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Many different techniques to analyze galaxy clustering data and obtain cosmological constraints have
been proposed, tested, and used. Given the large amount of data that will be available soon, it is worth
investigating new observables and ways to extract information from such datasets. In this paper, we focus
on antisymmetric correlations that arise in the cross-correlation of different galaxy populations when the
small-scale power spectrum is modulated by a long-wavelength field. In Λ cold dark matter this happens
because of nonlinear clustering of sources that trace the underlying matter distribution in different ways.
Beyond the standard model, this observable is sourced naturally in various new physics scenarios. We
derive, for the first time, its complete expression up to second order in redshift space and show that this
improves detectability compared to previous evaluations at first order in real space. Moreover, we explore
a few potential applications to use this observable to detect models with vector modes, or where different
types of sources respond in different ways to the underlying modulating long mode, and anisotropic
models with privileged directions in the sky. This shows how antisymmetric correlations can be a useful
tool for testing exotic cosmological models.
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I. INTRODUCTION

Current and future galaxy surveys are expected to map
the large-scale structure (LSS) of the Universe with
unprecedented detail, providing us with catalogs of differ-
ent tracers of the underlying dark matter field. Observing
different types of sources will allow for the use of the
multitracer approach, which promises to be a winning
strategy to beat down cosmic variance [1–6].
Recently, there have been many efforts to improve the

available statistical tools for analyzing the LSS, through a
more accurate modeling of, e.g., observational, small-
scale, and general-relativistic corrections. However, it is
also worth investigating completely new avenues, which
may both complement existing observables and be better
suited to test specific cosmological models. A recently
developed observable [7] searches for imprints on the two-
point statistics from primordial fossil fields. These fields
could be either scalar, vector, or tensor modes, and they
would induce local departures from an otherwise sta-
tistically isotropic two-point function.

An extension to this observable has been proposed in [8]
to exploit the benefits of the multitracer technique: the
antisymmetric part of the galaxy cross-correlation, which
will be nonvanishing in the presence of two different
tracers. If one considers two galaxies drawn from the same
population, separated by a distance r, the two-point
autocorrelation function is symmetric under the inversion
r ↦ −r. But if the two galaxies belong to different
populations, with different biasing and evolution proper-
ties, then their cross-correlation function may not be
symmetric under this exchange. Such an antisymmetric
term is generated in standard Λ cold dark matter (ΛCDM),
as shown in [8], because of biased nonlinear clustering: it
arises from the fact that the two populations trace the dark
matter field in different ways, i.e., they have different bias
parameters.
An antisymmetric contribution can also arise from exotic

new physics, e.g., the presence of vector fields that leave an
imprint on the galaxy clustering. This work, starting from
the idea sketched in [8], derives a more complete expression
for the antisymmetric part of galaxy correlations, including
redshift-space distortions, a more detailed modeling for the
galaxy bias, and the effect of primordial non-Gaussianity.
Then, for the first time, it investigates the detectability of
such an observable by future galaxy surveys. Furthermore, it
explores a few possible exotic physics models that could be
tested using this new observable.
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II. ANTISYMMETRIC GALAXY CORRELATION

The two-point correlation function is one of the most
widely used summary statistics in large-scale structure
surveys. In this context, it is convenient to work in
Fourier space (see, e.g., [9]), where modes are independent
and the covariance matrix is diagonal.1 Alternative
approaches are, e.g., the two-point function in configuration
space (see, e.g., [13–16]), spherical-Fourier Bessel decom-
position [17–20], the angular power spectrum [21–27], and
the frequency-angular power spectrum [10–12].

The two-point autocorrelation function is usually
assumed to inherit the properties of statistical homogeneity
and isotropy of the Friedmann-Lemaître-Robertson-
Walker universe. However, it was pointed out in [7] that,
in principle, the two-point function may depend on the
orientation of the two points being correlated and/or on
their position in space. Such a signature can be decom-
posed into scalar, vector, and tensor components, and it can
be parametrized as

hδðk1Þδðk2Þih ¼ ð2πÞ3δð3Þðk1 þ k2ÞPðk1Þ þ
Z

d3k3
ð2πÞ3

X
p

fpðk1; k2;k1 · k2Þh�pðk3Þϵpijðk3Þki1kj2ð2πÞ3δð3Þðk1 þ k2 þ k3Þ: ð1Þ

The second term above is a correlation induced
by a perturbation h with polarization p and wave vector
k3, where k3 is a long-wavelength mode that is modulating
the two-point function and k1, k2 are two short-wave-
length modes. The sum on p runs over the six possible
basis tensors for a symmetric tensor. Intuitively, this
represents a power spectrum sitting on top of a long-
wavelength mode, and it is related to the squeezed
bispectrum as limk3≪k1Bpðk1;k2;k3Þ¼Ppðk3Þfpðk1;k2;k1
·k2Þϵpijðk3Þki1kj2 [28]. In [29,30] this formalism has been
applied to study the imprint of primordial fossil fields
from inflation on the large-scale structure.
In [8] this parametrization has been generalized to the

case of the two-point cross-correlation function, by includ-
ing the three additional degrees of freedom that are related
to the antisymmetric part and, in principle, arise for
different tracers

hδAðk1ÞδBðk2Þih ¼
Z

d3k3
ð2πÞ3

X
p

fpðk1; k2;k1 · k2Þh�pðk3Þϵ̂p

· ðk1 − k2Þð2πÞ3δð3Þðk1 þ k2 þ k3Þ; ð2Þ

where the sum on p runs over the three polarizations
p ¼ L, x, y, that is, a longitudinal mode and two vector
modes. Choosing ϵ̂Lðk3Þ ¼ k̂3, then ϵ̂x;yðk3Þ are two other

unit vectors, orthogonal to k̂3 and to each other.
No assumption has been made so far on the nature of the

long mode that modulates the power spectrum. It could be
generated by new physics, and some of these exotic
scenarios will be explored in Sec. V. But an antisymmetric
contribution to the two-point cross-correlation arises even
in pure ΛCDM, due to the nonlinear clustering of biased
tracers.

In order to appreciate the underlying physics, it is useful
to briefly recall the framework studied in [8]. The abun-
dance of tracers is, in general, a nonlinear function of the
local mass density: for simplicity, let δXðxÞ ¼ bXδðxÞ þ
cX½δðxÞ�2 þ… with bX the linear bias parameter and cX the
nonlinear bias parameter [31]. Such a nonlinear relation
implies a nonvanishing three-point function

hδAðk1ÞδBðk2Þδðk3Þi ¼ 2Pðk3Þ½bAcBPðk1Þ þ bBcAPðk2Þ�
× ð2πÞ3δð3Þðk1 þ k2 þ k3Þ: ð3Þ

After antisymmetrization in k1 ↔ k2, and after taking the
squeezed limit k1; k2 ≫ k3,

BAðk1; k3Þ
Pðk3Þ

¼ ðbBcA − bAcBÞ
∂Pðk1Þ
∂k1

k1 · k3
k1

: ð4Þ

This sources the antisymmetric part of the modulation of
the two-point function due to nonlinear biased clustering as

hδAðk1ÞδBðk2Þi − hδBðk1ÞδAðk2Þi
2

¼
Z

d3k3
ð2πÞ3

�
BAðk1; k3Þ
Pðk3Þ

�
δ�ðk3Þð2πÞ3δð3Þðk1 þ k2 þ k3Þ:

ð5Þ
Comparing to the general parametrization of the two-point
function, (2) allows one to recognize the presence of a
longitudinal mode p ¼ L, with

fL ¼ 1

2
ðbBcA − bAcBÞ

∂Pðk1Þ
∂k1

k3
k1

: ð6Þ

Physically, this signal describes the small-scale clustering
of tracers in the presence of a low-pass-filtered density
field. In other words, it is related to the power spectrum of
the two tracers on top of a long underlying mode, k3.
To estimate the impact of this signal compared to the

symmetric one, consider the ratio of the antisymmetric part,

1Assuming certain approximations, namely, the plane-parallel
and equal time; for a detailed analysis of this, see recent
discussions in [10–12].
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PA ¼ ðbBcA − bAcBÞ
∂Pðk1Þ
∂k1

δ�ðk3Þ
k1 · k3
k1

; ð7Þ

to the symmetric part in the squeezed configuration

PS ¼ ðbBcA þ bAcBÞδ�ðk3Þ½Pðk1Þ þ Pðk2Þ�
≃ ðbBcA þ bAcBÞ2δ�ðk3ÞPðk1Þ

×

�
1þ 1

2Pðk1Þ
∂Pðk1Þ
∂k1

k1 · k3
k1

�
; ð8Þ

which gives

PA

PS ¼ ðbBcA − bAcBÞ
ðbBcA þ bAcBÞ

1

2Pðk1Þ
∂Pðk1Þ
∂k1

k1 · k3
k1

þOðk23Þ: ð9Þ

Since k1 are small-scale modes, Pðk1Þ can be taken to be a
power law Pðk1Þ ∝ kn1 with n ≃ −3. Then, an approximate
estimate will be

PA

PS ¼ ðbBcA − bAcBÞ
ðbBcA þ bAcBÞ

n
2

k3
k1

: ð10Þ

The ratio is therefore suppressed as k3=k1; however, it
could be that, for a particular combination of the bias
parameters, the bias-dependent prefactor boosts the signal.
An improved, more detailed modeling of the signal must

include the full second-order kernels, containing the physics
of gravitational evolution and nonlinear clustering, as well
as a more accurate modeling of the bias, with the full basis
of bias operators beyond the local-in-matter density expan-
sion up to second order [31]. The rest of the paper derives

such an expression and argues that not only will it be more
correct, but it will also improve its detectability.

A. Redshift-space distortions

Observations do not happen in real space, but in the so-
called “observed” space, where one has to account for all the
light cone and perturbation effects; this is commonly called
redshift space when accounting for the (generally) dominant
redshift-space distortions (RSDs) caused by peculiar veloc-
ities. In this case, the clustering pattern of objects is
modified by peculiar velocities [32,33]. Since they are
sensitive to the line-of-sight component of peculiar veloc-
ities, RSDs are a radial effect, and for the case of interest,
there is no transverse vector perturbation that can feed the
p ¼ x; y polarizations. Therefore, the expression for the
antisymmetric cross-correlation will still contain the L
polarization only, but it will be enriched by additional
contributions.
Up to second order in fluctuations, one can write the

density contrast of the Xth tracer as

δXðkÞ¼ZX
1 ðkÞδðkÞ

þ
Z

d3pd3q
ð2πÞ3 δð3Þðk−p−qÞZX

2 ðp;qÞδðpÞδðqÞ; ð11Þ

where Z1;2 are the first- and second-order kernels.
The observable of interest here will require the calcu-

lation of both the two- (power spectrum) and three-point
(bispectrum) statistics. The bispectrum is

hδs;Aðk1Þδs;Bðk2Þδsðk3Þi ¼ 2fPðk1ÞPðk2ÞZA
1 ðk1ÞZB

1 ðk2ÞZ2ð−k1;−k2Þ þ Pðk2ÞPðk3ÞZA
2 ð−k2;−k3ÞZB

1 ðk2ÞZ1ðk3Þ
þ Pðk1ÞPðk3ÞZA

1 ðk1ÞZB
2 ð−k1;−k3ÞZ1ðk3Þgð2πÞ3δð3Þðk1 þ k2 þ k3Þ: ð12Þ

In order to calculate the expression for the RSD operator, connecting real- to redshift-space observables, one has to
compute the Jacobian of the transformation. The calculation can be found in literature (see, e.g., [13,33,34]) and it reads

1þ δsðsÞ ¼ ½1þ δðrÞ�
�
1þ ∂vr

∂r

�
−1
�
1þ vr

r

�
−2 n̄ðrÞ

n̄ðrþ vrðrÞr̂Þ
: ð13Þ

The relation between redshift space and real space is s ¼ rþ vrðrÞr̂, with vr ¼ v · r̂=ðaHÞ, and n̄ is the average number
density of tracers. Keeping all terms, one obtains, to second order,

δs ≃ δ −
1

H
∂rv −

αv
Hr

þ 1

2H2
∂
2
rv2 −

1

H
∂rðδvÞ −

αδv
Hr

þ ðαðα − 2Þ − γÞv2
H2r2

þ 1

H2
∂r

�
αv2

r

�
; ð14Þ

α≡ r
n̄
∂n̄
∂r

þ 2; γ ≡ r2

2n̄
∇2n̄ − 3: ð15Þ

Neglecting the Doppler term v=r and selection effects,2 the relation between redshift- and real-space density perturbation
becomes

2For the results in this work, the effects of the Doppler term are neglected, as it generally dominates only on large scales, while the
antisymmetric correlation has most of its signal on small scales. A more detailed investigation of the impact of Doppler and other terms
on the antisymmetric correlation is undergoing. The complete kernel expressions are reported in Appendix A.
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δs ≃ δ −
1

H
∂rvþ

1

2H2
∂
2
rv2 −

1

H
∂rðδvÞ: ð16Þ

The objects being correlated are biased tracers of the
underlying dark matter distribution. The relation between
the two can be described through the bias expansion [35]

δg ¼ b1δþ
b2
2
δ2þbK2K2; Kij ¼

�
∂i∂j

∇2
−
1

3
δij

�
δ: ð17Þ

The second-order gravitational evolution kernels F2 and
G2 in an Einstein–de Sitter cosmology are

F2ðp; qÞ ¼
5

7
þ 2

7

ðp · qÞ2
p2q2

þ p · q
2pq

�
p
q
þ q
p

�
; ð18Þ

G2ðp; qÞ ¼
3

7
þ 4

7

ðp · qÞ2
p2q2

þ p · q
2pq

�
p
q
þ q
p

�
: ð19Þ

The first- and second-order redshift-space kernels for
biased tracers are, in Fourier space,

Z1ðkÞ ¼ b1 þ fμ2; ð20Þ

Z2ðp;qÞ ¼
b2
2
þ b1F2ðp;qÞ þ bK2

�
μ2pq −

1

3

�
þ fμ2G2ðp;qÞ

þ kμf
2

�
μp
p
ðb1 þ fμ2qÞ þ

μq
q
ðb1 þ fμ2pÞ

�
: ð21Þ

The Dirac delta in the convolution enforces that k ¼ pþ q.
The cosines of the angles between wave vectors and the line
of sight are μ ¼ k · n̂=k, and the cosine of the angle
between the two wave vectors is μpq ¼ p · q=ðpqÞ.
Following the same procedure as above, the antisym-

metric part of the cross-power spectrum will be sourced by
the antisymmetrized bispectrum in the squeezed regime—
because the n-point function gets modulated by the (nþ 1)-
point function with a soft momentum as in Eq. (1),

BAðk1; k3Þ
ð1þ fμ23ÞPðk3Þ

¼ 1

42

�
k3
k1

��
3ðbA1 − bB1 Þfμ1

�
k1

∂Pðk1Þ
∂k1

μ13ð7fμ31 − 14μ13μ3 þ μ1ð4þ 10μ213 − 7fμ23ÞÞ

þ 2Pðk1Þð−14fμ31μ13 þ 7fμ21μ3 þ 3ð3þ 4μ213Þμ3 þ μ1μ13ð−13 − 8μ213 þ 7fμ23ÞÞ
�

þ 21ðbA2 − bB2 Þfμ1
�
k1

∂Pðk1Þ
∂k1

μ1μ13 þ 2Pðk1Þð−μ1μ13 þ μ3Þ
�

þ 14ðbAK2 − bBK2Þfμ1
�
k1

∂Pðk1Þ
∂k1

μ1μ13ð3μ213 − 1Þ − 2Pðk1Þð−4μ1μ13 þ 6μ1μ
3
13 þ μ3 − 3μ213μ3Þ

�

− 21ðbA1bB2 − bB1b
A
2 Þk1

∂Pðk1Þ
∂k1

μ13

þ 14ðbA1bBK2 − bB1b
A
K2Þμ13

�
6Pðk1Þðμ213 − 1Þ þ k1

∂Pðk1Þ
∂k1

ð1 − 3μ213Þ
��

: ð22Þ

This is related to the antisymmetric component of the
two-point function BAðk1; k2; k3Þ ¼ Pðk3ÞfApðk1; k3Þϵ̂p
·ðk1 − k2Þ, with the long mode power spectrum Pðk3Þ ¼
ð1þ fμ23ÞPðk3Þ.
Comparing with the general parametrization of Eq. (2),

only the longitudinal vector mode is present ϵ̂Lðk3Þ ¼ k̂3,
as expected. Indeed, as RSDs are a radial effect, there is no
physics that can excite the transverse vector modes.
Notice that, when including RSDs, the signal is non-

vanishing even in the case of purely linear bias. In particular,
keeping RSDs and linear bias only, the surviving signal
from Eq. (22) would be

1

2

�
k3
k1

�
ðbA1 − bB1 ÞPðk1Þf2μ21

�
2ð−2μ21μ13 þ μ1μ3

þ μ13μ
2
3Þ þ μ13ðμ21 − μ23Þ

∂ logPðk1Þ
∂ log k1

�
: ð23Þ

This surviving contribution can be read as follows. The
terms from RSDs that are only sensitive to gravity cancel
out because of the equivalence principle, but mixed con-
tributions that also contain the bias parameters do survive in
the multitracer approach.
The antisymmetric cross-correlation is sensitive to the

separation of scales between long- and short-wavelength
modes; this is transparent in Eq. (6), where the signal is
directly proportional to the squeezing factor k3=k1. In the
simple case of not modeling higher-order effects that enter
when the squeezing factor is reduced, this is unavoidably
an arbitrary choice that depends on the details of the
analysis and on the specifications of the survey. An attempt
to reduce this issue and model the full signal including the
case of squeezing factor reduction is currently under
development. For now, as a benchmark, the rest of the
work uses a squeezing factor of at least 10 between long
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and short modes; more details on this issue, and how the
signal depends on it, will be addressed later.

B. Primordial non-Gaussianity

Given the nature of antisymmetric correlations and the
fact that it is effectively a squeezed bispectrum, it is natural
to include the effect of primordial non-Gaussianity (PnG)
in its expression. Information about PnG is encoded within
higher-order correlations beyond the two-point function,
pinpointing interactions of the inflaton with itself or with
other fields and thus effectively acting as a particle detector
for inflation [36–38]. Single-field models generate negli-
gible non-Gaussianity, whereas multifield inflationary sce-
narios provide, in general, larger values; for this reason, a
measurement of fNL > 1 would rule out most single-field
inflation models [39–41]. The first statistics that is sensitive
to deviations from Gaussianity is the bispectrum: its shape
dependence is determined by the physical mechanisms at
work during inflation, the most common templates being
the local shape that peaks on squeezed triangles
k3 ≪ k1; k2, the equilateral shape k1 ∼ k2 ∼ k3, and the
folded shape k1 ∼ k2 ∼ k3=2 [42].
Cosmic microwave background (CMB) measurements

from the Planck satellite constrain flocalNL ¼ −0.9� 5.1,
fequilNL ¼ −26� 47, forthoNL ¼ −38� 24 at 68% CL [43],
and improvements are generally expected from large-scale
structure measurements. For a review on methodologies and
constraints on non-Gaussianity using power-spectrum and
bispectrum measurements, see [44–46] and [47], respec-
tively, and references therein. More recently, [48] estab-
lished flocalNL ¼ −33� 28 at 68% CL from the BOSS data, a
constraint that is expected to improve significantly as future
surveys such as SPHEREx [49], which will access larger
cosmological volumes. See also [50,51] for a discussion on
the optimization of surveys to measure PnG.
It is worth noticing that, even with just linear bias, non-

Gaussianity can source an antisymmetric signal [8]. If
hδAðk1ÞδBðk2Þδðk3Þi ¼ bA1 ðk1ÞbB1 ðk2ÞBgravðk1; k2; k3Þ, then

fA;fNLL ≃ fNLðbA1 − bB1 Þ
3δcrΩm;0H2

0k3
2DmdðzÞTðk1Þk41

Bgravðk1; k2; k3Þ
Pðk3Þ

:

ð24Þ

The bulk of the information for this signal is in the long-
wavelength modes, then the amplitude decreases for
smaller scales, faster than the biased clustering one.
As an indicative example of what could happen for other

shapes and early Universe models, alternative scale-
dependent bias behaviors are presented that are taken to
roughly model what would happen for other shapes of
PnG. A scale-dependent modification of the bias ∝ Δb1kn,
with n ¼ f−2;−1; 0g could mimic local, orthogonal,
and equilateral shapes, respectively [52]. In general, if
bX1 ðkÞ ¼ bX1 þ fNLΔbX1 kn, then

fA;fNLL ≃
1

2
fNLðbA1ΔbB1 − bB1ΔbA1 Þ

nkn1k3
2k21

Bgravðk1; k2; k3Þ
Pðk3Þ

:

ð25Þ

The local PnG expression n ¼ −2 is recovered
for ΔbX1 kn ¼ 3δcrðbX1 − 1ÞΩm;0H2

0=½DmdðzÞTðkÞk2�.
An equilateral shape would leave no signature.
This estimate for fA;fNLL is obtained by approximating

the bispectrum as being simply proportional to the gravi-
tational contribution, via the two linear bias parameters,
hδAðk1ÞδBðk2Þδðk3Þi ¼ bA1 ðk1ÞbB1 ðk2ÞBgravðk1; k2; k3Þ. Ho-
wever, this does not capture all the ingredients: the signal
needs to be modeled using the full second-order kernels.
In the presence of local-type PnG, the Eulerian basis of

operators in the bias expansion is modified by additional
terms [31], which at linear level give rise to the well-
known scale-dependent bias [44,53–57]. Let ϕ be the
Bardeen gravitational potential, related to the primordial
curvature perturbation by ϕ ¼ ð3=5ÞR and to the linear
density field by

δðk; τÞ ¼Mðk; τÞϕðkÞ; Mðk; τÞ ¼ 2

3

k2TðkÞDmdðzÞ
Ωm;0H2

0

;

ð26Þ

where DmdðzÞ is the linear growth factor normalized to a
during matter domination.
The new operators are fNLϕðqÞ at first order and

fNLδðxÞϕðqÞ at second order. The Bardeen potential is
evaluated at the Lagrangian position q, since the coupling
between non-Gaussianity of primordial fluctuations and
matter fluctuations is imprinted in the initial conditions and
not induced by evolution. Therefore, these operators get
contributions from the (linear-order) displacement field s,
given by

x ¼ qþ sðq; τÞ; sðq; τÞ ¼ −
∇
∇2

δðq; τÞ: ð27Þ

The contributions from PnG are

δgðxÞjfNL ¼ fNLbϕϕðqÞ þ fNLbϕδϕðqÞδðxÞ: ð28Þ

When adding RSD, the new terms arise from δ and ∂rðδvÞ:
any effect of fNL on velocities can be neglected, because it
would be of the same order as higher derivative operators of
the form ∂

2ϕ [58]. Including PnG, thus, the new contri-
butions to the redshift-space kernels in Fourier space are

Z1;fNLðkÞ ¼ fNLbϕM−1ðkÞ; ð29Þ
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Z2;fNLðp; qÞ ¼ fNLbϕ
p · q
2

�
1

p2
M−1ðqÞ þ 1

q2
M−1ðpÞ

�
þ fNLbϕδ

1

2
ðM−1ðpÞ þM−1ðqÞÞ

þ fNLbϕ
kμf
2

�
μq
q
M−1ðpÞ þ μp

p
M−1ðqÞ

�
: ð30Þ

Working at linear order in fNL, the additional contribution to hδAðk1ÞδBðk2Þδðk3Þi coming from primordial non-
Gaussianity is

2fNLfPðk1ÞPðk2ÞðZA
1;fNL

ðk1ÞZB
1 ðk2ÞZ2ð−k1;−k2Þ þ ZA

1 ðk1ÞZB
1;fNL

ðk2ÞZ2ð−k1;−k2Þ
þ ZA

1 ðk1ÞZB
1 ðk2ÞZ2;fNLð−k1;−k2ÞÞ þ Pðk1ÞPðk3ÞðZA

1;fNL
ðk1ÞZB

2 ð−k1;−k3ÞZ1ðk3Þ
þ ZA

1 ðk1ÞZB
2 ð−k1;−k3ÞZ1;fNLðk3Þ þ ZA

1 ðk1ÞZB
2;fNL

ð−k1;−k3ÞZ1ðk3ÞÞ
þ Pðk2ÞPðk3ÞðZA

2 ð−k1;−k3ÞZB
1;fNL

ðk2ÞZ1ðk3Þ þ ZA
2 ð−k2;−k3ÞZB

1 ðk2ÞZ1;fNLðk3Þ
þ ZA

2;fNL
ð−k2;−k3ÞZB

1 ðk2ÞZ1ðk3ÞÞg: ð31Þ

Antisymmetrizing and taking the squeezed limit, the contributions from non-Gaussianity effects are of order ðk3=k1Þ−1,
ðk3=k1Þ0, ðk3=k1Þ1, and higher order. In the squeezed configuration, the first contribution is expected to be the dominant
one,

BA;fNLðk1; k3Þ
Pðk3Þð1þ fμ23Þ

¼ 3fNLH2
0Ωm;0

4k1k3DmdðzÞ
Pðk1Þ

�
ðbAϕ − bBϕÞfμ21

�
−2ðμ13 þ 2fμ21μ13 − fμ1μ3Þ þ fμ21μ13

∂ logPðk1Þ
∂ log k1

�

þ ðbAϕδ − bBϕδÞfμ1
�
−2ðμ1μ13 − μ3Þ þ μ1μ13

∂ logPðk1Þ
∂ log k1

�

þ ðbA1bBϕ − bB1b
A
ϕÞμ13

�
2ð1þ fμ23Þ − fμ21

∂ logPðk1Þ
∂ log k1

�
− ðbA1bBϕδ − bB1b

A
ϕδÞμ13

∂ logPðk1Þ
∂ log k1

�
: ð32Þ

This is the leading fNL contribution to the antisymmetric signal from nonlinear biased clustering. The signal, integrated over
long modes and over angles, is shown in Fig. 1.

Going beyond local PnG requires the introduction of an
additional bias operator [31]

ψðqÞ ¼
Z

d3k
ð2πÞ3 k

αϕðkÞeik·q; ð33Þ

again evaluated at the Lagrangian position q. The resulting
contributions to the redshift-space kernels in Fourier
space are

Z1;PnGðkÞ ¼ a0bψkαM−1ðkÞ; ð34Þ

Z2;PnGðp;qÞ¼a0bψ
p ·q
2

�
1

p2
qαM−1ðqÞþ 1

q2
pαM−1ðpÞ

�

þa0bψδ
1

2
ðpαM−1ðpÞþqαM−1ðqÞÞ

þa0bψ
kμf
2

�
μq
q
pαM−1ðpÞþμp

p
qαM−1ðqÞ

�
:

ð35Þ

FIG. 1. Integral over long modes of ðPAÞ2, with biases bA1 ¼ 3,
bB1 ¼ 1.1. The signal is modeled using full kernels and local-type
PnG, as in Eq. (36). This assumes a survey with volume
Vs ¼ 100 ðGpc=hÞ3, centered at z ¼ 1, and galaxy number
densities ng;A ¼ 10−3 ðh=MpcÞ3 and ng;B ¼ 2ng;A.
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The local PnG case discussed above is recovered by setting
α ¼ 0, a0bψ ¼ fNLbϕ, and more details on the PnG bias
parameters can be found in Appendix C. Detectability
prospects for the local PnG case will be discussed in
Sec. IV B. A more detailed analysis of the antisymmetric
signal and of the detectability prospects for the orthogonal
and folded shapes of PnG is of great interest and left for a
future work.

III. ANTISYMMETRIC GALAXY CORRELATION
IN REDSHIFT SPACE, INCLUDING PRIMORDIAL

NON-GAUSSIANITY

The full expression, calculated for the first time, for the
antisymmetric correlation in redshift space, including
second-order bias and primordial non-Gaussianity is given
as follows:

BAðk1; k3Þ
Pðk3Þð1þ fμ23Þ

¼ 1

42

�
k3
k1

�
Pðk1Þ

�
3ðbA1 − bB1 Þfμ1

�
∂ logPðk1Þ
∂ log k1

μ13ð7fμ31 − 14μ13μ3 þ μ1ð4þ 10μ213 − 7fμ23ÞÞ

þ 2ð−14fμ31μ13 þ 7fμ21μ3 þ 3ð3þ 4μ213Þμ3 þ μ1μ13ð−13 − 8μ213 þ 7fμ23ÞÞ
�

þ 21ðbA2 − bB2 Þfμ1
�
∂ logPðk1Þ
∂ log k1

μ1μ13 þ 2ð−μ1μ13 þ μ3Þ
�

þ 14ðbAK2 − bBK2Þfμ1
�
∂ logPðk1Þ
∂ log k1

μ1μ13ð3μ213 − 1Þ − 2ð−4μ1μ13 þ 6μ1μ
3
13 þ μ3 − 3μ213μ3Þ

�

− 21ðbA1bB2 − bB1b
A
2 Þ

∂ logPðk1Þ
∂ log k1

μ13 þ 14ðbA1bBK2 − bB1b
A
K2Þμ13

�
6ðμ213 − 1Þ þ ∂ logPðk1Þ

∂ log k1
ð1 − 3μ213Þ

��

þ 3fNLH2
0Ωm;0

4DmdðzÞk21Tðk1Þ
1

42
Pðk1Þ

�
ðbAϕ − bBϕÞ

��
k3
k1

�
−1
F ð−1Þ

ϕ ðk1; k3Þ þ F ð0Þ
ϕ ðk1; k3Þ þ

�
k3
k1

�
F ð1Þ

ϕ ðk1; k3Þ
�

þ ðbAϕδ − bBϕδÞ
��

k3
k1

�
−1
F ð−1Þ

ϕδ ðk1; k3Þ þ F ð0Þ
ϕδ ðk1; k3Þ þ

�
k3
k1

�
F ð1Þ

ϕδ ðk1; k3Þ
�

þ ðbA1bBϕ − bB1b
A
ϕÞ
��

k3
k1

�
−1
F ð−1Þ

1;ϕ ðk1; k3Þ þ F ð0Þ
1;ϕðk1; k3Þ þ

�
k3
k1

�
F ð1Þ

1;ϕðk1; k3Þ
�

þ ðbA1bBϕδ − bB1b
A
ϕδÞ

��
k3
k1

�
−1
F ð−1Þ

1;ϕδðk1; k3Þ þ F ð0Þ
1;ϕδðk1; k3Þ þ

�
k3
k1

�
F ð1Þ

1;ϕδðk1; k3Þ
�

þ ðbAϕbB2 − bBϕb
A
2 Þ
�
k3
k1

�
F ð1Þ

ϕ;2ðk1; k3Þ þ ðbAϕbBK2 − bBϕb
A
K2Þ

�
k3
k1

�
F ð1Þ

ϕ;K2ðk1; k3Þ
�
: ð36Þ

The F ðk1; k3Þ functions are reported in Appendix B. They
depend on the angles between long and short modes, and
the angles with the line of sight, on derivatives of the power
spectrum, and of the transfer functions.
In the remainder of this work, the second-order bias

parameters will be obtained from the linear-order ones
by means of fitting formulas [31,59,60], as reported in
Appendix C.

IV. DETECTABILITY

In [7,8], an estimator was built in order to extract
information on the amplitude of the modulating long-
wavelength field. The procedure aimed to find the mini-
mum detectable amplitude of the power spectrum of the
underlying field, in the spirit of seeking for fossil imprints
from primordial exotic physics. In principle, this could be
generalized to the case of nonlinear biased clustering as

well, and the calculation is reported in Appendix D.
However, for practical purposes, one can take a different
approach and build a signal-to-noise ratio estimator, in the
same fashion as in [61].
Let k1, k3 be the short and long mode, respectively.

Defining the antisymmetric signal as

PAðk;KÞ≡ 1

2
½δAðkÞδBðK − kÞ − δAðK − kÞδBðkÞ�; ð37Þ

at fixed long mode K, the covariance in the null
hypothesis is

Covðk; k0ÞK ¼ 1

2
½PAAðkÞPBBðkÞ − PABðkÞPABðkÞ�

× ½δDkþk0 − δDk−k0 �: ð38Þ
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This matrix is not invertible; however, following the same
steps as [62], one can notice that PAð−kÞ ¼ −PAðkÞ and
therefore consider only one hemisphere in k space and
combine the contribution from both k and −k modes,

½hPAðkÞ2i − hPAðkÞi2� − ½hPAðkÞPAð−kÞi
− hPAðkÞihPAð−kÞi�: ð39Þ

The covariance on the emisphere is

Covemiðk;KÞ ¼ 1

2
½PAAðkÞPBBðjK − kjÞ

þ PAAðjK − kjÞPBBðkÞ�
− PABðkÞPABðjK − kjÞ: ð40Þ

The signal depends on the short mode k, the long mode
K, and the angle between them. First, one has to integrate
over the long modes: in this work, the long modes and
short modes are chosen in such a way that they are
separated by at least an order of magnitude, that is, the
minimum squeezing factor is set to 10, so that there is a
hierarchy K < Kmax ≪ kmin < k. As anticipated in Sec. II
A, the SNR unavoidably depends on the arbitrary choice of
squeezing factor.3 Of course, the smaller the squeezing
factor, the more triangular configurations will enter in the
integral, and the larger the SNR; however, on the other
hand, the formal derivation has been made in the K ≪ k
limit, therefore one should be careful in including con-
figurations that are not “squeezed enough.” There has been
recently a study in the context of intensity mapping
reconstruction [64] that investigates how to deal with this
issue by keeping higher-order terms. While that approach
will be useful when trying to extract the full signal in the
antisymmetric case, for the current purposes here a simpler
procedure will be adopted, adding by hand a squeezing
factor.
Each pair of short modes k1, k2 is sensitive to the

modulation induced by a long mode K ¼ k1 þ k2, therefore
the minimum accessible long mode Kmin is taken to be of
the order the fundamental wave number of the survey
kf ¼ 2π=V1=3

s . In order to restrict to squeezed configura-
tions only, for a given short mode k the corresponding
maximum long mode isKmax ¼ k=10. The short modes will
span from kmin ≳ 10kf to some kmax.
The angles between the line-of-sight direction and

the short-wavelength wave vector k1 are described by
μ1 ¼ cos θ1 and ϕ1, while the ones describing the long-
wavelength wave vector K are μ ¼ cos θ and ϕ.

The signal is PAðk;KÞ ¼ ðBAðk;KÞ=PðKÞÞδðKÞ. When
including RSD, the long mode power spectrum is
PðKÞ ¼ ð1þ fμ23ÞPðKÞ. The SNRðkÞ is obtained integrat-
ing the signal squared S2 ¼ ðPAÞ2 over the noise
N2 ¼ Covemi, on the corresponding range of long modes
for each k1, that is,

�
S
N

�
2

k
¼

Z
k1=10

kf

K2dK
ð2πÞ3

Z þ1

−1
dμ

Z
2π

0

dϕ
1

Covemiðk;KÞ

×

�
BAðk;KÞ
PðKÞ

�
2

PðKÞ: ð41Þ

Then, integrating over short modes as well,

�
S
N

�
2

¼ Vs

ð2πÞ3
Z

kmax

kf

k2dk
Z

2π

0

dϕ1

Z
1

0

dμ1

×

�Z
k1=10

kf

k2dK
ð2πÞ3

Z þ1

−1
dμ

×
Z

2π

0

dϕ
1

Covemiðk;KÞ
�
BAðk;KÞ
PðKÞ

�
2

PðKÞ
�
;

ð42Þ

where now kmin ¼ kf is set by the volume of the survey and
kmax is the minimum scale for the analysis. Notice that the
integration over angles covers only the emisphere in
k space.
Figure 2 shows the SNR for nonlinear biased clustering.

It is shown both as a function of k1 after integrating over the
long modesK and as a function of the maximum kmax of the
analysis after integrating over k as well. Two cases are
reported: the minimal kernel framework as in [8] and the
full kernel one as described in this work. The minimal
kernel assumption slightly underestimates the SNR with
respect to the more accurate modeling.
A clever choice of the tracers can significantly boost the

signal. For example, in the case of a 50 ðGpc=hÞ3 survey,
centered at z ¼ 1, for a choice of linear biases (bA1 ¼ 2,
bB1 ¼ 1.5) an SNR of order Oð10Þ is achieved at
kmax ∼ 0.6 h=Mpc. However, when targeting, e.g., two
populations with (bA1 ¼ 3, bB1 ¼ 1.1) the SNR is Oð10Þ
at kmax ∼ 0.3 h=Mpc, which is within the reach of current
analyses [65–67]. This can be used as a guidance for setting
the required source targeting, the exact situation being
different for specific surveys.
The purely linear bias case is also shown: in the presence

of RSD, there is a nonvanishing signal, which is harder to
detect unless reaching higher kmax. The signal comes from
the fact that in multitracer analyses there will be a mixed
bias-RSD term that carries information on the velocity-
density spectrum, in a similar fashion as unequal time
correlations [10].

3Compare, e.g., to the situation described in [63], where the
bulk of the information is contained in the most squeezed
configurations, and therefore the analysis can be pushed to
Kmax ¼ kmin, including triangles that are technically not squeezed
at all.
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A. Constraints on the bias

It comes natural to investigate if the antisymmetric
correlation, as it is depending on combinations of the
bias parameters that are different from the standard case,
can constrain them (or a combination of) in a mean-
ingful way.
In the minimal kernels case, the signal is proportional to

the antisymmetrized combination of bias parameters
PA ∝ ðbBcA − bAcBÞ≡ .ב Using this simplified case for
an estimate of the precision reachable in measuring ,ב then
σב=ב ∼ 1=SNR (68% CL). When including RSD, gravita-
tional evolution, and the other second-order bias parame-
ters, the scaling becomes much more complex and the
constraining power cannot be summarized in such a
straightforward way.
As mentioned in the previous section, the linear bias

parameters fbA1 ; bB1 g will be connected to the higher-order
ones by means of fitting formulas [31,68] and reported in
Appendix C.
If one were to consider the entire set of parameters, the

main limiting factor for the constraining power on the bias
parameters would be degeneracies (as expected and, as it
happens, for standard observables including loops), espe-
cially when accounting for all terms included in this work.
As can be immediately seen from Eq. (36), the biases
fbA1 ; bB1 ; bA2 ; bB2 ; bAK2 ; bBK2g combine in the final signal in a

way that makes it difficult to disentangle the single con-
tributions. There is virtually no constraining power on the
full set of bias parameters, and even pushing the analysis to
a more aggressive kmax ∼ 0.6 h=Mpc, the constraints are not
competitive with other available observables.
Figure 3 shows the dependence of the constraining

power on kmax (where of course one would need to model
nonlinearities), for two choices of fiducial biases (bA1 ¼ 3,
bB1 ¼ 1.1) and (bA1 ¼ 2, bB1 ¼ 1.5). Constraints of
Oð10%–30%Þ on the linear bias parameters are achieved
when reaching kmax ∼ 0.3 h=Mpc. This is not competitive
with expected constraints from future galaxy surveys, but
the analysis performed here is a very rough estimate: a
more detailed procedure, including several redshift bins
and their correlation and pushing the analysis to higher
redshifts and smaller scales, may significantly improve the
constraints.

B. Primordial non-Gaussianity

This section investigates the constraining power of the
antisymmetric galaxy cross-correlation on local PnG. The
signal is modeled using the full kernels, as in Eq. (36), and
assuming a fiducial fNL ¼ 1 and fbA1 ¼ 3; bB1 ¼ 1.1g. Only
the ∝ k−2 scale-dependent bias associated with local-type
PnG is investigated here. As a first rough estimate of the
constraining power, the results on σfNL are obtained via a
Fisher forecast on fNL alone, with

FIG. 2. SNR for nonlinear biased clustering, sourced by the squeezed bispectrum between two tracers and an underlying dark matter
long mode, antisymmetrized with respect to the two tracers. Left: the SNR is plotted as a function of the short mode k after integrating
over long modes, Eq. (41). Right: the SNR has been integrated over short modes as well, Eq. (42), and it is plotted as a function of the
maximum wave number of the analysis, kmax. The various lines represent calculations with minimal kernels as in [8] (MK, dashed) and
full kernels as computed in Sec. II A (FK, solid). The case for full kernels with linear bias only is also shown (dot-dashed). The plots
show results for two example cases (bA1 ¼ 3, bB1 ¼ 1.1) in black and (bA1 ¼ 2, bB1 ¼ 1.5) in gray. The survey volume is taken to be
50 ðGpc=hÞ3, centered at z ¼ 1, with tracer density ng;A ¼ 10−3 ðh=MpcÞ3, ng;B ¼ 2ng;A.
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σ−2fNL ≃
Vs

ð2πÞ3
Z

kmax

kf

k2dk
Z

2π

0

dϕ1

Z
1

0

dμ1

�Z
k=10

kf

K2dK
ð2πÞ3

Z þ1

−1
dμ

Z
2π

0

dϕ
1

Covemiðk;KÞ
�
∂PAðk;KÞ

∂fNL

�
2
�
: ð43Þ

A more complete analysis, including degeneracies—
especially with the linear bias parameters bA1 and bB1—and
extending to orthogonal and folded shapes, is left for a
future work.
Figure 4 investigates what would be the requirements for

a survey to set stringent bounds on local fNL using this
observable. Two directions are explored: a larger survey
volume and a larger number density. Both are beneficial, but
the improvement given by a larger survey volume tends to

saturate: this is because, given the need to keep a hierarchy
between long and short modes, the integration over short

modes can never be pushed down to kmin ¼ 2π=V1=3
s .

The results fall in the same order of magnitude as recent
constraints on fNL using the scale-dependent bias, obtained
from the power spectrum of quasar samples in the eBOSS
survey [48,69,70], giving 1σfNL ∼Oð20Þ, as well as the
forecasted constraining power for DESI and Euclid using
the power spectrum only [71], which will give similar

FIG. 3. Forecasts on fbA1 ; bB1 g, with second-order biases being linked to the linear ones by the fitting formulas. The plot shows the
dependence on kmax of the 1σ constraints on bX1 . The survey volume is 100 ðGpc=hÞ3 centered at z ¼ 1, with tracers
ng;A ¼ 10−3 ðh=MpcÞ3, ng;B ¼ 2ng;A. The fiducial biases are set to (bA1 ¼ 3, bB1 ¼ 1.1) on the left panel and to (bA1 ¼ 2, bB1 ¼ 1.5)
on the right panel.

FIG. 4. Value of σfNL when varying some survey specifications.
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results to the Planck ones 1σfNL ∼Oð10Þ. However, they
are not competitive with a combined analysis of power
spectrum and bispectrum, and with future radio [72,73] and
galaxy surveys such as SPHEREx [49] and the proposed
SIRMOS [74], that forecast σfNL < 1.

V. TESTS OF ALTERNATIVE
COSMOLOGICAL MODELS

The antisymmetric galaxy cross-correlation is not just a
new observable, but it presents the advantage of being
sensitive to some exotic fundamental physics models that
would otherwise not be tested when using more standard
statistics; roughly, it can be thought of as something similar
to tests performed with cosmic fossils [29,75], but being
sensitive to odd moments. The antisymmetric cross-
correlation can be sensitive to models that include a
preferred direction or where underlying long modes affect
different populations in specific ways.
This section investigates a few examples of beyond

ΛCDM models that can imprint signatures that can be
tested by the antisymmetric cross-correlation of two tracers.
Where not otherwise specified, the survey specifications
are as in the previous section.

A. Vector modes

In the presence of primordial vector fields from inflation
[76–78]—for instance, in axion inflation [79,80], where the
inflaton is coupled to a Uð1Þ gauge field, or due to
primordial magnetic fields [81,82]—a vector polarization
can arise in the presence of some preferred direction, to
which the two tracers would respond in different ways and
therefore give a nonvanishing antisymmetric signal.
The generic parametrization of the antisymmetric com-

ponent as in [8] is

PAðk1;k3Þ ¼
X
p

fApðk1;k3Þh�pðk3Þϵ̂p · ð2k1μ13þ k3Þ; ð44Þ

with p ¼ L; x; y. Taking the longitudinal polarization ϵL
along the long mode direction, k̂3 ≡ K̂, a complete ortho-
normal basis is given by

K̂ ¼ ðcos θ3 cosϕ3; cos θ3 sinϕ3; sin θ3Þ;
X̂ ¼ ðsinϕ3;− cosϕ3; 0Þ;
Ŷ ¼ K̂ × X̂ ¼ ðsin θ3 cosϕ3; sin θ3 sinϕ3;− cos θ3Þ: ð45Þ

Figure 5 shows the SNR for a signal as in Eq. (44), taking
an amplitude [7] fAx;y ¼ − 3

2
Zdm
1 ðk1; zÞPðk1Þ=k1, where the

dark matter kernel is Zdm
1 ðk1; zÞ ¼ ð1þ fμ21Þ, and a scale-

invariant power spectrum Pðk3Þ ¼ Fð2π2As=k33Þ, with
some amplitude F, which can be constrained.

The covariance is obtained assuming that there is no
cross-correlation in the absence of the long mode, i.e.,
2Ptot

A ðk1ÞPtot
B ðk2Þ, as in [8].

B. Two-component dark matter

There has recently been interest in models where the
dark sector is not made by one single particle but it is
extended and there are different particles in the dark sector,
with particular focus on direct detection searches [83–88].
However, clustering properties of different biased tracers
may provide an alternative detection method: it was
proposed in [8] that a two-component dark matter model
may leave an antisymmetric imprint if the two tracers
cluster in different ways.
As an example, one can imagine that the dark matter

components are affected by a relative modulation that
imprints a preferred direction: for simplicity, let us asso-
ciate it with the second tracer, δBðkÞ ¼ bB1 δðkÞð1þ Ak̂ · p̂Þ,
with p̂ the preferred direction and A controlling the strength
of the modulation. Then

hδAðk1ÞδBðk2Þδðk3Þi¼bA1b
B
1 ð1þAk̂2 · p̂Þhδðk1Þδðk2Þδðk3Þi;

ð46Þ
so that, after antisymmetrization, one is left with a signal
∝ bA1b

B
1Bgravðk1; k2; k3ÞAðk̂2 − k̂1Þ · p̂ with ϵ̂ ¼ p̂. Adding

RSD, in the case of generic kernels, the antisymmetrized
bispectrum between the two tracers is

BAðk1; k2; k3Þ ¼
1

2
½ð1þ Ak̂2 · p̂Þhδs;Aðk1Þδs;Bðk2Þδsðk3Þi

− ð1þ Ak̂1 · p̂Þhδs;Bðk1Þδs;Aðk2Þδsðk3Þi�:
ð47Þ

FIG. 5. SNR for the two vector polarizations p ¼ x; y, plotted
as a function of kmax, after integrating over both long and short
modes. The long mode h�pðk3Þ is a vector field of primordial
origin, where the power spectrum is taken to be a scale-invariant
Fð2π2As=k33Þ; the SNR is shown for different amplitudes F.
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This sources a signal

PAðk1; k3Þ ¼
BAðk1; k2; k3Þ

Pðk3Þ
����
k1þk2þk3¼0

δ�ðk3Þ: ð48Þ

Notice that, since RSDs leave a nonvanishing signature
even with linear bias only, this signal will get contributions
that come from Eq. (23) and are not due to the new
ingredient ∝ A.
The (emisphere) covariance will also get modified with

respect to Eq. (40) as

Covemiðk1; k2; k3Þ ¼
1

2
½ð1þ Ak̂2 · p̂Þ2PAAðk1ÞPBBðk2Þ

þ ð1þ Ak̂1 · p̂Þ2PAAðk2ÞPBBðk1Þ�
− ð1þ Ak̂1 · p̂Þð1þ Ak̂2 · p̂Þ
× PABðk1ÞPABðk2Þ: ð49Þ

Figure 6 shows the SNR for the signal above. The
procedure of exchanging the two tracers is actually sensi-
tive to the projection of the relative displacement between
tracers onto the Fourier plane embedding the three wave
vectors. Those wave vectors that happen to lie orthogonally
to the preferred direction will give no contribution to the
signal.

C. Anisotropies from inflation

Statistical isotropy and/or homogeneity may be slightly
violated, due to some physical process of primordial origin.
In the presence of a dipolar or quadrupolar (or higher)
modulation of the primordial curvature power spectrum, the
matter power spectrum inherits a new factor so that
antisymmetric correlations could test such a model. In this
case, the power spectrum can be written as [89,90]

ð50Þ

where, for a generic distortion multipole L,

ð51Þ

with gLM being the amplitudes of the modulation and fðkÞ
carrying the scale dependence. Notice that this case is
different from the previous examples: here, the two tracers
respond in the same way to the primordial modulation that
is imprinted in the initial conditions. In this sense, the
antisymmetric signal is still the one that was calculated for
the nonlinear biased clustering, but the SNR is modified by
the additional anisotropic factor that comes from the
primordial curvature power spectrum. In fact, the extra
factor can be interpreted as an effective scale-dependent
bias, ; however, the scale dependence
is the same for every tracer, and in the case of purely linear
bias and no RSD, the antisymmetric signal would vanish,
the same way it would for nonlinear clustering.
Figure 7 shows the signal squared ðPAðk1; k3ÞÞ2 as a

function of the short mode, both for the dipolar and the
quadrupolar modulation. The amplitude of the new term
has been set to order Oð1Þ.
It can be seen how, for the dipolar modulation (and the

modeling considered here), there is a scale-dependent
change, which modifies the amplitude especially at large
scales. For the quadrupolar, on the other hand, the change
varies depending on the power of the fðkÞ considered,
making different parts of the analysis more sensitive to
different models.

1. Dipolar distortion L= 1

In [91,92] the dipolar asymmetry was found to be
∼6%–7% on angular scales l≲ 64. A dipolar distortion
L ¼ 1 in the CMB can be described by a multiplicative
modulation Tðn̂Þ ¼ T isoðn̂Þð1þ An̂ · p̂Þ with p̂ the pre-
ferred direction of the modulation, and A ∼ 0.07 [93].
The power spectrum acquires the extra contribution

ð52Þ

FIG. 6. SNR for the amplitude of the two-component dark
matter model, with amplitude A and preferred direction either
aligned with the line of sight p̂ ¼ ð0; 0; 1Þ or orthogonal to it, as
an example p̂ ¼ ð1; 0; 0Þ. A linear bias relation is assumed. The
solid and dot-dashed lines include both RSD and gravitational
evolution, while the dashed line shows the signal without RSD.
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using g1;−M ¼ ð−1ÞMg�1M and assuming for simplicity
g10 ¼ g11 ¼ A. The following cases will be studied:

fðkÞ ¼ 1 −
k
kA

;

�
1 −

k
kA

�
2

: ð53Þ

These parametrizations were introduced in [90] as a
heuristic model to capture the main qualitative features
emerging from CMB and quasar abundance observations,

i.e., a large-scale dipolar asymmetry that rapidly decays and
vanishes at k ∼ kA ¼ 1 Mpc−1.
Figure 8 shows the signal squared and the SNR in the

presence of dipolar anisotropies, having set the amplitude
of the anisotropic contribution to the maximum value
currently allowed by Planck constraints, A1M ¼ 0.07 [94].
As it can be seen, the effect is small. The right panel

shows the ratio between the SNR for the anisotropic
(dipolar) model and the isotropic signal from biased

FIG. 7. Signal ðPAðk1; k3ÞÞ2 integrated over angles and over long modes, for a correlation sourced by nonlinear biased clustering in
the presence of an anisotropic modulation of the power spectrum, with L ¼ 1 (left) and L ¼ 2 (right). The amplitudes of the anisotropic
contribution have been set to a larger value of 1, to visually appreciate the effect with respect to the purely isotropic case.

FIG. 8. Left: signal ðPAðk;KÞÞ2 integrated over angles and over long modes, for a correlation sourced by nonlinear biased clustering in
the presence of an anisotropic modulation of the power spectrum, with L ¼ 1. Right: ratio of the anisotropic SNR to the isotropic case.
The amplitudes are the maximum ones allowed by Planck constraints, A1M ¼ 0.07 [94]. As before, the survey volume is 100 ðGpc=hÞ3
centered at z ¼ 1, with tracers ng;A ¼ 10−3 ðh=MpcÞ3, ng;B ¼ 2ng;A and biases (bA1 ¼ 3, bB1 ¼ 1.1). The dipolar modulation results in an
order few percent enhancement of the SNR, depending on the maximum scale kmax used in the analysis.
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clustering. It can be seen that the SNR gets enhanced with
respect to the purely isotropic case. Depending on the
significance of the isotropic case, there is, in principle, the
opportunity to detect such a signal and therefore be
competitive with existing constraints from Planck. A more
detailed analysis is needed, including a study on the trade-
off between going to larger values of kmax and having more
general constraining power, but having a less relevant
contribution from the dipolar modulation, which is most
important on the largest scales. For this reason, the ratio to
the isotropic SNR case approaches 1 on small scales, and
there is not significant gain in pushing the analysis to very
high kmax.

A possible direction to explore to detect anisotropic
imprints within this framework can rely on a characteri-
zation of the scale dependence of the SNR, either as a
function of the survey’s short modes k or as a function of
kmax—provided nonlinear scales can be accurately
modeled.

2. Quadrupolar distortion L= 2

A quadrupolar distortion L ¼ 2 arises, for example, in
models of inflation where the inflaton is coupled to a vector
field with a nonvanishing vacuum expectation value
[77,95]. The term encoding the anisotropy is

ð54Þ

with g2;−M ¼ ð−1ÞMg�2M [94] and for simplicity g20 ¼
g21 ¼ g22 ¼ g2M. Both the amplitudes and the function
fðkÞ are strongly dependent on the underlying inflationary
model. In a model-agnostic approach, the following cases
will be studied:

fðkÞ ¼ 1;

�
k
kg

��1

;

�
k
kg

��2

; ð55Þ

with kg ¼ 0.05 Mpc−1 the pivot scale adopted in the Planck
Collaboration. Planck upper bounds give jg2Mj≲ 10−2 for
all these cases, except for ðk=kgÞ−2 for which the bound is
stronger g2;−2 ∼ −10−4 [94].
Figure 9 shows the signal squared and the SNR in the

presence of quadrupolar anisotropies, having set the
amplitude of the anisotropic contribution to the maximum
value allowed by Planck constraints [94]. As it can be seen,

FIG. 9. Left: signal ðPAðk;KÞÞ2 integrated over angles and over long modes, for a correlation sourced by nonlinear biased clustering in
the presence of an anisotropic modulation of the power spectrum, with L ¼ 2. Right: ratio of the anisotropic SNR to the isotropic
case. The amplitudes are the maximum ones allowed by Planck constraints, g2;−2 ¼ −10−4 and g2M ¼ 10−2 (M ¼ −1; 0; 1; 2) [94]. As
before, the survey volume is 100 ðGpc=hÞ3 centered at z ¼ 1, with tracers ng;A ¼ 10−3 ðh=MpcÞ3, ng;B ¼ 2ng;A and biases (bA1 ¼ 3,
bB1 ¼ 1.1). The quadrupolar modulation essentially does not change the SNR with respect to the fully isotropic case, when within the
current Planck limits.
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the modifications induced by such a level of quadrupolar
anisotropy, on the scales of interest, are very small.
Therefore, it appears clear that Planck already constrains

the amplitudes of the quadrupolar modulation to a level that
will not realistically be reached by antisymmetric galaxy
correlations. The right panel of the figure shows how the
SNR from this modulation is virtually unchanged.

VI. CONCLUSIONS

This paper investigates one of the recently proposed
observables for galaxy clustering, the antisymmetric galaxy
cross-correlation. The antisymmetric component of the
two-point galaxy cross-correlation function arises when
the small-scale power is modulated by a long-wavelength
field. Such a signal is sourced by the squeezed bispectrum
of the two objects being correlated and the long mode,
underlying field. This signal can be decomposed into
longitudinal and transverse components, sourced by differ-
ent physical mechanisms.
The first expression for this observable was given in [8];

this work provides a more accurate modeling by adding
redshift-space distortions, nonlinear gravitational evolu-
tion, second-order bias expansion, and primordial non-
Gaussianity. Moreover, for the first time, the detectability
of this signal is investigated from a quantitative point of
view by building a recipe for calculating the SNR and
applying it to various examples.
In the standard ΛCDM scenario, an antisymmetric cross-

correlation arises between different tracers of the under-
lying dark matter field because of nonlinear biased
clustering.
Beyond ΛCDM, the antisymmetric cross-correlation can

pick up the signature of some exotic beyond the standard
model scenarios. In particular, this can happen for models
where the two objects being correlated respond in a
different way to the underlying field and for models with
anisotropic features inducing a privileged direction in
the sky.

For these reasons, this observable can be a powerful tool
to search for hints of new physics. This work investigates
the signature of some of these models. A particularly
interesting case is the imprint of vector modes [8] that arise,
e.g., due to primordial magnetic fields [81,82] or in models
of axion inflation [79,80]. Other signatures of these fields
are related to, e.g., compensated isocurvature perturbations
[96]. Other examples are a two-component dark matter
model as suggested in [8,83–88] and the extra signature
coming from primordial anisotropies imprinted in the
power spectrum after inflation [90].
These are just few examples that are meant to demon-

strate the potential of this new observable in testing both
early and late Universe physics. Its full potential for
specific models for realistic surveys will be investigated
in a future work.
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APPENDIX A: FOURIER-SPACE KERNELS

Keeping the full relation between redshift- and real-
space overdensity, Eqs. (14) and (15), including the
Doppler term [34] and selection effects, the first- and
second-order redshift-space kernels for biased tracers are,
in Fourier space,

Z1ðkÞ ¼ b1 þ fμ2 −
iμfα
kr

; ðA1Þ

Z2ðp; qÞ ¼
b2
2
þ b1F2ðp; qÞ þ bK2

�
μ2pq −

1

3

�
þ fμ2G2ðp; qÞ

−
iμfα
kr

G2ðp; qÞ þ
kμf
2

�
μp
p
ðb1 þ fμ2qÞ þ

μq
q
ðb1 þ fμ2pÞ

�

−
ifα
r

�
μp
p

�
b1
2
þ fμ2q

�
þ μq

q

�
b1
2
þ fμ2p

��
− f2

μpμq
pqr2

ðαðα − 2Þ − γÞ; ðA2Þ

with k ¼ pþ q, and

α≡ r
n̄
∂n̄
∂r

þ 2; γ ≡ r2

2n̄
∇2n̄ − 3: ðA3Þ
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APPENDIX B: FULL EXPRESSIONS OF THE F FUNCTIONS

The full expressions of the F ðk1; k3Þ functions that appear in Eq. (36) are as follows [the superscripts refer to the
corresponding order in the expansion in powers of the long mode over the short mode, ðk3=k1Þ]:

F ð−1Þ
ϕ ðk1; k3Þ ¼ 42Tðk1Þfμ21

��
−2þ

�
−4þ ∂ logPðk1Þ

∂ log k1

�
fμ21

�
μ13 þ 2fμ1μ3

�
; ðB1Þ

F ð0Þ
ϕ ðk1; k3Þ ¼ −21Tðk1Þfμ1

�
−fμ31

�
−4þ ∂ logPðk1Þ

∂ log k1
þ
�
24þ k21

Pðk1Þ
∂
2Pðk1Þ
∂k21

�
μ213 − 9

∂ logPðk1Þ
∂ log k1

μ213

�

þ 4μ13μ3 − 6

�
−4þ ∂ logPðk1Þ

∂ log k1

�
fμ21μ13μ3 þ 2μ1

�
1þ

�
−4þ ∂ logPðk1Þ

∂ log k1

�
μ213 − 3fμ23

��
; ðB2Þ

F ð1Þ
ϕ ðk1; k3Þ ¼ −6fμ1

�
2μ3

�
1þ

�
−22þ 7

∂ logPðk1Þ
∂ log k1

− 7
∂ logTðk1Þ
∂ log k1

�
μ213

�

þ μ3μ13

�
∂ logTðk1Þ
∂ log k1

ð−6þ 6μ213 − 7fμ23Þ þ
∂ logPðk1Þ
∂ log k1

ð6 − 6μ213 þ 7fμ23Þ − 4ð3 − 3μ213 þ 7fμ23Þ
��

þ 7fTðk1Þ
�
−6μ13μ23 þ 6μ1μ3

�
−2 − 2

�
−4þ ∂ logPðk1Þ

∂ log k1

�
μ213 þ fμ23

�

þ 9fμ31μ3

�
−4þ ∂ logPðk1Þ

∂ log k1
− 9

∂ logPðk1Þ
∂ log k1

μ213 þ
�
24þ k21

Pðk1Þ
∂
2Pðk1Þ
∂k21

�
μ213

�

þ fμ41μ13

�
72 − 192μ213 þ
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∂
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∂
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; ðB3Þ

F ð−1Þ
ϕδ ðk1; k3Þ ¼ 42Tðk1Þfμ1

��
−2þ ∂ logPðk1Þ

∂ log k1

�
μ1μ13 þ 2μ3

�
; ðB4Þ

F ð0Þ
ϕδ ðk1; k3Þ ¼ 21Tðk1Þf

�
μ21

�
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F ð0Þ
1;ϕðk1; k3Þ ¼ 21Tðk1Þ

�
2þ 2μ213

�
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APPENDIX C: BIAS PARAMETERS

In this paper, the second-order biases have been linked to
the linear-order one by means of the fitting formula and the
local-in-matter-density relation, respectively [31,68],

b2ðb1Þ ¼ 0.412− 2.143b1þ 0.929b12 þ 0.008b13; ðC1Þ

bK2ðb1Þ ¼ −
2

7
ðb1 − 1Þ; ðC2Þ

and the universal mass function relations

bϕ ¼ 2δcrðb1 − 1Þ; ðC3Þ

bϕδ ¼ −b1;L þ δcrb2;L þ bϕ

¼ 1 − b1 þ bϕ þ
�
8

21
ð1 − b1Þ þ b2

�
δcr; ðC4Þ

with δcr ¼ 1.686, and the Lagrangian biases being con-
nected to the Eulerian ones as [35,97,98]

b1;L ¼ b1 − 1; ðC5Þ

b2;L ¼ b2 −
8

21
ðb1 − 1Þ: ðC6Þ

For generic type PnG, one needs to take a step back to
the definition of the bias parameters as encoding the
response of the galaxy overdensity to a change in the
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initial conditions, e.g., if one parametrizes this change as a
rescaling of the initial density perturbation by ð1þ 2ϵk−αÞ,
then

bL
ψδN

¼ 1

N!

1

n̄g

∂
Nþ1n̄g
∂ΔN

∂ϵ

����
Δ¼0;ϵ¼0

; ðC7Þ

where Δ is the long-wavelength component of the over-
density field [31,99,100]. The Eulerian bias parameters bψ
and bψδ are obtained as [47,101]

bψ ¼
�
bϕ þ 4

�
∂ ln σ2−α=2
∂ ln σ2

− 1

��
σ2−α=2
σ2

; ðC8Þ

and

bψδ ¼ A
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δcrb2 þ

17

21
2δcrðb1 − 1Þ þ ðb1 þ 1Þ

×

�
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∂ ln σ2−α=2
∂ ln σ2

− 3

�
þ 2

�
σ2−α=2
σ2

; ðC9Þ

with α ¼ 0, A ¼ 1 for the local case and α ¼ 1, A ¼ −3 for

the orthogonal case, and

σ2n ¼
Z

d3k
ð2πÞ3 k

nPðkÞjWðkÞj2: ðC10Þ

APPENDIX D: ESTIMATOR

An estimator for the amplitude of the long mode was first
proposed in [7] and then applied in [8] to the antisymmetric
case, in the null hypothesis where hδ1ðk1Þδ2ðk2Þi is
vanishing in the absence of the modulating field. In the
case of biased clustering, however, the situation is different,
and the procedure outlined there needs to be generalized.
To single out the antisymmetric part of the signal, the

quantity of interest is, in discretized form [62],

1

2
½δ1ðk1Þδ2ðk2Þ − δ1ðk2Þδ2ðk1Þ�

¼ Vsδk1;k2;Kδ
�ðKÞfALðk1; k2ÞK̂ · ðk1 − k2Þ; ðD1Þ

where Vsδk1;k2;K⟶
V→∞ð2πÞ3δð3Þðk1 þ k2 þ KÞ.

Each pair k1, k2 provides an estimator (changing sign
of K)

dδðKÞ ¼ 1

2
½δ1ðk1Þδ2ðk2Þ − δ1ðk2Þδ2ðk1Þ�½fALðk1; k2ÞK̂ · ðk1 − k2Þ�−1: ðD2Þ

The variance of the antisymmetrized combination of density fluctuations is

1

4
hðδ1ðk1Þδ2ðk2Þ − δ1ðk2Þδ2ðk1ÞÞðδ1ðk01Þδ2ðk02Þ − δ1ðk02Þδ2ðk01ÞÞiþ
− hδ1ðk1Þδ2ðk2Þ − δ1ðk2Þδ2ðk1Þihδ1ðk01Þδ2ðk02Þ − δ1ðk02Þδ2ðk01Þi

¼ 1

4
½P1ðk1ÞP2ðk2Þ þ P1ðk2ÞP2ðk1Þ − 2P12ðk1ÞP12ðk2Þ�ðδDk1þk0

1
δDk1þk0

2
− δDk1þk0

2
δDk0

1
þk2

Þ; ðD3Þ

where k2 ¼ K − k1 and k02 ¼ K − k01. The term ½fALðk01; k02ÞK̂ · ðk01 − k02Þ�−1 picks up a negative sign from the second
combination of Dirac delta’s, so that the overall variance gets a factor 2 and becomes

Vs

2
½fALðk1; k2ÞK̂ · ðk1 − k2Þ�−2ðP1ðk1ÞP2ðk2Þ þ P1ðk2ÞP2ðk1Þ − 2P12ðk1ÞP12ðk2ÞÞ: ðD4Þ

The optimal estimator is obtained by summing over all modes with inverse variance weightings

dδðKÞ ¼ PnðKÞ
X
k

½fALðk1; k2ÞK̂ · ðk1 − k2Þ�
Vs
2
ðP1ðk1ÞP2ðk2Þ þ P1ðk2ÞP2ðk1Þ − 2P12ðk1ÞP12ðk2ÞÞ

1

2
½δ1ðk1Þδ2ðk2Þ − δ1ðk2Þδ2ðk1Þ�;

PnðKÞ ¼
�X

k

½fALðk1; k2ÞK̂ · ðk1 − k2Þ�2
Vs
2
ðP1ðk1ÞP2ðk2Þ þ P1ðk2ÞP2ðk1Þ − 2P12ðk1ÞP12ðk2ÞÞ

�−1
: ðD5Þ

Since hj dδðKÞj2i ¼ VsðPðKÞ þ PnðKÞÞ, if one parametrizes PðKÞ ¼ APfðKÞwith a fiducial power spectrum PfðKÞ, each
K provides an estimator for the amplitude

ÂK ¼ PfðKÞ−1ðV−1
s j dδðKÞj2 − PnðKÞÞ; ðD6Þ
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so the optimal estimator is

Â ¼ σ2
X
K

PfðKÞ
2ðPnðKÞÞ2

ðV−1
s jdδðKÞj2 − PnðKÞÞ; ðD7Þ

σ−2 ¼
X
K

ðPfðKÞÞ2
2ðPnðKÞÞ2

: ðD8Þ

The quantity σ roughly represents the sensitivity to the
amplitude of the underlying long mode power spectrum
and therefore can be used to get an estimate of the detection
threshold of the modulation effect.
The sum over Fourier modes becomes

P
k ↦

V=ð2πÞ3 R d3k. For the short modes, V ¼ Vs the survey

volume. In order to restrict to squeezed configurations
only, at a given long mode k3, the lower integration limit is
set to kmin ¼ 10K, where 10 is the (arbitrarily chosen)
minimum squeezing factor. As for the long modes, the sum
over modes should account for all the large scales that, in
principle, can modulate the two-point function on the
scales k1, k2. Modes that are much larger than the survey
will be degenerate with the background, therefore V ≃ Vs
as well, and the lower integration limit can be taken to be
of order the fundamental wave vector of the survey,
Kmin ≃ 2π=V1=3

s . Both integrations run up to kmax. In
practice, given the squeezing requirement, the integration
over long modes stops at Kmax ¼ kmax=10.
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