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We present a machine learning approach using normalizing flows for inferring cosmological parameters
from gravitational wave events. Our methodology is general to any type of compact binary coalescence
event and cosmological model and relies on the generation of training data representing distributions of
gravitational wave event parameters. These parameters are conditional on the underlying cosmology and
incorporate prior information from galaxy catalogues. We provide an example analysis inferring the
Hubble constant using binary black holes detected during the O1, O2, and O3 observational runs conducted
by the advanced LIGO/VIRGO gravitational wave detectors. We obtain a Bayesian posterior on the Hubble
constant from which we derive an estimate and 1σ confidence bounds of H0 ¼ 74.51þ14.80

−13.63 km s−1 Mpc−1.
We are able to compute this result in Oð1Þ s using our trained normalizing flow model.

DOI: 10.1103/PhysRevD.109.123547

I. INTRODUCTION

The idea of using gravitational wave (GW) detections to
gain insights into the cosmological properties of our
Universe was first proposed by Schutz [1]. These “standard
sirens” give us information about the calibrated luminosity
distance of the event without the use of the cosmological
distance ladder or any prior knowledge or assumptions of
the Universe. By adding the information of redshifts from
galaxy catalogs and using the relationship between lumi-
nosity distance and redshift [2], one can infer cosmological
parameters.
At present, the measurements of H0 are in tension with

each other, of approximately 4.4σ [3]. The Planck experi-
ment [4] estimated the Hubble constant to be H0 ¼ 67.4�
0.5 km s−1Mpc−1 (1σ confidence interval), using measure-
ments from the cosmic microwave background radiation.
The SH0ES experiment [5] measured H0 ¼ 73.04�
1.04 km s−1 Mpc−1 (1σ confidence interval), making use
of the measured distances of type 1a supernova standard
candles. This suggests that either one of the experiments
might be subject to unknown systematic errors or maybe an
indication of some “new” underlying physics causing this
discrepancy [3]. Therefore, standard siren measurements of
H0 using GWs offers a promising avenue for addressing the
existing discrepancies observed in the measurements of the
Hubble constant.

Since the LIGO and Virgo detectors [6–8] were acti-
vated, they have revealed a significant number of GWs
events—totaling 90 thus far. These events span a range of
phenomena, from binary black hole (BBH) mergers to
neutron star black holes, as well as binary neutron star
coalescences [9,10].
The most recent results of the Hubble constant estimation

using GWs are from [11], where two independent analysis
methods were employed. In the first, gwcosmo [12], they
provide an estimated value of H0 ¼ 68þ12

−8 km s−1Mpc−1

(1σ highest density interval) when combined with the H0

measurement from GW170817 and its electromagnetic
radiation counterpart. In the second analysis [13], no
galaxy catalog prior information was used. We also note
Hubble value estimates of H0 ¼ 68þ26.0

−6.2 km s−1Mpc−1

(1σ equal-tailed interval) obtained using spatial cross-
correlation betweenGWsources and the photometric galaxy
surveys [14–16].
In this work, we see how our new analysis, CosmoFlow,

using normalizing flows (NFs), a machine learning driven
process, allows us to define expressive probability distri-
butions [17], over cosmological parameters using GW
posterior samples as inputs. NFs are widely used in the
GW community, from performing fast and reliable GW
parameter estimation [18–20] to population studies [21].
Other relevant studies, such as those reported by [22], have
usedNFs to calculate the local covariance at any pointwithin
the parameter space. This calculation allows the inverse,
known as the Fisher matrix, to be used as a local metric.
Employing these techniques, the study analyzed parameter
posteriors from the dark energy survey and Planck Cosmic
microwave background (CMB) lensing, where they have
derived an estimate of the Hubble constant ofH0 ¼ 73.8�
7.5 km s−1Mpc−1 (1σ highest density interval).
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In this work, we demonstrate that a NF can model the
electromagnetic (EM) dependent prior of the GW param-
eters. We can then account for selection effects and
uncertainties in the detected GW parameters to evaluate
the likelihood of a cosmological parameter set. We train a
NF model prior to the detection of GWevents, and for each
event, we input parameter estimation results and compute
the cosmological parameter likelihood. The time taken by
the NF is ∼1 ms per set of cosmological parameters. This
allows us to compare our analysis to that of gwcosmo [11]
and compute an overall combined posterior distribution
over the Hubble constant with the 42 BBHs observed
during the O1, O2, and O3 observational runs in the order
of Oð1Þ s.

II. BAYESIAN FRAMEWORK

We define the posterior distribution of the cosmological
parameters, Ω, conditioned by the GW strain data of an
ensemble of n events, h ¼ ½h1; h2;…; hn� as

pðΩjh;D; IÞ ¼ pðΩjIÞ
Y
i

pðhi; DijΩ; IÞ
pðhi; DijIÞ

; ð1Þ

where D ¼ ½D1; D2;…; Dn� is the binary state of detection,
1 for detected and 0 for not detected for the ith event,
and I represents all other assumed information. The
detectability of a GW signal serves to account for the
selection effects that arise when applying signal-to-noise
ratio (SNR) thresholds on candidate events, and we must
make sure that the likelihood term is properly normalized,
such that

P
Di¼0;1

R
pðhi;DijΩ; IÞdhi ¼ 1. However, since

encoded within I is the information that only events
exhibiting an SNR greater than some threshold ρth are
considered, we find that

pðhi; DijΩ; IÞ ¼
pðhijΩ; IÞ
pðDijΩ; IÞ

; ð2Þ

since by definition, pðDi ¼ 0jΩ; IÞ ¼ 0 for all detected
events. This result allows us to write our cosmological
parameter posterior as

pðΩjh;D; IÞ¼pðΩjIÞ
Y
i

R
pðhijθi; IÞpðθijΩ; IÞdθi
pðhi;DijIÞpðDijΩ; IÞ

; ð3Þ

where we have marginalized numerator of Eq. (2) over the
GW parameters, θ.
It becomes apparent when we discuss the generation of

training data for our NF approach that it is more practical to
deal with a GW parameter prior that is conditional on
detection. Hence, via Bayes’ theorem we obtain

pðθijΩ; Di; IÞ ¼
pðDijθi; IÞpðθijΩ; IÞ

pðDijΩ; IÞ
; ð4Þ

where we have used the fact that the detectability of an
event is independent of Ω if the GW parameters are given.
With some rearrangement and using Eq. (4) and replac-

ing the GW likelihood with the ratio of its posterior and
prior, we are able to write our cosmological parameter
posterior as

pðΩjh;D; IÞ ∝ pðΩjIÞ
Y
i

Z
pðθijhi; IÞpðθijDi;Ω; IÞ
pðDijθi; IÞpðθijΩ0; IÞ

dθi;

ð5Þ

where pðθjΩ0; IÞ represents the GW parameter priors used
in the parameter estimation assuming a fixed cosmology
Ω0 [10].
We can then approximate the integral over the GW

parameters as a Monte Carlo summation giving us

pðΩjh;D; IÞ∝ pðΩjIÞ
Y
i

�
pðθijDi;Ω; IÞ

pðDijθi; IÞpðθijΩ0; IÞ
�

θi∼pðθijhi;IÞ
;

ð6Þ

as our final result.
The numerator within Eq. (6) represents the GW

parameter priors conditional on detection and the cosmo-
logical parameters. We use a NF to model this prior and
incorporate galaxy catalogue information within the train-
ing procedure. For the two terms in the denominator, we
use the survival function of a noncentral χ-squared dis-
tribution with a noncentral parameter the SNR squared and
d.o.f. k ¼ 2n, where n is the number of detectors used for
the detection of the event, to compute pðDijθ; IÞ; instead,
the term pðθjΩ0; IÞ is the prior on the GW parameters used
in the parameter estimations process conditioned by a fixed
cosmology [10].

III. NORMALIZING FLOWS

NFs have the capacity to efficiently evaluate and sample
from complex probability distribution functions. They
operate by transforming a simple data distribution, such
as a multivariate normal distribution, through a series of
affine transformations, ultimately generating a more intri-
cate output distribution [17,23]. Assuming x is a random
variable sampled from a distribution pxðxjωÞ and that
another random variable y sampled from distribution y ∼
pyðyjωÞ is related with x following the relation y ¼ gðxÞ
and x ¼ fðyÞ, where ω is a conditional statement, then a
flow can be constructed with a conditional statement [24],
which ultimately allows for the computation of likelihood-
like terms, such as the one in Eq. (6) [25]. Therefore, using
the change of variable equation becomes
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log
�
pxðxjωÞ

� ¼ log
�
pyðf−1ðx; θjωÞÞ

�

þ log

�
det

���� df
−1ðx; θjωÞ
dx

����
�
; ð7Þ

where θ are trainable parameters for the function f. The θ
parameters are optimized with a loss function, using the
Kullback–Leibler divergence between the left-hand side
and the right-hand side of Eq. (7).
Therefore, a set of nonlinear functions can be composed

together to construct more complicated functions, allowing
to go from a simple distribution to a more complicated data
distribution [17]. Using Eq. (7), it is possible to construct a
flow to compute the numerator term in Eq. (6), where x are
the GW parameters and ω ¼ ½H0; Di�.

IV. DATA GENERATION

In order to train our NF, we must provide it with training
data representing the GW parameter distribution we wish to
model. We must also provide the corresponding cosmo-
logical parameters upon which that distribution is condi-
tioned. The data generation process and results presented in
this paper have been limited to the case where inference is
performed only on the Hubble constant. We have restricted
the analysis for the sole purpose of direct validation of our
results with those presented in [11].
We begin by sampling cosmological values Ω, where in

this case Ω≡H0, which serves as the conditional input for
the NF. We consider a specific cosmology characterized by
a FlatΛCDM model with fixed cosmological parameters
Ωm ¼ 0.3 and w0 ¼ −1, as used in [11,26] and vary the
expansion rate parameter H0 uniformly within the
range ½20; 140� km s−1Mps−1.
We use the sampled values of H0 to compute the

Schechter functions ϕðLjΩÞ from which we sample the
luminosities of host galaxies. The Schechter functions are
those described in the GLADEþ catalog [27], using the
K-band fitting parameters given in [11]. We perform
k-corrections and color-evolution corrections [11] and
introduce luminosity weighting, favoring galaxies in pro-
portion to their luminosities as hosting GW events [26],
hence pðLjΩÞ ∝ LϕðLjΩÞ.
We next sample the redshifts of galaxies hosting BBH

events from a prior uniform in comoving volume and
comoving time, multiplied by the merger rate component,
described in Appendix A.2 in [11], where the fitting
parameters from [10] were used [28]. The redshifts are
then combined with their corresponding cosmological
parameters to obtain the luminosity distances of galaxies
hosting GW events. With the sampled galaxy luminosity,
we can then compute the apparent magnitude of the galaxy.
At this point, we sample uniformly over the two-spheres

to generate sky locations. To incorporate redshift and sky
location information from the local Universe into our
training data, we use the GLADEþ [27] catalog. To select

galaxies from the catalog, we compare the apparent
magnitude and location of the sampled galaxy with the
magnitude threshold map of the sky [29]; we determine if
such a galaxy would have been contained within the catalog
for the corresponding sky pixel location. If false, we retain
the sampled galaxy attributes and record that the host is
outwith the catalog. However, if true, we substitute the
previously sampled galaxy with a randomly sampled
galaxy (weighted by ð1þ zÞ−1 and in proportion with
luminosity) from that pixel in the catalog. The sample will
retain its sampled cosmological parameter, but apparent
magnitude and sky location will be taken from the selected
catalog galaxy. The catalog redshift is interpreted as an
uncertain measurement of the redshift which is generated
by sampling from a Gaussian distribution centred on the
measured value with standard deviation taken from the
catalog redshift uncertainty. This redshift is combined with
the cosmological parameter to compute the luminosity
distance.
With host galaxy parameters selected, we proceed to

sample the GW parameters of the event. The parameters we
sample are m1 and m2, primary and secondary masses,
using a power law plus peak model for m1 and a power law
for m2 conditioned on m1 [10,11]; the values for the
hyperparameters describing the power law plus peak model
are as follows: α ¼ 3.78, β ¼ 0.81, mmax ¼ 112.5M⊙,
mmin¼4.98M⊙, δm¼4.8M⊙, μg¼32.27M⊙, σg¼3.88M⊙,
λg ¼ 0.03; a1 and a2, primary and secondary spins, from
a uniform distribution between [0, 0.99] for both param-
eters [9]; θ1, θ2, and θJN , primary and secondary axis
orientation and the orbital plane inclination angle, respec-
tively, from uniform distributions between ½−1; 1� in
cosðθÞ [9]; ϕJL, ϕ12 and ψ , from a uniform distributions
between ½0; 2π� [9]. Lastly, we sample geocentric time of
arrival from a uniform distribution over one sidereal day,
[0.0000, 86164.0905] s. This comprises our set of 11
intrinsic GW parameters (omitting a reference phase) plus
the extrinsic sky position and luminosity distance param-
eters shared with the host galaxy.
After sampling GW parameters, we employ the Bilby

package [30] to simulate event-specific SNR to determine
whether an event would be detected. We produce datasets
that correspond to various detector configurations, consid-
ering the relevant power spectral densities employed during
the O1, O2, O3a, and O3b observational periods. Each data
set is then used to train an individual flow for that specific
detector setup and observational period.
Under the assumption of well behaved Gaussian detec-

tor noise, we draw samples of matched-filter SNR from a
noncentral χ distribution with a noncentrality parameter
equal to the optimal network SNR and with 2n degrees of
freedom where n is the number of detectors in the
network. If the sampled SNR is ≥ than the SNR threshold
(ρth ¼ 11 [11]), then the event is retained. Otherwise, the
sample is discarded, and we begin the sampling procedure
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again from the start but retaining the original sample of the
cosmological parameters. This latter choice ensures that
all sampled parameters will be conditional upon detection
with the exception of our cosmological parameters.
We note that a direct computation of the optimal SNR

becomes a significant data generation bottleneck due to
one-by-one parameter processing. By setting an SNR
threshold, many generated events are discarded, further
slowing the process. Addressing this, we have developed
and applied a multilayer perceptron (MLP) neural network
model, with a structure of 8 layers and 128 neurons per
layer, to act as an accurate and efficient function approx-
imator for the SNR computation. Training the MLP using
13 GW parameters as input (omitting phase) and training
with a targeted output of SNR multiplied by luminosity
distance, we enable efficient SNR prediction for vectorized
parameter sets, enhancing data generation speed by a factor
of 20000. This MLP implementation uses the poplar
module [31] with the widely used PyTorch package.

V. TRAINING THE NORMALIZING FLOW

The data used to train a NF model for the numerator in
Eq. (6) is a combination of 106 samples for each observing
run and detector configuration. The model considers only
the luminosity distance, primary and secondary masses,
and sky location, α and δ, with the conditional parameter
ω ¼ H0. The remaining nine parameters are marginalized,

aligning with the analysis of [11], which includes only GW
parameters influenced by specific cosmology or EM
catalog information.
This study uses a CouplingNF model, which uses

parametrized splines to model transformations, for the best
performance. Implemented using glasflow [32], the
model has 3 block transforms, 6 layers, and 120 neurons
per layer. It is trained over 500 epochs with a learning rate
of 0.0005 and takes approximately 5 hours to train using a
NVIDIA GeForce RTX 2080 Ti GPU.

VI. RESULTS

We present our results in Fig. 1, where we show the
posterior distributions over the Hubble constant for each
of the BBHs observed during observing runs O1 through to
O3b assuming a flat prior on H0. The Jensen-Shannon
(JS) divergence between the distributions obtained from
CosmoFlow and those from gwcosmo are also shown in
each plot In order to compare with results presented in [11],
the events were selected (and the NF models trained) based
on a multidetector SNR threshold ρth ¼ 11. We used 10,000
samples from the posterior distributions of the Gravitational-
wave Transient catalog [9,33] to evaluate the expectation
value within Eq. (6). Our individual events results are shown
in comparison to the gwcosmo results from [11].
The posterior distributions over the 42 BBH events

computed using CosmoFlow show good agreement with

FIG. 1. Posterior distributions ofH0 for 42 BBH events detected during O1, O2, and O3 detection eras using CosmoFlow (solid red),
compared with those from [11], using gwcosmo (dashed black). In all cases, a uniform prior is assumed onH0. In each of the plots, the
JS divergence between the two distributions is displayed at the top center, measured in millinats.
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the gwcosmo analysis results. Our analysis very effec-
tively captures the features within the posteriors that are
driven by population information, e.g., component mass
distributions, comoving volume, and merger rate. There are
a handful of events whose parameters allow for a reason-
able probability that they originate from a galaxy within the
catalog. In these cases the gwcosmo posteriors exhibit
structure at low H0 values caused by corresponding
structure within the catalog. The CosmoFlow analysis
does not show this structure as prominently and indicates
that the NF could be developed and trained further to
capture this in more detail.
By using Eq. (6) to combine the likelihoods from

all 42 BBH events, and assuming a flat prior, we obtain
the full combined posterior distribution on H0 for
both methodologies. This is shown in Fig. 2. Results
show a value of H0 ¼ 74.51þ14.80

−13.63 km s−1 Mpc−1 (1σ
highest density interval) computed using CosmoFlow,
compared to gwcosmo, which gives a measurement
H0 ¼ 68.72þ15.64

−12.41 km s−1Mpc−1. It is clear that the agree-
ment between the two independent analyses is driven by
the fact that both results are informed primarily through
population information and the common assumptions in
our models related to volumes of space with the galaxy
catalog. Other studies, such as [22,34], show similarity
with our results.

VII. DISCUSSION

This paper presents a methodology for using a NF via
carefully generated training data to model an EM-informed
and cosmology dependent prior on GW parameters. This
fast-to-evaluate prior function can be combined with com-
putationally costly precomputed posterior samples from
individual GW events to evaluate the likelihood of the
GWmeasurement given a specific cosmology. Results from
individual events can then be used to provide a combined
posterior distribution on cosmological parameters. We also
provide an example analysis mirroring that of the existing
standard approach where we show good agreement in our
results on the posterior distribution of the Hubble constant
using 42 BBH detections from the advanced GW detectors.
Our results exhibit good agreement with the established

gwcosmo pipeline, a methodology employed in the
advanced GW detector O3 analysis for cosmological
parameter inference. The analysis showcases strong agree-
ment in posteriors largely informed by the population
characteristics of the posterior distribution for cosmological
parameter inference, as depicted by the consistent matching
trends seen in Fig. 1. This consistency leads naturally to a
strong agreement between the combined posteriors over the
42 BBH events where the majority of inferred cosmological
information stems from the population characteristics of the
events.
We note some discrepancies between our results and

those of [11] for events that exhibit posterior structure at
low values of H0. These features, which are present in the
gwcosmo posterior distributions, are not as prominent in
the CosmoFlow posterior distributions. Reconstructing
these features is challenging and demands a larger training
dataset and additional development of the NF structure to
more accurately capture the galactic clustering within the
GLADEþ catalog. Despite this challenge, since the dis-
crepant posterior structure does not overlap with the area of
combined posterior support (at ∼70 km s−1 Mpc−1) we
obtain very good agreement with the corresponding
gwcosmo result. We also note that while we have used
the gwcosmo analysis as a benchmark, it is not fair to treat
it as an absolute standard since it contains (as do most
computational analyses including our own) a finite number
of minor approximations. This method additionally intro-
duces flexibility in selecting the number of cosmological
and/or population parameters for inference as well as the
number of GW parameters to use as input. Our method
requires only that training data consist of GW parameter
samples, conditional on cosmological and or population
parameter samples, and that a suitably large number of
these samples be generated prior to training. This enables
the extension of the analysis into inference of multidimen-
sional cosmological and/or population parameter spaces,
where subsequent comparisons with recent improvements
to gwcosmo [35] can be conducted. Future work will also
address the complexity of astrophysical model choices,

FIG. 2. Combined posteriors from Fig. 1, comparing Cosmo-
Flow (solid red) with gwcosmo (dashed black). The single event
likelihoods for CosmoFlow are plotted in the background in
gray. Current Planck [4] and SH0ES [5] estimates of the Hubble
constant are also plotted in pink and green, respectively, with 3σ
uncertainties. The 1σ boundaries are also plotted for both
CosmoFlow and gwcosmo.
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e.g., the redshift evolution of the BBH mass distribution
parameters [36].
As is to be expected with graphics processing unit (GPU)

powered machine learning approaches, we can also high-
light the inherent computational speed of CosmoFlow.
The evaluation of the likelihood [the expectation value in
Eq. (6)] for a single conditional parameter and 1000 GW
posterior samples takes ∼1 ms on a single GPU, enabling
swift computation over a range of cosmological parameter
values.
It is important to address the issue of combining joint

posteriors from individual events in the case of multidimen-
sional posterior distributions over cosmological and pop-
ulation parameters. For our one-dimensional analysis,
evaluating the likelihood for each BBH on a commonvector
of H0 values was sufficient. For higher dimensional cases,
traditional Bayesian sampling methods can be used, e.g.,
nested sampling [37] and Markov chain Monte Carlo [38].

However, the inherent parallelism within the CosmoFlow
approach makes inefficient rejection sampling approaches a
feasible and simple alternative.
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