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We introduce a multifield dark energy model with a nonflat field-space metric, in which one field is
dynamical while the others have constant spatial gradients. The model is predictive at the background level,
leading to an early dark energy component at high redshifts and a suppressed fraction of late-time
anisotropy. Both features have simple expressions in terms of the curvature scale of the field-space, and
correspond to stable points in the phase space of possible solutions. Because of the coupling between time
and space-dependent scalar fields, vector field perturbations develop tachyonic instabilities at scales below
the Hubble radius, thus being potentially observable in the number count of galaxies. Overall, the presence
of a nontrivial field-space curvature also leads to the appearance of instabilities on scalar perturbations,
which can impact the matter density distribution at large scales.
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I. INTRODUCTION

The existence of an unexplained dark sector continues to
be one of the main drivers of new ideas in cosmology,
forcing us to test the limits of the standard lambda cold dark
matter (ΛCDM) model. Recently this program has gained
momentum due to the realization that measurements of
critical cosmological parameters, among which H0, give
different values when done using high or low redshift
data [1,2]. Alongside these facts, there remain numerous
large-angle cosmic microwave background (CMB) ano-
malies which also lack an explanation—fundamental or
not—and that contribute to the suspicion that the ΛCDM
model is just a first approximation to a more accurate
description of the universe.
Among the many potential candidates to explain these

problems lies the possibility that dark energy results from
new matter degrees of freedom. The most popular and
paradigmatic example is the quintessence field and its
many avatars [3].1 At first sight, the versatility of quintes-
sence models seems to be limited by the imposition of
translation invariance arising from the cosmological

principle, which forces the fields to be homogeneous.
However, a closer inspection of the Lagrangian from the
simplest quintessence model,

L ¼ −
1

2
∂μϕ∂

μϕ − VðϕÞ;

reveals that, as far as the kinetic term is concerned,
translation invariance does not require homogeneity of the
fields, but rather the homogeneity of their spatial gradients.
The realization of this possibility has led to many interest-
ing implementations known generically as “solid” or
“elastic”models, where the dynamics is achieved by means
of space-dependent scalar fields with constant spatial
gradients. To account for a forbidden (symmetry breaking)
potential, such models usually are on a noncanonical
Lagrangian capable of reproducing an accelerated expan-
sion. This idea has its roots on effective field-theoretic
implementations of solid and elastic media [5,6], and has
since found fertile ground in cosmological applications,
being implemented in inflation [7–9], dark matter [10,11],
and dark energy [12,13].
In the standard applications of solids to cosmology, the

internal symmetries of the fields, such as SO(3) and shift
invariances, are explored when building phenomeno-
logically viable cosmological models [8,14]. In this regard,
one could also envisage the existence of a curvature in
field-space, as is usually done in nonlinear sigma models of
quantum field theory. In fact, time-dependent nonlinear
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sigma models have been long explored in the context of
inflation [15–21] and dark energy [22–26]. Recently, the
authors of Ref. [23] considered the implementation of
dark energy in one such model, showing that a phase of
accelerated expansion can be achieved even with steep
potentials, provided that trajectories in field-space are
sufficiently nongeodesic.
In this work we ask whether a time-dependent field could

coexist with a solid, thus bridging a gap between the
solid and nonlinear multifield descriptions. Specifically,
we introduce a nonlinear dark energy model in which one
field is dynamical, while three other have constant spatial
gradients. The model is predictive at the background level,
and can lead to a percent level fraction of early dark energy,
as well as a suppressed fraction of late-time anisotropy. We
show that the early dark energy component is proportional
to the square of the field-space curvature radius, while late-
time anisotropies has an upper bound given by the fourth
power of this radius. Thus, for small and observationally
interesting radii, the anisotropy is always suppressed
compared to early dark energy. When small scale linear
perturbations are included, we show that the existence of a
nontrivial curvature in field space leads to instabilities in
transverse vector modes, with a characteristic length scale
of order of the present Hubble radius. Such instabilities will
feed gravitational vector perturbations, which could, in
principle, be observed through the abundance of large-scale
structures. The same curvature term is responsible for the
appearance of gravitational instabilities in scalar perturba-
tions, though the derivation of a dispersion relation and
the length scales of these instabilities is hard to obtain
analytically. Overall, our findings corroborate the claim that
a negative field-space Ricci scalar can lead to gravitational
instabilities [21].
The mathematical formalism appropriate for our descrip-

tion, known as harmonic maps, is quickly reviewed in
Sec. II. In Sec. III we discuss the main idea of the curved
solid model, and derive its main features at the background
level. The dynamics of small scale linear instabilities is
analyzed in Sec. IV, after which we conclude and give some
perspectives of future developments in Sec. V. Throughout
this work we adopt (modified) Planck units in which ℏ ¼
c ¼ 8πG ¼ 1 ¼ M−2

Pl and a metric signature ð−;þ;þ;þÞ.

II. HARMONIC MAPS

We start by giving a concise introduction to the formal-
ism of harmonic maps, which underpins our implementa-
tion. Further details can be found in [27–29]. Although the
mathematics is the same as that used in multifield modeling
(see, e.g., [15,18,21]), many physically interesting insights
and possible applications introduced by the formalism
seem to be unknown to (most) cosmologists. We thus
hope that this section can also help drawing attention to
these important references. Readers interested in our
implementation can skip to Sec. III.

The formalism of harmonic maps consists in a set of
scalar fields ϕA evolving over a space-time M with metric
gμν, such that the fields themselves define a Riemannian
space N , the field-space, with metric GAB. The dimension
of N is arbitrary, although for the applications we have in
mind dimN ¼ 4; the field-space indices A; B;… thus run
from 0 to 3.
Because the fields live in the space-time, they map points

from M to N , since for any point xμ in M there corres-
ponds a point ϕA in N through the functions ϕAðxμÞ. This
identification allows us to pull field-space objects back to
the space-time through the matrix ∂μϕ

A. This is possible
because, under general field [ϕA → ψAðϕCÞ] and coordi-
nate [xμ → yμðxνÞ] transformations, this matrix transforms
linearly:

∂ψA

∂yμ
¼ ∂ψA

∂ϕC

∂xν

∂yμ
∂ϕC

∂xν
: ð1Þ

Thus, for example, the field-space metric GAB and con-
nection ΓA

BC can be pulled back from the field-space to the
space-time as

Gμν ≡ ∂μϕ
A
∂νϕ

BGAB; ð2Þ

ΓA
μB ≡ ∂μϕ

CΓA
CB: ð3Þ

This property renders the dynamics of the fields nonlinear,
and it serves as the central feature from which many of the
interesting properties of multifield cosmological models
emerge, as well as many of interesting properties of
harmonic maps in general [28].
Given this structure, we can take space-time covariant

derivatives of field-space tensors provided we attach, for
each field-space index, a corresponding connection term
ΓA
μB. Thus, for example, the space-time covariant derivative

of any vector vA in N will be

∇μvA ¼ ∂μvA þ ΓA
μBv

B; ð4Þ

¼ ∂μϕ
B
�
∂BvA þ ΓA

BCv
C
�
; ð5Þ

¼ ∂μϕ
B∇BvA: ð6Þ

For a tensor with mixed indices, tABμν…, one proceeds as
usual, adding the corresponding connection Γμ

λν for each
space-time index, and ΓA

μB for each field-space index. Note
however that ∇μϕ

A is still given by ∂μϕ
A, as usual. From

these definitions and the condition of metric compatibility
in field space, ∇AGBC ¼ 0, one readily verifies that

∇μGAB ¼ 0: ð7Þ
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This is an important property, and ensures that the mani-
pulation of field-space indices commutes with space-time
derivatives; in particular, it allows us to write GAB∇μϕ

B

simply as ∇μϕA.
The fields ϕA are called harmonic when they extremize

the action

S ¼ −
1

2

Z
d4x

ffiffiffiffiffi
jgj

p ∇μϕA∇μϕA: ð8Þ

Physically, if M describes a rubber and N a body, then S
gives the elastic energy needed to wrap the rubber around
the body, while the fields obey an equation describing the
configuration of zero elastic tension on the rubber [29]:

∇μ∇μϕ
A ≡ 1ffiffiffiffiffijgjp ∂μ

� ffiffiffiffiffi
jgj

p
∂
μϕA

�þ ΓA
μB∂

μϕB ¼ 0: ð9Þ

where g ¼ detðgμνÞ. This equation makes evident the non-
linearity of the dynamics.
Known examples of harmonic maps include the

Klein-Gordon equation for a massless scalar field (take
dimM ¼ 4 and dimN ¼ 1) and the geodesic equation
(dimM ¼ 1, dimN ¼ 4). A less obvious example is given
by the geodesic deviation equation [28].

III. CURVED SOLID

The vanilla harmonic model (8) cannot lead to accel-
erating cosmologies. For that we also need a potential
VðϕAÞ. We thus consider a generalized harmonic model
where the fields are minimally coupled to gravity:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
R −

1

2
∇μϕA∇μϕA − V þ Lm

�
; ð10Þ

with Lm being the matter Lagrangian. Variation of this
action then leads to the following nonlinear equation

∇μ∇μϕ
A −GAB

∂BV ¼ 0: ð11Þ

The class of models in which we are interested exhibit
the most versatility in universes described by homogeneous
metrics of the following form:

ds2 ¼ −dt2 þ a2ðtÞγijðtÞdxidxj; ð12Þ

with the condition that detðγijÞ ¼ 1 in order to preserve
comoving volumes—see Ref. [30] for details. These
include the isotropic and spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) model (γ̇ij ¼ 0), as
well as the anisotropic Bianchi-I model (γ̇ij ≠ 0). In the
latter, aðtÞ represents the mean scale factor, whereas the
anisotropic expansion is characterized by the shear tensor

σij ≡ 1

2
γ̇ij; ð13Þ

where a dot means d=dt and spatial indices are manipulated
with γij. These two metrics can be encapsulated by
Misner’s parametrization, where one writes (no sum over i)

γij ¼ ½e2βi �δij;
X
i

βi ¼ 0 ð14Þ

with the inverse given by γij ¼ ½e−2βi �δij. In terms of βi, the
shear tensor becomes

σij ¼ ½β̇i�δij: ð15Þ

The isotropic case follows naturally by taking βiðtÞ ¼ 0.
In this setup, the energy-momentum tensor of the fields

acquires its most general form:

Tμν ¼ ðρþ pÞuμuν þ pgμν þ 2qðμuνÞ þ πμν; ð16Þ

where the field’s momentum density (qμ) and anisotropic
stress (πμν) satisfy the usual constraints: qμuμ ¼ πμμ ¼
0 ¼ uμπμν. Here, uμ is the four-velocity of fundamental
observers, normalized as uμuμ ¼ −1. In the comoving
coordinates defined by (12) it reads uμ ¼ ð1; 0; 0; 0Þ. For
these observers (12), the nonzero components of (16) are
given by

ρ ¼ 1

2

�
ϕ̇Aϕ̇A þ 1

a2
∂
kϕA

∂kϕA

�
þ VðϕAÞ; ð17Þ

p ¼ 1

2

�
ϕ̇Aϕ̇A −

1

3a2
∂
kϕA

∂kϕA

�
− VðϕAÞ; ð18Þ

qi ¼ −ϕ̇A
∂
iϕA; ð19Þ

πij ¼
1

a2

�
∂
iϕA

∂jϕA −
1

3
∂
kϕA

∂kϕAδ
i
j

�
: ð20Þ

Fundamental observers are uniquely defined by the condi-
tion that the total momentum density vanishes in their rest
frame [31]. For a model containing matter (m), radiation (r)
and the fields ϕA, this means that qim þ qir þ qi ¼ 0. After
recombination, matter and radiation only interact gravita-
tionally, so that qim ¼ 0 ¼ qir. Thus, for our model to be
compatible with the symmetries of (12) at late times, we
need (19) to be zero as well. Given that qi couples time and
spatial derivatives, there are three distinct classes of models
where it vanishes:
(1) All fields are time-dependent: ϕA ¼ ϕAðtÞ;
(2) All fields are space-dependent: ϕA ¼ ϕAðxiÞ;
(3) A subset of fields are time-dependent, while the

remaining are space-dependent.
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Incidentally, each one of these configurations automatically
leads to ρ, p, and πij compatible with the symmetries
of (12). Let us analyze each case individually.
Models of class 1 consists of the usual multifield

cosmological models that have been used to described
either inflation and dark energy. In the context of dark
energy, it was recently implemented in a two field model
using flat [23] and nonflat [26] field-space metrics. Note
that in this case not only qi but also πij is zero. Since the
latter behaves as a source to the shear, the trace-free part of
the Einstein equation [see Eq. (33)] implies that σ2 ∼ a−6.
Thus, assuming that the amplitude of the shear is consistent
with CMB constraints, typically ðσ=HÞ0 ≲ 10−10 [32,33],
one can safely disregard the contribution of this term to the
expansion at late times. In other words, harmonic models
with time-dependent fields are (virtually) isotropic.
Models where the fields depend only on spatial coor-

dinates (class 2) are commonly referred to as “solid” or
“elastic” models [7,8,10]. Fields with an arbitrary spatial
dependence cannot be generally employed, though, since
they violate spatial homogeneity. However, because the
energy-momentum tensor of the fields depends only on
their gradients and a potential V, one can build cosmo-
logically viable models if the fields are given by linear
functions of position and if V ¼ 0.2 For these models,
homogeneity also requires that the field-space metric GAB
be constant. As an example, consider the case of three fields
defined as ϕI ¼ xI, I ¼ ð1; 2; 3Þ, and a field-space with flat
metric δIJ. In this case ∇I ¼ ∂I and the fields ϕI satisfy
Eq. (11) identically. Note however that, even though the
fields have no dynamics, the matter sector of these models
is nontrivial, since the stress tensor is nonzero

πij ¼
1

a2

�
γij −

1

3
γkkδij

�
: ð21Þ

Moreover, the dynamics is also nontrivial, since (17)
introduces an effective curvature term to the expansion
rate: ρ ∼ a−2. Thus, for time-dependent γij, the effective
background dynamics is that of a Bianchi-I universe with
spatial curvature.
Before concluding our discussion on the models of

class 2, it should be noted that space-dependent fields
with nontrivial dynamics can be implemented by means
of an effective field theory approach. In this case, one
substitutes the kinetic term in (10) with the most general
function of SO(3) invariant operators, which are in turn
constructed from products and contractions of the gradients
∂iϕ

I with itself and the metric δIJ. This was explored both
in the context of inflation [8,9], dark matter [10] and dark
energy [12,13]. At leading order in a derivative expansion,

the first nontrivial operator is given by gij∂iϕI
∂jϕ

IδIJ. In
view of the formalism of harmonic maps, this is just the
trace of the pushed-forward metric gIJ ¼ gij∂iϕI

∂jϕ
J with

the flat field-space metric GIJ ¼ δIJ. Thus, the formalism
of harmonic maps provides a framework for nontrivial geo-
metric generalizations of the standard (flat) solid models.
Class 3 models represent a novel possibility which, to the

best of our knowledge, has not been explored.3 Given the
preceding discussion, we shall refer to them as curved solid
models. As we are going to show, when implemented as a
dark energy component, they predict small anisotropies as
well as an early dark energy phase. We now give the details
of one concrete implementation.

A. Concrete implementation

For concreteness we are going to consider a four field
model in which the first, ϕ0, is dynamical, while the other
three, ϕI, are pure spatial gradients. According to our
previous discussion, the potential V cannot depend on ϕI .
We thus define

ϕ0 ≡ φðtÞ; ϕI ≡ xI; V ≡ VðφÞ: ð22Þ

We shall informally refer to φ and ϕI as quintessence and
solid fields, respectively. As for the field-space metric GAB,
it can only be fixed by a more fundamental theory.
However, similar to the potential V, cosmological appli-
cations require that GAB be solely a function of φ. Given
that we can always choose synchronous coordinates in
which G00 ¼ 1, a symmetric and nontrivial field-space
metric is that of a flat and “expanding” field-space:

dl2 ¼ dφ2 þ f2ðφÞδIJdϕIdϕJ; ð23Þ

where fðφÞ is an arbitrary function of φ. The nonzero
Christoffel symbols for this metric are

Γ0
IJ ¼ −ff;φδIJ; ΓI

0J ¼
f;φ
f

δIJ; ð24Þ

where the “comma φ” notation means d=dφ. Using these
expressions and the condition ∂IV ¼ 0, one readily verifies
that the solids ϕI satisfy Eq. (11). The quintessence field,
on the other hand, obeys a Klein-Gordon equation,4

φ̈þ 3Hφ̇þU;φ ¼ 0; ð25Þ

where U is a combination of the quintessence potential and
a term coming from the kinetic coupling in (11)

2One could also adopt the weaker condition of a constant V,
but this is tantamount to a adding a cosmological constant to the
model.

3In the context of flat field-space metrics, time and space-
dependent fields were considered in [14].

4Note that H ¼ ȧ=a, where a is the mean scale factor defined
in (12).

JUAN P. BELTRÁN ALMEIDA et al. PHYS. REV. D 109, 123539 (2024)

123539-4



Uðφ; tÞ≡ γðtÞ
2a2

f2ðφÞ þ VðφÞ; ð26Þ

and where

γðtÞ≡ trðγijÞ: ð27Þ

This equation also follows from the continuity equation,
ρ̇þ 3Hðρþ pÞ ¼ −σijπij, with the energy density, pres-
sure and anisotropic stress given by

ρφ ¼ 1

2
φ̇2 þ γf2

2a2
þ V; ð28Þ

pφ ¼ 1

2
φ̇2 −

γf2

6a2
− V; ð29Þ

πij ¼
f2

a2

�
γij −

1

3
γδij

�
; ð30Þ

respectively. It is interesting to note that while
ρφ ¼ φ̇2=2þU, as in typical quintessence models, pφ ≠
φ̇2=2 −U [this was already anticipated by Eqs. (17)
and (18)]. Such asymmetry follows from us having three
spacelike vectors ∂

μϕI and only one timelike vector ∂μφ
contributing to the energy-momentum tensor (see also [12]).
Incidentally, this fact prevents an accelerated phase given
exclusively by the field space metric, i.e., a phase where
fðφÞ plays the role of a slow-roll potential. Indeed, by setting
V ¼ 0 we find

1 ≥ pφ=ρφ ≥ −1=3; ð31Þ

which, as we see, is not sufficiently negative to accelerate the
expansion of the universe.
The full background dynamics is given by the following

equations

3H2 ¼ ρm þ ρr þ ρφ þ
σ2

2
; ð32Þ

ðσijÞ· ¼ −3Hσij þ πij; ð33Þ

φ̈ ¼ −3Hφ̇ −
γ

a2
ff;φ − V;φ: ð34Þ

where σ2 ¼ σijσ
ij. In order to solve this system of

equations we need to specify the potentials VðφÞ and
fðφÞ. For the purpose of illustrating the features of the
model, it suffices to consider simple exponentials given by

VðφÞ ¼ V0e−λφ; fðφÞ ¼ f0e−μφ; ð35Þ

where λ and μ measure the steepness of the potentials,
while V0 and f0 measure their amplitudes. It is important to

note that while V0 is measured in units of ½mass�4, f0 is
dimensionless, since it is a component of the field-space
metric. However, since the function fðφÞ always comes
multiplied by combinations of ∂

iϕI
∂jϕ

J, which is also
measured in units of ½mass�4, the constant f0 works in
practice as a measure of the solid’s energy scale.5 Thus, in
what follows, we will interpret f0 as an (effective) energy
scale.
Given (35), the field-space metric (23) represents a

maximally symmetric manifold with Riemann tensor
given by

RABCD ¼ R
4ð4 − 1Þ

�
GACGBD −GADGBC

�
: ð36Þ

where R is the associated Ricci scalar,

R ¼ −12μ2 ≡ −
12

ðlcÞ2
; ð37Þ

and where, in analogy to the de Sitter metric, we have
introduced a curvature scale through lc ¼ μ−1. Thus, the
parameter μ sets the curvature scale of the field-space. As
we will see, the main aspects of the early dark energy stage
(EDE), including its onset and amplitude, depend directly
on μ and f0, and only indirectly on λ and V0, which in turn
govern the late-time regime of dark energy. Our results are
however fairly robust against the choice (35) if compared
with other viable cosmological potentials. Moreover, the
choice we adopt here is more easily adapted to a dynamical
system analysis, which we present in a separate work. For
the numerical analysis it is also convenient to introduce the
usual fractional densities:

Ωα ≡ ρα
3H2

; α ¼ ðm; r;φÞ; ð38Þ

as well as the dark-energy equation of state: wφ ¼ pφ=ρφ.
Next, we present a concrete numerical implementation of
this model and discuss some of its main features in a
semianalytical approach.

B. Early dark energy

Let us consider first the case of an isotropic FLRW
universe, where βi ¼ 0. Thus

σij ¼ 0 ¼ πij: ð39Þ

Since the matter sector is not coupled to the fields, ρm and
ρr decays as a−3 and a−4, as usual, so that we only need to
solve Eqs. (32) and (34). A typical solution is shown in

5To put it differently, we could have defined ϕI ¼ ffiffiffiffiffi
f0

p
xI , and

fðφÞ ¼ e−μφ, since what matters is the product fðφÞ∂iϕI
∂jϕ

J .
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Fig. 1, where we see an EDE regime starting at z ≃ 1000
and contributing to about 5% of the cosmological budget.
To understand the qualitative behavior of this figure, and

in particular how the EDE phase is triggered, we can ignore
the contribution of VðφÞ to the dynamics, since its con-
tribution is only relevant at late times (z ≃ 0). After the
radiation era, and assuming EDE is subdominant, the
universe is mostly matter dominated. If written in terms
of the scale factor, Eq. (34) becomes

d2φ
da2

þ 5

2a
dφ
da

≈
γμf20e

−2μφ

H2
0Ω0

ma
: ð40Þ

Note that while γ ¼ 3 in a FLRW universe, the expression
above, and the ones following from it, hold for arbitrary
γðtÞ. We thus keep it as γ for later reference. In what follows
we shall consider that μ is a nonzero and positive constant,
although our final results do not depend on its sign.
The field φ starts at zero at the top of the potential U.

During matter domination, while φ is slowly rolling down,
2μφ ≈ 0, and the exponential in the equation above is
frozen at 1. The solution satisfying φða ¼ 0Þ ¼ 0 is
given by

φ ¼ 2

5

γμf20
H2

0Ω0
m
a: ð41Þ

This approximate solution, valid during matter domination,
holds until 2μφ≲ 1. When 2μφ ≈ 1 the exponential
term, and hence U, decay faster. The field then gains
kinetic energy, and EDE starts. This happens at a redshift
1þ z� ¼ a−1� given by

1þ z� ≈
4

5

γμ2f20
H2

0Ω0
m
: ð42Þ

For the parameters used in Fig. 1 this gives 1þ z� ≈ 103,
which is in excellent agreement with the (full) numerical
solution shown in the same figure. As φ continues to grow,
the contribution of the potential fðφÞ becomes negligible in
comparison to VðφÞ, and the standard dark energy regime
starts (this happens at z ≃ 10 in Fig. 1). The amplitude
of Ωφ during this regime, like the onset of EDE, is also
controlled by the parameter μ. To see how this happens,
note from Fig. 1 that Ωφ tracks the evolution of Ωm during
matter domination. Thus, φ̇2 ∼ a−3 or, in terms of the scale
factor, dφ=da ¼ c=a, for some constant c. This constant
can be fixed by demanding the continuity of dφ=da at a�.
From the derivative of (41) and Eq. (42) it follows that
c ¼ 1=ð2μÞ. To proceed, we substitute dφ=da ¼ c=a and
d2φ=da2 ¼ −ð1=aÞdφ=da into Eq. (40), which then gives

γf20e
−2μφ ≈

3

4

H2
0Ω0

m

μ2a
: ð43Þ

If we now use this result in (28), still neglecting the
potential V, it follows after some algebra that6

Ωφ ≈
1

6μ2
; ð10≲ z≲ 103Þ: ð44Þ

Note that, in view of (37), Ωφ is proportional to the square
of the field-space curvature radius during EDE phase:
Ωφ ∝ l2

c. For μ ¼ 2, this expression gives Ωφ ¼ 0.042
which is in good agreement with the value shown in Fig. 1.
Of course, one should keep in mind that our approxima-
tions assumed that dark energy is subdominant in this
regime, which is only true for μ≳ 1. Existing upper bounds
on EDE are model-dependent, but overall give fEDE ≲ 10%
[34] at 95% CL, with fEDE ¼ ρDE=ρtotal. In our case, this
translates to μ ≳ 1.3, which is consistent with the range of
values allowed by our solutions.
Indeed, by studying the whole system via dynamical

analysis [35], one can show that EDE regime corresponds
to a matter dominated point in which the matter density
scales as

Ωm ¼ 1 −
1

6μ2
; ð45Þ

FIG. 1. Top: matter (orange), radiation (green), and dark-energy
(blue) fractions as a function of the redshift. The thin horizontal
line represents the approximate fraction of dark energy during
the EDE phase [Eq. (44)], while the shaded region shows the
approximate duration of this regime. Bottom: dark energy equa-
tion of state. For this plot we have adopted μ ¼ 2λ ¼ 2, f20=H

2
0 ¼

2V0=H2
0 ¼ 30 (continuous lines) and f20=H

2
0 ¼ 8V0=H2

0 ¼ 120

(dotted lines).

6We stress that the limit μ ¼ 0 cannot be taken in this
expression, since it violates our previous assumption 2μφ ¼ 1.
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in agreement with the semianalytical expression derived in
Eq. (44). This is a saddle point for μ ≤ −1=

ffiffiffi
6

p
and λ > 6μ

or μ ≥ 1=
ffiffiffi
6

p
and λ < 6μ. The sequence thus ends with a

dark energy attractor satisfying

Ωφ ¼ 1; wφ ¼ λ2

3
− 1; ð46Þ

that is also in concordance with the numerical results shown
in Fig. 1. This point produces an accelerated stage and is
stable under the conditions

−
ffiffiffi
2

p
< λ <

ffiffiffi
2

p
; μ ≶

λ2 − 2

2λ
for λ ≶ 0; ð47Þ

which is automatically satisfied within our particular choice
μ ¼ 2, λ ¼ 1. The model also presents some interesting
properties as oscillating equation of state for some par-
ticular range of parameters. A complete discussion of these
properties will appear in a separate work.

C. Spatial anisotropies

As demonstrated, the gradients of the fields ϕI generally
lead to the appearance of an anisotropic stress tensor, as
described in (30). In an expanding universe, small seeds of
anisotropy will be sourced by this tensor, giving rise to
increased anisotropies. These, in turn, amplify the gra-
dients, which lead to greater anisotropic stresses in a self-
feeding cycle. This is in fact the content of Eq. (33),
suggesting that the late-time universe could exhibit sig-
nificant anisotropies, potentially erasing the EDE phase
found before. However, unlike everyday solids, cosmo-
logical solids are known to be quite insensitive to stretches
and deformations [9], thus allowing any initial anisotropies
to grow in a controlled way. Figure 2 shows the evolution of
matter, radiation and dark energy in a universe with non-
zero σij and πij. As we can see in this figure, the qualitative
background behavior, including the estimate (44), is essen-
tially the same as that of Fig. 1, where σij ¼ 0 ¼ πij. If
anything, the presence of higher initial values of βi have the
same effect as increasing the field-space metric amplitude
f0 in the isotropic case. This degenerate behavior follows
from the product of γf2 appearing in (28).
Perhaps more surprising is the finding that, for a wide

range of initial conditions on βi and β̇i, the fractional
contribution of late-time anisotropy to the cosmic budget,
given by σ2=6H2, can never exceed a limiting and nearly
constant value. This feature is shown in Fig. 3 for several
values of βi and β̇i. Similarly to Ωφ, this constant threshold
is given by a simple function of μ, and can also be estimated
semianalytically during matter domination. For that, and
with no loss of generality, we assume that β1 ≫ 1 at early
times, so that γ ¼ trðγijÞ ≫ γ11. During matter domination,
and recalling (15), Eq. (33) can be approximated as (i ¼ 1, 2)

d2βi
da2

þ 5

2a
dβi
da

≈ −
γf20e

−2μφ

3H2
0Ω0

ma
: ð48Þ

Note the similarity of this expression with (40), which shows
that the anisotropic scale factors βi behave as effective

FIG. 2. Top: Background evolution of Ωm (orange), Ωr (green),
and Ωφ (blue) in a universe containing spatial anisotropies.
Bottom: the equation of state of dark energy. We have adopted
β1ð0Þ ¼ 2β2ð0Þ, and β̇ið0Þ ¼ 0 as initial conditions. The remain-
ing parameters are the same used in the continuous lines of Fig. 1.

FIG. 3. Background evolution of the anisotropic fraction
σ2=6H2 in a model with a curved solid. For a wide range of
initial conditions on βi and β̇i, the late-time anisotropy has an
upper bound depending on μ. For this plot we have adopted
β1 ¼ 2β2, β̇1 ¼ 2β̇2 ¼ 0 (continuous lines), β̇1 ¼ 2β̇2 ¼ 1012

(dotted lines), and μ ¼ 10. The remaining parameters are the
same as in the continuous curves of Fig. 1. The horizontal thin
line represents the upper bound given by the approximation (49).
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quintessence fields as long as V is negligible. This is
possible because the coupling between the field-space
and spacetime metrics, which leads to a nonzero π11, acts
as an effective potential for βi. Because of this, β̇2i tracks
the evolution of Ωm, just like φ̇2 does. This means that
dβ=da ¼ c=a for some constant c during matter domina-
tion; see Fig. 4. Replacing this relation into the left hand
side of (48), and the approximation (43) on the right,
one immediately finds that c ¼ −1=6μ2. Finally, using
β̇1 ¼ β̇2 ¼ −β̇3=2, it follows that

σ2

6H2
≲ 1

36μ4
; ð10≲ z≲ 103Þ; ð49Þ

where we have used an inequality to account for cases
where βi ≈ 0 (see Fig. 3.) Comparing this to (37) we see
that σ2=6H2 ≲ l4

c. In fact, we have found that

σ2

6H2
≲ ðΩφÞ2: ð50Þ

Thus, for μ≳ 1, late-time anisotropies will be subdominant
in a Bianchi I universe. Of course, these anisotropies can
also be subdominant, regardless of μ, if observations tell us
that βi ≈ 0, in which case we would recover the FLRW
results of the previous section. The take away lesson is that
spatial anisotropies, if present, will never exceed the dark
energy fraction in these models.

IV. LINEAR PERTURBATIONS

We have shown that the curved solid model is predictive
at the background level, leading to a phase of early dark
energy and (possibly) suppressed late-time anisotropies.
The model is also predictive at the perturbative level,
since the introduction of a solid changes the dispersion
relation and the sound speed of perturbations, affecting the
gravitational clustering of matter [8]. A thorough inves-
tigation of structure formation is complicated by the back-
ground shear (15), which will couple scalar, vector and
tensor modes, rendering the analysis much more cumber-
some [36]. We can nonetheless extract the model’s main
footprints by considering the small scale limit of perturba-
tions, where the cosmological effects of the expansion are
negligible. Thus, in this section we adopt β̇i ¼ 0 ¼ ȧ; this
is an acceptable approximation as long as we are consid-
ering Fourier modes deep inside the Hubble radius (see
also [19] for a related analysis in the context of an effective
low energy description of multiple scalar fields with a
hierarchical mass scale structure). In this Minkowskian
regime, the field’s perturbations obey (see Appendix)

∇μ∇μδϕ
A þRA

CDB∂μϕ
C
∂
μϕBδϕD − ð∇AVCÞδϕC ¼ 0;

ð51Þ

where δϕA represents the field’s perturbation, RA
BCD is the

field-space Riemann tensor, and ∇μ∇μ stands for −∂2t þ∇2.
To simplify, we recycle our background convention and

write δϕ0 as δφ. We also introduce a vector notation where
the three components δϕI are written as δϕ⃗. Working in
Fourier space and decomposing δϕ⃗ into its longitudinal and
transverse components,

δϕ⃗ ¼ ik⃗δϕL þ δϕ⃗T ðk⃗ · δϕ⃗T ¼ 0Þ; ð52Þ

we find, after a straightforward computation, the following
system of equations:

δφ̈þ 	
k2 þM2

eff



δφ ¼ −2μf2k2δϕL; ð53Þ

δϕ̈L þ k2δϕL − 2μφ̇δϕ̇L ¼ −2μδφ; ð54Þ

δ
̈
ϕ⃗T þ k2δϕ⃗T − 2μφ̇δ

˙
ϕ⃗T ¼ 0; ð55Þ

where we have defined M2
eff ¼ 6μ2f2 þ λ2V.

This system presents two new features following from
the field-space curvature, and characterized by the para-
meter μ: a coupling between the quintessence and longi-
tudinal solid perturbations, δφ and δϕL, and an intrinsic
damping term in the longitudinal and transverse solid
perturbations, δϕL and δϕ⃗T . These features are in effect
crucial for the clustering properties of the model’s pertur-
bations, which can be unveiled by postulating oscillatory

FIG. 4. Evolution of dϕ=da (dot dashed), dβ=da (dashed), and
1=a (continuous) as a function of redshift, and for many initial
values of βi. During matter domination, all curves have approx-
imately the same slope.
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solutions and looking for the possible frequencies of
oscillation.
Let us start with the scalar perturbations. Since δφ and

δϕL are coupled, they share a common harmonic solution
eiΩt. The allowed frequencies are given as the roots of a
fourth order polynomial in Ω,
	
Ω2 −

�
k2 þM2

eff

�
½Ω2 − k2 þ 2iΩμφ̇� ¼ 4μ2f2k2; ð56Þ
with complex coefficients. Note the presence of cubic and
linear terms in Ω, which are generally absent in time-
dependent multifield models [18]. In the flat field-space
limit (μ ¼ 0), there are two independent frequencies
corresponding to a light mode, Ω2

− ¼ k2, and a heavy
mode,Ω2þ ¼ k2 þM2

eff , both propagating with the speed of
light. This is expected because when μ ¼ 0 the model is
linear and the perturbations evolve independently. At small
scales, quintessence behave as a massive mode, with the
mass being proportional to the second derivative of its
background potential VðφÞ. The solid perturbations, how-
ever, do not have a background potential (which, we recall,
would violate spatial homogeneity) and thus evolve as
light modes.
For arbitrary curvature (i.e., μ ≠ 0), the solutions are

generally complex, indicating the presence of instabilities
in the scalar sector. Exact solutions to (56) can be obtained
with algebraic packages, but the resulting expressions are
too long to be useful. Nonetheless, it is important to note
that the imaginary part of the frequencies result exclusively
from the term μφ̇, and not from the inhomogeneous term on
the right-hand side of (56). Indeed, if the former is absent,
we find that the resulting frequencies,

Ω2
� ¼ 1

2

�
2k2 þM2

eff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16μ2f2k2 þM4

eff

q �
; ð57Þ

are real since 2k2 þM2
eff ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16μ2f2k2 þM4

eff

p
, as one can

easily check using the definition of M2
eff . In the presence

of gravity, such small scale instabilities will feed scalar
perturbations, and can lead to enhanced structures at large
scales. Moreover, since this is a multif-field model, one
might expect the appearance of isocurvature modes [37],
which could be another distinctive signature.
The presence of instabilities is clearer in the case of

transverse vector perturbations, which decouples from the
scalar modes and thus oscillates with its own frequency.
Inserting the ansatz eiωt in (55), the allowed frequencies,

ω� ¼ −iμφ̇�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − μ2φ̇2

q
; ð58Þ

are clearly complex. At distances where gravitational effects
can be neglected, we expect that k2 ≫ μ2φ̇2. In this limit,ω�
simplifies to

ω� ≈ −iμφ̇� k: ð59Þ

Therefore, small scale transverse perturbations propagate
with the speed of light, and develop instabilities at distances
of order ðμφ̇Þ−1.
To estimate the typical scales involved, and to check

whether this description is consistent with our numerical
solutions, let us focus on low redshifts at which most
structures are found, typically z≲ 3. Taking μ ¼ 2 as a
reference, our numerical solutions give φ̇ ≃ 1.26H0 at
z ¼ 3,7 which corresponds to ðμφ̇Þ−1 ≈ 0.4H−1

0 , roughly
one half of the present Hubble radius. Adopting H−1

0 ¼
3000h−1 Mpc, this corresponds to a scale deep in the linear
regime, μφ̇ ∼ 10−3h Mpc−1, and justifies a posteriori the
small scale approximation leading to (59).
As is well known, primordial vector modes are not

generated during inflation at first order in perturbations.
This is because, differently from scalar and tensor modes,
vector modes are not frozen after horizon crossing, but
decay away. Moreover, even if they are produced by some
mechanism at linear order, they do not act as sources of
density perturbations, and thus are typically neglected in
the standard analysis of structure formation. However,
vectors modes can affect the number count of galaxies
[38,39], and their inclusion is also important to a proper
data analysis of redshift-space distortion effects [40]. Here,
we have presented a mechanism where vector modes
generated from sub-horizon perturbations can be amplified
at large scales. When gravitational perturbations are
included, δϕ⃗T , will source gravitational (transverse) vector
modes, which can in principle be detectable with forth-
coming surveys. We leave a thorough analysis of this
important question for a future publication.

V. CONCLUSION AND PERSPECTIVES

We have presented a nonlinear multifield dark energy
model where the fields evolve under a nontrivial and
maximally symmetric field-space metric. Differently from
previous models in which the fields are either time or space-
dependent, we have considered a model in which one field
(quintessence) is time-dependent, while the others are given
by pure spatial gradients, as in the effective field theory
description of solids. The resulting background model is
predictive, and can produce an early dark energy (EDE)
component, as well as a suppressed fraction of late-time
anisotropies—both features being given by simple powers
of the field-space curvature radius. We have shown that a
percent level EDE component, such as the one employed in
attempts to solve the H0 tension, can be easily accom-
plished in the present scenario, and corresponds to a stable
point in the space of possible solutions.
At the perturbative level, we have shown that the

coupling between time and space-dependent fields also

7The value of φ̇ varies little with the choice of μ in the
range (47) since the field solutions correspond to a stable point.
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leads to interesting signatures, among which is the appear-
ance of complex dispersion relations for the small scale
perturbations. In particular, we have shown that small scale
vector perturbations will develop tachyonic instabilities
that can enhance structures at large scales, slightly below
the present Hubble radius. Scalar perturbations will also
become unstable, although the size of structures affected
depend nontrivially on the scale of the perturbation.
Incidentally, our findings corroborate earlier claims, made
in the context of multifield inflation [21] and dark energy
[23], that a sufficiently negative field-space curvature can
lead to tachyonic instabilities, with important observational
consequences. However, while in the context of time-
dependent fields such instabilities arise from the effective
mass term of fields evolving nongeodesically (in field-
space), in the present context they result from natural
couplings between time and space-dependent fields, and
will always be present if the field-space is curved, regard-
less of the field-space trajectories. Overall, our findings
represent an interesting observational window to test the
curvature of the field-space.
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APPENDIX: DERIVATION OF EQ. (51)

Suppose that ϕA
λ ðxμÞ is a one-parameter family of

fields on a (flat) manifold M, such that ϕA
0 ¼ ϕA and

∂ϕA
λ =∂λjλ¼0 ¼ δϕA. The equation for the perturbations δϕA

can be defined as the first term in a Taylor expansion of
Eq. (9) around λ ¼ 0. The computation can be simplified if
we adopt Riemann normal coordinates in N such that, at
λ ¼ 0, GAB ¼ δAB and ∂λGAB ¼ 0 ¼ ΓA

BC. Let us start with
the kinetic term, which gives

∂

∂λ
∇μ∇μϕ

A
λ


λ¼0

¼! ∂μ∂μδϕA þ ∂DΓA
BCδϕ

D
∂
μϕB

∂μϕ
C;

¼! ∇μ∇μδϕ
A þ ∂

μΓA
DCδϕ

C
∂μϕ

D

þRA
CDB∂μϕ

C
∂
μϕBδϕD; ðA1Þ

where the exclamation point reminds us that we are
working in a specific coordinate system. In the last equality
we have added and subtracted ∂Γ terms needed to introduce
the Riemann tensor, and added Γ ¼ 0 terms needed to
rewrite partial derivatives as covariant derivatives. The
potential term can be computed in a similar fashion, giving:

∂

∂λ
GAB

∂BV


λ¼0

¼! GAB
∂CðVBÞδϕC;

¼! GABð∇BVCÞδϕC: ðA2Þ

Expressions (A1) and (A2) are tensorial, and thus hold in
any coordinate system. Their difference give (51). Note
that, if V ¼ 0, equation (51) is formally equivalent to the
geodesic deviation equation (see also [28]).
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