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Using an excursion-set approach, we revisit the initial spatial clustering of Primordial Black Holes
(PBHs) originating from the Hubble reentry of large Gaussian density fluctuations in the early Universe.
We derive the two-point correlation functions of PBHs, properly accounting for the “cloud-in-cloud”
mechanism. Our expressions naturally and intrinsically correlate the formation of pairs of PBHs, which is a
key difference with the Poisson model of clustering. Our approach effectively includes short-range
exclusion effects and clarifies the clustering behaviors at small scale: PBHs are anticorrelated at short
distances. Using a scale-independent collapse threshold, we derive explicit expressions for the excess
probability to find pairs of PBHs separated by a distance r, as well as the excess probability to find pairs
with asymmetric mass ratio. Our framework is model independent by construction, and we discuss possible
other applications.
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I. INTRODUCTION

Soon after Primordial Black Holes (PBHs) were propo-
sed [1–3], it was realized these objects could prove relevant
in numerous aspects of cosmology and the early Universe.
They might constitute some or all of the dark matter content
of theUniverse [4,5] and seed the formation of supermassive
black holes in galactic nuclei [6,7]. More recently, the
physics of PBHs has gained a renewed interest, as some
binary mergers detected by LIGO/VIRGO/KAGRA might
arise from the mergers of PBHs [8–15].
Themass spectrum of PBHs ought to satisfy various obse-

rvational constraints ranging from microlensing [5,16,17],
cosmicmicrowave background (CMB) [18–20], and limits to
their merger rates when confronted with the gravitational
wave detector data [21,22]. However, these constraints
depend heavily on their spatial clustering at formation.
Sizeable clustering could change the past and present merger
rate of PBH binaries [10,21,22], the way they generate
certain cosmological structures [23,24] and even relax the
aforementioned CMB and microlensing bounds [25–27],
although this very last statement was recently challenged
in [28,29]. Since the evolution of PBH clustering necessarily
enters a complex nonlinear regime, the amount of initial
clustering can produce drastic effects on the subsequent
evolution.
Consequently, a careful attention should be put on the

initial small-scale clustering of PBHs. Most approaches

used in the literature rely on large-scale structure forma-
lism [30] that was ubiquitously applied in the context
of galaxy or halo formation. In there, spatial clustering
is described by the two-point correlation function.
Consecutive to sky surveys-based analysis (see e.g. [31,32]),
early theoretical works relied on the so-called Press-
Schechter (PS) formalism [33], which originally aimed to
model the mass fraction of gravitationally formed objects.
Beyond the initial PS application, various expressions of the
spatial correlation functions were obtained, with a diverse
range of validity [34–36]. More refined methods, notably
using excursion-set theory which aims at curing the so-
called “cloud-in-cloud” drawback of the PS model (see
Sec. II for detailed explanations), were later developed and
applied to study the spatial clustering of galaxies [37,38] in
parallel with bias theory which draws a statistical relation
between the spatial distribution of certain objects and the
density fields sourcing their formation (see Ref. [39]). A
further refinement is to go beyond the approximation of
pointlike objects and to account for their spatial extension,
thus leading to exclusion effects [40–42].
In the specific context of PBHs formed out of the

gravitational collapse of large density fluctuations in
the early Universe, the issue of their spatial clustering
was first addressed in Ref. [43], and then later corrected in
Refs. [44,45] relying on a Press-Schechter-inspired model.
Using the peak approach to large-scale structures [34,46],
spatial clustering was further explored in [47] where it was
claimed that for narrow power spectrum, i.e. localized in
terms of wave numbers, clustering is irrelevant. This
statement was extended to broad spectrum in [48], using

*pierre.auclair@uclouvain.be
†baptiste.blachier@uclouvain.be

PHYSICAL REVIEW D 109, 123538 (2024)

2470-0010=2024=109(12)=123538(14) 123538-1 © 2024 American Physical Society

https://orcid.org/0000-0002-4814-1406
https://orcid.org/0009-0007-8723-3075
https://ror.org/02495e989
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.123538&domain=pdf&date_stamp=2024-06-24
https://doi.org/10.1103/PhysRevD.109.123538
https://doi.org/10.1103/PhysRevD.109.123538
https://doi.org/10.1103/PhysRevD.109.123538
https://doi.org/10.1103/PhysRevD.109.123538


an excursion-set approach but in a two-barrier setup, thus
focusing on the formation history of PBHs, and the
probability that PBHs are partitioned over time.
The purpose of the present paper is to derive explicit

expressions characterizing the two-point statistics of the
spatial distribution of PBHs (when the underlying density
field is Gaussian) in the framework of the excursion-set
theory with uncorrelated steps thus accounting for “cloud-
in-cloud” and exclusion effects at short separation scales.
Contrary to the two-barrier excursion-set problem, we only
focus on the initial clustering of PBHs, without investigat-
ing the possible time evolution of virialized structures [48],
nor the nonlinear evolution of the clusters [49].
It is organized as follows: in Sec. II, we present the main

lines of the excursion-set approach, with a specific emphasis
on how it enables one to cure the so-called “cloud-in-cloud”
issue arising from the most frequently used Press-Schechter
formalism. We also introduce joint probabilities, which are
key parameters to study two-point correlations, with the aim
to remain as generic as possible. In Sec. III, we apply these
tools in the case of a scale-independent threshold for PBH
formation mechanism. The result of Sec. III can be seen as
the most natural excursion-set extension of the two-point
correlation function derived in Ref. [44], and we show in
Sec. IV that it readily includes short-range exclusion effects,
leading to a better and well-defined comprehension of
clustering behaviors at small scale. Section V derives novel
analytical expressions for correlations at the level of pairs of
PBHs.As our approach remains agnostic of the details of the
PBHs formation—in particular independent of the shape of
the density field power spectrum—we discuss in Sec. VI the
scope of the possible use of the various spatial correlations
introduced herein.

II. EXCURSION-SET FORMALISM

A. Motivations

The prototypical scenario of PBH formation assumes
they originate from large density fluctuations which
reenter the Hubble radius and collapse into black
holes [50]. The cosmological fluctuations that are
expected to lead to PBH collapses are described by an
overdensity field δðxÞ, with known statistical properties,
e.g. a Gaussian random field. A region in which the
density contrast is larger than some threshold value δc
forms a PBH. Let us note that the statistics of PBHs are
exponentially sensitive to this threshold of formation [3].
Its physical nature was studied in Refs. [51,52]. Giving
criteria to determine it with precision is a difficult task:
numerical simulations were proposed [51,53–56] as well
as analytical estimates [3,57–60] (see Ref. [61] for a
generic review).
In practice, we define the coarse-grained density

perturbation over a spherical region of radius R about a
point x,

δRðxÞ ¼
Z

d3k
ð2πÞ3 δðkÞWðk; RÞe−ik·x; ð1Þ

where W is a window function selecting a subset of wave
numbers. For practical reasons, we usually take W to be a
top-hat function in Fourier space. Assuming Gaussian
statistics for δ, so does δR, and the probability density
associated to δR reads as

PðδRÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πSðRÞp exp

�
−

δ2R
2SðRÞ

�
; ð2Þ

which is entirely determined by its variance SðRÞ≡ hδ2RðxÞi.
An important remark is that if one introduces the (reduced)
power spectrum of δ, Pδ, the variance S can be computed
through

SðRÞ ¼
Z

∞

0

PδðkÞW2ðk; RÞ d ln k: ð3Þ

The above equation relates the variance S to the smoothing
scale R in a monotonous way: SðRÞ is decreasing with R.
Furthermore, there is a one-to-one correspondence between
a structure of scale R and its associated mass M since, at
leading order in perturbations, M ¼ 4πρ̄R3=3, with ρ̄ the
energy density of the background. Hence, in principle, one
could useM,R andS interchangeably to describe the scale of
PBH formation, as illustrated in Fig. 1. In the rest of the
paper, we mainly work with the variance S, as it can be
interpreted as a “time” variable and enables us to remain
agnostic about the model of PBH formation. To apply our
results to physical models, the correspondence between S,
R, and M should be established using Eq. (3).
A first approach to determine the probability of forming

a gravitationally bound structure is the PS formalism [33].
Under this framework, it is assumed that a region of scale R
has collapsed on a scale R0 > R if and only if the coarse-
grained density contrast is above the threshold. In terms of

FIG. 1. There is a one-to-one relation between the variance S,
the size of the coarse graining R and the mass of the produced
PBHM, which can be used interchangeably, provided a choice is
made for the power spectrum. The arrow shows increasing values
of the given variable.
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probability, it reads as

P½δR > δcðRÞ� ¼
Z

∞

δc

PðδrÞdδr ¼
1

2
erfc

�
δcðRÞffiffiffiffiffiffiffiffiffiffiffiffi
2SðRÞp �

; ð4Þ

where erfc is the complementary error function. It is well-
known that the PS approach is plagued by a miscount of
collapsed objects because of the so-called “cloud-in-cloud”
problem. Indeed, the Press-Schechter formalism assumes
that a region of radius R collapses as soon as δR exceeds a
certain threshold δcðRÞ. This procedure misses the cases in
which, on a given smoothing scale R, δR is below the
threshold, but it still happened to be above the threshold at
some scale R0 > R (which corresponds to structures of
mass M0 > M).
The analysis of the spatial clustering performed in

Ref. [44] relies on such a formalism and therefore also
suffers from the “cloud-in-cloud” problem, as we detail in
Sec. III.

B. “Cloud-in-cloud” resolution

The excursion-set method aims to cure this “cloud-in-
cloud”—see Refs. [62–64] for pioneering works on the
subject and Refs. [65–67] for more recent reviews. In this
approach the density perturbation δRðxÞ evolves stochas-
tically with the smoothing scale R, or equivalently with S.
Going from one scale R to a smaller scale R − ΔR, the
density perturbation is modified by the addition of new
modes δðkÞ. The probability to form a PBH about x and its
scale are mapped into a first-passage-time problem in the
presence of a barrier δcðSÞ. The “cloud-in-cloud” issue is
avoided by counting only the largest gravitationally bound
structures, i.e. a PBH.
In practice, the coarse-grained density field δR is

promoted to a stochastic quantity whose evolution in terms
of its variance S (playing the role of the “time” variable)
obeys a Langevin equation with a white Gaussian noise
ξðSÞ:

dδR
dS

¼ ξðSÞ: ð5Þ

The evolution of δR can be seen as a random trajectory
submitted to a Brownian process. The fact that the noise is
white arises from the specific choice of a top-hat window
function in Fourier space to coarse grain the density field.
This enforces the Markovian (i.e. fully uncorrelated) nature
of the steps of the random walk.1 In this context, the
probability distribution P of δR can be determined by
solving the adjoint Fokker-Planck equation

∂P
∂S

¼ 1

2

∂
2P
∂δ2R

; PðδR; SiÞ ¼ δDðδR − δiÞ; ð6Þ

with δD the Dirac distribution and ðδi; SiÞ serving as initial
conditions for the trajectory.
The solution, in absence of any boundary condition

which we denote with a subscript “free,” is a Gaussian:

PfreeðδR;Sjδi;SiÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðS−SiÞ
p exp

�
−
ðδR−δiÞ2
2ðS−SiÞ

�
: ð7Þ

It represents the probability density that the coarse-grained
density contrast takes the value δR at time S, given that at
“initial” time Si, its value is δi. For notation convenience, in
the rest of this paper, we shall drop the index R in δR, but
one should keep in mind that we work with a coarse-
grained density field. Formally, this Pfree is the assumption
made in the Press-Schechter approach, assuming a homo-
geneous field on very large scales, i.e. ðδi; SiÞ ¼ ð0; 0Þ. In
this picture, the “cloud-in-cloud” problem arises because
this formalism allows multiple crossing for a trajectory.
To remediate this issue, one should only consider first up

crossings with the threshold δcðSÞ, which is equivalent to
calculating the lowest value of S for which the trajectory
crosses the threshold. Formally, it boils down to consid-
ering the solution Pðδ; Sjδi; SiÞ of Eq. (6) with an absorbing
boundary at δ ¼ δcðSÞ. It represents realizations of the
Langevin equation beginning at ðδi; SiÞ that, at time S, have
not yet crossed the absorbing boundary. The scale of the
formed PBH is given by PFPTðsjδi; SiÞ, the probability
density of the first-passage time of the boundary δcðSÞ
starting from ðδi; SiÞ.2
From the condition that, at a given “time” S, any

realization of the Langevin equation has either crossed
out the threshold at a previous time s < S, or still
contributes to the distribution P,

1 ¼
Z

S

Si

ds PFPTðsjδi; SiÞ þ
Z

δcðSÞ

−∞
Pðδ; Sjδi; SiÞ dδ; ð8Þ

one can obtain by differentiating with respect to S the
following implicit expression for the (conditional) first-
passage-time distribution:

PFPTðSjδi;SiÞ¼
�
δcðSÞ−δi
S−Si

−2δ0cðSÞ
�
Pfree½δcðSÞ;Sjδi;Si�

þ
Z

S

Si

ds

�
2δ0cðSÞ−

δcðSÞ−δcðsÞ
S− s

�

×Pfree½δcðSÞ;SjδcðsÞ;s�PFPTðsjδi;SiÞ: ð9Þ

1Non-Markovian excursion-set approaches result in colored
noise in the Langevin equation, making the analysis more
involved; see e.g. [68,69].

2We consider here in full generality conditional probabilities;
we do not fix the initial condition to δ ¼ 0 for S ¼ 0. Nonethe-
less, identical computations to the one performed in Ref. [67]
could be carried out.
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In principle, this integro-differential equation for arbitrary
δcðSÞ can be solved numerically. The singularity appearing
in the integrand of the second term when s → S can lead to
numerical instabilities. Reference [67] shows that the
introduction of a kernel KðsÞ, set to take the value δ0cðsÞ,
can greatly improve precision.
If the formation threshold is scale independent, the above

equation greatly simplifies, and this is the case we will
consider in Secs. III and V. Let us also remark that we
recover exactly the results of [67] when taking the limit
Si → 0; δi → 0. Otherwise stated, considering conditional
probability boils down to performing a constant shift from
ðδ ¼ 0; S ¼ 0Þ to the desired initial values δi of the field at
the initial chosen “time” Si.
Eventually, we define a shorter notation for the first-

passage-time distribution in the limit Si → 0; δi → 0:

PFPTðSÞ≡ PFPTðSj0; 0Þ: ð10Þ

C. Joint probability

In this section, we determine PðS1; S2; rÞ, the joint
probability of finding two PBHs of masses S1, S2 within a
distance r from each other. Note that, up to this point,
the tools we introduced are also standard in Dark Matter
halo formation [39]. Here, we make use of an idea
successfully applied to understand the clustering of stars
at formation [70–72], and adapt it to the specificities of
PBH formation.
As explained earlier, the variance S is related in a

monotonous way, yet model dependent, to PBH mass

M. Consequently, PðS1; S2; rÞ represents the probability
of finding a PBH that has collapsed at a scale RðS1Þ with
mass MðS1Þ at a distance r from a PBH which collapsed at
a scale RðS2Þ with mass MðS2Þ.
In the excursion-set approach, to each of these black

holes corresponds a trajectory δðSÞ which first crosses the
threshold δcðSÞ at Sn, n∈ f1; 2g. These two collapsed
structures are separated by a distance r, meaning their
trajectories share a “common past” up to a certain time Sr,
and then evolve freely from Sr until their collapse at Sn, as
illustrated in Fig. 4. The main difference between
Refs. [70–72] and our work is that stars can be included
in larger gravitationally bound structures such as molecular
clouds. Therefore, stars are associated with last-passage
time, instead of first-passage time in the context of PBH
formation.
We introduce a new object called backward probability

Pbw½δr; SrjδcðS1Þ�, which represents the probability of a
trajectory having the value δr at Sr given that it collapses at
the scale S1 [i.e. that it is such that δðS1Þ ¼ δcðS1Þ; hence
the notation]. One can define the backward probability via
an argument similar to Bayes’s theorem,

Pbw½δr; SrjδcðS1Þ�PFPTðS1Þ ¼ Pðδr; SrÞPFPTðS1jδr; SrÞ:
ð11Þ

This equality states that there are two ways to account for
trajectories that collapse for the first time at a scale S1,
given that it had the value δr at Sr. Either one can use the
backward probability supplemented by the condition that
the crossing at S1 was a first crossing [left-hand side of

FIG. 2. Schematic representation of randomwalks performed by smoothed overdensities sharing a commonpast until “time”Sr andwhich
subsequently evolve in distinct ways, resulting in two different collapses that occur respectively at the first-crossing times S1 and S2.
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Eq. (11)]. Or one can count the trajectories that from
the initial condition ðδ ¼ 0; S ¼ 0Þ, reached the value δr at
Sr without having crossed the barrier [hence Pðδr; SrÞ]
and then collapsed at S1 from ðδr; SrÞ [right-hand side
of Eq. (11)].
To obtain PðS1; S2; rÞ, we schematically start from the

first collapsed structure at ðS1; δcðS1ÞÞ, which forms with
probability PFPTðS1Þ. The backward probability allows us
to obtain the probability density of the corresponding δr
on the vertical slice at Sr. From this point on, we look
for the probability to form another PBH at S2 using
PFPTðS2jδr; SrÞ, which can be obtained from Eq. (9):

PðS1; S2; rÞ ¼
Z

δcðSrÞ

−∞
dδrPFPTðS1Þ

× Pbw½δr; SrjδcðS1Þ�PFPTðS2jδr; SrÞ; ð12Þ

in which we marginalized over all the possible values of the
density contrast δr on the vertical slice Sr. By construction,
the objects formed at S1 and S2 share the same “history”
before Sr, which means that on scales larger than r, they
have the same realization of the density contrast.
Combining Eqs. (11) and (12) gives

PðS1; S2; rÞ ¼
Z

δcðSrÞ

−∞
dδrPðδr; SrÞ

× PFPTðS1jδr; SrÞPFPTðS2jδr; SrÞ: ð13Þ

The above expression takes the form of a “process-con-
volution kernel” [73] (see also [74,75] for a discussion
about classes of kernels). It is symmetric in the exchange of
the two PBHs, but cannot be factorized as a product of two
functions depending only on S1 and S2. This translates to
the fact that the two random trajectories are intrinsically
correlated: they share a common past. This is a key
difference with the Poissonian approach of PBH clustering,
as discussed later in Secs. IV C and IV D.

D. Marginalized joint probability

The joint probability given in Eq. (13) is relevant when
S1 and S2 are fixed at certain values, that is to say when the
masses of the two PBHs under scrutiny are specified, with
the constraint that S1; S2 > Sr. We denote by P2 the
marginalized joint probability which provides the proba-
bility of forming two PBHs separated by a distance r
without any prior knowledge on their scales:

P2 ≡
Z

σ2

Sr

dS1

Z
σ2

Sr

dS2

Z
δcðSrÞ

−∞
dδrPFPTðS1jδr; SrÞ

× PFPTðS2jδr; SrÞPðδr; SrÞ: ð14Þ

Note that we integrate Sn, n∈ f1; 2g, until σ2, which serves
as a maximum value for S and corresponds to the smallest
PBHs. The lower bound must be Sr since, before reaching

the scale Sr, we assumed that there could not have been a
collapse, so the two resulting PBHs are necessarily smaller
than the distance r from which they are separated from
their neighbors. This last aspect is how the excursion-set
approach implements exclusion effects, i.e. it is not
possible to form two PBHs too close to one another.

III. TWO-POINT CORRELATION FUNCTION
FOR FIXED THRESHOLD

A. First-passage time for fixed threshold

The formalism exposed in Sec. II is fully general and
contains all the necessary information to study two-point
correlations while incorporating the “cloud-in-cloud”
mechanism. They could thus be used in a variety of
situations, in particular in complicated cases where the
threshold δcðSÞ is scale dependent.
In order to compare our findings with previous literature,

we now focus on the case where the formation threshold
δcðSÞ is independent of S. This assumption has the other
advantage of simplifying greatly the equations and yielding
analytical expressions. In this limit, the Volterra implicit
equation, Eq. (9), becomes

PFPTðSjδr;SrÞ¼
δc−δrffiffiffiffiffiffi

2π
p ðS−SrÞ3=2

exp

�
−
ðδc−δrÞ2
2ðS−SrÞ

�
: ð15Þ

Similarly, the first-passage-time distribution for trajec-
tories starting from δ ¼ 0 at S ¼ 0 simply becomes

PFPTðSÞ ¼
δcffiffiffiffiffiffi

2π
p

S3=2
exp

�
−
δ2c
2S

�
: ð16Þ

Up to a factor of 2, this is the PBH distribution given by the
Press-Schechter formalism.
The distribution Pðδ; SÞ can be obtained by solving

Eq. (6) with an absorbing boundary at δc:

Pðδr; SrÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πSr

p
�
e−

δ2r
2Sr − e−

ð2δc−δrÞ2
2Sr

�
: ð17Þ

Thanks to these three expressions, we are able to perform
analytical computations for P2 and PðS1; S2; rÞ, and build
various quantities to measure spatial correlations.

B. Two-point correlation function

Following Ref. [30], the probability PðrÞ of finding two
objects (irrespective of their nature, e.g. galaxies, clusters,
although we focus here on PBHs) at separation r is

PðrÞ ¼ n2½1þ ξPBHðrÞ�; ð18Þ

where n is the mean number density of the objects under
consideration and is independent of position. The two-point
correlation function ξPBH measures the excess probability
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(over random) of finding pairs of objects distant from r.
Consistent with homogeneity and isotropy, ξPBH has been
written as a function of the separation alone.
How does Eq. (18) translate in the excursion-set

framework developed in Sec. II? Firstly, we make use
of σ2 introduced in the previous section, which gives
the minimum scale of PBH formation. In the context of
PBH, the natural scale RðSÞ is typically of order of the
horizon length at formation; therefore σ2 corresponds to
the value of S when the formation of PBH was first
triggered.
The mean number density n is consequently the prob-

ability of forming collapsed objects over the range ½0; σ2�:

n ¼ P1 ≡
Z

σ2

0

PFPTðsÞds ¼ erfc

�
νffiffiffi
2

p
�
; ð19Þ

where we introduced a new variable,

ν≡ δc
σ
; ð20Þ

the formation threshold in units of the standard deviation.

On the other hand, Eq. (18) is equivalent to the
joint probability of Eq. (14). Therefore, the excess
probability of finding two PBHs within a volume of
radius r when “cloud-in-cloud” effects are taken into
account reads as

1þ ξPBHðrÞ≡ P2

P2
1

: ð21Þ

It is also the mathematical object which is relevant to
compare with the correlation function ξνðrÞ defined in
Ref. [44], which can be seen as the Press-Schechter
equivalent of our ξPBH.
We emphasize that in P2, contrary to P1 defined above in

Eq. (19), the condition S > Sr is enforced: all the integrals
over the variance are bounded by Sr and σ2. This is because
the two PBHs under consideration are not independent, and
thus the volume of radius r in which they are comprised
cannot be smaller that the maximum size of the collapse
structure formed by each individual PBH. As we shall
discuss later, this is precisely how this excursion-set
approach naturally encodes exclusion effects.

FIG. 3. Two-point correlation function of the PBHs spatial distribution with constant density threshold δc, using the Press-Schechter
solution of Ref. [44] (dashed red) and the Excursion-Set formalism of Sec. III (solid blue); see in particular Eq. (22). (a) ν ¼ 1, (b) ν ¼ 2,
(c) ν ¼ 5, (d) ν ¼ 10.
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For a fixed threshold δc, the two integrals over S1 and S2
in P2 can be computed analytically. Using Eqs. (15)
and (17) one finds

P2¼
ffiffiffi
2

p
e−

ν2

2wffiffiffiffiffiffi
πw

p
Z

∞

0

sinh

�
ν

w
x

�
erfc2

"
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1−wÞp
#
e−

x2
2wdx:

ð22Þ

Using the same notations as in Ref. [44], we introduce the
variable wðrÞ≡ Sr=σ2 such that 0 ≤ wðrÞ ≤ 1. wðrÞ
approaches zero for infinite separations, and unity for
small separations r the size of the smallest PBH.
Furthermore since Sr ¼ hδðrÞδð0Þi and σ2 ¼ hδ2ð0Þi,
wðrÞ is nothing else but the two-point correlation function
of the underlying density contrast field, normalized by its
variance.
From a practical point of view, this form of P2 is well

suited for numerical evaluation and makes ξPBHðrÞ easy to
study. We display our result for ξPBH in Fig. 3, along with
the Press-Schechter-inspired model of Ref. [44]. The trend
exhibited by the correlation function of Ref. [44], that we
shall denote by ξν hereafter, is recovered at large separa-
tions (i.e. w → 0) whereas significant deviations are
obtained at small scales.
The importance of these deviations as well as the range

of w for which they occur increases as ν becomes small.
This can be understood in regard to the physical meaning of
ν. As explicit in Eq. (20), ν is the ratio between δc and σ,
and as illustrated in Fig. 2, it is a measure of the barrier’s

“height,” in units of the typical dispersion of the random
trajectories. High values of ν represent a formation thresh-
old which is far from the region where trajectories are
typically spread, and thus barrier’s crossings can be seen as
relatively “rare” events. Conversely, low values of ν bring
δc closer to the region where fluctuations are the most
concentrated: multiple crossings are much more frequent,
and this is thus the situation where the “cloud-in-cloud”
mechanism is expected to play its most significant role.
Bearing this in mind, we outline that ξPBH departs from

ξν in three main ways. First, ξPBH is always below ξν for all
values of w, meaning that the result from Ref. [44]
systematically overestimates the PBH clustering. This
overestimation is particularly significant for low values
of ν. As discussed just above, it translates the effect of the
“cloud-in-cloud” mechanism that was missed in Ref. [44]
and in the previous literature, since multiple crossing of the
threshold is more probable for low values of ν.
Second, ξPBH systematically exhibits a maximum, which

is reached at higher values of w as ν increases, thus defining
a typical correlation length wξPBH . Due to the form of the
derivative of P2 with respect to w no analytical expression
of this correlation length can be obtained. However, we see
that it is highly sensitive to ν (see Fig. 3).
Third, as w → 1, the excess probability 1þ ξPBH drops

to zero contrary to ξν which reaches the bound 2=P1 for
w ¼ 1. More generally, our excursion-set formalism pro-
vides a drastic difference of behavior at small scale in
comparison to previous works, and this question is the
subject of an in-depth discussion which we now address.

FIG. 4. Schematic representation of random walks, from S ¼ 0 to the maximum value σ2. Most of the trajectories are confined in the
gray region which ranges between �σ. The horizontal lines correspond to different values of ν ¼ δc=σ, where ν is a measure of the
barrier’s height in units of the typical spread of the trajectories. Low values of ν indicate that barrier crossings are frequent; hence
multiple crossings are also frequent. Higher values of ν indicate that barrier crossings (and therefore PBH collapses) are rare events, and
multiple crossings are suppressed.
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IV. SMALL-SCALE BEHAVIOR: EXCLUSION
EFFECTS AND SHOT NOISE

On sufficiently large scales, the behavior of the PBHs is
expected to follow the one of standard adiabatic perturba-
tions. However, on small enough scales, their discrete
nature becomes important [23,76], which is the reason
why in the literature, a specific emphasis was put on the
small-scale behavior of PBHs.

A. Volume-exclusion effects

In all previous approaches pertaining to their clustering,
PBHs were treated as pointlike (see e.g. [43,44]). To
account for their finite size, some authors argued the
necessity to add, in a second time, spatial exclusion
effects [39,40,42]. This spatial exclusion is usually
enforced by introducing by hand a lower bound rexc
on r which is, in the context of PBH formation, of the
order of a few horizon lengths [47]. Then the condition
ξPBHðrÞ ≈ −1 for r≲ rexc is artificially imposed.
We emphasize that in our approach, this procedure is

spurious since, as Fig. 3 clearly shows, exclusion effects are
already contained in our expression of ξPBH. Indeed, by
design, we have Sr < S, which eventually means we only
look for separations such as r > RðSÞ being the size of
the Hubble patch of the subsequently formed PBH.
Mathematically, the limit w → 1 is analytical in Eq. (22)
for a fixed threshold, and also apparent for any threshold
δcðSÞ in Eq. (14) when Sr → σ2. Ultimately this gives

lim
w→1−

ξPBHðwÞ ¼ −1: ð23Þ

Thus PBHs are anticorrelated at short distances. As a
consequence, our formalism enforces that PBHs cannot
form arbitrarily close to each other, thus effectively
including short-range exclusion effects. As pointed out
in Refs. [42,47], our expression of ξPBH also stands as a
counterexample to the claim of Ref. [44] that the joint
probability should go to unity when r → 0, since in our
case, P2 → 0 in this limit.
Let us also notice that exclusion effects spread for w≲ 1;

this phenomenon is impossible to describe when imposing
a hard cutoff such as in [47]. In Fig. 3, we show that PBHs
are still anticorrelated for w≲ 1, and the range of values of
w over which this anticorrelation spreads gets wider as ν
decreases. For instance, for ν ¼ 1, PBHs are nearly always
anticorrelated. This proves that the “cloud-in-cloud”
mechanism can significantly enhance spatial exclusions
and thus anticorrelation of PBHs, sometimes well beyond
the short-range region.

B. Poisson shot noise

With regard to their macroscopic mass, it was originally
convenient to think of the PBH distribution as a distribution
of pointlike objects, and by analogy, employing the tools

that were already developed for the study of galaxies and
clusters of galaxies. A consequence of such a discrete
treatment is the appearance, at r ¼ 0, of a Poisson shot
noise modeling the “self-pairs” contribution [30,41]. This
ideawas first suggested inRef. [6,77]where the existence, in
any givenvolume, of a statistical fluctuation in the number of
initially formed PBHs was pointed out. This fluctuation is
coming only from the discrete nature of PBHs, irrespectively
of their formation process. It was later shown in [78] that for
random uncorrelated number fluctuations, this statistics was
necessarily of Poissonian nature, i.e. the fluctuation
δN=N ∝ 1=

ffiffiffiffi
N

p
if N is the number of PBHs.

C. Poissonian clustering

Subsequent developments approximate such a random
(Poisson) point process by a continuous approach [79–81].
As explained in [30,82], one postulates the existence of a
continuous probability density field ρPBH, whose mean
corresponds to the number density n of PBHs and with a
nonzero two-point correlator. For a volume element δV
centered on a position r, a PBH is found with probability

ρPBHðrÞδV: ð24Þ

In this approach, the joint probability to find two objects in
the volumes δV1 and δV2 is simply

ρPBHðr1ÞρPBHðr2ÞδV1δV2: ð25Þ

In the theory of kernels, this joint probability takes the form
of a “separable kernel” [74], i.e. it is the product of the same
function for objects 1 and 2. Although the probability of
finding a PBH in δV1 is by construction independent to the
one of finding a PBH in δV2, the two-point correlator of
ρPBH is nonvanishing. Indeed, the field ρPBH that underlies
the distribution of PBHs can depend on space and thus
induces spatial correlations

ξðrÞ≡ h½ρPBHðr1Þ − n�½ρPBHðr2Þ − n�i
n2

≠ 0: ð26Þ

Consequently, in such a framework, sometimes referred as
Poisson model [30], the correlation function ξðrÞ can be
introduced and derived from ρPBH.
As such, ξ is a descriptive statistic, since ρPBH is formally

unrelated to the underlying physical radiation density
contrast δ actually forming the PBHs (although this is
the aim of bias theory, see e.g. [39] for a review). It is thus
defined as a model—presenting convenient properties—
but, for instance, as noted in [30], it cannot describe a
process for which ξ ¼ −1 under a certain distance r. This is
the reason why in this approach, introducing a cutoff to
implement anticorrelation at short distance is necessary.
This continuous approach is expected to reproduce the

Poisson fluctuations at small scales. Indeed, ρPBH also
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incorporates a (Poisson) shot noise in the number density of
PBHs, arising from their discrete nature. On top of this shot
noise, the two-point function of ρPBH describes the amount
of additional clustering that can be present [47].

D. Comparison with our framework

This brief review highlights that our formalism differs
from the above approach in two aspects.
First and foremost, we do not treat PBHs as pointlike

objects. They have a finite size, and their spatial extension
does not allow the two PBHs to be located arbitrarily close.
As a consequence, ξPBH vanishes at small separations and is
not concerned by the “zero-lag” limit and its associated
Poisson noise invoked in previous works. Let us however
note that “zero-lag” effects may still appear when one
studies individual pairs of PBHs with a given mass, as we
discuss later in Sec. V.
Second, when examining two PBHs separated by a

certain distance, we do not assume that their formation
is completely uncorrelated. On the contrary, since their
random trajectories share a common past (from S ¼ 0 to the
scale Sr), it induces correlations which cannot be taken into
account with the Poisson model of clustering.
Indeed, as briefly discussed in Sec. II C, this funda-

mental difference between Poisson clustering and our
result can be interpreted in the theory of kernels
(see [74,75] for reviews). In short, kernels are objects
that encode the properties of two-point correlators. As
such, kernels cannot be any function of two variables
and need to satisfy a number of mathematical properties,
i.e. symmetry, positive definiteness and Mercer’s con-
dition [83]. In the context of this paper, the kernel
KSrðS1; S2Þ is the probability of finding two PBHs of
masses ðS1; S2Þ separated by Sr. The Poissonian models
giving Eq. (25) assume that this kernel is “separable”:
there exists a function fðSÞ such that

KSrðS1; S2Þ ¼ fðS1ÞfðS2Þ: ð27Þ

To the contrary, our prediction using the excursion-set
formalism of Eq. (12) pertains to a wider class of kernels
dubbed as “process-convolution kernels” [73]. That is,
there exists a function gðS; δrÞ such that

KSrðS1; S2Þ ¼
Z

gðS1; δrÞgðS2; δrÞdδr: ð28Þ

Process-convolution kernels provide a richer phenomenol-
ogy than separable kernels and have proven useful in
various fields of physics ranging from hydrology and
atmospheric science [73], to machine learning [84] and
freely decaying turbulence in the early Universe [75].

V. PAIRWISE CORRELATION FUNCTIONS
FOR FIXED THRESHOLD

The correlation function ξPBHðrÞ examined in the pre-
vious section provides global information on the spatial
clustering, as it is integrated over a broad mass range. From
an observational standpoint, it is indeed what is typically
measured since the mass of the observed objects (whether
galaxies, stars, black holes, etc.) is a priori unknown.
However, our framework is well suited to go beyond and to
study correlations directly at the level of pairs of PBHs with
given masses. Although we still remain model independent,
i.e. we do not specify the power spectrum, interesting
conclusions can be drawn.
In this so-called “pairwise” approach, we make use of

the joint probability PðS1; S2; rÞ of Eq. (14). In similar
fashion as in Eq. (18), we define the cross-correlation
function ξS1;S2ðrÞ as the excess probability (over random)
of finding a PBH of mass M1 and a PBH of mass M2

distant from r:

1þ ξS1;S2ðrÞ ¼
PðS1; S2; rÞ

PFPTðS1ÞPFPTðS2Þ
¼

Z
δc

−∞
dδrPðδr; SrÞ

×
PFPTðS1jδr; SrÞPFPTðS2jδr; SrÞ

PFPTðS1ÞPFPTðS2Þ
: ð29Þ

As expected, let us notice that the above quantity is
symmetric in the exchange of S1 and S2. Taking the limit
S1 → S2 provides ξS;SðrÞ which counts, given a population
of PBHs of mass M, the excess probability of finding
another member with same mass M at distance r:

1þ ξS;SðrÞ ¼
Z

δc

−∞
dδr

�
PFPTðSjδr; SrÞ

PFPTðSÞ
�
2

Pðδr; SrÞ: ð30Þ

This is the first-crossing equivalent of the correlation
function ξMMðrÞ in Ref. [71,72] in the context of stellar
spatial clustering (with last-passage times).
Making use of Eqs. (15)–(17) as well as the following

integral from Ref. [85],

Z
∞

0

dx x2 e−βx
2

sinhðγxÞ

¼
ffiffiffi
π

p ð2β þ γ2Þ
8β2

ffiffiffi
β

p e
γ2

4β erf

�
γ

2
ffiffiffi
β

p
�
þ γ

4β2
; ð31Þ

the cross-correlation function can be computed in a fully
analytical way:

SMALL-SCALE CLUSTERING OF PRIMORDIAL BLACK HOLES: … PHYS. REV. D 109, 123538 (2024)

123538-9



1þξS1;S2ðrÞ¼
eλ

2ðw1þw2−1Þffiffiffi
π

p
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−w1Þð1−w2Þ
p

ð1−w1w2Þ2

×

8<
:1þ ffiffiffi

π
p

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−w1Þð1−w2Þ

1−w1w2

s

×

�
1

2λ2
1−w1w2

ð1−w1Þð1−w2Þ
þ1

�
eλ

2ð1−w1Þð1−w2Þ
1−w1w2

×erf

2
4λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−w1Þð1−w2Þ

1−w1w2

s 3
5
9=
;; ð32Þ

where we introduced the parameters wnðrÞ¼Sr=Sn∈�0;1½,
n∈ f1; 2g, and

λ≡ δcffiffiffiffiffiffiffi
2Sr

p : ð33Þ

Note that the explicit expression of Eq. (30) can be
straightforwardly obtained by taking the limit S1;S2 → S,
that is w1; w2 → w in Eq. (32).
Unlike Sec. III, we are now specifying the masses of the

two PBHs; therefore our result does not depend on the
cutoff scale σ2 anymore. This is why we introduce a new
quantity λ, whose definition resembles ν but where the
reference scale σ2 is replaced by Sr. As a consequence of λ
depending on Sr, Eq. (32) should be interpreted as
information on what kind of mass hierarchy is favored
by spatial clustering, at a fixed distance r, i.e. at fixed λ.
To interpret ξS1;S2ðrÞ, we fix the distance between the

pair of PBHs (i.e. Sr) as well as the height of the barrier (i.e.
δc) so that the parameter λ is entirely specified. We let
ðw1; w2Þ vary, that is to say the mass of the two PBHs. The
contour plots for different values of λ resulting from this
approach are displayed in Fig. 5. First, they show that pairs
of PBHs with high masses are always more clustered than
their lighter counterparts. Second, we can observe that the

FIG. 5. Excess probability to find pairs of PBHs with masses S1, S2 at a fixed distance r. wn ¼ Sr=Sn is a measure of the PBH mass,
the limit wn → 0 corresponds to a very small PBH, whereas wn → 1 corresponds to the maximum allowed PBH mass in the volume
contained within the two PBHs. (a) λ ¼ 1, (b) λ ¼ 2, (c) λ ¼ 5, (d) λ ¼ 10.
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contour plots present relatively broad aspects, instead of
being concentrated in the diagonal for which w1 ∼ w2. It
means that the clustering between pairs of PBHs of
relatively similar masses is not favored in comparison to
pairs of PBHs presenting a high hierarchy of masses i.e. for
which w1 ≪ w2 or conversely. This result is most signifi-
cant for high values of λ but is still present for λ ¼ 1, 2.
Finally, let us notice that ξS1;S2ðrÞ does experience some

sort of “zero-lag,” as can be seen in the upper right corners
ðw1; w2Þ → ð1−; 1−Þ of Fig. 5. The interpretation for this
peak is as follows. Taking a region of space of size Sr, we
impose the formation of one PBH S1 centered around x1

which takes almost all the available space in the volume,
i.e. w1 → 1−. Most choices of x2 in the volume of size Sr
are most likely included in the same PBH with mass
S2 ≈ S1. This explains why the excess probability ξS1;S2ðrÞ
converges to a Dirac distribution centered around S2 → S1
on the vertical slice w1 → 1−. The excursion-set approach
is valid provided a certain separation of scales between the
volume Sr and the size of the collapsed regions in order to
perform ensemble averages. This small-scale behavior for
given pairs of PBHs is expected and allows us to show the
limit of applicability of our work, that is Fig. 5 suffers from
zero-lag and is invalid in the vicinity of wn ∼ 1.
Nonetheless, our conclusions on the mass ratio of binaries
are still perfectly applicable.

VI. CONCLUSION

In this work, we used the excursion-set formalism to
investigate the initial small-scale spatial clustering of
PBHs. The aim was to go beyond the Press-Schechter-
inspired approaches proposed in earlier works. By employ-
ing first-passage-time methods, accounting for the “cloud-
in-cloud” mechanism, and by reliably distinguishing the
masses of the PBHs, we were able to compute a two-point
correlation function ξPBH featuring novel interesting prop-
erties. In particular, we find ξPBH → −1 at small separa-
tions, i.e. PBHs are anticorrelated at short distance. Since
we account for the finite size of the PBHs, it effectively
reproduces a volume-exclusion effect, which stands as an
improvement from the simplified pointlike approach.
While the quantity ξPBH examines correlations of a

population of PBHs irrespective of their masses, we also
derived a novel “pairwise” approach at the level of pairs of
PBHs, when their masses are known and specified. This
new approach highlights that the clustering between pairs
of PBHs of relatively similar masses is not particularly
favored in comparison to pairs of PBHs presenting a high
hierarchy of masses.
For these two objects, in the context of PBHs formed out

of the Hubble reentry of large density fluctuations, we
obtained exact analytical expressions when considering the
case of a scale-invariant threshold as the criterion of
formation. However, our formalism is generic: the joint
probabilities we introduced, and which contain all the

necessary information to study two-point correlations, can
also be used in full generality, without any constraint on the
density threshold.
Throughout this work, we decided to remain as model

independent as possible pertaining to the PBH process of
formation. Thus, the new tools introduced herein could be
used in various situations. In particular, our new approach is
well suited to study PBH formation models with broad
power spectra, in which case SðRÞ becomes a smooth
function of the scale R, and when PBH formation happens
frequently, that is ν; λ ¼ Oð1Þ. To put things into perspec-
tive, the fractional volume contained into PBHs for a scale-
invariant threshold is given by [67]

fPBH;V ¼ erfc

�
νffiffiffi
2

p
�
: ð34Þ

That is in Fig. 3, fPBH;V ranges from 0.31 for ν ¼ 1, to
0.045 for ν ¼ 2 and to 5.7 × 10−7 already for ν ¼ 5.
Therefore, we expect this exclusion effect to have the
biggest impact when PBH formation is abundant, but also
to leave a sizeable signature when PBH formation is
infrequent.
The pairwise approach could also have exciting uses.

First, it enables to study correlations in the neighborhood of
a given PBH, and analyze whether a massive PBH has an
excess probability of being surrounded by smaller PBHs, or
the converse. Second, it could be used to better assess PBHs
merging rates. The number of mergers is indeed quite
sensitive to the initial clustering of PBHs (and its sub-
sequent nonlinear evolution) as well as the preferred mass
ratios [49].
The fact that we remained model independent has two

main consequences.
First, no quantitative estimations of amounts of cluster-

ing were performed in this work. Indeed, applications
would require a detailed relativistic criterion for the
formation of PBHs, a model for the power spectrum of
the density fluctuations and a thorough discussion on
certain choices of gauges for the cosmological perturba-
tions. For instance, an interesting scenario that could be
worth investigating—and where it was already proven that
it was significantly affected by “cloud-in-cloud” mecha-
nism [67]—would be PBHs arising from preheating
instabilities.
The second consequence is that we do not have access to

real-space distances, since SðRÞ is left unspecified. This
leads to an imperfect “exclusion-effect” on small scales.
Ideally, one would impose that the sum of the two Hubble
patch radii r1, r2 should be less than the distance r between
the PBHs, i.e. r1 þ r2 < r. However, we are only able to
impose r1 < r and r2 < r if we want to remain model
independent. As discussed extensively, this approximation
is sufficient to induce an effective exclusion effect on ξPBH,
but we showed in Sec. V that the limit of this approach is
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reached at “zero-lag,” in the vicinity of S ≈ Sr, that is the
upper right corners of Fig. 5.
Eventually, the most salient prospect of improvement of

our formalism would be to implement, on top of the “cloud-
in-cloud” mechanism, non-Gaussian initial conditions. The
non-Markovianity of the random walks induced by non-
Gaussianity could have huge impacts on the two-point
correlation function. The correlated steps’ problem for the
computation of halo mass functions in excursion-set theory
was already investigated in Refs. [66,86,87], extended to
two-point statistics in the context of the two-barrier setup in
Ref. [88] and later generalized—although differently—in
Refs. [68,89–92]. However, we believe that new ways of
accounting for non-Gaussian effects combined with our

present framework could be developed thanks to the
stochastic inflation formalism [93–97].
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