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We investigate exact and approximate techniques to calculate the emission of gravitational radiation from
cosmic string loops in order to generate beam models covering the entire celestial sphere for a wide range
of modes m. One approach entails summing over contributions of stationary and nearly stationary points of
individual, factorized, left- and right-moving modes. This “multipoint method” generalizes traditional
methods that rely on expansions around exact stationary points of mode products. A second complementary
approach extends the method of steepest descent to generate an asymptotic description of the beam as
m → ∞. We present example calculations of the emission of power from cusp-containing loops and compare
the results with those obtained by numerically exact techniques as well as by previous approaches. The
multipoint method achieves its best results at an intermediate range of modes, improving over previous
methods in terms of accuracy. It handles the emission from all regions of the loop not just those near cusps.
We demonstrate this capability by making a detailed study of the “pseudocusp” phenomenon.
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I. INTRODUCTION

In certain well-studied cosmological models in string
theory [1–4], a period of inflation may stretch microscopic
theory constituents such as F-strings (fundamental strings)
or D-branes (branes wrapped on small dimensions) to
macroscopic size. Some of these entities span the horizon
of the visible universe once inflation ceases, hereafter
denoted as “superstrings” [5]. The horizon-crossing super-
strings are the progenitors to a network composed of long
strings and smaller closed loops. Minimally coupled strings
behave in a relatively simple fashion: a statistical descrip-
tion of the network converges to an attractor solution that is
realized when the universe experiences power law expan-
sion as it does during the big bang’s conventional radiation
and matter eras [6–11]. The attractor is a scaling solution:
long strings collide and form subhorizon closed loops, the
loops oscillate and emit gravitational radiation and decay.
All properties measured relative to the horizon are fixed,
e.g., the density parameter Ω [12] for each individual
component (long strings, loops and emitted gravitational
radiation) remains constant. The statistical properties of the
scaling solution are fixed by a few parameters such as the
string tension μ, the number of species or types of different
string and the propensity for string intersections to break
and rejoin (intercommutation) string elements. The indirect

detection of network elements relies on string generated
gravitational perturbations that affect standard model com-
ponents. One possible scenario is measuring lensing of
light-emitting background sources. Direct detection, on the
other hand, might involve observing the characteristic
gravitational radiation emitted by evaporating strings.
The unresolved emission produced by all the network
elements in the visible Universe contributes to the stochas-
tic gravitational wave background (SGWB).
Each string loop emits at its fundamental frequency and

all higher harmonics. Given a loop’s motion it is straight-
forward to compute the gravitational radiation emitted
mode by mode in different directions on the sky [13].
Low frequency emission from parsec-sized loops might
match the bandpass of pulsar detectors whereas high
frequency emission from the same loop might fall in the
band of frequency sensitivity of a space-based gravitational
wave instrument. Low frequency emission is generally
directed over a wide angle on the sky, high frequency
emission tends to be more narrowly collimated. The goal
of this paper is to develop useful approximate tools for
determining the gravitational wave emission beamed to the
sky by string loops over the entire plausible frequency
range of interest. We unite efficient existing methods of
calculation at low frequencies with new, more accurate
techniques at higher frequencies.
This paper focuses on calculations for loops with cusps

and without kinks. It is known that smooth string loops that
do not self-intersect generically possess cusps [14], small
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bits of the string loop that move at ultrarelativistic
speeds and beam high frequency gravitational wave emis-
sion [15–17]. If cusps are present on string loops then their
emission is expected to dominate the SGWB at high
frequencies. The SGWB is an especially important and
promising target for space-based gravitational wave detec-
tors like LISA [18]. Nonetheless, the methodology intro-
duced in this paper is potentially applicable to a wider
variety of loops such as those that possess kinks [19,20]. In
fact, cosmic string simulations produce mostly kink-filled
loops [8,11] and it will be important to return to apply the
new methods to loops with kinks.
The exact calculation of gravitational wave emission

must generally be done numerically. However, approximate
descriptions [21,22] are well developed, especially for the
power emitted by high modes. These formalisms consider
the emission from a small region on the world sheet near
cusps which is expected to dominate at asymptotically high
frequencies. More extensive regions of the world sheet are
important at low frequencies. The methods outlined here
build upon and extend existing formalisms to systemati-
cally include multiple regions of the loop world sheet in
addition to those near the cusps.
Section II reviews the analytic description of string loop

motion, the conditions for cusp formation and the rate
at which energy, momentum and angular momentum are
carried off by the emission of gravitational radiation. The
rates depend upon one-dimensional integrals obtained by
factorization of the loop dynamics into the left- and right-
moving modes [21,23,24]. Finding effective approaches,
both analytic and numerical, to evaluate these integrals is
the key purpose of this paper. In Sec. III, we describe two
exact methods (real direct, complex direct) and two
approximate ones (real multipoint, complex asymptotic)
for studying the integrals of interest. In this paper we
concentrate on the real multipoint method, providing a
detailed analytic exposition. The formalism reproduces
existing expressions for emission in the vicinity of a cusp
when one is present but applies to a much broader set
of physical conditions. We examine necessary criteria for
validity. We show that the multipoint method works best in
conjunction with other approaches, especially the direct
numerical and complex asymptotic methods. In Sec. IV
we examine the application of the multipoint method to a
representative set of string loops [25] for a range of
emission directions to highlight the loop features that
impact accuracy. We show which parts of the mode
spectrum and which parts of the celestial sphere are best
covered by thevarious techniqueswe study. SectionVapplies
the multipoint method to investigate pseudocusp emission by
both analytic and numerical means. Section VI compares
three approaches (exact numerical integration; cusp-centered
calculation—hereafter, “single-point” method; and the new
multipoint method) by quantifying accuracy and perfor-
mance. Section VII gives a general discussion and the

applications of the methods and Sec. VIII summarizes our
conclusions.
Conventions used: Throughout the paper, we have

assumed ℏ ¼ c ¼ 1. The Greek letters μ; ν;… denote
spacetime indices of 4-vectors (running from 0 to 3), raised
and lowered using the metric with signature (−;þ;þ;þ).
In this paper we work to lowest order in the string tension
and the required form of the metric is just the Minkowski
metric ημν ¼ diagð−1;þ1;þ1;þ1Þ. The 3-vectors are
written in bold (e.g., X� is the 3-vector X⃗�). The
Roman letters i, j, k denote spatial indices running from
1 to 3 while p, q run from 2 to 3. The letters τ and σ are
conformal coordinates which parametrize the cosmic string
world sheet.

II. GRAVITATIONAL WAVE EMISSION
FROM A COSMIC STRING LOOP

Cosmic string loops are effectively one-dimensional
objects when the curvature scale of the strings is much
larger than their thickness. The unperturbed dynamics is
described by the Nambu-Goto equation of motion in flat
spacetime. The string world sheet is parametrized by two
conformal coordinates τ and σ, and represented by Xμðτ; σÞ.
In the conformal gauge, the Nambu-Goto equation of
motion is the two-dimensional wave equation,

�
∂
2

∂σ2
−

∂
2

∂τ2

�
Xμðτ; σÞ ¼ 0; ð1Þ

with constraints set by the Virasoro conditions,

ημν

�
∂Xμ

∂τ

��
∂Xν

∂σ

�
¼ 0; ð2aÞ

ημν

�
∂Xμ

∂τ

��
∂Xν

∂τ

�
þ ημν

�
∂Xμ

∂σ

��
∂Xν

∂σ

�
¼ 0: ð2bÞ

For a loop of “invariant” length l (defined as l ¼ E=μ,
where E is the energy of the loop in the center-of-mass
frame and μ is the tension of the loop) the motion is
periodic in τ with a period of l=2 and periodic in σ with a
period of l. The fundamental domain may be taken to be
0 ≤ τ < l=2 and 0 ≤ σ < l.
The general solution to the Nambu-Goto equation of

motion is a superposition of left-moving and right-moving
modes where

Xμðτ; σÞ ¼ 1

2
½Xμ

−ðσ−Þ þ Xμ
þðσþÞ� ð3Þ

where σ� ¼ τ � σ. Here, Xμ
�ðσ�Þ are periodic with a

period l, i.e.

Xμ
�ðσ� þ lÞ ¼ Xμ

�ðσ�Þ: ð4Þ
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In the center-of-mass frame, we choose the world
sheet coordinate τ to coincide with the coordinate time
i.e. X0ðτ; σÞ ¼ τ, yields X0

� ¼ σ�. In this gauge, the
Virasoro conditions Eq. (2) become

Ẋ2
� ¼ 1; ð5Þ

where the overdot denotes derivative with respect to the
corresponding σ� variable. The spacetime vectors obey
the relation

Ẋ2
� ¼ 0: ð6Þ

Differentiating the above equation leads to the conditions

Ẋ�:Ẍ� ¼ 0; ð7aÞ

Ẋ�:X
ð3Þ
� þ Ẍ2

� ¼ 0; ð7bÞ

which will be used in Sec. III C.

A. Cusps

The space of the tangent vectors Ẋ� is the surface
of a unit sphere and Ẋ� trace out two separate curves on
this unit sphere. If two tangent curves intersect they give
rise to a cusp. When that happens a part of the string loop
momentarily doubles back on itself in spacetime. Suppose
the two tangent curves intersect at

Ẋ−ðσc−Þ ¼ ẊþðσcþÞ: ð8Þ

Without loss of generality, define τc ¼ ðσcþ þ σc−Þ=2 and
σc ¼ ðσcþ − σc−Þ=2. It follows from Eq. (3) that

Ẋ2ðτc; σcÞ ¼ 1; ð9Þ

where Ẋ ¼ dX=dτ. The above result implies that the string
moves at the speed of light at the cusps in the tangent vector
direction. The high Lorentz boost in the regions near the
cusp leads to beamed gravitational radiation and quite
possibly emission of other particles for nonminimally
coupled strings [26–29].

B. Energy, momentum, and angular
momentum emitted

A cosmic string loop of length l has fundamental
frequency f1 ¼ 1=T1 ¼ 2=l where T1 is the oscillation
period of the loop. The undamped loop motion is periodic
in the center of mass frame and all relevant functions may
be expanded in terms of sinusoidal modes with frequencies
fm ¼ mf1 where m∈Zþ. Since we work to lowest non-
vanishing order in the string tension the waveform is a
linear sum over the sinusoidal modes.

One way to characterize the gravitational wave emission
is in terms of the power emitted. The time-averaged power
emitted is quadratic in the wave contributions mode-by-
mode since all cross terms between different modes average
to zero. We write the time-averaged differential power
emitted at mode m per solid angle as dPm=dΩ which is a
function of k̂, the direction of emission. Figure 1 illustrates
the celestial sphere for emission direction k̂ overlaying the
tangent sphere for tangent curves Ẋ�. Usually we will use
spherical polar coordinates and write k̂ ¼ ðsin θ cosϕ;
sin θ sinϕ; cos θÞ. The power emitted in a single mode,
Pm, is the integral of this differential power over the
celestial sphere

Pm ¼
Z

dΩ
dPm

dΩ
: ð10Þ

The details of the calculation of power emitted have been
laid out in [30–33]. For a cosmic string loop of length l,
define the one-dimensional integrals,

Iμ� ≡ 1

l

Z
l=2

−l=2
dσ�Ẋ

μ
�e

−i
2
ωmk:X� ; ð11Þ

where kμ ¼ ð1; k̂Þ and ωm ¼ 4πm=l for a given mode
number m. The vectors û and v̂

û ¼ ð− sinϕ; cosϕ; 0Þ ð12Þ

v̂ ¼ ð− cos θ cosϕ;− cos θ sinϕ; sin θÞ ð13Þ

FIG. 1. The unit sphere and the curves traced by the tangent
vectors Ẋ�. The arrow points in the direction k̂. (This set of
tangent curves corresponds to a specific case of the “Turok loop”
which we shall examine in more detail in Sec. IV).
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form a right-handed orthonormal basis with k̂ ¼ û × v̂. We
will label the 3 elements by ðn1; n2; n3Þ ¼ ðk̂; û; v̂Þ below.
The Fourier transform of the energy-momentum

tensor [34] of the string loop is

τij ¼
μl
2

h
IðniÞ− I

ðnjÞ
þ þ I

ðnjÞ
− IðniÞþ

i
ð14Þ

where

IðniÞ� ¼ I�:ni: ð15Þ

The power emitted per unit solid angle in mode m along
direction k̂ is [31]

dPm

dΩ
¼ Gω2

m

π

�
τ�pqτpq −

1

2
τ�qqτpp

�
ð16Þ

where each of p and q take the values 2 and 3 (repeated
indices are summed over). In terms of I�, the differential
power is

dPm

dΩ
¼ 8πGμ2m2

h
ðjIðuÞ− j2 þ jIðvÞ− j2ÞðjIðuÞþ j2 þ jIðvÞþ j2Þ

þ 4ImðIðuÞ− IðvÞ�− ÞImðIðuÞþ IðvÞ�þ Þ
i
: ð17Þ

Generic oscillating string loops radiate not only energy
but also momentum and angular momentum. The radiation
of net momentum results in a gravitational rocket effect on
the string loops which may play an important role in their
dynamical motions [35,36]. The differential rate of radia-
tion of momentum from a cosmic string loop is

dṗm

dΩ
¼ dPm

dΩ
k̂: ð18Þ

Note that the momentum density follows directly from the
flux of energy.
The calculation of the rate of radiation of angular

momentum from a cosmic string loop is more complicated
and has been discussed in detail in [31]. Introducing the
integrals

Mμν
� ≡ 1

l

Z
l=2

−l=2
dσ�Ẋ

μ
�X

ν
�e

−i
2
ωmk:X� ð19Þ

and defining

M
ðni;njÞ
� ≡ 1

l

Z
l=2

−l=2
dσ�ðẊ�:niÞðX�:njÞe−i

2
ωmk:X� ; ð20Þ

the Fourier transform of the first moment of the string
energy-momentum tensor is

τijk ¼
μl
4

h
IðniÞ− M

ðnj;nkÞ
þ þ I

ðnjÞ
− Mðni;nkÞþ

þ IðniÞþ M
ðnj;nkÞ
− þ I

ðnjÞ
þ Mðni;nkÞ−

i
: ð21Þ

The radiated angular momentum is orthogonal to k̂. The
differential rate of radiated angular momentum per unit
solid angle of mode number m is

dL̇m

dΩ
¼ dL̇m;u

dΩ
ûþ dL̇m;v

dΩ
v̂; ð22Þ

where

dL̇m;u

dΩ
¼ G
2π

�
−iωmð3τ�13τpp þ 6τ�3pτp1Þ

−ω2
m

�
2τ�3pqτpq − 2τ�3pτpqq − τ�pq3τpq þ

1

2
τ�qq3τpp

�

þ c:c:

�
; ð23Þ

dL̇m;v

dΩ
¼ G
2π

�
iωmð3τ�12τpp þ 6τ�2pτp1Þ

þω2
m

�
2τ�2pqτpq − 2τ�2pτpqq − τ�pq2τpq þ

1

2
τ�qq2τpp

�

þ c:c:

�
: ð24Þ

Finally, the total radiated energy, momentum and angular
momentum are

P ¼
X
m

Pm ¼
X
m

Z
dΩ

dPm

dΩ
; ð25Þ

ṗ ¼
X
m

ṗm ¼
X
m

Z
dΩ

dṗm

dΩ
; ð26Þ

L̇ ¼
X
m

L̇m ¼
X
m

Z
dΩ

dL̇m

dΩ
: ð27Þ

All three conserved quantities depends upon one dimen-
sional integrals Eq. (11) and Eq. (19). Our focus is on the
calculation of these basic quantities. It is important to
recognize that the one-dimensional integrals are gauge-
dependent but that the combinations giving the physical
quantities above are gauge-independent.

C. Example calculations
for the Vachaspati-Vilenkin loop

To sketch the larger context, we examine the power
emitted Pm, the rate of emission of momentum ṗm and the
rate of emission of angular momentum L̇m as a function of
the mode number m for an example cosmic string loop.
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For the calculations we select a particular family of
loops (which we will refer to as “Vachaspati-Vilenkin
loops” to distinguish from other, more symmetric classes
of loops introduced in the later sections) with three
frequencies and characterized by two parameters α and Φ,
introduced in [36],

X−ðσ−Þ¼
l
2π

�
2π

l
σ−;−ð1−αÞsin

�
2πσ−
l

�
þα

3
sin

�
6πσ−
l

�
;

−ð1−αÞcos
�
2πσ−
l

�
−
α

3
cos

�
6πσ−
l

�
;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1−αÞ

p
sin

�
4πσ−
l

��
; ð28aÞ

XþðσþÞ ¼
l
2π

�
2π

l
σþ; sin

�
2πσþ
l

�
;

− cosΦ cos

�
2πσþ
l

�
;− sinΦ cos

�
2πσþ
l

��
:

ð28bÞ

For the purposes of demonstration, let us select α ¼ 1=2
and Φ ¼ π=4. The integrals Eq. (11) and Eq. (19) are
performed numerically and combined to calculate dPm

dΩ ,
djṗmj
dΩ

and djL̇mj
dΩ . The differential quantities are integrated over the

celestial sphere numerically to give Pm, jṗmj and jL̇mj
according to Eqs. (25), (26) and (27). The left hand panel of
Fig. 2 shows the radiated power and the rate of radiated
momentum and angular momentum per mode number for
this loop up to m ¼ 50. The calculated power, rate of
radiation of momentum and rate of radiation of angular
momentum from the first 50 modes are 53.8Gμ2, 5.67Gμ2,
and 4.18Gμ2l, respectively, in general agreement with [31].
The right-hand panel shows the cumulative quantities up to
and including modem. Evidently, most of the total radiated

power, momentum and angular momentum originates
from the lower modes. These will be responsible for the
dominant secular change in the loop’s invariant length,
center of mass acceleration and spin changes. This par-
ticular loop has zero x-components of both ṗm and L̇m.
We used numerical results to estimate the total power,

momentum and angular momentum emitted by the loop
from all the modes. We performed quadratures using a
regular grid on the celestial sphere for all modes with
m ≤ 200 and using Monte Carlo sampling on the celestial
sphere for modes m ¼ 100–200 and 207, 248, 298, 358,
429, 515, 619, 743 and 891 (successive values increase by
∼1.2). We used linear interpolation of the Monte Carlo
results to infer the quadratures for 200 < m ≤ 891. We
extrapolated the results for m > 891 based on the asymp-
totic scaling of the integrals for a dominant cusp (large m
quadratures ∝ m−4=3). We observed and verified the power
law scaling for the numerically calculated quadratures
with 300≲m≤891. Summing these three contributions
(explicit, interpolated and extrapolated quadratures)
allowed us to estimate the loop’s total power, total rate
of radiation of momentum and total rate of radiation
of angular momentum: P ¼ ð74.0–74.2ÞGμ2, jṗj ¼
ð9.6–9.7ÞGμ2 and jL̇j ¼ ð5.32–5.33ÞGμ2l, respectively.
The quoted range is derived by comparing regular versus
Monte Carlo quadrature estimates in the overlap region
101 ≤ m ≤ 200. Approximately 80% of the total power,
momentum magnitude and angular momentum magnitude
radiated is sourced by modes with m < 121–122, 527–549
and 60, respectively, for this particular loop (the range is as
above). Although the upper limits for m may appear
variable they can be understood in terms of 3 qualitative
factors: the intrinsic magnitude of radiated quantities, the
possibility of sign cancellations in radiated quantities and
the onset of asymptotic variation. Details are quantitatively
discussed in Appendix A.

FIG. 2. Plot showing the radiated power, rate of radiation of momentum and angular momentum in each mode m on the left and plot
showing the cumulative quantities up to mode m on the right, for the loop Eq. (28). The blue markers correspond to the power radiated,
the orange markers correspond to the momentum and the green markers correspond to the angular momentum.
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We find at least a factor of 2 variation among different
Turok and Vachaspati-Vilenkin loops in terms of the total
rates of emission but the qualitative conclusion that lower
modes contribute the most remains true.

III. TECHNIQUES TO EVALUATE Iμ�
The fundamental step in the calculation of energy,

momentum and angular momentum radiated from a cosmic
string loop is the estimation of the integrals Eq. (11)
and Eq. (19). These are oscillatory integrals with phase
1
2
ωmk:X� ¼ 2πm

l k:X�. Here we describe two exact and two
approximate methods of calculation.

A. Direct evaluation of the real integral

In general, the integrals Iμ� cannot be reduced to an
explicit closed form (except for a few special cases
[30,31,36]). At low m it is straightforward to use a direct
numerical evaluation to derive an “exact” numerical result.
The simple trapezoidal rule is exponentially convergent
[37] for smooth periodic functions but there are two
practical difficulties as m grows large. First, the integrand
oscillates more and more rapidly and the number of
function evaluations needed scales ∝ m. Second, the
cancellation of signed quantities of order unity in the
sum accumulates errors that may exceed the exact, small
final result. Eventually, higher precision arithmetic must be
used in the direct evaluation because the residual answer is
so small. Numerical schemes exist that can integrate rapidly
oscillating functions [38,39] but in the next section we will
take advantage of the special features of the integrand and
develop a customized approach.
Direct numerical schemes related to the fast Fourier

transform (FFT) were explored in [22,24]. The methodol-
ogy may be succinctly summarized as follows: Assume that
the integrand, a periodic function in σ�, is represented byN
discrete samples. A transformation of the original inde-
pendent variable to a new form absorbs part of the periodic
function leaving a pure harmonic (dependent on m) times
a weight at the expense of introducing a new grid with
uneven spacing. Adopt an interpolation scheme for the
weight. Let the new uniform grid have dimensionM ¼ cN
with c ≫ 1 (values c ¼ 8–16 were typical in [24]). Finally,
use an FFT of length M to perform the quadrature sum.
FFT-related methods have the great advantage of computa-
tional speed for evaluating a range of mode numbers but
suffer from aliasing effects because power at high frequen-
cies is redistributed to low frequencies. As a practical
matter, the contamination at lowm is small because the true
power at high frequencies is small compared to the true
power at low frequencies, i.e., the induced relative error is
small at low frequencies; on the other hand, large m results
are significantly impacted in terms of relative error. We will
see by direct calculation that the accuracy degrades as m

increases and, in general, the largest modem at which good
accuracy can be achieved will satisfy m < M=c.

B. Direct evaluation by deformed complex contour

Let us focus on the complex analytic properties of the
integration of Iμ−. We simplify the notation and consider one
spacetime component μ and one harmonic m∈Zþ of the
fundamental frequency. Let h ¼ Iμ−, z ¼ σ−=l, g ¼ Ẋμ

− and
f ¼ ω1k · X−=2. The integral has the form

h ¼
Z

1=2

−1=2
dz gðzÞe−imfðzÞ ð29Þ

where f and g are periodic functions of z. For convenience,
let F ¼ if so that the exponential above is e−mF.
If we were interested in finding an asymptotic approxi-

mation to the integral at large m we might follow the
method of steepest descent [40]. The integrand is a smooth
complex function without poles and with various critical
points zc in the complex plane where F0ðzcÞ ¼ 0. The
method of steepest descent proceeds by deforming the
integration contour to pass through critical point(s) and also
requiring that the imaginary part of FðzÞ be constant over
the deformed contour. The latter condition suppresses the
oscillations of the integrand. Laplace’s method may be used
to provide an approximation for the integral along a path
for which the integrand is a maximum at the critical point.
The technique is commonly used to generate asymptotic
approximations (e.g. [40,41]).
We apply the same ideas here to deform the integration

path in the complex plane. A numerical calculation of h
along the new path will exactly match the direct real
calculation along the old path. The new path also provides
an asymptotic approximation to h by way of the contri-
butions at each of the critical points visited.
Figure 3 illustrates part of the complex z plane for an

example [42]. The original integration path over real z is the
light gray line that extends from one gray dot at z ¼ −1=2
to the other gray dot at z ¼ 1=2. The dashed black, blue and
green lines are contours for different fixed Im½FðzÞ�. The
red dots are critical points with F0ðzcÞ ¼ 0, a subset of all
the critical points in the plane for this particular example.
The original path is deformed to a connected set of 4
particular segments. The first segment starts at z ¼ −1=2,
proceeds to large imaginary z (near vertical), then links to
colored paths that begin and end at Im½z� ¼ þ∞ and the
last segment returns to the real axis at z ¼ 1=2. The first
segment (dashed) has Im½FðzÞ� ¼ Im½Fðz ¼ −1=2Þ�,
ascending in the direction Im½z� → þ∞ with large positive
Re½F� (the integrand is zero). The last segment (also
dashed) descends from infinite Im½z� and large positive
Re½F� to z ¼ 1=2 along the contour with Im½F� ¼
Im½Fðz ¼ 1=2Þ�. These two segments are identical except
for a shift in z by 1. Since f and g are periodic in z the two
integrations, one up and one down, exactly cancel each
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other. The remaining two segments form two looping
jumps, from and to Im½z� ¼ þ∞ with large positive
Re½F� at each end; each segment passes through a critical
point at finite z ¼ zc with F0ðzcÞ ¼ 0 and F00ðzcÞ > 0.
Carrying out an exact evaluation in the complex plane

involves three tasks: locating the critical points, finding the
complete closed path with piecewise-constant Im½F�, and
integrating along the path. The deformed contour need not
be found exactly (in the sense that Im½F� is precisely
constant) because any closed contour gives the same
integrated result. The advantage of locating a contour with
constant Im½F� is most significant whenm is large. We have
compared numerical results for complex integration along
the deformed path to the real integration along the original
contour for 1 ≤ m ≤ 104 and achieved agreement at the
level of machine precision [43].
It is worth pointing out a few practical aspects of the

numerical integration over the deformed path. The path is
independent of m so once the path is determined then large
batches of m can be done efficiently. The integration itself
is relatively easy to carry out because, by design, the phase
of e−mF does not oscillate (the prefactor g varies slowly).
The maximum of the integrand for each segment occurs
near the associated critical point zc. The concentration of
the integrand about the peak is related to Re½F00ðzcÞ�—
large, positive values imply sharper peaks near the critical
point. The peak size e−mFðzcÞ sets the scale for additive

arithmetic for any integration scheme. If the relative error is
ϵ (stemming from the truncation error of the integration
scheme) then the inferred absolute error ∼ϵe−mF. Other
than its dependence on ϵ the minimum absolute error
that can be achieved numerically is constrained by the
smallest number that can be represented [44]. This is quite
different than the residual errors seen in the direct real
calculations which involves cancellation of signed quan-
tities of order unity.

C. Approximate real multipoint method

The direct numerical schemes for real integration are
suitable at small m. Here we describe a new method, which
turns out to be appropriate for intermediate mode numbers
m where intermediate means larger than those needing
direct methods and smaller than those most accurately
evaluated by asymptotic means.
All previous approximations [21,22,36] to high mode

number integrals exploit the existence of small neighbor-
hoods where the integral builds up because the complex
phase does not oscillate too rapidly. These methods are
ideal for describing the emission from cusps where the
derivatives of both the left- and right-moving oscillatory
phases k:X� vanish. Write the mode conformal coordinates

at the cusp as σ� ¼ σðcÞ� . At the cusp the two tangent

vectors Ẋ�ðσðcÞ� Þ are identical. These pick out a special
direction which becomes the center of expansion for the
approximation. At large m the emission is strongest along

Ẋ�ðσðcÞ� Þ and falls rapidly away from this special direction
on the celestial sphere.
This approach can be modified to yield an improved

description in two senses: it will treat emission even when
the special direction associated with a cusp does not exist or
is irrelevant and it will improve the fidelity of the beam
shape. As we will see the improvements also will enable us
to extend the description to somewhat lower mode frequen-
cies than previous methods.
For each mode the integral Eq. (11) gets its maximum

contribution if k̂ aligns with some Ẋ�
� ¼ Ẋ�ðσ��Þ. But this

situation does not hold for either mode for most emission
directions. In general, k̂ will point away from Ẋ�

�,

kμðθ;ϕÞ ¼ Ẋ�μ
� þ δμ� ð30Þ

where δμ� corresponds to the deviation for each mode. With
our definitions kμ ¼ ð1; k̂Þ and Ẋ�μ ¼ ð1; n̂Þ for unit vectors
k̂ and n̂ so that δμ ¼ ð0; k̂ − n̂Þ. For any σ��, there is a
corresponding δμ�, which is fixed by the choice of θ, ϕ and
σ��. Previous authors have generally worked in the limit of
small δμ�, but we will retain δ

μ
� exactly for the moment. The

four-vectors X� and Ẋ� can be Taylor-expanded in a small
region around σ��. The largest contribution to the variation
of the phase k:X� comes from the first three powers of σ�.

FIG. 3. An example illustration of the integration contours of
I−. The light gray line shows the integration path along the real
axis. The blue and green lines give the deformed contour passing
through the critical points marked in red (a subset of all the
critical points that are present). The path starts at z ¼ −1=2,
extends to positive imaginary infinity, the first critical point,
positive imaginary infinity, the second critical point, positive
imaginary infinity and ends at z ¼ 1=2.
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At the cusp, the leading contribution comes from the cubic
term ðOðσ3�ÞÞ while the linear ðOðσ�ÞÞ and quadratic terms
ðOðσ2�ÞÞ are zero. So, for the description of the phase, we
shall retain terms up to cubic order in σ� whereas for the
prefactor Ẋ�, we will retain the linear term only. With these
assumptions, the Taylor expansion of X�; k:X�, and Ẋ� are

X�ðσ�Þ ¼ X�
� þ Ẋ�

�ðσ� − σ��Þ þ
1

2
Ẍ�
�ðσ� − σ��Þ2

þ 1

6
Xð3Þ�
� ðσ� − σ��Þ3 ð31Þ

kμX
μ
�ðσ�Þ ¼ ðẊ�

�;μ þ δ�;μÞXμ
�ðσ�Þ

¼ Ẋ�
�;μX

�μ
� −

1

6
jẌ�

�j2ðσ� − σ��Þ3

þ δ�;μX
�μ
� þ δ�;μẊ

�μ
� ðσ� − σ��Þ

þ 1

2
δ�;μẌ

�μ
� ðσ� − σ��Þ2

þ 1

6
δ�;μX

ð3Þ�μ
� ðσ� − σ��Þ3; to cubic order

ð32Þ

Ẋ�ðσ�Þ ¼ Ẋ�
� þ Ẍ�

�ðσ� − σ��Þ; to linear order ð33Þ

where the terms in the expansion of the phase, Eq. (32),
have been rewritten using Eq. (7). We define the coef-
ficients,

Am ≡ −
2πm
l

�
−
1

6
jẌ�

�j2 þ
1

6
δ�;μX

ð3Þ�μ
�

�
; ð34Þ

Bm ≡ −
2πm
l

1

2
δ�;μẌ

�μ
� ; ð35Þ

Cm ≡ −
2πm
l

δ�;μẊ
�μ
� ; ð36Þ

Dm ≡ −
2πm
l

ðẊ�
�;μX

�μ
� þ δ�;μX

�μ
� Þ; ð37Þ

and make a change of variables,

σ� → t −
Bm

3Am
; ð38Þ

p →
3AmCm − B2

m

3A2
m

; ð39Þ

q →
2B3

m − 9AmBmCm þ 27A2
mDm

27A3
m

: ð40Þ

Substituting for these quantities in the integral Eq. (11),
shifting the origin ðσ� − σ��Þ → σ� and extending the
integration limits to �∞ yields

Iμ� ¼
�
Ẋ�μ
� −

Bm

3Am
Ẍ�μ
�

�Z
∞

−∞
dt eiAmðt3þptþqÞ

þ Ẍ�μ
�

Z
∞

−∞
dt teiAmðt3þptþqÞ: ð41Þ

The integrals

I1 ≡
Z

∞

−∞
dt eiAmðt3þptþqÞ; ð42aÞ

I2 ≡
Z

∞

−∞
dt teiAmðt3þptþqÞ ð42bÞ

can be evaluated analytically. See Appendix B for the
explicit expressions.
If k̂ aligns exactly with one of the tangent vectors

Ẋ�ðσ�Þ then δμ� ¼ 0 and the results for that mode simplify
as follows:

Am → −
2πm
l

�
−
1

6
jẌ�

�j2
�
; ð43Þ

Bm → 0 ð44Þ

Cm → 0 ð45Þ

Dm → −
2πm
l

ðẊ�
�;μX

�μ
� Þ; ð46Þ

σ� → t ð47Þ

p → 0 ð48Þ

q →
Dm

Am
ð49Þ

Iμ� → Ẋ�μ
� I1 þ Ẍ�μ

� I2 ð50Þ

I1 →
−2πeiDm

A1=3
m Γð−1=3Þ

ð51Þ

I2 →
−iπeiDm

A2=3
m Γð−2=3Þ

: ð52Þ

In this case I1 ∝ m−1=3 and I2 ∝ m−2=3.
In the case that the two tangent vectors coincide

forming a cusp write lμ ≡ Ẋμ
þ ¼ Ẋμ

−. Exact alignment
of viewing direction is kμ ¼ lμ. Now dropping constants
for clarity Iμ� ∼ lμI1 þ Ẍ�μ

� I2. From above Iμ� contain
terms ∝ m−1=3 and m−2=3. The stress energy tensor

involves symmetrized products like Iðμþ IνÞ− and such
expressions involve powers m−2=3, m−1, and m−4=3.
Now [21] showed that all but the last were gauge
dependent and could be removed from the stress tensor
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by a suitable coordinate transformation. In our treatment
we do not make any explicit gauge transformations but
rely on the fact that we are calculating physical observ-
ables even though they are written in terms of gauge
dependent quantities. Such observables depend on
the appropriate symmetrized combination of the one-
dimensional integrals, e.g., the differential power in
Eq. (17). Using the Virasoro conditions in Sec. II we
find all the gauge-dependent terms identified by [21]
explicitly vanish when we substitute Iμ� ∝ lμI1 þ Ẍ�μ

� I2.
The final differential cusp power is dPm=dΩ ∝
m2ðm−4=3Þ2 ∝ m−2=3.
For the cases where k̂ aligns with only one of or neither

of the tangent vectors the cross terms Ẋ−:Ẋþ do not cancel
out. Then dPm=dΩ includes contributions from the lower
powers of m. The gauge argument in [21] is valid only for
the case of a cusp and in the direction of the cusp. It cannot
be applied to the more general case. It is important to
recognize that the asymptotic behavior as m → ∞ will
involve both exponentials and powers ofm, i.e., one should
not conclude that the drop off with m is necessarily slower
thanm−2=3. We will see, however, that at intermediatem the
emission in the exact cusp direction need not be dominant.
A similar procedure can be employed to estimate Mμν

� ,
with the prefactor Ẋμ

�X
ν
� expanded to linear order and the

phase expanded to cubic order.
The cubic expansion Eq. (32) obviously ignores higher

order terms. Consider the expansion of the phase up to the
5th order, i.e.,

−
2πm
l

kμX
μ
�ðσ�Þ ¼ Dm þ Cmðσ� − σ��Þ þ Bmðσ� − σ��Þ2

þ Amðσ� − σ��Þ3 þGmðσ� − σ��Þ4
þHmðσ� − σ��Þ5 ð53Þ

where Am, Bm,Cm,Dm are defined in Eq. (34)–Eq. (37) and

Gm ¼ −
2πm
l

1

24
kμX

ð4Þ�μ
� ; ð54Þ

Hm ¼ −
2πm
l

1

120
kμX

ð5Þ�μ
� : ð55Þ

Assume that the main contribution for the cubic phase
occurs over width jσ� − σ��j ∼ 1=jAmj1=3. Then the cubic
term is dominant if both

� jAmj
jGmj3=4

;
jAmj

jHmj3=5
�
≳Oð1Þ: ð56Þ

The above condition sets an approximate lower bound onm
given by,

m≳ 3l
64π

max

�jk:Xð4Þ�j3
jk:Xð3Þ�j4 ;

8

53=2
jk:Xð5Þ�j3=2
jk:Xð3Þ�j5=2

�
ð57Þ

≡mlow;4þ5 ð58Þ

Whenever any of the aforementioned conditions is
violated there is no good reason to assume the cubic
expansion will provide reliable results. More generally any
Taylor series expansion may have a limited radius of
convergence so that even if one wanted to extend the
method beyond cubic order it might not yield more accurate
results.
There are other considerations as well. The Taylor expan-

sion of the prefactor, Ẋ� at linear order must be a good
approximation over the contributing width jσ�−σ��j∼
jAmj−1=3. A necessary condition is				 12 ⃛X�

�ðσ� − σ��Þ2
				 < jẊ�

� þ Ẍ�
�ðσ� − σ��Þj: ð59Þ

In addition, the width of the peak should be small compared
to the size of the fundamental domain (jAmj ≫ 1) and small
compared to the distance to nearby peaks.
Collectively, these inequalities imply the existence of a

lower mode m for which Eq. (41) is a good approximation.
We summarize this by m > mlow ≡max ðmlow;4þ5;…Þ.
Wewill work exclusively at cubic order for the phase and

at linear order for the prefactor and quantify the errors of
that approach with respect to exactly known answers.

1. Finding σ��
For any k̂ direction, each value of σ�� identifies one

center that is responsible for one contribution to the full
integral in Eq. (11). In general there can be several distinct
centers, i.e. several values of σ��. The principle is to identify
all the distinct stationary or nearly stationary points of the
phase responsible for making localized contributions to
Eq. (11) and sum these contributions.
The centers of expansion are points where Ẋ� most

closely aligns with k̂, i.e., where the derivative of the phase
k:Ẋ� is closest to zero. The quantity of interest has the form

kμẊ
μ
� ¼ −1þ k̂:Ẋ�: ð60Þ

Both k̂ and Ẋ� are unit vectors implying −2≤k:Ẋ�≤0.
For the case of a cusp, the propagation direction aligns
exactly with Ẋ� i.e., k:Ẋ� ¼ 0. If k:Ẋ� < 0 (no exact
alignment) then k:Ẋ� has to be as close to zero as possible,
i.e. σ�� should be an isolated point with k:Ẍ�

� ¼ 0 and a

local maximum i.e., k:Xð3Þ�
� < 0. This is what we mean by a

near-stationary point. Note that the integral contribution
will not be localized at third order if the requirement of a
local maximum is dropped. This can be seen heuristically

MODELING THE BEAM OF GRAVITATIONAL RADIATION … PHYS. REV. D 109, 123540 (2024)

123540-9



from the third order fit (with k:Xð3Þ�
� > 0) about a putative

center—the cubic fit inevitably gives rise to a distant and
distinct stationary point with k:Ẋ� ¼ 0. All such stationary
points are supposed to be found as separate expansion
centers. To avoid confusion with the negative signs, we will
use jk:Ẋ�j as the quantity of interest and so the condition
for maxima of k:Ẋ� translates to condition for minima of
jk:Ẋ�j. In the following discussions, “minimum (minima)”
refers to the minimum (minima) of jk:Ẋ�j. In summary, we
find all the local minima of jk:Ẋ�j for each I� and sum the
individual contributions to approximate the full integral
given by Eq. (11). The same recipe may be used to
approximate Mμν

� in Eq. (19).
Given a loop and propagation direction k̂ the contribu-

tions to the functions I� are calculated according to the
following general procedure:

(i) Select σ�� associated with the direction k̂ by finding
the minima of jk:Ẋ�j.

(ii) Expand the phase k:X� to cubic order and the
prefactor Ẋ� to linear order in σ� about σ��.

(iii) Make the substitutions Eq. (34)—Eq. (40) and
estimate the integral I� given by Eq. (41).

(iv) Add up the separate contributions from all the
distinct stationary or near-stationary points.

Once the integrals I� are estimated, they can be
combined using Eq. (17) to give dPm=dΩ for that direction
on the celestial sphere.
The key difference between the multipoint method and

previous approaches [21,22] is in the treatment of different
points on the string loop. The existing approaches start with
the assumption that the cusps dominate the emission at
high modes, since they correspond to stationary points in
both the phases k:X�. To find the emission in regions
surrounding the cusp, one expands the phase around the
cusp up to a cutoff angle set by the mode number
θcutoff ∼m−1=3. Beyond this cutoff angle, the emission is
exponentially small [21] or calculated using numerical
methods [22]. These approaches give accurate results for
the emission from a cusp as m → ∞. In contrast, for each
left-moving and right-moving mode the multipoint method
finds the expansion point(s) on the loop which contribute
the most for a chosen direction on the sphere. These points
are not fixed. They need not correspond to a cusp direction
and, in addition, a cusp may not even be present. For power
calculations the method works separately at the level of the
individual one-dimensional integrals Iþ and I−, not the
products that define dPm=dΩ. It handles contributions from
both first order (cusps) and second order (noncusps)
stationary points of the phase.

D. Asymptotic complex integration: Steepest descent

We make use of the techniques of asymptotic expansion
[45] to construct a simple algebraic expression for Iμ� for
the asymptotic limit m → ∞. Consider the integral hðzÞ in

Eq. (29). The first step in the steepest descent method is to
determine the critical points F0ðzcÞ ¼ 0 on the deformed
integration path. At the ith critical point zc;i where g ¼
gðzc;iÞ, F ¼ Fðzc;iÞ, and Fð2Þ ¼ ðd2F=dz2Þðzc;iÞ Laplace’s
method gives

hð0Þasym;i ¼ e−mFþiψ

ffiffiffiffiffiffiffiffiffiffiffi
2π

jFð2Þj

s
g

m1=2 : ð61Þ

Here, ψ is the angle that the constant Im½FðzÞ� path makes
at z ¼ zc;i. It is straightforward to derive higher order
approximations as an inverse expansion in powers of m:

hð1Þasym;i ¼ hð0Þasym;i

�
1þ a

m

�
ð62Þ

hð2Þasym;i ¼ hð0Þasym;i

�
1þ a

m
þ b
m2

�
ð63Þ

where a, b, etc. are functions of g, F and higher derivatives
at the ith critical point. Explicit expressions for a, b, etc. are
given in Appendix C. The numerical evaluation of the
asymptotic values is very fast.

E. Alignment limit for the approximate methods

Let us examine the limiting behavior of the real
and complex approximations in a particular example in
which the beam direction approaches the locus of a tangent
vector that traces a great circle on the tangent sphere.
Assume the tangent vector lies in the x–y plane Ẋþ ¼
ðl=2πÞfcos ð2πσþ=lÞ;− sin ð2πσþ=lÞ; 0g. This example is
simple enough that we can straightforwardly find the
location of the critical points zc;i, the integration path
and F00ðzc;iÞ. Let the beam direction k̂ be parametrized by
spherical polar angles θ and ϕ. Beam directions corre-
sponding to θ¼π=2þϵ for small jϵj imply near alignment.
The critical points of FðzÞ are given by the complex z

such that cos ϵ cos ð2πzÞ ¼ 1 and the constant Im½F�
curves that pass through the critical point satisfy
cos ϵ cosh ð2πyÞ sin ð2πxÞ ¼ 2πx for z ¼ xþ iy. These
are illustrated in Fig. 4.
For slight misalignment there are two distinct critical

points, one above and one below the real axis. Note that the
solutions are invariant under the change of sign of ϵ. The
critical points and constant Im½F� curves above and below
the real axis are different solutions, they do not represent
positive and negative ϵ. As ϵ → 0 exact alignment of the
tangent vector and k̂ occurs. Now, the two separate critical
points merge on the real axis.
The second derivative of FðzÞ along the path of constant

Im½FðzÞ� controls whether the critical point is maximum
or minimum. Re½F00ðzcÞ� > 0 implies a peak and
Re½F00ðzcÞ� < 0 implies a bowl. In the figure the critical
points with positive imaginary part are peaks, those with

NAMITHA SURESH and DAVID F. CHERNOFF PHYS. REV. D 109, 123540 (2024)

123540-10



negative imaginary parts are bowls. When exact alignment
occurs, F00ðzcÞ ¼ 0 and the Laplace treatment which relies
on the integrand being peaked near the critical point fails.
A numerical integration along the constant Im½F� path
will still yield the exact answer but the approximation that
the bulk of the integral is contributed near the critical point
is incorrect.
Roughly speaking the argument of the exponential that is

being integrated has the form −mRe½F00ðzcÞ�Δz2 and the
maximum range of integration is Δz ∼ 1. We would
anticipate that m must exceed 1=Re½F00ðzcÞ� to use the
complex asymptotic approach.
Figure 5 depicts the relative errors (with respect to the

exact answer) as a function of the mode number for the
real multipoint (red) and complex asymptotic (green,
brown, and pink corresponding to three separate orders
hð0Þ, hð1Þ, hð2Þ) methods. The different panels show
different misalignments between the tangent vector
and k̂. From top to bottom θ varies from 0.35π to 0.45π
in increments of 0.05π (ϕ ¼ 0 in all cases)—exact align-
ment is θ ¼ 0.5π. We empirically determine the crossover
m (hereafter mcross) such that the real multipoint method
yields lower relative errors for m < mcross and, con-
versely, that complex asymptotic method yield lower
relative errors for m > mcross.
We can infer from the figure that the size of mcross

increases as the angle between the beam direction and the
tangent vector decreases and that the crossover point is
roughly independent of the order of the complex asymp-
totic method.

The practical consequences are that for m < mcross we
should adopt a direct or multipoint method while for
m > mcross it will always be advantageous to use the
asymptotic methods. In the latter case one would adopt
the highest order asymptotic scheme available.
In summary, to calculate the beam shape on the full

celestial sphere for m > mlow we will need two approxi-
mate methods, one for near alignment and/or small m, the
other for misalignment and/or large m. This need for

FIG. 4. The complex plane for a great circle tangent vector path
for exact and near alignment of the tangent vector and viewing
direction. The large black dots are the critical points zc such that
F0ðzcÞ ¼ 0, the lines are the contours of constant Im½FðzÞ� that
pass through the critical points (a common vertical contour with
Re½z� ¼ 0 has been omitted). Solid lines have Re½F00ðzcÞ� > 0,
dotted lines has Re½F00ðzcÞ� < 0 and dashed lines have
Re½F00ðzcÞ� ¼ 0. The deviation from alignment is indicated by
the color: red lines have jϵj ¼ 1=5, blue lines jϵj ¼ 1=10, and
green lines ϵ ¼ 0.

FIG. 5. The relative errors for the three asymptotic approx-
imations and the multipoint method for three different directions
k̂ on the celestial sphere for the circular tangent loop. The three
directions correspond to θ ¼ 0.35π; 0.4π; 0.45π, and ϕ ¼ 0. The

green, brown, and pink plots correspond to
P

i h
ð0Þ
asym;i;

P
i h

ð1Þ
asym;i,

and
P

i h
ð2Þ
asym;i respectively and the red plot corresponds to the

multipoint method.
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multiple methods, somewhat reminiscent of Stokes phe-
nomena, might have been formally anticipated from the
qualitatively different mathematical forms that the real
multipoint and complex asymptotic methods generate.
The real method gives a power law I ∝ m−1=3 for exact
alignment whereas the complex asymptotic method pro-
duces a leading, exponential I ∝ e−mF. Consider a
sequence of misaligned beams that approach alignment.
Evidently one would need many correction terms beyond
those of hð0Þ, hð1Þ, etc. multiplying the exponential to
reproduce the exact, aligned results.

IV. TUROK LOOP—MULTIPOINT EXAMPLES

In this section we will systematically explore the
qualitatively different cases that emerge in a practical
application of the multipoint calculation. We choose
a set of loops introduced by Kibble and Turok in [25].
These loops (which we shall refer to as “Turok loops”)
are distinguished from the Vachaspati-Vilenkin loops
(Eq. (28)) introduced earlier in their description of X−.
Turok loops involve two frequencies and are characterized
by two parameters α∈ ½0; 1� and Φ∈ ½−π; π�,

X−ðσ−Þ¼
l
2π

�
2π

l
σ−;−ð1−αÞsin

�
2πσ−
l

�
−
α

3
sin

�
6πσ−
l

�
;

−ð1−αÞcos
�
2πσ−
l

�
−
α

3
cos

�
6πσ−
l

�
;

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1−αÞ

p
cos

�
2πσ−
l

��
; ð64aÞ

XþðσþÞ ¼
l
2π

�
2π

l
σþ; sin

�
2πσþ
l

�
;

− cos

�
2πσþ
l

�
cosΦ;− cos

�
2πσþ
l

�
sinΦ

�
:

ð64bÞ

Both X− and Xþ satisfy the Virasoro condition Eq. (5),
and are periodic with a period of l. The loop described by
Eq. (64) can have two, four or six cusps depending on the
values of α and Φ as shown in Fig. 6.

A. Calculation of I�
The integral Iþ is calculated in closed form for a givenm

in Appendix E whereas I− cannot be done in an equivalent
manner. We compute numerically exact values of I− with
direct methods and approximate values using the multipoint
and asymptotic methods. We focus on the approximate
methods here.

1. Multipoint Method

Here, we provide a framework for the calculation of I−
using the multipoint method and discuss different scenarios
which might arise.
For each direction k̂ on the celestial sphere, the first step

is determining the value(s) of σ�−. Depending on the value
of θ, ϕ and α, the quantity jkμðθ;ϕÞẊμ

−j can have either one
minimum or three local minima as a function of σ−. For
each minimum the value jk:Ẋ−j and the mode number m
determine the local contribution to I−. In general, we sum
over the individual contributions

Iμ− ¼
X
i

Iμ−ðσ�−;iÞ ð65Þ

where σ�−;i denotes the ith minimum. Each individual
contribution is based on a cubic fit to the phase derivative
k:Ẋ�

−;i in which the integration has been formally extended
to σ− ¼ �∞. We heuristically refer to the phase derivative
as a function of σ− as the “phase curve.” The phase curves
are independent of the mode m while the integrated
quantity which involves the exponential of the phase does
depend upon m.
We will compare the results of an exact calculation of I−

to the approximate multipoint method for selected values of
α, θ and ϕ. These choices indirectly control the number
of minima, the relative depths and spacings of the minima,
the relative size of the cubic and higher order terms near the

FIG. 6. Plot showing number of cusps formed in different
regions of parameter space spanned by ðα;ΦÞ for the Turok loop
described by Eq. (64). The blue region corresponds to two cusps
and the beige corresponds to six cusps. The orange dotted line
traces a one-dimensional set of points in the parameter space that
produces four cusps.
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minima, etc. We present a set of phase curves that covers
several qualitatively different situations that arise.
Table I gives a list of six different cases of phase

curves which are discussed in more detail below. For
this survey we calculate at fixed mode m ¼ 100. In all
cases the contribution to the (cubic) integral about each
peak is narrow in the sense Δσ− ∼ 1=jAmj1=3 is small
compared to the available extent of σ− and the multipoint
method is favored over the complex asymptotic method
(mcross ≳ 100). We briefly describe the cases:

(i) Case 1: There is one minimum (see phase curve in
Fig. 7), the cubic expansion is good (see the orange
dashed line in the plot; mlow ≈ 2 set by the 5th order
term). Since jk:Ẋ−j is close to zero this is a nearly
stationary point. The relative error is ∼8%. This case

is most similar to situations covered by traditional
single point expansion techniques.

(ii) Case 2: Like the previous case there is one minimum
(see Fig. 8) with small jk:Ẋ−j, however, the phase
curve is not well fit by a cubic in the vicinity of the
minimum (note that the orange dashed line in the
plot misses the shape of the peak; mlow ≈ 2600 set
by 5th order term). The relative error is ∼18%, larger
than the previous case.

(iii) Case 3: Now there are three minima (see Fig. 9).
Two have similar magnitudes jk:Ẋ−j close to zero
and are expected to dominate the sum. They are
difficult to distinguish and the cubic fit is not good
(mlow ≈ 200 set by the 4th order term near the
dominant peaks). The relative error is ∼23%.

TABLE I. Different cases for the derivative of the phase jk:Ẋ−j and the difference between the values of I− computed numerically and
using the multipoint method, all for m ¼ 100. Column 3 gives the numerically computed value of I−. Column 4 shows the absolute and
relative errors between the values of I− estimated numerically and that computed using the multipoint method, where the Absolute
Error ¼ jApproximate I− − Numerical I−j and the Relative Error ¼ Absolute Error=jNumerical I−j. Column 5 gives the values of the
mode number mlow and mcross; m > mlow for the polynomial fits to apply and m > mcross to prefer the asymptotic method. The cases
have been selected to illustrate phase curves with qualitatively different features that are relevant to the multipoint method, in particular,
the number of inflection points, the stationarity of such points, the adequacy of the fit in the point’s vicinity, the point separation, etc.

Case (α, θ, ϕ) Numerical I−
Absolute Error,
Relative Error mlow, mcross

1 ( 1
10
; 7
10
; 6
5
) f−0.00881401−0.0064074i;−0.024022þ0.0104084i;−0.0169884þ0.00986654ig 0.0026, 0.076 2, 100

2 ( 3
20
; 9
10
; π
2
) f0.0238659i; 0.102931; 0.101559g 0.026, 0.18 2600, 200

3 (1
5
; 4
5
; π
2
) f0.0243171i; 0.107074; 0.130373g 0.039, 0.23 200, 400

4 ( 3
10
; 1; 7

5
) f−0.00730444−0.015009i;−0.0242681−0.0130257i;−0.0309998−0.00183296ig 0.005, 0.11 2, 300

5 (3
5
; 27
10
; 3
2
) f0.00643152þ0.00844617i;0.00834495−0.00592393i;−0.0346817þ0.0221558ig 0.0019, 0.043 5, 200

6 (19
20
; π
2
; π
2
) f0.0294055i; 0.0827689; 0.00990778g 0.0026, 0.03 2, 400

FIG. 7. Case 1: plot of jk:Ẋ−j estimated for α ¼ 1=10 at
ðθ;ϕÞ ¼ ð7=10; 6=5Þ, with a single minimum (σ�−). The blue
curve is the exact derivative of the phase and the orange dashed
curve is the cubic fit to the derivative of the phase about the
minimum.

FIG. 8. Case 2: plot of jk:Ẋ−j estimated for α ¼ 3=20 at
ðθ;ϕÞ ¼ ð9=10; π=2Þ with a single minimum (σ�−). The blue
curve is the exact derivative of the phase and the orange dashed
curve is the cubic fit about the minimum. The derivative of the
phase varies very slowly in the neighborhood of the minimum.
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(iv) Case 4: Like the previous case there are three
minima (see Fig. 10) and two have similar magni-
tudes jk:Ẋ−j close to zero. Here, however, the cubic
fits to the phase and the linear fit to the prefactor are
good (mlow ≈ 2, set by the prefactor), the peaks are
better separated and the two dominate the sum. The
relative error is ∼11%.

(v) Case 5: Again there are three minima (see Fig. 11)
but only one has jk:Ẋ−j close to zero, well fit by the
cubic and is well separated from the others. The
linear fit to the prefactor givesmlow ≈ 5. The relative
error is ∼4%.

(vi) Case 6: Figure 12 shows an ideal case for the
multipoint method. There are three minima, all
with jk:Ẋ−j close to zero. The cubic fit is good for

each peak. All are well separated. The relative error
∼3% and each peak improves the answer. The
linear fit to the prefactor is also good (mlow ≈ 2)

These cases cover most of the qualitatively different
phase curves encountered. The trend of relative errors
largely traces the adequacy of the polynomial fits and the
independence (degree of separation) of the peaks. The
method achieves relative errors ≲10% when the fit is good
and the peaks are not too close to each other.

2. Errors as functions of m

It is useful to compare the errors of the real multipoint
treatment to those of the complex asymptotic treatment.
Figure 13 presents results for a selected set of modes
1 ≤ m ≤ 104 for the six cases. Each solution is compared to

FIG. 9. Case 3: plot of jk:Ẋ−j estimated for α ¼ 1=5 at ðθ;ϕÞ ¼
ð4=5; π=2Þ with three minima (σ�−;i). Two of the minima are
similar in magnitude and the derivative of the phase varies very
slowly in between them.

FIG. 10. Case 4: plot of jk:Ẋ−j estimated for α ¼ 3=10 at
ðθ;ϕÞ ¼ ð1; 7=5Þ with three minima (σ�−). Two minima are
similar in magnitude but the derivative of the phase in between
them is not flat.

FIG. 11. Case 5: plot of jk:Ẋ−j estimated for α ¼ 3=5 at
ðθ;ϕÞ ¼ ð27=10; 3=2Þ with three minima (σ�−). There is a global
minimum which is more prominent than the other two local
minima.

FIG. 12. Case 6: plot of jk:Ẋ−j estimated for α ¼ 19=20 at
ðθ;ϕÞ ¼ ðπ=2; π=2Þ with three minima (σ�−). The three minima
are of comparable magnitude and all contribute, especially at
low m.
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the exact solution in terms of norm difference divided by
norm of exact result. The trends are clear: the relative error
for the multipoint method is roughly constant with m
whereas the relative error of the asymptotic methods
decreases with m. The multipoint method is superior at
smallm while the asymptotic methods are better at largem.
The relative error of the highest order asymptotic approxi-
mation decreases most rapidly.
In all the illustrated cases the relative error of the

multipoint results does not systematically decrease as m
increases. Nonetheless, the magnitude of the exact, multi-
point and asymptotic results all decrease together. In other
words, the multipoint answer falls as rapidly as the
numerical answer and for many purposes a fixed relative
error in an exponentially shrinking quantity is adequate.

3. Errors on the celestial sphere

In Sec. III E we showed that for directions on the
celestial sphere aligning (or nearly aligning) with tangent
curves, the multipoint method must be used. Let us
consider a Turok loop with α ¼ 1=5 (same as Case 3)
and harmonic m ¼ 100 and quantify the errors in I− as a
function of position on the celestial sphere. The logarithmic
relative errors with respect to an exact numerical answer are
shown in a contour representation in Fig. 14. The figure
axes are the angles θ and ϕ. Each point represents a
direction of k̂. The graph on the left displays contours of

the minimum relative error selected from two different
approximations: the multipoint and asymptotic (hð2Þ)
methods. The red dots show where the multipoint treat-
ment is selected, the blue dots are where the asymptotic
treatment is. The graph on the right is similar (it contours
the logarithmic relative I− with respect to an exact
numerical answer) but takes the multipoint results for
m < mcross and the asymptotic results for m > mcross. The
color coding is identical. Here, we assumed mcross to be
the approximate value of m where the three asymptotic
terms were comparable.
Both plots show that the peak errors lie along the

direction of the tangent vector sweep. The asymptotic
errors smoothly decrease on both sides away from the peak.
The beam is described to roughly 1%–10% near the peak
(red areas) and with increasing relative (and absolute)
accuracy in the asymptotic regime (blue areas).
The source of the error near the tangent vector sweep can

be traced back to the fit to the phase. Figure 14 shows with
green dots the regions of the celestial sphere where the
multipoint approximation was used for m < mlow (i.e.,
points that violate Eq. (57) because 4th or 5th order terms
are important). Note that these points coincide with the
largest errors.

4. A schematic methodological partition

Finally we want to describe schematically how one
might select among the different methods mentioned so

FIG. 14. Regions of the celestial sphere where the multipoint
method and the asymptotic method have been selected for a
Turok loop with α ¼ 1=5 and for m ¼ 100. The red dots
correspond to the points where the multipoint method has been
selected (i.e., where the multipoint method yields lower relative
errors) and the blue dots correspond to the points where the
asymptotic method is selected. The green dots show where the fit
is poor because m < mlow [see Eq. (57)].

FIG. 13. The relative errors for the three asymptotic approx-
imations and the multipoint method as a function of m for the six
different cases. The upper two panels are cases 1 and 2, the
middle two are cases 3 and 4, the lower two are cases 5 and 6. The
red line corresponds to the multipoint method and the green,

brown, and pink lines correspond to hð0Þasym; h
ð1Þ
asym and hð2Þasym

respectively.
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far. Choice of methodology revolves around considerations
of error size and computational timing. Quadrature meth-
ods that use increasingly dense point spacing can poten-
tially achieve arbitrarily small errors. Quadratures can be
done for individual m with adjustable tolerances. In
general, point-by-point quadratures are the most flexible
in terms of accuracy and also the most time consuming per
point. Sets of m values can be evaluated en masse by
quadrature (e.g., FFT method) for efficiency but then the
inaccuracies are linked together and group timings must
be considered.
On the other hand, the multipoint and complex asymp-

totic methodologies provide approximate answers.
Mathematically, both are asymptotic expansions. The
multipoint method utilizes polynomials to describe the
region of the phase function that contributes to the integral;
the complex asymptotic analysis approximates the complex
phase function by Taylor series expansion of given order. In
a practical sense both methods are limited by the finite
expansion orders utilized and, in a more fundamental sense,
by radius of convergence issues. The methods are not very
flexible in terms of accuracy but both are quite fast.
So an elementary consideration is what sort of accuracy is

required for a particular application? If very high accuracy is
needed then numerical quadrature must be done. Otherwise,
multipoint and complex asymptotic may suffice.
A related consideration is whether small absolute errors

or small relative errors are needed for the particular
application. Note that away from a tangent vector curve
the magnitude of the integral answer decreases exponen-
tially as m increases. The multipoint method generally
achieves constant relative errors as m increases whereas
the complex asymptotic method gives decreasing relative
errors in that limit. One or the other may be sufficient for
practical purposes since the magnitude of the answer in that
limit is so small.
To illustrate we now pick a point on the celestial sphere for

the beam direction and fix the loop parameters. We have
selected a direction close to the location of a tangent vector.
Figure 15 displays the relative errors of I− as a function of
mode m for three methods—the direct evaluation of the real
integral using FFT, the multipoint method and the asymp-
totic method (all with respect to a numerically exact treat-
ment). Two vertical linesm ¼ mlow andm ¼ mcross partition
the mode space into three ranges. For the case depicted,
mlow ≈ 15 (due to the accuracy of the linear prefactor) and

mcross ≈ 1780 (inferred by comparing hð1Þasym and hð2Þasym). The
multipoint method is applicable for mlow < m < mcross and
the complex asymptotic method for m > mcross. The FFT
method is not apriori restricted. The mode-by-mode errors
are displayed. As m increases the lowest errors are provided
first by the FFT, then the multipoint and finally the
asymptotic method. For the specific numerical choices made
the FFT relative errors equal those of the multipoint method
at m ∼ 10 when both are ∼0.3.

We now consider adjustments that might be made. As the
figure demonstrates, the accuracy of the FFT method with a
transform of fixed length degrades as m increases, an
aliasing effect related to evaluation of the integrand at
unequally spaced points. The FFT may be oversampled by
the factor c (see Section III A) whence errors at fixed m
decrease exponentially as c increases. So, by increasing c
the relative errors for a fixed range of modes may be
arbitrarily lowered. If one is satisfied with the typical
multipoint error at a given m ¼ mOK (implicitly in the
range mcross > mOK > mlow) then the simplest ansatz is to
increase c until the FFTerrors form < mOK are less than or
equal to that error. Since the FFT relative errors typically
increase withmwhile the multipoint errors decrease withm
the point m ¼ mOK serves to stitch the two methods
together. The FFT method is used for m < mOK, the
multipoint method for mOK < m < mcross and the complex
asymptotic method for m > mcross. (In the figure mOK ∼ 10
which is less than mlow. Increasing c decreases the error at
allm andmOK increases.) In patching together the coverage
of the three methods we are implicitly assuming that the
multipoint method is more efficient per point than the FFT
method (see Appendix G for details on timing and other
efficiency considerations) and that the complex asymptotic
method is as efficient as the multipoint method and also
more accurate for m > mcross. As c increases (error level
decreases) eventually one transitions directly from the FFT
to the asymptotic treatment at mOK > mcross.
The case shown in Fig. 15 depicts a well-behaved and

consistent decrease in the relative errors for the multipoint
and the asymptotic methods as m increases. We observe
this smooth variation when the beam direction is close to
one and only one point on the tangent vector curve. It is not

FIG. 15. The relative errors of I− with respect to a numerically
exact treatment for three different methods—FFT (green dots),
multipoint (blue), and complex asymptotic (orange). The source
is a Turok loop with α ¼ 2=5 and emission direction θ ¼ 0.1,
ϕ ¼ 1.5. The FFT was computed with N ¼ 28 points. The
vertical lines are mlow ∼ 15 (on the left) and mcross ∼ 1780 (on
the right).
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difficult to choose directions that have close encounters
with multiple points on the tangent vector curve. This is a
common occurrence for directions in the vicinity of self-
intersecting points of the tangent vector curve. Interference
between multiple individual contributions may induce
oscillating relative errors in plots like Fig. 15. Nonetheless,
we observe that the envelope of the oscillatory relative
errors behaves in a manner similar to those shown. In such
cases the partitioning values for m should be based on the
envelope’s variation.

V. A PARTICULAR PSEUDOCUSP EXAMPLE
IN THE TUROK LOOP

Up to now we have concentrated on methods for
calculating individual one dimensional integrals like I−.
Now we turn our attention to using the methodology to
analyze the pseudocusp phenomena and the energy flux
radiated.

A. The phenomena

Consider a Turok loop with parameters ðα;ΦÞ ¼ ð3=20;
−18π=25Þ. Figure 16 shows the tangent curves for this loop
on the unit sphere. There are two cusps with cusp velocities
along x̂ and −x̂ (ϕ ¼ 0 and π for θ ¼ π=2, respectively). In
addition to the intersection that creates the cusp itself the
tangent curves come close to each other in the x ¼ 0 plane
where the Ẋ− curve has a “nub.”
Figure 17 displays dPm=dΩ as a function of ðθ;ϕÞ for

m ¼ 100 calculated by a direct numerical method. The
black arrows mark these cusp directions of emission, i.e. k̂
such that both k:Ẋ� ¼ 0. Note that the peaks of the

emission do not align with the cusp directions. The peaks
are the “pseudocusps” discussed in [46].

B. Qualitative considerations

Qualitatively, the regions of maximum emission for low
mode numbers correspond to points on the unit sphere
where the tangent curves come close to each other but do
not intersect. The multipoint method approximates Iþ and
I− by separately selecting expansion centers from each
tangent vector for a given direction k̂. The Euclidean
separation between the tangent vectors dðσ−; σþÞ ¼
jẊ−ðσ−Þ − ẊþðσþÞj provides a suggestive means for
locating two nearby centers and a strip between them.
At true cusps, the tangent vectors intersect and d ¼ 0. If d is
small the two tangent vectors are close to each other and if
d is a local minimum we may expect, roughly speaking,
that the two specific points (one on each tangent vector)
might serve as expansion centers for the points along the
chord that connects them.
Note, it is merely a matter of convenience whether we

specify that expansion center in terms of the values of σþ
and σ− for each mode or by means of the vector directions
Ẋþ and Ẋ− to the tangent curves or in terms of angular
directions on the celestial sphere fθþ;ϕþg and fθ−;ϕ−g.
We will use all of these.
In the example, there are two minimal distance solutions:

ðσ−; σþÞ ¼ �ðl=4Þð1;−1Þ. The corresponding directions
are antipodal on the celestial sphere. The first solution has
expansion center fθþ;ϕþg ¼ f0.69; π=2g and fθ−;ϕ−g ¼
f0.78; π=2g for Iþ and I−, respectively; the second solution
is fθþ;ϕþg¼f2.45;3π=2g and fθ−;ϕ−g ¼ f2.37; 3π=2g.
Now, let us mark the directions Ẋ− and Ẋþ with blue and
red arrows respectively for both solutions. The key obser-
vation is that the maximum emission occurs in the vicinity
of the blue and red arrows.

FIG. 16. The tangent curves described by Ẋ� for ðα;ΦÞ ¼
ð3=20;−18π=25Þ. The curves intersect at two points to form two
cusps depicted by black arrows. The curves come close together
on the plane x ¼ 0, but do not intersect.

FIG. 17. dPm=dΩ vs. ðθ;ϕÞ calculated numerically for
ðα;ΦÞ ¼ ð3=20;−18π=25Þ form ¼ 100. The black arrows depict
the directions of velocities of the two cusps, the blue arrows
depict directions where k:Ẋ−ð�l=4Þ ¼ 0 and the red arrows
depict the directions where k:Ẋþð�l=4Þ ¼ 0. The plot is periodic
in ϕ with a period of 2π and the peaks at ϕ ¼ 0 and at ϕ ¼ 2π are
identified to be part of the structure.
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C. Small angle, analytic treatment

We now present a more quantitative approach to this case
based on the multipoint method. On the tangent sphere the
tangent vectors are symmetric about the x ¼ 0 surface
(the x-plane). In Fig. 16 the “nubs” of the blue curve lies in
the x-plane. Construct a small arc in the x-plane that
stretches from the Ẋ− to Ẋþ tangent curves (blue to orange
along the short segment of a great circle). Consider
directions k̂ that lie along the arc. Equivalently, in
Fig. 17 the arc is a constant ϕ slice through the peak.
On account of the planar symmetry the centers of the
multipoint expansion for Iþ and I− are fixed at σ− ¼
−σþ ¼ ðl=4Þ for direction along a part of the arc, including
the segment that lies between the two tangent curves. This
simplifies the application of the multipoint method.
We calculate I−, Iþ and dPm=dΩ by direct real and

multipoint methods. We then provide a simplified analytic
and approximate version of the multipoint result to dem-
onstrate the scalings.
Figure 18 shows dPm=dΩ calculated exactly (solid lines)

and by multipoint (dotted) for m ¼ 3 × 102, 3 × 103 and
3 × 104. The abscissa specifies direction k̂ along the
arc (x ¼ 0 is Ẋ− and x ¼ 1 is Ẋþ; k̂ðxÞ is the simple
interpolated quantity ð1 − xÞẊ− þ xẊþ normalized to give
a unit vector). The two treatments are in rough agreement
bearing in mind that the multipoint is not expected to be
applicable at small m and its relative accuracy asymptotes
to ∼10% at large m. Note that the peak of dPm=dΩ shifts
from near the tangent lines to a point midway along the arc
with increasing m.
Since the differential power dPm=dΩ depends upon

products of bilinears in Iμ� we first examine individual

norms like jI�j (exact versus multipoint methods) in
Fig. 19 and Fig. 20. Both show steep dropoffs away from
the expansion directions.
To understand this behavior simplify the analytic multi-

point forms by expanding to lowest nonvanishing order all
angle-dependent terms in small angle displacements from
the tangent directions while leaving the Bessel functions
intact. The details are presented in Sec. H.
The absolute value of the mode functions summarizes

a lot of the information of the variation along the arc.
We have

jI−j ¼
5ðθ− − θÞK−1=3



5mðθ−−θÞ3

6

�
2

ffiffiffi
3

p
π

ð66Þ

FIG. 18. Energy flux dPm=dΩ as a function of x (where x ¼ 0

points along Ẋ− and x ¼ 1 along Ẋþ) for m ¼ 3 × 102, 3 × 103

and 3 × 104 (blue, orange, and green, respectively) by direct
numerical evaluation (solid) and multipoint (dotted).

FIG. 19. I− as a function of x for m ¼ 3 × 102, 3 × 103 and
3 × 104 by exact numerical evaluation (blue, orange, and green
solid lines, respectively) and by multipoint (cyan dotted).

FIG. 20. Iþ as a function of x for m ¼ 3 × 102, 3 × 103 and
3 × 104 by exact numerical evaluation (blue, orange, and green
solid lines, respectively) and by multipoint (cyan dotted).

NAMITHA SURESH and DAVID F. CHERNOFF PHYS. REV. D 109, 123540 (2024)

123540-18



for θ < θ− (the angle with respect to the tangent vector Ẋ−
which has θ− ¼ 0.78 in this case) and

jIþj ¼
ðθ − θþÞK−1=3ðmðθ−θþÞ3

3
Þffiffiffi

3
p

π
ð67Þ

for θ > θþ (the angle with respect to the tangent vector Ẋþ
which has θþ ¼ 0.69 in this case). The analytic and
full numerical expressions for the multipoint results are
essentially indistinguishable in this example (see plots
in Sec. H).
Terms like jI−jjIþj scale with the product of the Bessel

functions, each having its own centers of expansion. When
mðθ− − θþÞ ≫ 1 both terms are exponentially small and
the maximum of the product lies between the two tangent
lines. Likewise, a local maximum of dPm=dΩ appears
between closely separated tangent lines. This flux must
decrease exponentially with m. Even if the emission from a
pseudocusp exceeds that of a true cusp at given, finite m,
the emission (between the tangent lines) becomes sub-
dominant as m → ∞.

D. Numerical investigation

The numerical I� from the full multipoint are combined
using Eq. (17) to give dPm=dΩ. Figure 21 shows the plot
of dPm=dΩ for the Turok loop with ðα;ΦÞ ¼ ð3=20;
−18π=25Þ at m ¼ 100 calculated using the multipoint
method. The method qualitatively [47] reproduces the
pseudocusps which appear in the profile of dPm=dΩ
calculated by an exact numerical method in Fig. 17.

E. Implications

Any method that expands only around a single point like
the cusp will be insufficient for this example in which cusp
and pseudocusp emit in very different directions. In [22],
the authors calculate an analytic expression to approximate
dPm=dΩ for points on the celestial sphere close to the cusps
making use of the small-angle approximation. To make
comparisons between the various treatments, we extend this

single-point method to cover all of the celestial sphere.
Discrepancies arising from extending the small-angle
approximation to regions away from the cusps are expected
but, since the contribution from a cusp falls rapidly as the
distance from the cusp increases, these are very small as far
as the single-point method is concerned. Figure 22 shows
the profile of dPm=dΩ calculated using the single-point
method (extending to angles that cover the whole celestial
sphere) for the Turok loop with ðα;ΦÞ ¼ ð3=20;−18π=25Þ
at m ¼ 100. Notice the absence of pseudocusp compared
with Fig. 17 and Fig. 21. Local expansion are insufficient to
describe distant parts of the string. [22] overcomes the
limitation of the single-point method by utilizing it only
within a small angle of the cusp and relying on numerical
methods outside it. This is feasible when there is an a priori
known center. The multipoint method finds expansion
points as needed for any direction of emission.
We have shown analytically how pseudocusps vary with

m and the results are in qualitative agreement with previous
works [21,22,46]. In Appendix F, we show that the argu-
ment for a typical mode varies like mjδ:Ẋj3=2=jẌj. A
combination of large m, large angle of deviation, and small
mode acceleration leads to large Bessel function arguments
that give exponentially small results [48]. Conversely, when
m is small, when the two tangent curves come close to each
other, move slowly and have large acceleration then the
results need not be small. This is qualitatively in accor-
dance with [46].

VI. A SURVEY OF dPm=dΩ USING NUMERICAL,
MULTIPOINT, AND SINGLE-POINT METHODS

We now seek to quantify the accuracy of the multipoint
method in a systematic, albeit empirical manner. This is
necessary because of the difficulty setting forth apriori
requirements for accuracy (e.g., discussion of linear and
cubic expansions in Sec. III C). We will compute dPm=dΩ
over the entire celestial sphere for a few example sets of
parameters for the Turok loop described by Eq. (64), using
an numerically exact method, the multipoint method and

FIG. 21. dPm=dΩ vs. ðθ;ϕÞ calculated using the multipoint
method for ðα;ΦÞ ¼ ð3=20;−18π=25Þ for m ¼ 100.

FIG. 22. dPm=dΩ vs. ðθ;ϕÞ calculated using the single-point
method for ðα;ΦÞ ¼ ð3=20;−18π=25Þ for m ¼ 100.
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the single-point method. The following procedure defines
the evaluation metric:

(i) For each set of parameters ðα;ΦÞ and each mode
number m, the maximum value of power emitted
per solid angle, dPm;max=dΩ, over the entire celestial
sphere is calculated by a numerically exact
procedure.

(ii) For the same loop and mode number, we find the
maximum difference over the entire celestial sphere
between the values of dPm=dΩ computed by nu-
merically exact and by the approximate methods:
ΔðdPm=dΩÞmax;i ¼
max ½jðdPm=dΩÞexact − ðdPm=dΩÞij� where i stands
for the multipoint method or the single-point method
and exact is the numerical evaluation.

(iii) We summarize method fidelity in terms of the maxi-
mum absolute difference (MAD) ΔðdPm=dΩÞmax;i

(expressed in terms of Gμ2 per steradian) and
the maximum relative difference (MRD) ΔðdPm=
dΩÞmax;i=ðdPm;max=dΩÞ where i is the method.

We plot MAD and MRD vs. m in log-log scale for the two
methods and compare the trends for four different illus-
trative cases involving two or six cusps. Cases with two and
six cusps occupy finite areas in Fig. 6 while those with four
cusps only occur on boundaries [49]. We shall not discuss
these boundary cases separately—the conclusions drawn
from them are similar.

A. Two cusps, well-separated tangent curves

Consider the Turok loop with ðα;ΦÞ ¼ ð1=5;−π=2Þ. For
this loop, the tangent curves Ẋ− and Ẋþ intersect at two
points on the unit sphere, forming two cusps, as shown in
Fig. 23. The velocities point along the þx and −x axes
respectively i.e. along ðθ;ϕÞ ¼ ðπ=2; 0Þ; ðπ=2; πÞ. The
tangent curves are elsewhere well separated. We do not
expect pseudocusps so the single-point and multipoint
method should be equally effective.
Figure 24 shows plots of dPmðθ;ϕÞ=dΩ calculated

numerically for three different mode numbers m ¼ 100,
500, 1000. Most emission comes from a small region near
the direction k:X− ¼ k:Xþ ¼ 0. The beam shape is more
complicated than a filled cone with solid opening angle
ΔΩ ∼m−2=3 [21]. In fact, there are two prominent sub-
peaks. These scale down as mode number m increases in
the sense that the separation of the subpeaks and the width
of the subpeaks all shrink together. The beam is asymp-
totically self-similar. All qualitative features of the plots
seen in the numerical calculation are reproduced by both
the multipoint method and the single-point method but
there are quantitative differences. Figure 25 shows MAD
and MRD vs. mode number. While both the multipoint
method and the single-point method are in good agreement
with each other and with the numerical calculation,
the former performs marginally better than the latter.
The multipoint method reaches a MRD of 0.5% by mode
number m ≈ 700 while the single-point method reaches the
same by mode numberm ≈ 2000. Both methods yield more
accurate results for higher modes.

FIG. 23. The tangent curves described by Ẋ� for ðα;ΦÞ ¼
ð1=5;−π=2Þ. The curves intersect at two points to form two
cusps. The direction of the velocities of the cusps are shown by
the black arrows.

FIG. 24. dPm=dΩ vs. ðθ;ϕÞ calculated numerically for ðα;ΦÞ ¼ ð1=5;−π=2Þ for m ¼ 100, 500, 1000.
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B. Two cusps with pseudocusp effect

As parameters ðα;ΦÞ vary many different “close encoun-
ters” between the two tangent curves may occur. In some
cases the tangent curves approach at a few specific points
(like the “nub” in our previous example that corresponds to
a local minimum in the distance of separation and gives rise
to a localized pseudocusp) while in others the curves may
be roughly parallel over some range of σ�. If the angle
between the two curves that cross to give a true cusp is
small then the possibility arises for an extended emission
region in the vicinity of the cusp itself.
As an example consider the Turok loop with ðα;ΦÞ ¼

ð1=5; 3π=20Þ, shown in Fig. 26. This loop has two cusps
with velocities pointing along ðθ;ϕÞ ¼ ðπ=2; 0Þ; ðπ=2; πÞ.
For asymptotically large m, the maximum emission is
expected to be along these directions on the celestial
sphere. Unlike the previous example, in the x ¼ 0 plane
the two tangent vectors are at maximum distance from each
other (the “nub” on I− is far from Iþ) and they approach
closely for an extended range near the cusp only because
they form an acute angle at the point of intersection.
Figures 27–29 show the plots of dPm=dΩ computed

using the numerical, the multipoint and the single-point
method for this loop at modes m ¼ 100, 500, 1000. The

emission is maximum at m ¼ 100, appearing at ϕ ≈
π=2; 3π=2 near the nub. That region migrates toward the
cusps on either side as m increases. Higher m requires
smaller angles of separation between the tangent curves.
The multipoint method, depicted in Fig. 28, reproduces

the trends. For m ¼ 100 the maximum value of dPm=dΩ
near the nub computed using this method is off from
the value computed numerically by ∼38% (the size of the
discrepancy is consistent with the relative errors seen in the
transition from low to intermediate m where we would
switch from direct to multipoint methods). As m increases
the differences shrink. The single-point method, with center
of expansion at the cusp itself, misses the most prominent
and distant pseudocusp near the nub but the size of the error
decreases asm increases once the cusp becomes prominent.
Figure 30 shows the MAD and MRD for both methods as

a function of the mode number. The multipoint method
reaches a MRD of 6% by mode number m ¼ 400 while the
single-point method reaches the same by mode number,
m ¼ 10000. The dip in the MAD and MRD for both
methods at m ¼ 6000 has a simple explanation. For
m < 6000, the maximum differences between each of the
approximate methods and the numerical method occur near
the nub. Because the multipoint method better reproduces
the pseudocusp there, the errors are smaller compared with
those of the single-point method. For m > 6000 the maxi-
mum differences occur closer to the cusps which are picked
up by both the methods. Both methods get more accurate
near the cusps and the differences decrease. But the multi-
point method still fares better overall for this case.

C. Six cusps with pseudocusp effect

For the Turok loops with six cusps, there exists a range of
parameters where the two tangent vectors are close to each

FIG. 25. Plot showing log MAD vs. logm and log MRD vs. log
m for multipoint method and the single-point method for
ðα;ΦÞ ¼ ð1=5;−π=2Þ. The blue markers correspond to the
multipoint method and the orange markers correspond to the
single-point method.

FIG. 26. The tangent curves described by Ẋ� for
ðα;ΦÞ ¼ ð1=5; 3π=20Þ. There are two cusps with velocities
shown by the black arrows. The two tangent curves are furthest
apart at the top and bottom in the x ¼ 0 plane. They come close to
each other near the cusp. This case stands in contrast Fig. 26.
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other (see Fig. 6). Consider the Turok loop described by
ðα;ΦÞ ¼ ð3=10; π=4Þ. The tangent curves intersect each
other at six points on the unit sphere giving rise to six cusps,
as shown in Fig. 31. In addition to the cusps, the two
tangent curves also approach each other along the plane
x ¼ 0 (ϕ ¼ π=2; 3π=2). These generate extended emission.
We omit detailed renditions of the emission and simply use
MAD and MRD to quantify the accuracy.
Figure 32 shows the MAD andMRD for the two analytic

methods. The MAD decreases more or less consistently
with m. The MRD also decreases over a large range of m,
but since it involves scaling the MAD by the maximum
value of dPm=dΩ, there are minor variations when the
decrease in MAD is not proportional to the decrease in
dPm;max=dΩ. The MRD reaches ∼4% by m ¼ 6000 for the
multipoint method but it is an order of magnitude bigger for
the single-point method. The maximum differences in both
cases are found near the pseudocusps for m < 6000.
In summary, the multipoint method yields more accurate
results as it takes into account the pseudocusps which the
single-point method does not describe.

D. Six well-separated cusps

For larger values of α, the tangent curve Ẋ− becomes
more wiggly and the separation between the cusps
increases. Compared to the previous case, larger α create
larger separation between the tangent curves in between the
cusps. As an example, consider the Turok loop described
by ðα;ΦÞ ¼ ð4=5; 2π=5Þ. Figure 33 shows the two tangent
curves for this loop. The six cusps are well separated on the
unit sphere and the distance between the two curves at x ¼
0ðϕ ¼ π=2; 3π=2Þ is also larger than in the previous case.
We expect that pseudocusps will not play as big a role as

in the previous cases (Sec. VI B and Sec. VI C). The MRDs
are still smaller for the multipoint method, as shown in
Fig. 34. The MRD for the multipoint method reaches ∼6%
bym ¼ 400 whereas for the single-point method, it reaches
the same range only by m ¼ 10000.

E. Implications

For all four cases described, the multipoint method fares
better than the single-point methods in the calculation of

FIG. 27. dPm=dΩ vs. ðθ;ϕÞ calculated numerically for ðα;ΦÞ ¼ ð1=5; 3π=20Þ for m ¼ 100, 500, 1000.

FIG. 28. dPm=dΩ vs. ðθ;ϕÞ calculated using the multipoint method for ðα;ΦÞ ¼ ð1=5; 3π=20Þ for m ¼ 100, 500, 1000.

FIG. 29. dPm=dΩ vs. ðθ;ϕÞ calculated using the single-point method for ðα;ΦÞ ¼ ð1=5; 3π=20Þ for m ¼ 100, 500, 1000.
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FIG. 30. Plot showing log MAD vs. logm and log MRD vs. log
m for the multipoint method and the single-point method for
ðα;ΦÞ ¼ ð1=5; 3π=20Þ. The blue markers correspond to the
multipoint method and the orange markers correspond to the
single-point method.

FIG. 31. The tangent curves described by Ẋ� for
ðα;ΦÞ ¼ ð3=10; π=4Þ. There are six cusps with velocities shown
by the six arrows. The curves also come close to each other in
between the cusps.

FIG. 32. Plot showing log MAD vs. logm and log MRD vs. log
m for the multipoint (analytic approximation) method and single-
point method for ðα;ΦÞ ¼ ð3=10; π=4Þ. The blue markers cor-
respond to the multipoint method and the orange markers
correspond to the single-point method.

FIG. 33. The tangent curves described by Ẋ� for
ðα;ΦÞ ¼ ð4=5; 2π=5Þ. There are six cusps which are all well
separated from each other.
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dPm=dΩ. These four cases cover the main situations
observed for Turok loops. The multipoint method yields
lower MRDs than the single-point method overall, but the
difference is marked for cases involving pseudocusps. The
advantage of the multipoint method is that it takes into
account regions of the loop away from the cusps, which
play an important role in the low to intermediate mode
number range. In addition, it improves the accuracy of the
beam shape even when only cusps are present.

VII. DISCUSSION

We have considered the gravitational wave emission from
a cosmic string loop. All calculations reduce to evaluating
one-dimensional integrals over the left- and right-moving
modes of the string. Our goal was to develop a network of
techniques to handle the emission over the entire range of
harmonics m and over the whole celestial sphere. The
techniques are directly relevant to the calculation of wave-
forms of the outgoing gravitational waves and the evaluation
of fluxes of radiated conserved quantities.
Here, we have concentrated on applying the techniques

to calculating the frequency-dependent emission of energy,
momentum and angular momentum. The SGWB generated
by cosmic strings at a range of redshifts is one of the

principal applications. If that signal is experimentally
detected it will probe various cosmological features such
as the radiation-to-matter transition, the number of relativ-
istic degrees of freedom at different redshifts and other
interesting questions related to the properties of the strings
themselves [18]. There are a wide range of experiments
that can potentially probe the SGWB for frequencies
between 10−9 and 106 Hz. These include pulsar timing
arrays (NANOGRAV [50], EPTA [51], IPTA [52], InPTA
[53], PPTA [54], CPTA [55], and MeerKAT PTA [56]) and
interferometric ground-based detector networks [57]
including various individual interferometers (LIGO and
Advanced LIGO [58,59], VIRGO [60], KAGRA [61],
IndIGO [62]) and colocated interferometers (Holometer
[63]). Proposed space-based experiments (LISA [64],
ASTROD-GW [65], BBO [66], DECIGO [67], TianGO
[68], and TianQind [69]) and proposed ground-based
detectors (ET [70–72], Cosmic Explorer [73,74]) should
extend the sensitivity and frequency coverage.
To give an example when the beam modeling of a

source becomes directly relevant to observations we will
consider the possibility that a relatively nearby string loop
radiates and is detected in the face of the confusion of a
cosmologically produced SGWB [75–77]. This will illus-
trate how each of the separate analytic regimes describing
the beam may play a role in a full analysis of the loop’s
putative signal.
Today, local string loops have a characteristic size

levap ¼ 200μ−9 pc for tension μ−9 ¼ Gμ=10−9. (This size
corresponds to a loop that radiates its entire mass by
emission of gravitational radiation in a period of time equal
to the age of the Universe). In the network scaling solution
a fixed number of loops with size equal to a fraction of the
horizon form at each epoch. The oldest, surviving loops
in the Universe have the highest number density today. For
loop size l ¼ xlevap the most numerous and typical loops
have x of order 1. Given an instrument sensitive to
frequency f we infer the harmonic of interest m ≥ 1.
The characteristic harmonic of the emission of a nearby
(not cosmologically distant) loop is m ∼ fðGμ=c2ÞΓt0=2
where t0 is the age of the Universe and Γ ∼ 50, a
dimensionless constant characterizing the efficacy of the
loop’s emission of gravitational waves. Quantitatively,
m ∼maxf1; 1010ðf=HzÞμ−9g. We have calculated the
expected number of observable, nearby loops in a homo-
geneous Universe as a function of f, μ and m according to
two different detection criteria: (1) the energy flux in the
loop exceeds that of the SGWB flux and (2) an experiment
of fixed total duration yields a high S/N result in a template
search for a harmonic source (a particular mode of the
string emission) where the background noise is the SGWB.
In these idealized analyses neither instrumental effects
nor other astrophysical sources impede the detection of
the nearby loop and the results are “best case” scenarios.
The inhomogeneity of the distribution of loop sources in

FIG. 34. Plot showing log MAD vs. logm and log MRD vs. log
m for the multipoint (analytic approximation) method and the
single-point method for ðα;ΦÞ ¼ ð4=5; 2π=5Þ. The blue markers
correspond to the multipoint method and the orange markers
correspond to the single-point method.
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the Universe is ignored. We will present details elsewhere
but simply summarize that the characteristic range of
harmonics of the detections agree with the estimate above.
An experiment like LISA with f ∼ 10−3 Hz is potentially
sensitive to harmonics emitted by a single loop up to
m ∼ 107μ−9. It is important to emphasize that the numbers
of detections forecast differ markedly for the two criteria
and are strong functions of the observing frequency. In
addition, all numbers are sensitive to other factors including
local clustering of string loops (see differing estimates
in [78,79]) and the degree of enhancement of superstring
numbers over that of normal strings [80,81]. The important
point is simply that one expects loops to emit in a large
range of m.
To handle the integrals over a rangeofmwehave discussed

three types of techniques: direct calculation (simplenumerical
quadrature, FFT-mediated quadratures and deformed com-
plex contour methods), stationary point and near-stationary
point approximations (multipoint method) and asymptotic
approximations (Laplace’s method).
These methods are naturally suitable for covering com-

plementary ranges of mode numbers m as depicted in
Fig. 15. Direct numerical quadrature is appropriate at low
modes where the relevant integrals are mildly oscillatory.
The FFT-mediated approach has the efficiency of handling
multiple modes together but the accuracy is limited by
aliasing effects as m increases. [82]
All direct techniques suffer from increasing calculational

complexity as m increases. We have introduced two
approximate methods well suited to larger m: the multi-
point method and the asymptotic method. The multipoint
method builds upon the existing techniques [21,22] but is
not restricted to cusps and, in particular, is ideal for
analyzing the emission away from cusps such as that
associated with pseudocusps.
Our multipoint exploration of the pseudocusp phenom-

ena demonstrates that pseudocusps can dominate cusps
at intermediate m but are subdominant at large m. This is
in agreement with the previous works [21,22,46]. The
strength of the pseudocusp emission is influenced by
multiple factors—the angle of separation between the
tangent curves on the celestial sphere and the velocity
and acceleration of the tangent vectors. These set the
magnitude and the variation of k:Ẋ (refer to Appendix H
for details) which is the key element of the multipoint
approximation.
We have investigated the behavior of the multipoint

method over a wide range of m and assessed its accuracy.
The absolute scale of the beam emission decreases as m
increases but the relative errors plateau at values of Oð1Þ
for large m. Depending upon the application, it may be
sufficient to utilize the results without further worry—they
have small absolute errors but large relative errors. In any
case, the multipoint method compares favorably with all
other existing techniques not only away from cusps but also

in the direction of cusps. For example, it provides more
accurate cusp beam shapes than existing methods.
We also introduced an asymptotic analysis based on

locating the steepest descent contours in the complex plane
and treating the one-dimensional integral by means of
Laplace’s method. This was particularly effective at largem
and yielded decreasing relative errors. The most accurate
treatment of the beam should switch from the multipoint
(or direct) methods to the asymptotic method at large m.
The transition is not simple. It depends not only upon m
but also upon the alignment of the viewing angle and the
tangent directions. The closer the direction is to exact
alignment the larger the mode number m must be for the
asymptotic analysis to become accurate. We have provided
an empirical method to determine the transition by exam-
ining the results that are generated by successive orders of
the asymptotic method.
Elsewhere we will return to the problem of constructing

time-dependent waveforms.

VIII. CONCLUSION

We have introduced two new methods to approximate
the emission of gravitational radiation from a cosmic string
loop. The asymptotic method makes use of the method of
steepest descent to approximate the values of the integrals
I� and matches the exact answer as m → ∞. The multi-
point method performs best for an intermediate range of
modes mlow < m < mcross. It generally gives better results
than other approximate methods. It improves upon single-
point methods (which focus mainly on the cusps formed
on the loop) by including new regions of the loop which
contribute to the emission at lower modes. It extends the
range of mode numbers for which the emission can be
reliably calculated.
A combination of direct numerical methods at low

modes, the multipoint method at intermediate modes and
the asymptotic method at high modes has the potential to
provide a complete, calculable model for gravitational
wave emission from a single cosmic string loop.
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APPENDIX A: DETAILS ON THE EMISSION
OF ENERGY, MOMENTUM, AND
ANGULAR MOMENTUM OF THE
VACHASPATI-VILENKIN LOOP

It is of interest to explore how the different ranges of
modes for energy, momentum, and angular momentum
emerge. Qualitatively, there are three factors that influence
these results.
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(i) The intrinsic magnitudes of the emitted energy,
momentum, and angular momentum radiated differ.

(ii) The power emitted mode by mode is non-negative
in all directions but the momentum and angular
momentum emitted are signed quantities.
Integrations of the latter over the sphere involve
cancellations.

(iii) The low order modes do not have any simple power
law scaling with m while high order modes do.

We quantitatively describe these effects by comparing the
emission of momenta to the power radiated (take G¼μ¼1
for notational simplicity). Define the ratio of f with respect
to g by Oðf; gÞ ¼ R

fdΩ=
R
gdΩ.

Consider the y-component of momentum radiated at
harmonic m compared to the power radiated at the
same harmonic. Write f ¼ ˙py;m and g ¼ dPm=dΩ so that
Oðf; gÞ ¼ Oðjfj; gÞOðf; jfjÞ. The first term provides an
indication of the magnitude of f with respect to g, the
second is sensitive to the effect of sign cancellations for f
during the integration over the sphere at fixed m. For
large harmonics (m≳ 200) we find Oðjfj; gÞ ∼ 0.57 and
Oðf; jfjÞ ∼ −0.27. The net effect is Oðf; gÞ ∼ −0.15. For
f ¼ ˙pz;m the numbers are essentially the same.
Repeating the analysis for the y and z components of

angular momentum we find Oðjfj; gÞ ∼ 0.04 and −0.04,
respectively; Oðf; jfjÞ ∼ −1; the net effect on radiated
angular momentum is Oðf; gÞ ∼ −0.04 and 0.04. Sign
cancellations for angular momentum are negligible whereas
the magnitude of the angular momentum radiated is much
smaller than that of the momentum and both are small
compared to the energy radiated.
These results show that the mode-by-mode asymptotics

for energy, momentum, and angular momentum differ on
account of the intrinsic magnitudes of the radiated quan-
tities and the degree to which sign cancellations occur. Next
we join results for low and high order modes. Let m� be an
approximate dividing point between low and high order
modes such that m > m� is well-described by the asymp-
totics. Denote the spherical quadrature of quantity I by Ii
for mode i. The cumulative sum up to mode m is Ið≤ mÞ
(implicitly assuming m > m�) is Aþ BΔðm�; mÞ where
A ¼ P

i¼1;m� Ii accounts for low order modes, B is a
constant determined by the asymptotic transition and
Δðm�; mÞ ¼ ζð4=3; m� þ 1Þ − ζð4=3; mþ 1Þ. The incom-
plete Riemann zeta function is ζðs;aÞ¼P∞

k¼0¼ðkþzÞ−s.
The total sum (m ¼ ∞) is Ið≤∞Þ¼AþBζð4=3;m�þ1Þ.
Note that A incorporates the cancellations that accrue

for a signed quantity integrated over the sphere and
variation from one harmonic to another and must be found
numerically; B accounts for the magnitude of the emission
and for the cancellation effects in signed quantities and is
independent of m. Δ accounts for the variation with m
for m > m�.
Write the following approximations for the cumulative

quadratures for the 5 individual nonzero components

fP; ṗy; ṗz; L̇y; L̇zg ¼ A⃗þ B⃗Δ for 5-vectors A⃗ ¼ f66.7;
−4.37;−6.81;−3.82; 3.08g and B⃗ ¼ f24.2;−3.78;−3.76;
−1.00; 0.93g. The net contributions at fixed large m are
proportional to B⃗. Consistent with our discussion above
jB2;3=B1j ∼ 0.16 and jB4;5=B1j ∼ 0.04. The new informa-
tion is Aj=Bj which is proportional to the low order over
high order contributions.
To estimate the mode number m to reach a fraction x of

the total we set xIð≤ ∞Þ ¼ Ið≤ mÞ and solve for m. For
component j we find m ≃ ð3=ðð1 − xÞððAj=BjÞ þ ζð4=3;
m� þ 1ÞÞÞ3 − 1. Note the sensitivity of m to x as x → 1, to
Aj=Bj and to the selection of m�. As an illustration, for
m� ¼ 891 and x ¼ 0.9 we estimatem for the 5 components
f930; 8600; 2800; 380; 570g. This agrees with a numerical
evaluation for each component carried out using the
explicit, interpolated and extrapolated contributions
described above. The treatment of the magnitude of
momentum and of angular momentum follows in a similar
fashion.

APPENDIX B: ANALYTIC INTEGRALS

The integrals Eq. (42) were done using Mathematica:

I1 ≡
Z

∞

−∞
dt eiAmðt3þptþqÞ

¼ 1

9jpj9=2 e
iAmq

� ffiffiffi
3

p
πð−p5 þ jpj5ÞJ−1=3

�
2jAmjjpj3=2
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Z
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where J and K are the Bessel function of the first kind and
modified Bessel function of the second kind respectively.

APPENDIX C: ASYMPTOTICS

The methodology for a systematic expansion is given
in https://www2.ph.ed.ac.uk/∼mevans/amm/lecture04.pdf.
Writing Fn as the nth derivative of FðzÞ at the critical point
and gn as the nth derivative of gðzÞ we find the following
expressions:
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a ¼ ð5F32Þ=ð24F23Þ − F4=ð8F22Þ
− ðF3g1Þ=ð2F22g0Þ þ g2=ð2F2g0Þ ðC1Þ

b ¼ ð385F34Þ=ð1152F26Þ þ ð35F42Þ=ð384F24Þ
þ ð7F3F5Þ=ð48F24Þ þ ð35F3F4g1Þ=ð48F24g0Þ
− ðF5g1Þ=ð8F23g0Þ
þ ð35F32ð−3F4g0 − 4F3g1ÞÞ=ð192F25g0Þ
þ ð35F32g2Þ=ð48F24g0Þ − ð5F4g2Þ=ð16F23g0Þ
− ð5F3g3Þ=ð12F23g0Þ þ g4=ð8F22g0Þ ðC2Þ

APPENDIX D: SYMMETRY OF
VACHASPATI-VILENKIN AND TUROK LOOPS

The modes of the Turok and Vachaspati-Vilenkin loops
have definite parity under σ → −σ for the forms given in
the paper.
Turok:Both X� modes have parity− in the x-component

and þ in the y- and z-components, i.e., Xx
�ðσÞ¼−Xx

�ð−σÞ,
Xy
�ðσÞ ¼ Xy

�ð−σÞ and Xz
�ðσÞ ¼ Xz

�ð−σÞ. We abbreviate
this as −þþ:
Vachaspati-Vilenkin: The Xþ mode has the same form

and hence the same parity as its Turok counterpart −þþ.
The X− mode has parity −þ −:
The fact that both modes of the Turok loop share the

same parity has direct implications for the emission
process. The symmetry of the Turok loops guarantees that
no vector momentum is radiated. This can be verified by
considering the radiated components with respect to
antipodal directions of emission k̂ and −k̂; this is equivalent
to θ → π − θ and ϕ → ϕþ π for the spherical polar system.
Recall we defined k̂, û and v̂ as the right-handed ortho-
normal basis for analyzing emission by the string loop.
Write the spatial part of Iμ� as I� and of Mμν

� as M�. We
must examine how the one dimensional integrals transform
when k̂ changes direction. We start with

k̂ → −k̂ ðD1Þ

û → −û ðD2Þ

v̂ → v̂ ðD3Þ

and infer for harmonic mode number n

I� → ð−1Þ1þnI� ðD4Þ

û · I� → ð−1Þnû · I� ðD5Þ

v̂ · I� → ð−1Þ1þnv̂ · I� ðD6Þ

ðû · I�Þðv̂ · I�Þ� → −ðû · I�Þðv̂ · I�Þ�: ðD7Þ

These results imply that the each of the component parts of
dPm=dΩ in Eq. (17) is invariant, i.e. jû · I�j, jv̂ · I�j and
Imððû · IþÞðv̂ · IþÞ�ÞImððû · I−Þðv̂ · I−Þ�Þ are fixed for
k̂ → −k̂. Equivalently, we can observe that τij for indices
ij equal to 11, 12, 21, 22 and 33 are invariant whereas τij
for indices 13, 23, 31 and 32 change the sign. Inserting in
Eq. (14) the sums τ�pqτpq and τ�qqτpp are invariant for p and
q ranging over values 2 and 3. This implies dPm=dΩ
unchanged by the flip in k̂.
Next observe that dṗm=dΩ switches signs since it is

dPm=dΩ × k̂. No net momentum is radiated.
By similar reasoning, for k̂ → −k̂ we find M� →

ð−1ÞnM�. Now dL̇m;u=dΩ reverses sign (both
Re½ið3τ�13τpp þ 6τ�3pτp1Þ� and Re½2τ�3pqτpq − 2τ�3pτpqq −
τ�pq3τpq þ ð1=2Þτ�qq3τpp� reverse sign summed over p

and q). By similar reasoning, dL̇m;v

dΩ is invariant (both
Re½ið3τ�12τpp þ 6τ�2pτp1Þ� and Re½2τ�2pqτpq − 2τ�2pτpqq −
τ�pq2τpq þ ð1=2Þτ�qq2τpp� are invariant).

For the emission along k̂ we have dL̇=dt ¼ Aûþ Bv̂
where A ¼ dL̇m;u=dΩ and B ¼ dL̇m;v=dΩ. For the emis-
sion along −k̂ we have shown A → −A, B → B, û → −û
and v̂ → v̂. The conclusion is that dL̇=dt is the same for k̂
and −k̂ directions.
The generic Turok loop radiates energy and angular

momentum.
By similar arguments in which x̂ → −x̂ we can show

that the Vachaspati-Vilenkin loop does not radiate the
x-component of momentum or the x-component of angular
momentum. The generic loop radiates energy and y- and
z-components of momentum and angular momentum.

APPENDIX E: CALCULATION OF I +

For the Turok loop presented in Sec. IV, we know Iþ
exactly and outline its evaluation. Following [31,36],
we evaluate Iþ for the Turok loop as follows. From
Eq. (11),

Iμþ ¼ 1

l

Z
l=2

−l=2
dσþ

�
1; cos

�
2πσþ
l

�
; sin

�
2πσþ
l

�
cosΦ;

sin

�
2πσþ
l

�
sinΦ

�
e−imφ ðE1Þ

where

φ ¼ 2π

l
k:Xþ

¼ −
2πσþ
l

þ sin θ cosϕ sin

�
2πσþ
l

�

− ðsin θ sinϕ cosΦþ cos θ sinΦÞ cos
�
2πσþ
l

�
: ðE2Þ
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Making the change of variables 2πσþ=l → η and defining

x ¼ − sin θ cosϕ ðE3Þ

y ¼ ðsin θ sinϕ cosΦþ cos θ sinΦÞ; ðE4Þ

we can rewrite Eq. (E1),

Iμþ ¼ fΣmðx; yÞ; Icmðx; yÞ; Ismðx; yÞ cosΦ; Ismðx; yÞ sinΦg
ðE5Þ

where

Σmðx; yÞ ¼
1

2π

Z
π

−π
dη eimðηþx sin ηþy cos ηÞ ðE6Þ

Icmðx; yÞ ¼
1

2π

Z
π

−π
dη eimðηþx sin ηþy cos ηÞ cos η ðE7Þ

Ismðx; yÞ ¼
1

2π

Z
π

−π
dη eimðηþx sin ηþy cos ηÞ sin η: ðE8Þ

The integrals Σm, Icm, and Ism can be expressed analyti-
cally in terms of Bessel functions. Defining r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

Σmðx; yÞ ¼
�
x − iy
r

�
m
Jmð−mrÞ ðE9Þ

Icmðx; yÞ ¼
1

2

�
x − iy
r

�
m
�
x − iy
r

Jmþ1ð−mrÞ

þ xþ iy
r

Jm−1ð−mrÞ
�

ðE10Þ

Ismðx; yÞ ¼ −
i
2

�
x − iy
r

�
m
�
x − iy
r

Jmþ1ð−mrÞ

−
xþ iy

r
Jm−1ð−mrÞ

�
: ðE11Þ

In summary for any α, θ, and ϕ, Eq. (E5) gives the exact
value of Iþ.

APPENDIX F: SMALL ANGLE EXPANSION
AT SPECIAL POINT

We analyze the behavior of I� for directions k̂ that lie in
the symmetry plane of tangent vectors Ẋ�. The arc of k̂ are
in the x ¼ 0 plane in the example discussed in the text. In
this section we suppress all � subscripts since the results
are valid equally to each mode.
The center of expansion σ� satisfies k:Ẋðσ�Þ ¼ 0 when k̂

points directly to the tangent curve in question; it satisfies
k:Ẍðσ�Þ ¼ 0 and k:Xð3Þðσ�Þ < 0 elsewhere along the arc.

We consider situations in which the expansion point on
each tangent curve is fixed as k̂ varies. Depending upon the
local geometry there may be one local expansion point on
one side of the tangent vector and two on the other side.
The expansions below apply when there is a single local
point that does not vary as k̂ varies. We will suppress
writing out σ� explicitly or including the superscript � in
terms like Ẋ�μ.
We work to lowest nonvanishing order in δ. This is

effectively a small angle approximation for I about the
tangent curve direction. The arc lies in the x ¼ 0 plane, the
varying angle is θ.
For the generic case with Ẍ nonvanishing, the coef-

ficients of the multipoint method reduce to

Am ¼ −
2πm
l

�
−
1

6
jẌj2

�
; ðF1Þ

Bm ¼ 0; ðF2Þ

Cm ¼ −
2πm
l

δμẊμ; ðF3Þ

Dm ¼ −
2πm
l

ðẊμXμÞ; ðF4Þ

p ¼ Cm

Am
; ðF5Þ

¼ −6
δ:Ẋ

Ẍ:Ẍ
: ðF6Þ

There are two terms that must be calculated
I ¼ I1Ẋþ I2Ẍ.
For the calculations for the first term with I1, define

β ¼ 23=2eiDm

31=2

ffiffiffiffiffiffiffiffiffiffiffiffi
jδ:Ẋj
jẌ:Ẍj

s
ðF7Þ

ρ ¼ 25=2πm
3

jδ:Ẋj3=2
jẌ:Ẍj1=2 : ðF8Þ

It will be useful to introduce the abbreviation

LnðxÞ≡ π

31=2
ðJ−nðxÞ þ JnðxÞÞ ðF9Þ

and, since p can have both signs, the p-dependent function

MnðxÞ≡ fKnðxÞ;LnðxÞg ðF10Þ

where the first entry is for p > 0 and the second for p < 0.
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The result is

I1 ¼ βM−1=3ðρÞ: ðF11Þ

For the second term with I2 letting

γ ¼ i
jpj1=2
31=2

β ðF12Þ

we have

I2 ¼ γM−2=3ðρÞ ðF13Þ

and I ¼ I1Ẋþ I2Ẍ.

APPENDIX G: DETAILS ON THE EFFICIENCY
OF FFT, MULTIPOINT, AND THE

ASYMPTOTIC METHODS

An FFT of length N has a Nyquist frequency N=2;
harmonics with m < N=2 can be represented for an
evenly sampled time series. Using the FFT as a quadrature
technique, however, requires uneven sampling of the
waveform (as explained in [22,24] and reviewed in
Sec. III A). A transform of length M ¼ cN is utilized
where c is typically 8–16. Aliasing effects degrade the
accuracy of the quadratures as m increases at fixed M.
Increasing c yields exponential convergence at fixed m.
Consider a loop of given configuration and the task of

calculating I� for a given direction of emission. There are
two pieces: (1) root-finding to generate unevenly spaced
points σi corresponding to a set of evenly spaced points
xi ¼ 2πðk:X�ðσiÞ − k:X�ð0ÞÞ and (2) performing the FFT
itself. The root-finding for σi must be done M times with
cost OðMÞ. FFT cost is OðM logMÞ. In our implementa-
tion and at the M we have studied the time of root-finding
dominates that of the highly optimized FFT and all other
mathematical calculations of I�. The cost for theM studied
scales withM and the cost per mode is constant, dominated
by the root-finding cost (with implicit multiplier c).
Now consider the costs for the same loop configuration

and direction of emission in the context of the approximate
methods. The multipoint method requires estimating the
expansion points. The expansion points are independent of
m so this need be done only once. The rest of the cost of
finding I� is evaluation of special functions. Finding a
large range of m implies the cost per mode is constant,
dominated by evaluation of the special functions which are
typically very fast.
The situation for the complex asymptotic method is

similar. One finds the critical points and the corresponding
values of the coefficients a, b, etc. once. The cost per
mode is constant, dominated by evaluation of the special
functions.
Assume we intend to find I� for a large range of modes.

If we are interested in minimizing total time independent
of error considerations, we should minimize the number of
modes treated by the FFT to 1 ≤ m < mlow. The rest should
be done with the approximate techniques.
If multipoint provides an acceptable level of error

then we should divide the FFT, multipoint and complex
asymptotic regimes as discussed in the text. Typically, FFT
1 ≤ m < mOK, multipoint mOK < m < mcross and complex
asymptotic mcross < m.
If we are interested in driving errors below that which

can be provided by multipoint then we should extend
the FFT until it is maximum error intersects that of the
complex asymptotic method as discussed in the text.
Typically, FFT 1 ≤ m < mOK and complex asymptotic
mOK < m where mOK > mcross.

APPENDIX H: EXPANSION OF α= 3=20
AND Φ= − 18π=25

The expansion point σ− ¼ 1=4 for I− implies k̂− ¼
f0; 0.7; 0.7141g and θ ¼ 0.7754. To lowest order we have
for the important parameters for the multipoint expansion
of I−

Am ¼ 16π3m
75

ðH1Þ

Bm ¼ 0 ðH2Þ

p ¼ 75dθ2

16π2
ðH3Þ

q ¼ 75

32π2
: ðH4Þ

At σ− ¼ 1=4, we have

Ẋ ¼ f0; 7=10;
ffiffiffiffiffi
51

p
=10g; ðH5Þ

Ẍ ¼ f4π=5; 0; 0g: ðH6Þ

Thus the integral I− becomes,

I− ¼ I1Ẋþ I2Ẍ ðH7Þ

I1 ¼ βK−1=3ðρÞ ðH8Þ

I2 ¼ γK−2=3ðρÞ ðH9Þ

where

β ¼ 5jdθjeimπ=2

2
ffiffiffi
3

p
π

ðH10Þ

ρ ¼ 5mjdθj3
6

: ðH11Þ
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for dθ < 0. The expansion point σþ ¼ −1=4 for Iþ implies
k̂þ ¼ f0; 0.6374; 0.7705g and θ ¼ 0.6912. To lowest order
we have

Am ¼ 4mπ3

3
ðH12Þ

Bm ¼ 0 ðH13Þ

p ¼ 3dθ2

4π2
ðH14Þ

q ¼ −
3

8π2
ðH15Þ

and

Ẋ ¼ f0; sin ϵ; cos ϵg; ðH16Þ

Ẍ ¼ f2π; 0; 0g: ðH17Þ

for ϵ ¼ 11π=50. Thus we get

Iþ ¼ I1Ẋþ I2Ẍ ðH18Þ

I1 ¼ βK−1=3ðρÞ ðH19Þ

I2 ¼ γK−2=3ðρÞ ðH20Þ

where

β ¼ dθe−imπ=2ffiffiffi
3

p
π

ðH21Þ

ρ ¼ mdθ3

3
ðH22Þ

for dθ > 0. Figures 35 and 36 show the approximations
are essentially indistinguishable from the full multipoint
calculations.
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