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The gravitational wave signals detected by the LIGO-Virgo-KAGRA collaboration can be explained by
mergers of binary primordial black holes (PBHs) formed in the radiation dominated epoch. However, in
early structures induced by the Poisson distribution of PBHs, a significant fraction of binaries are perturbed
and avoid mergers. In addition, the internal dynamics of early halos lead to the formation of dense
primordial black hole clusters within a few Hubble times from the moment of halo formation. In such
clusters PBH binaries are effectively formed and their mergers potentially dominate in the modern era. We
obtained that the PBH merger rate changes with redshift as R ∝ ð1þ zÞβ, where β ¼ 1.4–2.2 reflects the
influence of PBH clustering and depends on both z and fPBH. The observed merger rate constraints the
fraction of PBHs of tens solar masses in the composition of dark matter fPBH ≲ 0.001–0.1 in dependence of
the clustering efficiency.
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I. INTRODUCTION

The collapse of hypothetical regions with high over-
density leads to the formation of primordial black holes
(PBHs) in the early Universe [1,2]. The most popular
mechanism is that these fluctuations arise during cosmic
inflation [3–8]. These black, depending on their mass,
could make up some fraction (or even all) of the dark matter
(DM) [9–11]. In particular, the discovery of gravitational
waves by the LIGO-Virgo collaboration [12,13] has
become the reason for active interest in PBHs with masses
m ¼ 10–100M⊙ [14–30].
One of the possibilities for the formation of PBH binaries

is the decoupling of a PBH pair from the Hubble flow in the
radiation dominated Universe [15,31,32]. Henceforth such
binaries will be called early binaries. After formation, the
binary gradually shrinks due to the emission of gravita-
tional waves and eventually merges. The Poisson initial
distribution of PBHs also leads to the active formation of
early dark structures if the fraction of PBHs in DM is
fPBH ≳ 0.01 [33–37]. Early binaries are perturbed in early
halos during interactions with other PBHs and therefore
avoid mergers. To satisfy the observed black holes merger
rate by LIGO-Virgo-KAGRA (LVK) collaboration, the
fraction of PBHs with masses ∼10M⊙ should be fPBH ≲
0.001–0.1 [24,38,39]. The lower limit corresponds to the
absence of clustering. The upper limit in turn implies that a
significant fraction of binaries are perturbed in clusters and
avoid mergers. In the last case the PBH merger rate is
significantly reduced.

PBH binaries are also formed in the DM halo due to the
emission of energy in the form of gravitational waves during
pair scattering with a small impact parameter [14,17].
We will call them late binaries. This mechanism is thought
to make a subdominant contribution to the PBH merger
rate [22], but in the present work we show that this is not
always the case. As noted earlier, the interaction of PBHs in
the Poisson DM halos leads to a decrease in the merger rate
of early binaries. At the same time, these gravitational
interactions lead to the formation of dense PBH clusters in
early halos [39]. These clusters are a suitable place for the
effective formation of late binaries.
The observation of gravitational waves by the LVK

collaboration is not enough to answer the question about
the nature of merging black holes. One of the distinctive
signatures for PBHs is mergers at high redshifts z≳ 30
[40–45], since at this era it is difficult to produce mergers
of black holes of astrophysical origin [46]. On the other
hand, for PBH binaries forming in the early Universe,
the merger rate increases monotonically with redshift R ∝
ðtðzÞ=t0Þ−34=37 [27,38], here t0 is the age of the Universe. In
this work we show that this dependence is valid only in the
case of fPBH < 10−3. For large PBH contributions to the
DM composition, clustering effects cause the merger rate to
increase faster with redshift. In addition, at low redshifts
z≲ 5 mergers of late binaries in PBH clusters potentially
predominate over early ones. Future ground-based third-
generation gravitational wave detectors Einstein Tele-
scope [47,48] and Cosmic Explorer [49] will be able to
observe black hole mergers of tens solar masses at redshifts
up to z ∼ 100 [41–43]. Future observations will make it
possible to reconstruct the time evolution of the merger rate*vdstasenko@mephi.ru
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and answer the question about the contribution of PBHs to
the composition of dark matter.
In this work, we consider two-component dark matter,

consisting of primordial black holes with mass m ¼ 30M⊙
and light unknown particles. Low-mass PBHs can also act
as dark matter particles [50–52]. This work takes into
account the gravitational interaction of PBHs with DM
particles. In our analysis we mainly focus on the situation
that the fraction of 30M⊙ PBHs in the dark matter com-
position is fPBH ≈ 0.01–0.1. We also assume that PBHs are
not clustered in space at the moment of their formation
above the Poisson distribution [53–59]. Therefore, binaries
are formed according to the scenario of [15,31]. The paper
is organized as follows. In Sec. II we consider the internal
evolution of early DM halos formed due to Poisson noise of
PBHs. We show that the evolution of early structures
naturally leads to the formation of dense primordial black
hole clusters. In Sec. III we estimate the survival of clusters
during the structures formation. Next, Sec. IV examines
the formation of PBH binaries in both the early and late
Universe and estimates the merger rate of late binaries
in clusters. Section V studies the evolution of the PBH
merger rate with cosmic time. Finally, we discuss our
results in Sec. VI.

II. DYNAMICS OF THE EARLY DARK
MATTER HALO

Poisson noise in the initial spatial distribution of PBHs
induces early formation of structures [33,36]. The magni-
tude of fluctuations in the volume containing N PBHs is
estimated as δp ∼ fPBH=

ffiffiffiffi
N

p
[34]. The variance of fluctua-

tions on the mass scale M is

SpðM; zÞ ¼ mfPBH
M

D2ðzÞ; ð1Þ

here DðzÞ is the growth factor for isocurvature perturba-
tions [60]

DðzÞ ≈ 3

2

�
1þ zeq
1þ z

�
; ð2Þ

where zeq ≈ 3400 is the redshift of matter-radiation equal-
ity. Here we neglect standard adiabatic inflationary fluc-
tuations, because at redshifts z > 10 their contribution is
much less than Poisson noise. However, in the modern era,
their contribution is important. We will consider the impact
of inflationary perturbations in the Sec. III, when we study
the issue of the surviving of PBH cluster.
The characteristic halo mass is defined as SpðMch; zÞ ¼

δ2c [61]

Mch ¼
9mfPBH
4δ2c

�
1þ zeq
1þ z

�
2

; ð3Þ

where δc ¼ 1.69 is the critical threshold for spherical
collapse. It is also implied here that the halo contains both
PBHs and dark matter particles, with the mass fraction of
PBHs is fPBHMch. According to the Press-Schechter forma-
lism, the fraction of matter in a halo with a mass greater
thanMch is ≈32%. The halo mass function is given by [62]

M
dn
dM

¼ 1ffiffiffiffiffiffi
2π

p ρM
M

ffiffiffiffiffiffiffiffi
M
Mch

s
exp

�
−

M
2Mch

�
: ð4Þ

Forming quite early, such dark matter structures have a
high density, so the black holes in them actively interact
gravitationally with each other and with dark matter
particles. The characteristic timescale of internal evolution
for such halos turns out to be much less than the age of the
Universe t0. Our previous work [39] studied the dynamics
of early dark matter structures before core collapse. This
paper also takes into account the evolution after core
collapse. At this stage of the evolution of a self-gravitating
system, the main role is played by binaries, formed in three-
body interactions (hereafter we will call them three-body
binaries). Some of these binaries will be hard, i.e., their
binding energy is greater than the characteristic kinetic
energy of the PBHs in cluster. Interactions of such binaries
with single PBHs in a cluster increase their binding
energy [63]. Thus, binaries become more harden while
they pump energy to other PBHs. As a result of such
successive scatterings, the binary acquires recoil energy
and leaves the core. The heating rate of the cluster per unit
mass due to this process is given by [64–66]

Ėb ¼ 90G5m3ρ2BHσ
−7
BH; ð5Þ

where ρBH and σBH are the density and one-dimensional
velocity dispersion of PBHs.

A. Simple model for cluster evolution

To begin with, let us analyze the evolution of the DM
halo for the case fPBH ¼ 1; i.e., the halo consists only of
PBHs. The dynamics of the halo are divided into two parts:
before and after the core collapse. Scattering of PBHs on
each other occurs most actively in the central part with the
highest density, so further considerations refer specifically
to the cluster core. The evolution before core collapse
occurs under the influence of two-body relaxation is the
distant pair scattering of PBHs. As a result, PBHs gradually
escape from the core and carry away a certain amount
energy. This can be described within the framework of a
simple homologous model by the following equation [67]:

dEc

dt
¼ ζEc

Mc

dMc

dt
; ð6Þ

here the index c denotes the core and the numerical value of
the constant ζ ¼ 0.737. Mc is the mass of the core, the rate
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of decrease of which is given by

dMc

dt
¼ −

νMc

tr
; ð7Þ

where tr ∼ tdynNc= lnNc is the relaxation time and tdyn ∼
1=

ffiffiffiffiffiffiffiffi
Gρc

p
is the core dynamical time. The numerical factor

before the relaxation time is somewhat arbitrary and is not
important for our analysis here. Applying the virial theo-
rem, we obtain the equation relating the mass and radius of
the core

ṙc
rc

¼ Ṁc

Mc
ð2 − ζÞ: ð8Þ

After integration we finally get rcðtÞ ∝ McðtÞ2−ζ, i.e., the
shrinking of core occurs with a decrease in mass. The
central density evolves as ρc ∝ M−2.79

c . If the evolution
proceeds only under the influence of pairwise relaxation,
then full core evaporation occurs. Density tends to infinity
over time while mass goes to zero, this is a well-known
gravothermal catastrophe [68].
However, as core density increases, dissipative processes

become more and more important. As noted earlier, the
core collapse is stopped due to the formation of three-body
binaries and their interaction with other PBHs in the cluster.
The evolution of the cluster is no longer described only by
Eq. (6) and it is necessary to take into account the heating of
the cluster according to Eq. (5). The number of PBHs that
remain in the core does not depend on the initial conditions.
Indeed, at the moment of the core collapse termination,
the condition Ėc=Mc ∼ Ėb is satisfied. Then we get Nc ∝
1= lnNc that is approximately a constant up to a logarithmic
factor. Note that in the literature it is sometimes (somewhat
erroneously) assumed that the cluster completely evapo-
rates, i.e., full core evaporation occurs. However, as follows
from the analytical estimation and we will show further as a
result of the numerical solution, a finite number of PBHs of
the order Nc ≈ 10–30 remains in the cluster core. Further
evolution of the cluster after the core collapse proceeds
according to self-similar expansion and is determined by
heating due to three-body binaries of Eq. (5) and is
described by the following equation:

GMc

r2c
ṙc ¼ Ėb: ð9Þ

Since σc ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMc=rc

p
, then ṙc ∝ r−1=2c , which yields rc ∝

t2=3 and ρc ∝ t−2. The presented analysis corresponds to the
case of neglecting the contribution of DM particles
fPBH ¼ 1. The next section considers case fPBH < 1 using
the kinetic equation. Nevertheless, it can already be noted
that the evolution of the cluster is divided into two stages:
an increase in the central density until the core collapse and
after collapse dynamics with a decrease in density.

At the stage of postcollapse evolution, the halo density
decreases as ρ ∝ t−2. The average matter density of the
Universe obeys the same dependence. However, at the
moment when the cluster enters the expansion stage, its
density in the center is higher than at the time of its forma-
tion, and therefore significantly higher than the average
density of matter in the Universe at this moment. During the
structures formation, clusters are accreted into a large halo
and the central part of clusters is much denser than halo
density. Therefore the cluster is resistant to destruction, this
is analyzed in Sec. III.

B. Numerical solution of the Fokker-Planck equation

To study in more detail the dynamics of early DM halos,
especially for the case fPBH < 1, we solve the orbit
averaged kinetic Fokker-Planck equation in the spherically
symmetric case of matter distribution [69–71] (see also
book [72]). This equation describes the time evolution of
the distribution function under the influence of weak pair
scattering (two-body relaxation). This approach takes into
account the interaction of PBHs with dark matter particles.
Namely, PBHs experience dynamical friction against
DM particles, which changes the simple core collapse
dynamics discussed in Sec. II A. We also assume that the
angular momentum distribution is isotropic, i.e., the dis-
tribution function depends only on the energy fðEÞ. The
method for solving the Fokker-Planck equation is presented
in the appendix. We use the kinetic approach, because
it is necessary to study the internal dynamics of a huge
number of early halos. Direct N-body integration makes it
possible to study the dynamics of structures in detail, but it
is computationally time consuming. In this context, the
Fokker-Planck approach is well suited due to its computa-
tional speed while reflecting the main patterns of halo
evolution.
In the previous section it was shown that the internal

dynamics of gravitationally interacting bodies ultimately
leads to core collapse or, in other words, to a gravothermal
catastrophe. In order to take into account after core-collapse
dynamics, we modify the Fokker-Planck equation by
adding a term responsible for cluster heating associated
with three-body binaries, similar to the works [64–66]. This
is done by the standard procedure of integration along the
orbit of Eq. (5), which is also described in the Appendix.
We choose the Burkert profile as the initial halo density

distribution [73]

ρ ¼ ρc
ð1þ r=r0Þð1þ r2=r20Þ

; ð10Þ

where the parameter r0 determines the radius of the halo
core, for simplicity it is set equal to r0 ¼ Rvir=5, that
corresponds to ρc ≈ 104ρMðzÞ. We also assume that PBHs
and DM particles are equally distributed in space and
fraction of PBHs in the halo mass is fPBH. The virial radius
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Rvir is determined by the standard expression

Rvir ¼
�

3M
4πΔcρMðzÞ

�
1=3

;

≈ 76

�
M

105M⊙

�
1=3
�
1þ z
20

�
−1

pc; ð11Þ

here Δc ¼ 18π2, M is the halo mass and ρM is the matter
density of the Universe with the modern value is ρMð0Þ≈
38M⊙ kpc−3.
Figure 1 shows the evolution of the central density of

PBHs (solid lines) for halos of characteristic mass formed
at different redshifts for the case fPBH ¼ 0.1. Also as an
example, the case fPBH ¼ 1 with single mass PBHs is
shown by dashed line for a halo formed at zf ¼ 100. The
dominant presence of dark matter particles alters evolution.
If the halo consists only of PBHs, then the central density
changes very slowly with time but by the core collapse
time grows sharply. For fPBH < 1, the initial increase in the
PBHs density occurs primarily due to dynamical friction
against light DM particles. Also, the core collapse occurs
“more softly.” A significant contrast in the PBHs density is
formed, which exceeds the initial central density of the halo
ρ ¼ ρPBH=fPBH. That is, PBHs over time begin to dominate
in density over the dark matter particles in the center of the
halo. We call this contrast a PBH cluster. After reaching a
sufficiently high density, PBHs will mainly scatter with
each other (not DM particles). The further evolution
develops along the path of two-body relaxation in accor-
dance with the discussion of the previous section. The dots
in Fig. 1 indicate the core collapse time obtained in [39],

where only precollapse dynamics were taken into account

tcc ¼
15.9σ3

G2mρc lnΛ
ð1.3e2.1fPBH − 1Þ: ð12Þ

In this work, by core collapse we mean the achievement of
the maximum PBH density and, as a consequence, the
formation of a cluster. The core collapse time in Eq. (12)
turns out to be in good agreement with more general our
calculations that take into account after core collapse
dynamics. Note for the case fPBH ≲ 0.1, the evolution of
the halo occurs mainly due to the dynamical friction of the
PBHs on the DM particles. The latter causes the core
collapse time to scale approximately as tcc ∝ fPBH as can be
seen from Eq. (12) and in Fig. 1 from the comparison of the
red solid line and the dot-dashed line.
Also, for the case fPBH ¼ 1, the expansion stage ρ ∝ t−2

begins immediately after the core collapse. However for the
case fPBH ¼ 0.1, expansion begins later and the central
density remains approximately constant for several core
collapse time tcc. Next the cluster begins to expand due to
the formation of three body binaries, which act as a source
of energy. In our work, we neglect merging of these
binaries, because they generally have a lifetime signifi-
cantly exceeding the age of the Universe [74]. Although we
note that binaries can acquire a large eccentricity when
perturbed by a third body due to the Kozai-Lidov mecha-
nism [75,76]. Particularly in globular clusters in hierarchi-
cal triple systems, the inner binary can merge in Hubble
time due to this process. [77]. However, we assume that this
effect is very rare for our consideration and is beyond the
scope of this work. The asymptotic behavior of the cluster
expansion ρ ∝ t−2 does not take place for fPBH < 1,
although the dependence is similar, that is due to the
abundant presence of dark matter particles, which also
interact with PBHs. In addition, for halos formed at
zf ≳ 30, the expansion of the cluster leads to the fact that
its density at z ¼ 0 turns out to be less than at the moment
of formation.
In Fig. 2 we show the density profile of PBHs and DM

particles at the present moment z ¼ 0. The dotted line is the
halo density profile at the moment of formation zf ¼ 20,
and the fraction of PBHs is fPBH. The vertical dashed line
shows the core radius (also known as King radius), which is
given by [78,79]

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v2ð0Þ
4πGρð0Þ

s
; ð13Þ

here vð0Þ is the three-dimensional velocity dispersion at the
center of the halo, which in a multicomponent environment
can be defined as [70]

v2ð0Þ ¼ 1

ρð0Þ
X

ρiv2i ð0Þ; ð14Þ

10-2 100 102 104
10-2

100

102

FIG. 1. The time dependence of the central density of PBHs in
halo with characteristic mass of Eq. (3). Solid lines correspond to
fPBH ¼ 0.1 and different moments of halo formation zf showed
in the legend. The dashed line corresponds to the case fPBH ¼ 1
and zf ¼ 100. The red dot-dashed line shows the case fPBH ¼
0.01 and zf ¼ 20. The dots mark are the moments of core
collapse from Eq. (12).
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where vi is given by

v2i ¼
4πmi

ρi

Z
ϕ−1ðEÞ

0

dEfiðEÞ½2ðE − ϕðrÞÞ�3=2; ð15Þ

in our case, the index i refers to either DM particles or
PBHs. With this definition, at point rc the density turns out
to be three times less than the central one. We also note that
three-dimensional and one-dimensional velocity dispersion
are related by the expression v2 ¼ 3σ2.
Our calculations show that about Nc ≃ 20 PBHs remain

in the core. From Fig. 2 it is clear that the PBHs density at
z ¼ 0 exceeds the halo density at the initial time at zf ¼ 20.
In addition, the density of DM particles is approximately
two orders of magnitude lower than the PBHs in the center
of the halo, which is due to mass segregation. It can be seen
that the region of PBHs dominance is order of ∼10 pc.
Thus, the internal evolution of dark halos leads to the
formation of dense PBH clusters.
To conclude this section, we will briefly discuss the

presence of baryonic matter in the halo. The infalling gas is
thermalized to a virial temperature

Tvir ¼
μmp

2kB

GM
Rvir

≈ 300

�
M

105M⊙

�
2=3
�
1þ z
20

�
K; ð16Þ

here μ is the mean molecular weight and mp is the proton
mass. For baryonic gas dynamics to differ from dark matter,
the baryonic component should cool. Atomic cooling is
effective only at temperatures Tvir > 104 K. Therefore, the
behavior of baryons is no different from dark matter
particles. However, the accretion of matter onto PBHs
will lead to heating and ionization of the matter. Inverse

Compton scattering of cosmic microwave background pho-
tons by electrons will effectively cool the gas. In order to
understand the influence of baryonic effects, it is necessary to
know the efficiency of accretion. Because of the complexity
of this analysis, we assume that baryons are indistinguishable
from dark matter particles. In other words, we neglect the
influence of baryons on the evolution of the halo.

III. THE SURVIVING OF CLUSTERS

In the process of hierarchical structure formation, small
halos will be absorbed into larger halos and become
subhalos. To simplify the terminology, we will assume
that the cluster and subhalo are identical. The large halo in
which the cluster is located will be called the host halo. The
characteristic timescales for the structure formation corre-
spond to the formation time of the halo tf (i.e., Hubble
time), because the halo mass in Eq. (3) changes as
Mch ∝ ðt=tfÞ4=3. Hence, within a time of the order of tf,
the halo already begins to merge and form a larger halo.
The probability that a halo with massM1, formed at time

t1, will be in a halo with mass M2 by time t < t2 is given
according to the extended Press-Schehter formalism by the
expression [80]

PðS2; t < t2jS1; t1Þ ¼
1

2
½1 − erfðAÞ� þ δ1 − 2δ2

2δ1

× exp

�
2δ2ðδ1 − δ2Þ

S1

�
½1 − erfðBÞ�;

ð17Þ

here

A ¼ S1δ2 − S2δ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S1S2ðS1 − S2Þ

p ;

B ¼ S2ðδ1 − 2δ2Þ þ S1δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S1S2ðS1 − S2Þ

p ; ð18Þ

S ¼ Sp þ Sad is the modern dispersion of fluctuations. In
addition to the Poisson noise of the PBHs, we also took into
account adiabatic inflation perturbations, which are well
approximated by the following formula [60]:

SadðM; zÞ ≈ 0.043
ð1þ zÞ2 ln

2.5

�
2.3 × 1015M⊙

M

�
; ð19Þ

where S1 ¼ SðM1Þ, S2 ¼ SðM2Þ and δ ¼ δcð1þ zÞ is the
threshold for collapse as a function of time. We neglect the
effects of the cosmological constant Λ in the linear growth
of fluctuations, because we consider redshifts where its
influence is negligible.
Following Ref. [80], we define the halo survival time as

the time during which the halo mass doubles. Figure 3
shows the cumulative probability that a halo with mass M1

10-2 10-1 100 101 102
10-3

10-2

10-1

100

101

102

FIG. 2. The density profile of PBHs and DM particles at the
present moment for a halo of characteristic mass Mch, formed at
zf ¼ 20 and fPBH ¼ 0.1. The vertical dashed line shows the core
radius from Eq. (13) at z ¼ 0. Dotted line is the initial halo
density profile at the time of formation.
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will be in a halo with mass 2M1 as a function of time. Here
we set fPBH ¼ 0.1 and the moment of halo formation
zf ¼ 30. In the Eq. (17) we assume that t1 ¼ tf t2 ¼ t=t1.
We note that the form of the function Pðt=tfÞ weakly
depends on the specific moment of formation.
The vertical lines in Fig. 3 show the time of core collapse

for halos of different masses in accordance with the color in
the legend. Let us remind that the time of core collapse
corresponds to the time of formation of a PBH cluster. It
can be seen that the core collapse in a halo of small masses
predominantly occurs before their mass doubles. Thus, a
PBHs cluster is more likely to form in low-mass halos.
Also, for halos that form earlier, the time of the core
collapse turns out to be shorter as compared to the time of
formation

tcc
tf

∝
σ3ffiffiffi
ρ

p ∝ ð1þ zÞ−2: ð20Þ

Therefore, the earlier a halo is formed, the more efficiently
PBH clusters are formed in them. Note also that the case
fPBH ≈ 1 is disfavoured, because collapse occurs over a
large number of times tf, as follows from Eq. (12). In
particular, from Fig. 1 it follows that for fPBH ¼ 1 and
zf ¼ 100 the core collapse of the characteristic mass halo
occurs in tcc ≈ 40tf. In addition, the collapse is sharp; i.e., it
occurs at the end of precollapse evolution. The dense PBH
cluster is not formed in such structures, because absorption
into a large halo occurs much earlier than core collapse.
On the other hand for PBH fraction fPBH ¼ 0.1, the halo of
characteristic mass, formed at zf ¼ 30, undergoes the core
collapse in tcc ≈ 4tf.

We are also interested in merging of PBHs in clusters, so
it is necessary to understand how many clusters survive by
the modern era. After absorption into a large halo, under the
influence of dynamical friction, a subhalo with mass M
settles in the host halo in time

tdf ¼
400 Gyr
lnΛ

�
R

1 kpc

�
2
�

σh
10 km s−1

��
104M⊙

M

�
; ð21Þ

where it is assumed that the host density profile has the
form of a singular isothermal sphere ρ ¼ σ2h=2πGr

2 with
velocity dispersion σh and R is the radius from which
dynamical friction sink begins. Equation (21) also implies
that the cluster sinks in a circular orbit. For orbits with low
angular momentum, the dynamical friction time will be
less [81]. In modern halos, dynamical friction is ineffective
for clusters with lowmass, but in earlier epochs this was not
the case. Further, at the end of this section, we will show
that if a cluster is absorbed by a host halo at redshifts z > 4,
then it settles in time less than the age of the Universe.
During the process of settling, the subhalo will experi-

ence gradual tidal striping under the influence of tidal
forces from the host halo potential. The mass is located at a
distance greater than the tidal cutoff radius rt from the
center of the cluster is captured in the host [82]

rt ¼ R

�
MðrtÞ

MhðRÞ½3 − d lnMh
d ln r jr¼R�

�
1=3

; ð22Þ

where R is the radius of the circular orbit in which the
cluster rotates. In fact, rt refers to the radius of the subhalo.
For an host halo isothermal sphere, the tidal radius will be

rt ¼ R

�
M

2MhðRÞ
�

1=3
: ð23Þ

In order to the cluster to fully experience tidal striping, it is
necessary that the central density of the cluster be com-
parable to the host halo density ρhðRÞ ≈ ρð0Þ. However,
as we discussed earlier, the cluster is significantly denser
than the host, as a consequence of its internal evolution.
Therefore, tidal striping is ineffective for the complete
destruction of clusters, despite the fact that the cluster can
settle into the center of the halo in a short time.
Another process that can lead to the destruction of

clusters is their tidal interaction with each other in the
host halo. We will assume that, under the influence of
dynamical friction, the clusters settled in the center of host
halo, where they then interact with each other. During long-
range tidal interactions of clusters, the rate of change in
their internal energy is given by [79]

Ėtid ≈
14

3

ffiffiffiffiffiffi
2π

p G2M3nclr2

σh

Z
∞

r

db
b3

; ð24Þ

100 101 102 103
0

0.2

0.4

0.6

0.8

1

FIG. 3. The cumulative probability of absorption of a halo with
massM1, marked in the legend, into a halo with massM2 ¼ 2M1.
The graph is shown for the moment of formation halos zf ¼ 30

and PBHs fraction fPBH ¼ 0.1. The dashed vertical lines show
the core collapse time (the formation of PBHs cluster), their color
matches the color of the solid lines.
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here ncl is the number density of clusters in the halo, which,
to maximize the effect, we define as ncl ¼ ρh=M. We
estimate the time required to destroy a cluster (tidal
disruption time) as ttd ∼ Ecl=Ėtid

ttd ∼
0.2ffiffiffiffiffiffiffiffi
Gρh

p
�
σh
σ

� ffiffiffiffiffi
ρ

ρh

r
: ð25Þ

It can be seen that the destruction of clusters lasts several
central dynamic times of the host halo. However, this is a
conservative estimation of the tidal disruption time and in a
realistic case it can be much longer. Thus, if a cluster turns
out to be in a halo, where its dynamical friction time is less
than the age of the Universe, then we believe that it is being
destroyed by the present moment.
At low redshifts, structures are formed from inflationary

perturbations, because Poisson noise turns out to be weak.
Let us use Eq. (21) to estimate the dynamical friction time
of a subhalo of mass M in a halo of characteristic mass
SadðMch; zÞ ¼ δ2c

tdf ¼ 15
eξð4Þ

eξðzÞ

�
1þ z
5

�
−3=2

�
104M⊙

M

�
Gyr; ð26Þ

here for simplicity we have introduced the function

ξðzÞ ¼ �5δcð1þ zÞ�0.8; ð27Þ

we put lnΛ ¼ 10 and the distance from which the sink
begins R ¼ Rvir. If the cluster is absorbed at low redshifts,
then the dynamical friction time will exceed the age of the
Universe. In particular, the dynamical friction becomes
ineffective at z≲ 4 for clusters with mass M ∼ 104M⊙. If
the cluster survives to the epoch where dynamical friction
becomes ineffective, then we will assume that the cluster is
not further destroyed.
Let us determine the fraction of halos w that survive the

process of structure formation to the modern era. We will
proceed as follows: for a cluster with mass M, formed at zf,
we find the moment zs from Eq. (26), at which the time of
dynamical friction is comparablewith the age of the Universe
t0. Then, using Eq. (17), we find the probability Ps that the
cluster mass has doubled by time zs, the required fraction
will be w ¼ 1 − Ps. If the cluster survived until the moment
zs, then further absorption into large halos will not lead to its
destruction. Figure 4 shows the fraction of surviving clusters
w for different moments of their formation zf.
Let us estimate the fraction of matter that will be in a halo

with a mass greater than M by the present moment

F ¼ 1

ρM

Z
∞

M
M0dNðM0; zfÞwðM0; zfÞ; ð28Þ

where dN is given by Eq. (4). As can be seen from Fig. 4
the function w weakly changes up to halo mass ≲Mch and

sharply decreases withM > Mch. Also, integral in Eq. (28)
weakly depends on lower limit, so we change the lower and
upper limits by 0 and Mch, respectively. As expected, the
fraction of matter that will remain in the early structures is
F ∼ w, where the maximum value of the function w from
Fig. 4 is taken for estimation. However, most of the subhalo
mass is stripped out into the host halo, but the central part
of the subhalo, containing a dense PBH cluster, probably
survives [83]. Thus, about 10–40% of emerging clusters
survive during the structure formation and can be wide-
spread in the modern Universe.
Let us make an important note: the doubling of the halo

mass mainly occurs due to the absorption of halos of lower
masses. Therefore, this does not necessarily mean the
destruction of the PBH cluster. It is likely that the influence
of this process on the internal evolution of the cluster is
negligible. However, for a conservative estimate, we con-
sider a doubling of the halo mass to be formally a fact of the
cluster destruction.

IV. MERGERS OF PBHS

In this section, we separately consider mergers of PBH
binaries formed both in the early Universe before zeq and
deep inside the matter-dominated era as a result of close
pair scatterings in dark halos. As was shown in the previous
section, the evolution of early DM halos leads to the
formation of a dense PBH clusters, in which the probability
of PBHs mergers becomes enhanced in comparison with
the nonevolutionary case.

A. Early binaries

A pair of PBHs, due to their initial Poisson distribution,
forms a binary system at the radiation-dominated stage.
This pair gradually shrinks due to the emission of GW

10-1 100 101
10-3

10-2

10-1

100

FIG. 4. The fraction of surviving clusters by the modern epoch
z ¼ 0 depending on their mass. Different lines correspond to
different moments of formation zf showed on the legend.

REDSHIFT EVOLUTION OF PRIMORDIAL BLACK HOLE … PHYS. REV. D 109, 123546 (2024)

123546-7



waves and the rate of loss of energy and angular momentum
is given by [84]

Ėgw ¼ −
64G4m5

5c5a5ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; ð29Þ

L̇gw ¼ −
32

ffiffiffi
2

p
G7=2m9=2

5c5a7=2ð1 − e2Þ2
�
1þ 7

8
e2
�
; ð30Þ

where a is the semimajor axis and e is the eccentricity. The
lifetime of a binary due to the emission of gravitational
waves is given by

tmer ¼
3c5a4j7

170G3m3
; ð31Þ

where we introduced dimensionless angular momentum
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
. Note that binaries formed in the early

Universe are highly eccentric j ≪ 1 [22]. The PBH merger
rate as a function of cosmic time is given by [24]

R0 ¼
3.1 × 106

Gpc3 yr
f53=37PBH

�
t
t0

�
−34=37

�
m
M⊙

�
−32=37

× 0.24

�
1þ 2.3Seq

f2PBH

�
−21=74

; ð32Þ

where t0 is the age of the Universe. The last term reflects
the influence of adiabatic perturbations on the eccentricity
of early binaries [22,85] and

ffiffiffiffiffiffi
Seq

p
≈ 0.005 is the variance

of matter perturbation at matter-radiation equality.
The merger rate in Eq. (32) does not take into account the

perturbation of the binary parameters due to interactions
with other PBHs in early halos. The probability that the
halo contains N PBHs is given by [36]

pN ∝
1ffiffiffiffi
N

p e−N=N�ðzÞ; ð33Þ

where

N� ¼
�
lnð1þ δ�Þ −

δ�
1þ δ�

�
−1
; ð34Þ

here δ� ¼ δc=ðDðzÞfPBHÞ and DðzÞ is given by Eq. (2).
At redshifts z ≪ zeq deep in the matter domination stage
δ� ≪ 1, then the Taylor expansion in Eq. (34) gives
N� ≈ 2=δ2�, which will be 2MchfPBH=m as it should be
for the Press-Schechter mass function in Eq. (4) in the
discrete limit.
According to the analysis of Ref. [38], the merger rate is

modified as R ¼ R0Pnp, where Pnp is an suppression
factor showing the fraction of unperturbed binaries. We
assume that perturbed binaries do not merge by the present
moment. The mechanism for perturbing binaries is that

on the timescale of the halo core collapse, the angular
momentum of the binary j increases due to scattering with
other PBHs. Since early binaries have j ≪ 1, this leads to a
significant increase in the lifetime according to Eq. (31).
However, it should be noted that in some rare cases a single
PBH can perturb a binary one so that the eccentricity, on the
contrary, increases. However, binaries experience several
scatterings with single PBHs, and one can expect that
on average the angular momentum of binaries will still
increase. We defer this analysis to future work. Thus, if the
binary is located in a halo that experiences core collapse at
redshift z, then it will not contribute to the merger rate.
Therefore, the fraction of unperturbed binaries will be

PnpðzÞ ¼ 1 −
XNcritðzÞ

N¼3

pNðzfÞ

−
X

N0>NcritðzÞ

 XNcritðzÞ

N¼3

p̃NðzfÞ
!
pN0 ðzfÞ; ð35Þ

where NcritðzÞ is the critical amount of the PBHs in the
halo, which formed at redshift zf and undergoes the core
collapse by z. Note that halos containing PBHs N < Ncrit
experienced core collapse at redshifts greater than z. We
determine the core collapse time according to Eq. (12). In
Eq. (35) the second term is the probability that the binary is
in a halo with N < Ncrit PBHs. The third term corresponds
to the probability that, in a halo with a number of PBHs
N > Ncrit, the binary will be inside a subhalo of lower
mass. Since Pnp depends on zf, we numerically find the
moment of halo formation at which Pnp is minimal.
Probabilities pN and p̃N are normalized as follows:

X
N≥2

pN ¼ 1;
XN0

N¼2

p̃N ¼ 1: ð36Þ

Figure 5 shows the dependence of the suppression factor
Pnp on the redshift for different fPBH and fHL. Different
curves in the graph correspond to different fraction of DM
particles clustering in the halo, where we parametrized this
as in the work [36]

M ¼ mNPBH

�
1þ fHL

1 − fPBH
fPBH

�
: ð37Þ

Here M is the mass of the halo. Note fHL ¼ 1 corresponds
to the fact that the mass of DM particles in the halo is
Mð1 − fPBHÞ (the case when there is no biasing in DM and
PBH distributions). Another limit fHL ¼ 0 means that the
halo consists only of PBHs. In Ref. [36] using N body, it
was also shown that fHL increases with time and, in parti-
cular, by the time z ¼ 100 it is fHL ¼ 0.4 for fPBH ¼ 0.1.
But since the suppressive factor weakly depends on fHL,
then in what follows we assume fHL ¼ 1.
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Let us now qualitatively discuss the perturbation of
binaries in the context of the hierarchical structure for-
mation. From the point of view of suppressing mergers of
early binaries, the case fPBH < 1 is preferable, because the
core collapse of such halos occurs within several times tf
characteristic of the structure formation as was shown in
Sec. III (see Fig. 3). The binaries in such halos will have
time to become perturbed before the cluster is absorbed by
a large halo. On the contrary, in the case fPBH ¼ 1 with
monochromatic mass spectrum of PBHs, the timescale of
two-body relaxation significantly exceeds the characteristic
time for the structure formation. Therefore, the internal
structure of the cluster (and binaries) will not change
from the moment of its formation until absorption into a
large halo.

B. Late binaries

As was shown earlier, the evolution of early DM halos
leads to the formation of dense PBH clusters. In these
clusters, two PBHs can approach each other quite closely
and form a pair due to the emission of gravitational waves.
In this section, we derive the cross section for binary
formation and estimate its parameters.
The amount of the gravitational wave energy emitted in a

hyperbolic orbit can be obtained using Eq. (29) for elliptic
orbit. The main amount of energy is emitted when passing
the pericenter rp ¼ að1 − eÞ. Then, during one orbital

period T ¼ πa3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Gm

p
in a highly elongated elliptical

orbit e ≈ 1 energy δE ≈ ĖgwT will be emitted

δE ¼ 85πG7=2m9=2

12c5r7=2p

: ð38Þ

The value rp is related to the impact parameter b by the
following expression

b2 ¼ r2p

�
1þ 4Gm

rpv2rel

�
≈
4rpGm

v2rel
; ð39Þ

vrel is the relative velocity between PBHs at infinity. For
the formation of a binary, it is necessary that the amount
of energy δE ¼ αμv2rel=2 be emitted, where α ≥ 1 and
μ ¼ m=2 is the reduced mass. Then from Eqs. (39) and (38)
we get that the impact parameter is

b ¼ 2Gm
vrel

�
85π

3αc5v2rel

�
1=7

;

≈ 8.9

�
vrel

km s−1

�
−9=7

�
10

α

�
1=7

au; ð40Þ

where PBH mass ism ¼ 30M⊙. In order to obtain the cross
section for the formation of a binary, it is sufficient to set
α ¼ 1 in this case bmax ≈ 12.4 au

Σ ¼ πR2
s

�
85π

3

�
2=7
�
vrel
c

�
−18=7

; ð41Þ

here Rs ¼ 2Gm=c2 is the Schwarzschild radius of the black
hole, similar expression for the cross section was obtained
in Refs. [70,86].
Let us estimate the parameters and lifetime of the

binaries formed through this channel. It follows from
Eq. (40) that the impact parameter very weakly depends
on α and b ≈ bmax=

ffiffiffi
2

p
for α ¼ 10. Therefore, the initial

energy of two PBHs μv2rel=2 is much less than the energy
emitted in the form of gravitational waves δE. Thus, most
of the binaries will have binding energy Gm2=2a ≈ δE.
Hence the semimajor axis in turn is determined by the
expression

a ¼ 3c5ðbvrelÞ7
5440πG6m6

;

¼ 5.8 × 103
�

b
9 au

�
7
�

vrel
km s−1

�
7

au: ð42Þ

The average distance between PBHs in a cluster is d ∼
n−1=3PBH ∼ 0.8 pc for PBHs density ρc ≈ 100M⊙ pc−3 (see
Fig. 2). Thus, binary separation will be approximately two
orders of magnitude smaller than the average distance
between PBHs in the cluster core.
The angular momentum of the forming binary reads

L ¼ μbvrel þ δL; ð43Þ

where the first term is the initial angular momentum L0 ¼
μbvrel and, as in the case of energy, from Eq. (30) δL ≈ L̇gwT

100 101 102 103
10-2

10-1

100

FIG. 5. The fraction of unperturbed binaries (suppression
factor) as a function of redshift for different fractions of PBHs
in the DM fPBH (color lines) and different fractions of DM fHL in
the halo composition is given by Eq. (37) in accordance with the
marking in the legend.
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δL ¼ 96πG5m6

c5ðbvrelÞ4
: ð44Þ

It is clear that δL ≪ L0, because
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=b

p
≪ c. Hence the

eccentricity of the formed binary is

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4L2
0δE

G2m5

s
: ð45Þ

The dimensionless angular momentum j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
in turn

reads

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2720π

3

r �
Gm
cbvrel

�
5=2

;

¼ 5.1 × 10−4
�

b
9 au

�
−5=2

�
vrel

km s−1

�
−5=2

: ð46Þ

As expected, the late binaries turn out to be incredibly
eccentric. The merger time of such binaries from Eq. (31) is

tmer ≈ 105
�

b
9 au

�
21=2
�

vrel
km s−1

�
21=2

yr: ð47Þ

Late binaries, like early ones, can be destroyed due to
strong scattering with other PBHs in the cluster. The
characteristic time for this is given by [39]

ts ≈ 107
�
104 au

a

��
100M⊙ pc−3

ρPBH

��
vrel

km s−1

�
yr ð48Þ

Thus, the forming binaries merge before possible destruc-
tion due to strong scattering. They also have a short
lifetime, so they can be considered to merge instantly after
formation.

C. The PBH merger rate

The merger rate of PBHs per halo is

Γh ¼
2π

m2

Z
drr2ρ2PBHhΣvreli; ð49Þ

where the angle brackets mean the average over the rela-
tive velocities of PBHs, which we calculate according to
[65,87] and Σ is the cross section for the binary formation,
which is given by Eq. (41). Let us recall, that we assume
that after formation, late binaries are instantly merged. The
internal dynamics of the halo leads to the fact that the rate
of PBHs mergers also evolves over time. The PBH merger
rate is obtained by convolving expression in Eq. (49) with
the halo mass function in Eq. (4). It is also necessary to take
into account the destruction of the halo during the hierar-
chical formation of structures. To obtain the correct merger
rate, it is necessary to take into account PBH mergers that

occur in halos formed at different redshifts, and also to
know how many halos are destroyed. For simplicity, we
will assume that all halos are formed at some specific zf
and the effects of halo mergers and destructions are
described by the function w introduced in Sec. III. The
function w shows the fraction of surviving halos during the
structure formation. Thus, the merger rate of late binaries is

RlðzÞ ¼
Z

wðM; zfÞ
dn
dM

ðzfÞΓhðzÞdM; ð50Þ

we emphasize that this expression depends on zf. Thus, we
assume that after formation at some redshift zf the mass
function is “frozen” and the merger rate changes over time
only due to the internal evolution of the halos and their
survival. We do not take into account newly formed
halos, and the contribution to the merger rate of destroyed
halos is zero. Let us remind that according to the
Sec. III, we consider a halo undestroyed if it has survived
to the moment when dynamical friction is ineffective in
large halos.
Figure 6 shows the dependence of the late binaries

merger rate on redshift for different moments of halo
formation zf. Here we neglect halo destruction w ¼ 1.
Gravothermal instability, which leads to an increase in the
density of PBHs in the center of the halo, also leads to the
fact that the rate of PBHs mergers increases by two orders
of magnitude. It can be seen that the modern merger rate
will be maximum if the halos are formed at zf ≈ 20–30. For
smaller zf, the halos turn out to be less dense, and the most
massive of them have not experienced the core collapse by
the t0. On the other hand, early formed halos correspond-
ingly transit to the expansion stage earlier, so the PBHs
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FIG. 6. The merger rate of late binaries for the case fPBH ¼ 0.1
and w ¼ 1 in Eq. (50). The curves from right to left correspond to
a decrease of the moment halo formation starting from zf ¼ 70

with a step of Δz ¼ 5, also displayed on the colorbar. The dashed
black curve shows the merger rate of unperturbed early binaries.
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merger rate in them is lower due to their lower density. The
modern merger rate of late binaries weakly depends on the
specific moment of halo formation zf and the difference is
only a few times. Nevertheless, for a rough estimate of the
merger rate we will take the maximum of the expression in
Eq. (50) as a function of zf.
Figure 7 shows the modern rate of PBH mergers

depending on their fraction in the composition of dark
matter fPBH. The gray-green area bounded by dashed lines
is the merger rate of late binaries. The upper dashed line
corresponds to w ¼ 1 in Eq. (50); i.e., halos are not
destroyed. While the bottom line corresponds only to the
surviving halos and their fraction w is calculated according
to Sec. III and shown in Fig. 4. We emphasize that both
cases are obtained as a result of maximizing the merger rate
in Eq. (50) by zf. The merger rate of unperturbed early
binaries is shown by the red solid line. It can be seen that
early binaries can have a subdominant contribution to
PBHs mergers. In particular, as seen, taking into account
the suppression factor, the merger rate of early binaries
does not contradict the LVK observations for the PBHs
fraction fPBH ¼ 0.1. Mergers of late binaries also satisfies
the LVK observations, but at the lower limit. If we do not
take into account the destruction of clusters, then it will
exceed the LVK observations several times. On the other
hand, for fPBH < 0.05, the merger rate of both late and
early binaries does not contradict observations.
The formation of clusters in which PBHs actively

interact with each other inevitably leads to a decrease
mergers of early binaries. At the same time, the probability
of late binaries mergers increases in clusters. Therefore,

the red curve and shaded area in Fig. 7 are related.
Additionally, the red line implies maximum suppression
of early binaries mergers. However, perturbing binaries is
more effective at high redshifts, because the halo has time
to experience core collapse before being absorbed into a
large halo, see Fig. 3. For example, at z ¼ 10, the fraction
of unperturbed binaries from Fig. 5 is Pnp ≈ 0.04, which
corresponds to the moment of formation of zf ≈ 30.

V. HIGH-REDSHIFT PBH MERGERS

The uniqueness of PBHs from the point of view of
observing gravitational wave signals is that their merger
rate monotonically increases with redshift. Therefore, the
observation of black hole mergers at high redshifts will
unambiguously answer the question about the origin of
these black holes: astrophysical or primordial. In the
absence of clustering effects, the merger rate of early
binaries changes over time as R ∝ ðtðzÞ=t0Þ−34=37 [38].
When taking into account clustering, the growing nature of
the dependence ofR on time is preserved. However, as was
shown in the previous section, mergers of late PBH binaries
forming in clusters can exceed the merger rate of early
binaries in the modern era. Figure 6 shows that mergers of
late binaries make a significant contribution only at
relatively low redshifts z≲ 5. In this region of redshifts,
it is difficult to predict the form of the RðzÞ dependence,
because it is necessary to take into account the mergers of
both channels for formation of PBH binaries. In addition, it
is necessary to take into account mergers of black holes of
stellar origin. However, at high redshifts z > 5, early
binaries make a dominant contribution to the rate of black
hole mergers RðzÞ ¼ R0ðzÞPnpðzÞ, which is shown by the
dashed black line in Fig. 6.
The top panel of Fig. 8 shows the redshift dependence

of the merger rate of early PBH binaries. The bottom panel
shows the logarithmic slope β of the merger rate
R ∝ ð1þ zÞβ. It can be seen that at high redshifts the
clustering effects become negligible and the slope changes
to β ¼ 1.4, which corresponds to all early binaries being
unperturbed. If the PBH fraction is fPBH ∼ 0.1, then the
merger rate scales as R ∝ ð1þ zÞ1.9. With such a fraction
of PBHs in the DM composition, clustering effects turn out
to be important up to the moment of recombination z ≈ 103.
On the other hand, for fPBH ∼ 0.01 the change of exponent
β to the case of completely unperturbed binaries β ¼ 1.4
occurs at redshifts z≲ 50, which is potential observable by
future generation gravitational wave detectors [41,42].
In the case of a small fraction of PBHs fPBH ≲ 10−3, the

merger rate changes asR ∝ ð1þ zÞ1.4, because there are no
clustering effects. We neglect the possible perturbation of
binaries in standard dark halos arising from inflationary
fluctuations. For a small fraction of fPBH, the main
contribution to mergers is due to black holes of stellar
origin. Their merger rate is related to the star formation

FIG. 7. The PBH merger rate at z ¼ 0 depending on their
fraction in the DM composition fPBH. The gray area bounded by
dashed lines corresponds to late binaries and is given by Eq. (50),
where the upper assumes w ¼ 1, the lower one is calculated
according to Sec. III. Horizontal shaded area is the LVK
observations R ¼ 17.9 ÷ 44 Gpc−3 yr−1 [88]. The solid line
corresponds to the merger rate of early binaries taking into
account the suppression factor Pnp (mergers of unperturbed
binaries), the dot-dashed line is without suppression.
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rate and is at maximum R ≃ 100 Gpc−3 yr−1 at redshifts
z ∼ 1–2 [89,90]. An additional peak of smaller height is
also possible at redshifts z ≈ 10 from remants of Popula-
tion III stars [43,91]. At even higher redshifts, binary
black holes are difficult to produce through astrophysical
channels, so their merger rate decreases rapidly. The
conservative threshold for mergers of such black holes
corresponds to z ∼ 30 [46]. At that time, the rate of PBH
mergers monotonically increases with redshift for any
values of fPBH. Therefore, the observation of black hole
mergers at redshifts z≳ 30 will indicate their primordial
origin.
From the point of view of high redshifts observations, the

number of gravitational wave events per unit time that
occur in a certain range of redshifts is of interest [92–94]:

Nevents ¼
Z

zmax

zmin

dz
RðzÞ
1þ z

dVc

dz
: ð51Þ

Here the factor 1þ z in the denominator converts the rate
in the source frame to the observer’s frame and dVc=dz is
the comoving volume of the spherical shell between z
and zþ dz

dVc

dz
¼ 4πr2ðzÞ c

HðzÞ ð52Þ

rðzÞ is the comoving distance at redshift z

rðzÞ ¼
Z

z

0

dz0
c

Hðz0Þ : ð53Þ

We use HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ zÞ3

p
with H0 ¼

67.4 km s−1Mpc−1, ΩM ¼ 0.315, and ΩΛ ¼ 0.685 [95].
In the integral in Eq. (51) we mean mergers of early
binaries, since for them it is easy to obtain the merger rate
on time dependence. Also, this integral is a weakly
dependent function of the upper limit, we set it equal to
zmax ¼ 50. The lower limit is zmin ¼ 5, since late binary
mergers become significant at lower redshifts. Note that
Eq. (51) corresponds to the number of signals registered by
an ideal detector. A real detector, in turn, has some
efficiency, so the observed number of gravitational wave
events will be significantly lower.
Figure 9 shows the number of PBH mergers per year at

high redshifts z > 5 depending on fPBH. We assume that
fPBH ≤ 0.1 since this does not contradict the gravitational
wave constraints on the observed merger rate, see Fig. 7.
At fPBH > 0.01, clustering effects are relevant even at
redshifts z > 100, which leads to active perturbations of
early binaries. It can be seen that up to Oð106Þ black hole
merger events per year can be expected, occurring at high
redshifts.
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FIG. 8. Top: the dependence of normalized merger rate of early
binaries from redshift for different fraction of PBH in the DM
fPBH Bottom: the logarithmic slope β ¼ d lnR=d lnð1þ zÞ the
color of the lines is the same as in the legend in the top panel.
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FIG. 9. Number of PBH mergers per year, at redshifts 5 <
z < 50 depending on fPBH is given by Eq. (51).
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VI. DISCUSSION

In this work, the evolution of early DM halos formed
as a result of the initial Poisson distribution of PBHs was
studied. The internal dynamics of these halos is determined
by the gravitational interaction of PBHs both with each
other and with dark matter particles. Similar to how it is
done in astrophysical applications to study the evolution of
globular star clusters, we used the Fokker-Planck kinetic
equation. Due to gravothermal instability, the evolution of
dark halos leads to the formation of dense PBH clusters
surrounded by a massive DM halo. Moreover, in the case
when PBHs of tens solar masses are a subdominant
component of DM fPBH ≲ 0.1, the timescales for the
formation of a cluster in the halo turn out to be comparable
with the characteristic time of structure formation—Hubble
time. Roughly speaking, the cluster forms before being
absorbed into a large halo. In the opposite case fPBH ≈ 1
this is no longer mostly the case. The time required for
cluster formation (core collapse time) significantly exceeds
the time of structure formation, we discuss in detail this
in Sec. III. Therefore, PBHs with a narrow mass distribu-
tion centered at ∼10M⊙ as the dominant component of
dark matter are excluded by observations of gravitational
waves. It has also been shown that emerging PBH clusters
can survive the process of structure formation if they are
absorbed by large halos at redshifts z < 4. We estimate that
about 10–40% clusters can survive to the modern epoch.
We also considered the influence of PBH clustering on

the perturbation of the parameters of PBH binaries forming
in the early Universe. It was shown that a large fraction
≳0.95 of such binaries are perturbed in early structures, that
leads to a strong decreasing of the PBHmerger rate. Similar
to the formation of clusters, the processes of perturbation of
early binaries occur more efficiently for the case fPBH < 1.
We also considered the issue of merging late binaries of
PBHs in clusters. The parameters of the forming binaries
are predominantly such that the binaries immediately
merge after formation. In addition, the internal evolution
of the halo leads to the fact that this channel may be
dominant for PBHs mergers in the current epoch. It is
important to emphasize that the dominant character in late
binaries mergers and the perturbations of early binaries
turn out to be related: the suppression of the merger rate
of early binaries inevitably leads to an increase in mergers
of late binaries. Since both effects require the formation of
clusters.
Late binaries are important for PBH mergers only in a

relatively modern era; however it depends on the destruc-
tion of clusters during the structure formation. If most of
the clusters are destroyed, then the contribution of late
binaries to the PBH merger rate is subdominant. If the
clusters survive completely, then the situation is reversed
and PBH mergers dominate in them up to redshifts z≲ 5.
In this redshift region, it is difficult to predict the behavior
of the merger rate, because the contribution of early

and late binaries is comparable. In addition, as the redshift
decreases, the fraction of surviving clusters will also
decrease. For this reason, the rate of late binaries mergers
shown in Fig. 6 probably becomes more reliable as red-
shifts increase.
In this work, we studied the redshift evolution of early

binaries merger rate R ∝ ð1þ zÞβ. If PBH binaries are not
perturbed, then the exponent β ¼ 1.4. This situation is
realized in two cases: (1) if fPBH ≲ 10−3, in this case there
is no clustering in principle; (2) at high redshifts, where
Poisson clustering has not yet begun. The latter case can be
seen in Fig. 8, when the β drops sharply to 1.4. In particular,
if the fraction of PBHs is 10−3 < fPBH < 10−2, then the
transition to the region of the absence clustering occurs at
z≲ 50. For the case fPBH > 0.01, the influence of cluster-
ing on the mergers of early binaries is significant at all
redshifts. The exponent of the merger rate can reach
β ≈ 2.2. The obtained PBH merger rate can be verified
using third-generation gravitational wave detectors Einstein
Telescope and Cosmic Explorer, which will be able to
observe black hole mergers of tens solar masses up to
redshifts z≲ 100.
In this study, the main source of gravitational wave

events at high redshifts are mergers of PBHs that form
before matter-radiation equality and escape Poisson clus-
tering. However, if the observed merger rate at high
redshifts differs from the analysis presented in this paper,
then this may indicate an initially clustered distribution of
PBHs. Also, binaries that did not fall into Poisson clusters
can merge in earlier epochs due to interaction with dark
matter particles [96]. In these cases, the main contribution
to mergers will be due to late binaries in clusters.
Our analysis also considers the monochromatic mass

spectrum of PBHs m ¼ 30M⊙. Taking into account the
wide mass distribution will have little effect on our results.
If PBH with masses 1 − 100M⊙ are a subdominant part
of dark matter, then the dynamics of early halos is also
driven by dynamical friction against dark matter particles.
Therefore, the timescales for the perturbations of early
binaries and the formation of dense primordial black
hole clusters will qualitatively correspond to our results.
Also, recent reanalysis of the microlensing constraints in
Ref. [97] indicates that all dark matter can be explained by
PBHs (although Ref. [98] argues that such possibility is
excluded). In this case, the peak of the mass distribution of
PBHs corresponds to solar masses [50]. In this scenario the
dynamics of PBHs of tens solar mass (including binaries)
should also generally agree with our results.
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APPENDIX: FOKKER-PLANCK EQUATION

The one-dimensional orbit averaged Fokker-Planck
equation describes the evolution of the distribution function
fðEÞ due to diffusion in energy space [64,69]

∂Ni

∂t
¼ −

∂

∂E

�
miDEfi þDE;bfi þDEE

∂fi
∂E

�
; ðA1Þ

here NiðEÞ ¼ 4π2pðEÞfiðEÞ is the number density in the
energy space of particles ith type (by i we mean either
PBHs or DM particles). The factor pðEÞ is written in the
form

pðEÞ ¼ 4

Z
ϕ−1ðEÞ

0

drr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − ϕðrÞÞ

p
; ðA2Þ

where ϕðrÞ is the gravitational potential. In the spherically
symmetric case, the Poisson equation ∇2ϕ ¼ 4πGρ has a
solution

ϕðrÞ ¼ −4πG
�
1

r

Z
r

0

dr0r02ρðr0Þ þ
Z

∞

r
dr0r0ρðr0Þ

�
; ðA3Þ

where the density profile is related to the distribution
function according to

ρðrÞ ¼ 4π
X
j

mj

Z
0

ϕðrÞ
dEfjðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − ϕðrÞÞ

p
: ðA4Þ

The coefficient DE;b ¼ −4π2pðEÞhΔEib in Eq. (A1) is
responsible for three-body binary heating and hΔEib is the
expression averaged along the orbit in Eq. (5)

hΔEib ¼

R
ϕ−1ðEÞ
0

drr2Ėb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðrÞ − E

pR
ϕ−1ðEÞ
0

drr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðrÞ − E

p : ðA5Þ

The coefficients DE and DEE in Eq. (A1) are given by the
following expressions:

DE ¼ −16π3Γ
X
j

mj

Z
E

ϕð0Þ
dE0fjðE0ÞpðE0Þ;

DEE ¼ −16π3Γ
X
j

m2
j

�
qðEÞ

Z
0

E
dE0fjðE0Þ þ

Z
E

ϕð0Þ
dE0qðE0ÞfjðE0Þ

�
; ðA6Þ

here Γ ¼ 4πG2 lnΛ with lnΛ is the Coulomb logarithm
and qðEÞ is proportional to the volume of the phase space
for particles with energies ≤ E

qðEÞ ¼ 4

3

Z
ϕ−1ðEÞ

0

drr2
	
2ðE − ϕðrÞÞ
3=2; ðA7Þ

we note that qðEÞ is the adiabatic invariant.
To solve the Eqs. (A1) and (A3) together, we first follow

the work [71] and use the variable q instead of E and go to
the logarimic grid x ¼ ln q. The advantage of using q as an
independent variable will become clearer later. The solution
itself is divided into a Fokker-Planck step and a Poisson
step. The first step is that for time Δt the distribution
function fðqÞ is advanced through solving the Fokker-
Planck equation using the finite-difference Chang-Cooper
scheme [99]. The second step is to update the gravitational

potential so that Eqs. (A3) and (A4) are consistent [100].
Using the new distribution function and the gravitational
potential from the previous time step, the density is found

ρðϕoldÞ ¼ 4πm
Z

0

ϕold
dEfnew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − ϕoldÞ

q
; ðA8Þ

where for simplicity we have omitted the sum sign in
Eq. (A4). Next, the Poisson equation is solved by iterations
ϕnþ1 ¼ LρðϕnÞ until the required accuracy is achieved,
where the operator L is given by Eq. (A3). Since q is the
adiabatic invariant, the distribution function fðqÞ remains
fixed when the gravitational potential changes. In order to
integrate Eq. (A8), it is necessary to construct the mapping
between the values of q and E using Eq. (A7).
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