36Þ

and the minimum lies at the value of the average qζ ¼
hqζi ¼ σ2=σ0. For broad spectra γ ≪ 1, the effective
threshold is minimized for qζ ≃ 0 as it reduces to

C2
ζ;cðqζÞjeff ¼ ½q2ζ þ σ22=σ

2
0�C2

ζ;cðqζÞ; ð37Þ

and the threshold Cζ;cðqζÞ is also minimized for small qζ.
There is, in general, a critical value of qζ for which the
abundance is always dominated by the broad spectra. We
can see this behavior by plotting the curve ðqζmin; γÞ
obtained from Eq. (35), as shown in Fig. 1. As we start
decreasing from γ ¼ 1where the minimum is in σ2=σ0, also
the value of qζ;min decreases, up until a critical value γcrit.
For values of γ below this point, the function Cζ;cðqζÞjeff
does not have a minimum, but is monotonically increasing
with qζ, hence the minimum lies at the boundary of the
interval, i.e., qζ ¼ 0. The transition is therefore very sharp
after the critical value.
It is also possible to evaluate the position of this

minimum for different values of the parameter σ2=σ0, as
shown in Fig. 2. We can understand the behavior because
having larger values of this parameter the transition
happens for larger values of γ, being easier to enter in
the regime of Eq. (37), where σ2=σ0 dominates. To show
this explicitly, in Fig. 3 we plot the formation probability
for three different values of γ. It demonstrates that the
abundance is dominated by the broadest profiles when
the curvature perturbation is not very spiky and not by the
average value of qζ. The corresponding critical value
needed to be used is therefore

Cζ;cðqζ ≃ 0Þ ≃ 4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3 · 2=5

2

r �
≃ 0.49: ð38Þ

IV. THE RELEVANCE OF BROADNESS:
THE NON-GAUSSIAN CASE

As a matter of fact, the curvature perturbation generated
in models producing large overdensities is typically non-
Gaussian. Non-Gaussianity among the modes interested in
the growth of the curvature perturbation is generated either
by their self-interaction during the ultra-slow-roll phase
[10] or after Hubble radius exit when the curvature
perturbation is sourced by a curvatonlike field [11–13].
We proceed, therefore, by assuming that the initial

curvature perturbation is non-Gaussian, but a function of
a Gaussian component

ζðrÞ ¼ F½ζgðrÞ�: ð39Þ

In such a case, the compaction function is still given by
Eq. (6), where

CζðrÞ ¼ F1ðζgÞCgðrÞ; CgðrÞ ¼ −
4

3
rζ0gðrÞ; ð40Þ

FIG. 1. Plot of qζmin as a function of γ for σ2=σ0 ¼ 2.

FIG. 2. Critical value of γ as a function of σ2=σ0.

FIG. 3. The PBH formation probability as a function of qζ for
σ0 ¼ σ2=2 ¼ 0.05 and three different values of γ ¼ ð0.3; 0.5; 0.8Þ,
for which hqζi ¼ ð0.6; 1; 1.6Þ for the Gaussian case.

PRIMORDIAL BLACK HOLE ABUNDANCE: THE IMPORTANCE … PHYS. REV. D 109, 123549 (2024)

123549-5



and we have indicated the derivatives of F with respect to
ζg by Fn ¼ dFðζgÞ=dζg. The maximum of the compaction
function can be found solving the equation

C0
ζðrmÞ¼F1ðζgÞC0

gðrmÞþCgðrmÞζ0gðrmÞF2ðζgÞ¼ 0; ð41Þ

as long as CζðrmÞ < 4=3. The next step is to define the
following Gaussian and correlated variables:

x0 ¼ ζg; x1¼ rζ0g; x2¼ r2ζ00g; x3¼ r3ζ000g ; ð42Þ

for which the condition of the maximum becomes

x2 ¼ −x1
�
1þ x1

F2ðx0Þ
F1ðx0Þ

�
: ð43Þ

One can construct the corresponding probability distribu-
tion as

Pðx0; x1; x2; x3Þ ¼
1

ð2πÞ2 ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp ð−V⃗TΣ−1V⃗=2Þ; ð44Þ

where

V⃗T ¼ ½x0; x1; x2; x3�;

and

Σ ¼

0
BBB@

σ20 γ01σ1σ0 γ02σ2σ0 γ03σ3σ0

γ01σ1σ0 σ21 γ12σ2σ1 γ13σ1σ3

γ02σ2σ0 γ12σ2σ1 σ22 γ23σ2σ3

γ03σ3σ0 γ13σ1σ3 γ23σ2σ3 σ23

1
CCCA ð45Þ

is constructed from the different correlators with4

σ2i ¼ hx2i i; γij ¼
hxixji

hx2i i1=2hx2ji1=2
: ð46Þ

Next, we need to convert all the relevant variables in terms
of the Gaussian ones xi (i ¼ 0;…; 3). First we have

Cg ¼ −
4

3
x1; ð47Þ

and the derivatives of Cζ can be written in terms of x1 and
x2 as

Cζ ¼ −
4

3
x1F1ðx0Þ;

rC0
ζ ¼ −

4

3
ðF1ðx0Þðx1 þ x2Þ þ x21F2ðx0ÞÞ;

r2C00
ζ ¼ −

4

3
½F1ðx0Þð2x2 þ x3Þ þ 2x21F2ðx0Þ þ 3x1x2F2ðx0Þ

þ x31F3ðx0Þ�: ð48Þ

The PBH abundance for a given value of the curvature q
will read

βðqÞ¼
Z
D
KðC−CcðqÞÞγ pðx0;Cζ;x2;qÞ

×δðF1ðx0Þðx1þx2Þþx21F2ðx0ÞÞ; ð49Þ

where the domain of integration is

D ¼
�
x2 ∈R; Cζ;cðqÞ < Cζ <

4

3

�
; ð50Þ

with

Cζ;cðqÞ ≃
4

3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3CcðqÞ

2

r �
: ð51Þ

We have reintroduced the scaling-law factor for critical
collapse KðC − CcðqÞÞγ , which accounts for the mass of
the PBHs at formation written in units of the horizon mass
at the time of horizon reentry, withK ≃ 3.3 for a log-normal
power spectrum and γ ≃ 0.36 [14–17] (see also Ref. [18]).
By using the conservation of probabilities, we can finally
write

p½ζg; Cζ; x2; q� ¼ P½x0; x1; x2; x3�jDet Jj; ð52Þ

where

Det J ¼ 3

4

�
4x1 þ 2F1ðx0Þx21
1þ F1ðx0Þx1

�
; ð53Þ

and at the maximum

x3 ¼
−4qð1þ 1

2
x1F1ðx0ÞÞx1

1þ x1F1ðx0Þ
− 2x2 − 2x21

F2ðx0Þ
F1ðx0Þ

− 3x1x2
F2ðx0Þ
F1ðx0Þ

− x31
F3ðx0Þ
F1ðx0Þ

: ð54Þ

We rewrite the Gaussian probability in the following form:

Pðx0; x1; x2; x3Þ

¼ 1

4π2
ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp

�
−
ðσ0σ1σ2σ3Þ2

2 detΣ

X3
i;j¼0

κijxixj
σiσj

�
; ð55Þ

4Notice that here, for clarity, the index for the various σi is
related to the number of derivatives of ζg, different from the
definition in the previous section.
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where the κij’s will depend on all the γlm, and they can be computed by performing the inverse of the matrix Σ, matching
with the definition. Performing the change of variables, we get

pðζg;Cζ;x2;qÞ¼
				9Cgð3CgF1−8Þ
8ð3CgF1−4Þ

				 1

4π2
ffiffiffiffiffiffiffiffiffiffi
detΣ

p ·exp

�
−
ðσ0σ1σ2σ3Þ2

2detΣ
1

4096F4
1

½Aðζg;CgÞq2þBðζg;CgÞqþCðζg;CgÞ�
�
; ð56Þ

where we have defined the following functions of ζg and Cg:

Aðζg; CgÞ ¼
9216κ33C2

gF4
1ð8 − 3CgF1Þ2

σ23ð4 − 3CgF1Þ2
; ð57Þ

Bðζg; CgÞ ¼
192CgF2

1ð3CgF1 − 8Þ
σ0σ1σ2σ

2
3ð3CgF1 − 4Þ ½3κ33σ0σ1σ2Cgf9CgF1ðCgF3 þ 4F2Þ − 27C2

gF2
2 − 32F2

1g

þ 4σ3F1f3κ23σ0σ1Cgð4F1 − 3CgF2Þ þ 4σ2F1ð4κ30σ1ζg − 3κ13σ0CgÞg�; ð58Þ

Cðζg; CgÞ ¼ −
κ33
σ23

f4374C6
gF1F2

2F3 − 5832C5
gF2

1F2F3 þ 17496C5
gF1F3

2 − 27216C4
gF2

1F
2
2

þ 20736C3
gF3

1F2 − 729C6
gF2

1F
2
3 þ 5184C4

gF3
1F3 − 9216C2

gF4
1 − 6561C6

gF4
2g

� 1

σ0σ1σ2σ3
24CgF1ð−9CgF1ðCgF3 þ 4F2Þ þ 27C2

gF2
2 þ 32F2

1Þ

× ð3κ23σ0σ1Cgð4F1 − 3CgF2Þ þ 4σ2F1ð4κ30σ1ζg − 3κ13σ0CgÞÞ

þ 16F2
1

�
24CgF1ð3CgF2 − 4F1Þð3κ12σ0Cg − 4κ20σ1ζgÞ

σ0σ1σ2

þ 9κ22C2
gð4F1 − 3CgF2Þ2

σ22
þ 16F2

1ð−24κ10σ1σ0Cgζg þ 9κ11σ
2
0C

2
g þ 16κ0σ

2
1ζ

2
gÞ

σ20σ
2
1

�
; ð59Þ

and each function Fn is intended to be FnðζgÞ.

A. An illustrative example

We consider the following illustrative example that typ-
ically arises in models in which the curvature perturbation is
generated during a period of ultra-slow-roll [10,19–21]5:

ζðxÞ ¼ −μ⋆ ln
�
1 −

ζgðxÞ
μ⋆

�
; ð60Þ

with μ⋆ a model-dependent parameter depending upon the
transition between the ultra-slow-roll phase and the sub-
sequent slow-roll phase. To focus only on the impact of
primordial non-Gaussianity, in this analysis we take μ⋆ as a
free parameter. We take the power spectrum of the Gaussian
component to be a log-normal power spectrum

PgðkÞ ¼
Affiffiffiffiffiffi
2π

p
Δ
exp ½− ln2ðk=k⋆Þ=2Δ2�: ð61Þ

Our results are summarized in Fig. 4 where, changing the
shape of the power spectrum, we computed k⋆rm following
Ref. [8].6 The broadness of the power spectrum is con-
trolled by the parameter Δ. We observe that, by increasing
the value of Δ, enlarging the power spectra, again the PBH
formation probability is dominated by the broadest profiles.
We have checked that, for very peaked power spectrum, as
in the case for Δ ¼ 1=3, the abundance is peaked again
around the average of q.

V. COMPARISON WITH LITERATURE
AND IMPACT ON THE PHYSICS OF PBHS

AND PULSAR TIMING ARRAYS

In this section, we compare the calculation presented
above, accounting for the curvature of the compaction
function at its peak, with the prescription based on thresh-
old statistics on the compaction function, reported in
Refs. [25,26], where the only explicit dependence on q
is encoded in CcðqÞ. There, the formation probability is

5For ζg > μ⋆, Eq. (60) does not capture the possibility of PBHs
formed by bubbles of trapped vacuum, which requires a separate
discussion [22,23].

6Here we stress that the value of rm can slightly change in the
presence of large primordial non-Gaussianities [24].
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computed by integrating the joint probability distribution
function Pg

β ¼
Z
D
KðC − CcðqÞÞγPgðCg; ζgÞdCgdζg; ð62Þ

where the domain of integration is given by D ¼
fCðCg; ζgÞ > CcðqÞ; CζðCg; ζgÞ < 4=3g. The Gaussian
components are distributed as

PgðCg; ζgÞ ¼
1

2πσaσc
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2�

p

× exp
�
−

1

2ð1 − γ2�Þ
�
Cg

σa
−
γ�ζg
σc

�
2

−
ζ2g
2σ2c

�
;

ð63Þ

with correlators

hC2
gi ¼ σ2a ¼

16

81

Z
∞

0

dk
k
ðkrmÞ4W2ðk; rmÞT2ðk; rmÞPζ;

ð64aÞ

hCgζgi ¼ σ2b

¼ 4

9

Z
∞

0

dk
k
ðkrmÞ2Wðk; rmÞWsðk; rmÞT2ðk; rmÞPζ;

ð64bÞ

hζ2gi ¼ σ2c ¼
Z

∞

0

dk
k
W2

sðk; rmÞT2ðk; rmÞPζ; ð64cÞ

and γ�¼σ2b=σaσc. We have definedWðk; rmÞ andWsðk; rmÞ
as the top-hat window function and the spherical-shell
window function [27]. To compare this prescription with
the one presented in this paper, we consider two cases: β0,
in which we do not adopt any transfer function (T ¼ 1)

since everything is determined on superhorizon scales, and
βT , in which we consider the radiation transfer function
assuming a perfect radiation fluid, as adopted in Ref. [25].
In Fig. 5, we show a comparison between the two

prescriptions using the typical non-Gaussian relation in the
ultra-slow-roll scenario [see Eq. (60)] with a log-normal
power spectrum [see Eq. (61)] with several benchmark
values for μ⋆. We fix Δ ¼ 1 in the plots, but we have found
analogous results also varying this parameter. As we can
understand from Fig. 5, evaluating the quantities on super-
horizon scales, i.e., the ratio β=β0, there is a marginal
discrepancy between the two prescriptions. This discrep-
ancy arises because, unlike the prescription used in the
literature, where an average profile is employed, the
effective threshold is slightly different than the averaged
case, as evident from Eq. (37). Nevertheless an equivalent
amount of PBHs requires a marginal change in the
amplitude of the curvature perturbation power spectrum.
The situation is different when we include the radiation

transfer function, i.e., the ratio β=βT . The presence of the
transfer function decreases the values of the variances and,
as a consequence, it reduces the amount of PBHs.
This has important implications for the phenomenology

related to PBHs with respect to the case discussed in this
paper. Indeed, in the standard formation scenario, PBH
formation occurs as large curvature perturbations reenter
the Hubble horizon after inflation and eventually collapse
under the effect of gravity. When such scalar perturbations
cross the horizon, they produce tensor modes as a second-
order effect, which appear to us today as a signal of
stochastic gravitational wave background (for a recent
review, see Ref. [28]). Recently, in Ref. [29], where the
old prescription was used, it was shown that large negative
non-Gaussianities are necessary in order to achieve high
enough amplitude, without overproducing PBHs, in order

FIG. 5. Ratio between mass fraction β for the non-Gaussian case
between the prescriptions presented in this paper and the pre-
scriptionpresented inRef. [25].We fix the shape parameterq ¼ 0.5
[as a consequence also the threshold using Eq. (11)] and the shape
of power spectrum Δ ¼ 0.5 while we vary the amplitude.

FIG. 4. Mass fraction β for the non-Gaussian scenario com-
puted with several values of Δ, where we fix μ� ¼ 5=2 and the
amplitude of the power spectrum A ¼ 10−2.
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to relax the tension between the pulsar timing array (PTA)
recent dataset (the most constrained dataset is the one
released by NANOGrav [30]) and the PBH explanation.
We demonstrate that, even when correctly accounting for

the impact of the curvature of the compaction function and
calculating all the relevant quantities on superhorizon
scales, thereby avoiding all concerns regarding nonlinear-
ities in the radiation transfer function and the determination
of the true physical horizon, the tension between the PTA
dataset and the PBH hypothesis is even worse than what
was claimed in Ref. [29].
We conclude this section, making a general comparison

with another statistical approach for computing the PBH
abundance. When the abundance is exponentially sensitive
on the threshold, as well as in the case of peak theory
[27,31–39] [see, for example, Sec. 3 of Ref. [35] for a
general expression of the PBH fraction in the context of
peak theory or simply Eqs. (32) and (33) of Ref. [27] ], we
expect that our results can be generally extended to these
other approaches. However, there are still discrepancies
between these two approaches, which are already present at
Gaussian level. Indeed, the approach based on peak theory
requires slightly smaller values of the amplitude in order to
get the same abundance of PBHs [40,41], thus making the
claim on the tension with the PTA dataset even stronger. We
leave a deeper analysis of the discrepancies between
threshold statistics and peak theory in the presence of
primordial non-Gaussianities for a future work.

VI. CONCLUSIONS AND SOME FURTHER
FINAL CONSIDERATIONS

In this paper, we have shown that the abundance of PBHs
is dominated by the broadest profiles of the compaction
function, even though they are not the typical ones, unless
the power spectrum of the curvature perturbation is very
peaked. The corresponding threshold is therefore always
2=5. We have also discussed how this result makes the
tension between overproducing PBHs and fitting the recent
PTA data on gravitational waves even worse than recent
analysis.
On more general grounds, given the dependence of the

critical threshold on the profile of the compaction function,
the natural question is whether it is possible to construct an
observable whose critical threshold does not depend at all
on the profiles of the peaks. In Ref. [6] it has been proven
numerically that the volume average of the compaction
function, calculated in a volume of sphere of radius Rm,

C̄ðRmÞ ¼
3

R3
m

Z
Rm

0

dx x2CðxÞ ð65Þ

has a critical threshold equal to 2=5 independent from the
profile. In the case of a broad compaction function, whose
critical threshold is 2=5, and since C̄ðRmÞ ≃ CðRmÞ, it is
trivial that the volume average has the same critical value

2=5. The case of a very spiky compaction function
corresponds to a flat universe within it a sphere of radius
Rm and constant curvature KðRÞ ¼ CðRÞ=R2, that is, CðRÞ
scales like R2. One then obtains

C̄ðRmÞ¼ 3
CðRmÞ
R5
m

Z
Rm

0

dxx4¼ 3

5
CðRmÞ¼

3

5
·
2

3
¼ 2

5
; ð66Þ

where it is used that for very spiky compaction functions
the critical value is 2=3.
Assuming a universal threshold, one can then write the

probability that the volume average compaction function is
larger than 2=5 even for the non-Gaussian case as (we use
here threshold statistics to make the point; one could
similarly use peak theory)7

P½C̄ðRmÞ> 2=5�
¼ hΘH½C̄ðRmÞ−2=5�i

¼ 1

2π

Z
½DCðrÞ�P½CðrÞ�

Z
∞

2=5
dα

Z
∞

−∞
dϕeiϕðC̄ðRmÞ−αÞ; ð67Þ

which can be written as

P½C̄ðRmÞ > 2=5� ¼
Z

∞

2=5
dα

Z
∞

−∞
dϕe−iϕα · Z½J�; ð68Þ

with

Z½J� ¼
Z

½DCðxÞ�P½CðxÞ�ei
R

d3xJðxÞCðxÞ;

JðxÞ ¼ V−1
Rm
ϕΘHðr̄m − rÞ; ð69Þ

and the measure ½DCðrÞ� is such that

Z
½DCðxÞ�P½CðxÞ� ¼

Z
½DCðrÞ�P½CðrÞ� ¼ 1: ð70Þ

7For non-Gaussian perturbations, the universal threshold
remains 2=5 [42] for the realistic cases in which the non-Gaussian
parameter is positive [43]. Notice that one can construct easily
another observable whose threshold is independent from the
profile. Indeed, as we mentioned already, the compaction
function is related to the local curvature of the universe by the
relation CðRÞ ¼ KðRÞR2. Given a curvature perturbation ζðrÞ, a
compaction function CðRÞ with maximum in Rm, and the
corresponding curvature KðRÞ, one can consider a new pertur-
bation with curvature

K̄ ¼ ΘHðRm − RÞ
Z

Rm

0

dx x2KðxÞ;

that is, a spherical local closed universe with curvature K̄ with
radiusRm surrounded by a flat universe. This corresponds to a new
infinitely peaked compaction function equal to ΘHðRm − RÞR2K̄
whose threshold will be always 2=3 [44,45], independent from the
profile of the initial compaction function.
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The correlators are determined by the expansion of the partition function Z½J� in terms of the source J, while the
corresponding expansion of W½J� ¼ lnZ½J� generates the connected correlation functions. We will denote the latter as

ξðnÞðx1;…;xnÞ ¼
δ

δJðy1Þ
� � � δ

δJðynÞ
lnZ½J� ð71Þ

and the connected cumulants of the volume average linear compaction function as

hC̄nðRmÞi ¼
1

Vn
Rm

Z
d3x1 � � � d3xn

Yn
i¼1

ξðnÞðx1;…;xnÞΘHðRm − xiÞ

¼
Yn
i¼1

Z
d3ki
ð2πÞ3 PNðk1;…;knÞWðk1RmÞ � � �WðknRmÞδðnÞD ðk1 þ � � � þ knÞ;

hCζðk1Þ;…; CζðknÞi ¼ PNðk1;…;knÞδðnÞD ðk1 þ � � � þ knÞ: ð72Þ

Then, we may write

lnZ½J� ¼
X∞
n¼2

ð−1Þn
n!

Z
d3y1 � � �

Z
d3ynJi1ðy1Þ � � � JinðynÞξðnÞðxi1 ;…;xinÞ ¼

X∞
n¼2

ð−1Þn
n!

ϕnhC̄ni: ð73Þ

Using the above expression for the connected partition function, we find that the one-point statistics of Eq. (67) can be
written as

P½C̄ðRmÞ > 2=5� ¼ ð2πÞ−1=2
Z

∞

2=5
da exp

�X∞
n¼3

ð−1Þn
n!

hC̄ni ∂
n

∂an

�
exp

�
−

a2

2σ2C̄

�

¼ ð2πÞ−1=2
Z

∞

2=5
da

�
1 −

1

3!
hC̄3

ζi
d3

da3
þ 1

4!
hC̄4i d4

da4
þ � � �

�
exp

�
−

a2

2σ2C̄

�

¼ h0ð2=5Þ þ
1ffiffiffiffiffiffi
2π

p
X
n≥3

1

2
n
2n!

cn
σn−1C̄

e−4=50σ
2
C̄Hn−1

�
2=5ffiffiffi
2

p
σC̄

�
; ð74Þ

where

h0ð2=5Þ ¼
1

2
Erfc

�
1ffiffiffi
2

p 2=5
σC̄

�
; ð75Þ

σC̄ is the variance, Hn are Hermite polynomials, and we have defined in Eq. (74) the parameters cn as

cn ¼
X
p̂½n�

Y
p1m1þ���prmr¼n

pi≥0;mi≥3

n!
m1! � � �mr!p1! � � �pr!

hC̄m1ip1 � � � hC̄mripr ; ð76Þ

where p̂½n� denotes the partitions of the integer n into
numbers mi ≥ 3.
Given the statistics of the curvature perturbation, one can

calculate the abundance of PBHs using the volume average
of the linear compaction function, relying solely on super-
horizon quantities. Generally, determining the statistics of
the curvature perturbation can be challenging and comput-
ing the connected cumulants is highly nontrivial. We left
this task for future investigation.
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