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The β-skeleton approach can be conveniently utilized to construct the cosmic web based on the spatial
geometry distribution of galaxies, particularly in sparse samples. This method plays a key role in
establishing the three-dimensional structure of the Universe and serves as a tool for quantitatively
characterizing the nature of the cosmic web. This study is the first application of β-skeleton information as
weights in mark weighted correlation functions (MCFs), presenting a novel statistical measure. We have
applied the β-skeleton approach to the CMASS NGC galaxy samples from SDSS BOSS DR12 in the
redshift interval 0.45 ≤ z ≤ 0.55. Additionally, we applied this approach to three COLA cosmological
simulations with different settings (Ωm ¼ 0.25,Ωm ¼ 0.31,Ωm ¼ 0.4) for comparison. We measured three
MCFs, each weighted by (i) the number of neighboring galaxies around each galaxy, (ii) the average
distance of each galaxy from its surrounding neighbors, and (iii) the reciprocal of the average distance of
each galaxy from its surrounding neighbors. By comparing measurements and calculating corresponding
χ2 statistics, we observe high sensitivity to the cosmological parameter Ωm through a joint analysis of the
two-point correlation and three MCFs.
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I. INTRODUCTION

According to the principles of cosmology, the Universe
is considered homogeneous and isotropic at a large scale.
However, the combined influence of gravity and the
ongoing expansion of the Universe results in a complex
and nonlinear structure. In terms of spatial configuration,
the unique and intricate web structure formed by the
anisotropic collapse of gravity is referred to as the “cosmic
web” [1–6]. Topologically, based on the dimensions of
gravitational collapse, the cosmic web is typically catego-
rized into knots, filaments, sheets, and voids.
The study of the structure of the cosmic web relies on

large-scale redshift surveys, and currently, there are a
number of large-scale observational projects, such as the
Sloan Digital Sky Survey (SDSS) [7–18], the 2-degree
Field Galaxy Redshift Survey (2dFGRS) [19], the 6-degree

Field Galaxy Redshift Survey (6dFGRS) [20,21], and the
WiggleZ Dark Energy Survey [22].
The ongoing stage-IV surveys, such as the Dark Energy

Spectroscopic Instrument (DESI) [23,24], are expected to
further deepen our understanding of the Universe. They
possess the capability to observe wider and deeper fields of
view with higher resolution, allowing for the collection of
more accurate and extensive data and providing additional
information about the nonlinear scale structure of the
Universe.
The China Space Station Telescope (CSST) [25], sched-

uled for launch in 2025, is a forthcoming stage-IV galaxy
survey. It will conduct observations across 17,500 square
degrees of the sky, capturing images in the ugriz bands
with a spatial resolution comparable to that of the Hubble
Space Telescope (HST).
The exploration of the cosmic web has consistently

been a significant topic in the study of the Universe. Since
early maps of the Universe confirmed the existence of
such webs through galaxy redshift measurements, there
has been a continuous effort over the past 40 years to find
a consistent and stable method to define these weblike
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structures. Currently, the commonly used analytical tools
for studying cosmic webs such as β-skeleton [26], FoF
[27], density-based techniques [28–30], T-web [31,32],
and V-web [33,34].
In 2019, the β-skeleton analysis was employed for the

first time to characterize the cosmic web, by analyzing both
observational data and accompanying simulations. The
observational data utilized the BOSS DR12 CMASS
[35] galaxy sample, and the BigMultiDark N-body simu-
lation conducted under the Planck 2015 Cosmology [36]
served as a test sample. By varying the β value and
examining the many different scenarios such as redshift
evolution and redshift space distortion, it is observed that
the number of skeleton connections decreases with increas-
ing β, resulting in a sparser cosmic web. For instance, when
β ¼ 1, numerous connections are generated, irrespective of
whether the nodes are located in voids or filaments.
However, with setting β ¼ 3, the resulting cosmic web
closely resembles that of real observations, indicating a
nearly perfect match in the number of connections to the
actual galaxies. Finally, at β ¼ 10, only small and relatively
isolated compact groups of galaxies are identified and
connected.
Moreover, [37] explored the information theory entropy

of a graph as a scalar to quantify the cosmic web. The
findings suggest that entropy can be used as a discrete
analogue of scalars used to quantify the connectivity in
continuous density fields. The simplicity of computing
graph entropy allows its application to both simulations and
observational data from large galaxy redshift surveys. This
new statistic offers a complementary approach to other
topological or clustering measurements. More recently,
using data from the IllustrisTNG simulation [6,38–40]
explored a fast machine learning-based approach to infer
the underlying dark matter tidal cosmic web environment
of a galaxy distribution from its β-skeleton graph. The
β-skeleton is more suitable for capturing the relatively
sparse observed cosmic web compared to traditional
T-web and V-web methods. It achieves this by straightfor-
wardly establishing the three-dimensional structure of the
Universe based on the spatial geometry of galaxies. In
addition, this method overcomes the need for artificially
setting a smoothing scale, unlike other methods. It adapts to
the density of the environment, generating mathematical
topology that traces the details of galaxy distribution in
both high- and low-density regions simultaneously. This
approach provides a more convenient and feasible way to
construct cosmic webs.
The current structure of the Universe has evolved from

early small density fluctuations. Through the combined
effects of gravitational evolution and cosmic expansion, it
gradually formed into the complex structure of cosmic
webs observed today, displaying various morphologies at
different scales. The traditional and commonly used meth-
ods for analyzing the statistical properties of the large-scale

structure (LSS) of the Universe include the two-point
correlation function (2PCF) or the power spectrum in
Fourier space. However, these methods essentially measure
the Gaussian content of the density field. With the non-
linear evolution caused by gravitational collapse, the
significance of non-Gaussianity increases over time.
While higher-order statistics, such as the three-point
correlation function [41,42] and the four-point correlation
function [43], can capture non-Gaussian information, they
face challenges in terms of visual interpretation and
efficient calculation.
Recently, the mark weighted correlation function (MCF)

[44]), which assigns density weights to different features of
galaxies to extract non-Gaussian information on LSS, has
proven effective in capturing more detailed clustering
information. MCFs are computationally more feasible
compared to other statistical methods capable of extracting
non-Gaussian information from LSS. By selecting weights
based on the αth power of the local density, the weighting
amplifies either dense or low-density regions. This method
can enhance the distinction between galaxy clusters in
dense and sparse regions, resulting in more stringent
constraints compared with 2PCF. References [45,46] dem-
onstrate that the joint constraint of the MCFs with different
α values significantly improved constraints on cosmologi-
cal parameters, such as Ωm and w. Reference [47] presents
measurements of MCFs of LOWZ galaxies from SDSS
BOSS DR12 to distinguish between the ΛCDM model and
fðRÞ gravity models. Reference [48] employed density
gradients as weights and find that the gradient-weighting
scheme would produce more robust parameter constraints
compared to the density-marked scheme. Furthermore,
combining these two schemes yields even stronger con-
straints than using either one alone.
In this study, we present the first application of the

β-skeleton as weights in MCFs, serving as a statistical
measure of information about the environment contained in
the knots of the β-skeleton. Constructing undirected graph
information from the β-skeleton allows for extracting
additional information about LSS. We will apply three
weighting schemes to MCFs, utilizing undirected graph
information derived from the β-skeleton. These schemes
involve weighting by (i) the number of neighboring
galaxies around each galaxy, denoted as Ncon; (ii) the
average distance of each galaxy from its surrounding
neighbors, denoted as D̄nei; and (iii) the reciprocal of the
average distance of each galaxy from its surrounding
neighbors, 1=D̄nei.
This paper is organized as follows: Sec. II details the

COLA and PATCHY simulations, as well as the Sloan
Digital Sky Survey III (SDSS-III) Baryon Oscillation
Spectroscopic Survey (BOSS) Data Release 12 (DR12)
galaxy sample, which are utilized in the subsequent
analysis. In Sec. III, we provide a brief introduction to
the definition and basic properties of the β-skeleton,
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outlining the methodology for calculating the MCFs on the
data. In Sec. IV, we present our findings by applying the
MCFs using the weights derived from the β-skeleton
quantities. Finally, we summarize our results and draw
conclusions in Sec. V.

II. DATA

To investigate the sensitivity of MCF statistics using the
properties of the β-skeleton as the weighting scheme for
cosmological parameters, we need to compare actual
observations with a series of simulations. Our analysis
relies on observations of SDSS BOSS DR12 CMASS
galaxies. Additionally, the analysis in this work depends on
a set of fast simulations generated using the COmoving
Lagrangian Acceleration (COLA) method [49]. The galaxy
mock catalog accurately reproduces the statistical proper-
ties of observed CMASS galaxies by employing a recently
proposed scheme [50] that utilizes the subhalo abundance-
matching (SHAM) procedure and involves adjusting the
COLA simulation parameters. Note that to ensure the
accuracy of COLA for our analysis, we have compared
various statistics with those derived from GADGET sim-
ulations using the same cosmological parameters and found
agreement between the two (see the Appendix for details).
Additionally, we utilize the Multidark PATCHY simula-
tions (referred to as PATCHY) [51] to estimate the relevant
covariance.

A. Observational data

The inclusion of the Baryon Oscillation Spectroscopic
Survey (BOSS) is a component of SDSS-III [52–54]. The
detection of the characteristic scale imprinted by baryon
acoustic oscillations (BAO) in the early Universe is aimed
for by the measurement of the spatial distribution of
luminous red galaxies (LRGs) and quasars through
BOSS [55].
Redshift information for approximately 1.5 million gal-

axies in a sky region of ∼104 square degrees is provided by
BOSS, which is divided into two samples: LOWZ and
CMASS. The LOWZ sample consists of the brightest and
reddest LRGs at z ≤ 0.4, while the CMASS sample targets
galaxies at higher redshifts, many of which are also LRGs.
The sky region covered by CMASS NGC galaxies is
approximately R:A:∈ ½108°; 264°�, Dec∈ ½−4°; 69°�. Our
study specifically concentrates on a subset of the BOSS
DR12 CMASS NGC galaxies within a redshift range
of z∈ ½0.45; 0.55�.

B. COLA simulations and mock galaxy catalogs

COLA,1 a hybrid approach integrating second-order LPT
(2LPT) and N-body algorithms, proves to be an effective
solution for simulating dark matter (DM) particles.

Perturbation theory has demonstrated success in describing
large scales, allowing the linear growth rate to replace time
integration in N-body simulations. COLA leverages this by
employing a comoving frame, with observers following
trajectories calculated in perturbation theory. Importantly,
COLA accurately calculates large-scale dynamics using
2LPT while assigning the resolution of small scales to the
N-body code, without demanding on an exact representa-
tion of the internal dynamics of halos. Consequently,
COLA can trade accuracy at small scales for computational
speed without compromising accuracy at large scales.
To assess the performance of our method and its

sensitivity to cosmological parameters, we utilize a series
of COLA simulations. To examine the dependence on
cosmological parameters, three sets of COLA simulations
are employed, each adopting different present-day dark
matter density: Ωm ¼ f0.25; 0.31; 0.4g, respectively. The
simulations are based on a ΛCDM cosmology with the
following parameter values fixed: Ωb ¼ 0.048, w ¼ −1.0,
σ8 ¼ 0.82, ns ¼ 0.96, and h ¼ 0.67. These values closely
approximate the mean constraint derived from the Planck
2015 results [56]. We ran COLA simulations with a total of
10243 particles in a cubic box, where each side has a length
of 800 h−1 Mpc.
For CMASS-NGC galaxies with redshifts in the range of

z∈ ½0.45; 0.55�, the spatial and redshift distributions are
illustrated in Fig. 1. The COLA mock survey exhibits a
similar angular distribution to that of CMASS-NGC.
Additionally, the histograms of the number of galaxies
for COLA and CMASS-NGC are displayed at the bottom
panel. As shown, the redshift distribution for the simu-
lations and observation are very similar, and the changes in
the number of COLA mocks by varying Ωm from 0.31 to
0.4 are small.

C. PATCHY simulation for convariance estimation

To accurately estimate the covariance matrix for MCFs,
1000 PATCHY catalogs [57] are employed in this study.
The PATCHY (perturbation theory catalog generator of
Halo and galaxy distributions) mock employs a method that
integrates an efficient structure formation model with a
local, nonlinear, scale-dependent, and stochastic biasing
scheme to produce mock halo catalogs. Augmented
Lagrangian perturbation theory is utilized for simulating
the structure formation, combining 2LPT on large scales
with the spherical collapse model on smaller scales. This
technique generates a dark matter density field on a mesh
starting from Gaussian fluctuations and calculates the
peculiar velocity field. In short, PATCHY mock catalogs
are generated using approximate gravity solvers and
analytical-statistical biasing models, with halo occupation
parameters adjusted such that the mocks well reproduce the
BOSS two- and three-point statistics. They have been
calibrated to the BigMultiDark N-body simulation with
high resolution [58,59], which utilizes 38403 particles in a1https://bitbucket.org/tassev/colacode/src/hg/.
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volume of ð2.5 h−1GpcÞ3. This simulation assumes a
ΛCDM cosmology with Ωm ¼ 0.307, Ωb ¼ 0.048, σ8 ¼
0.82, ns ¼ 0.96, and h ¼ 0.67.

III. METHODOLOGY

A. β-skeleton analysis

We will perform the β-skeleton analysis and use its
properties as weights to conduct the MCFs for CMASS-
NGC data and COLAmocks. Let us first briefly summarize
the β-skeleton theory and explain how it is used to
characterize the cosmic web.
Stemming from the fields of computational geometry

and geometric graph theory, the β-skeleton algorithm has
been widely applied in image analysis, machine learning,
visual perception, and pattern recognition [60–62]. In the
realm of web finders, a class of algorithms, including the β-
skeleton, is employed to construct a graph describing the
degree of connectedness, starting from a set of 3D spatial
points. This process, resembling the minimum spanning
tree (MST) algorithm [63], has a key distinction—the
resulting graph depends on the continuous β parameter.
Additionally, web finders designed based on topological
persistence, such as DisPerSE [64], Betti numbers [65], the

caustic skeleton defined based on Lagrangian fluid dynam-
ics [66], and others, are related to the β-skeleton. For more
detailed information regarding the β-skeleton in topology
and geometric graph theory, please refer to [67,68].
In an n-dimensional Euclidean space, the edge set is

defined by the β skeleton for a point set S. In this
framework, points p and q in S are considered connected
if there is no third point in the various empty regions.
Specifically, for 0 < β < 1, the empty region is formed by
the intersection of all spheres with diameter dpq=β, with p
and q on their boundary. When β ¼ 1, the empty region
becomes the sphere with diameter dpq. For β ≥ 1, the empty
region is defined in two different ways: the circle-based
definition and the lune-based definition, the latter of which
is adopted in this study. In this paper, according to this
definition, the empty region Rpq is the intersection of two
spheres with diameter βdpq, centered at pþ βðq − pÞ=2
and qþ βðp − qÞ=2, respectively.
The β-skeleton, as defined above, possesses various

interesting mathematical properties. As β continuously
varies from 0 to ∞, the constructed graphs transition
from a complete graph to an empty graph. The special
case of β ¼ 1 results in the Gabriel graph, known to
include the Euclidean MST. In image analysis, for
instance, it has been utilized to reconstruct the shape
of a two-dimensional object based on a set of sample
points on the object’s boundary. It has been proven that
the circle-based graphs with β ¼ 1.7 can accurately
reconstruct smooth surface boundaries without generat-
ing extra edges when samples are dense enough relative
to local curvature. It is apparent that the volume of the
excluded region exhibits a monotonically increasing
relationship with β. As the excluded region expands,
the requirements become more stringent and challenging,
making it less likely to find connected paired galaxies.
The β-skeleton code used in this paper is available at the
following link.2

The β-skeleton algorithm is applied with β values of 1, 3,
and 5, respectively, to both CMASS-NGC galaxies and
COLAmock samples for various values ofΩm. The derived
cosmic webs are depicted in Fig. 2. For comparison, the
Friend-of-Friend (FoF) algorithm is applied with linking
lengths (denoted as Llink) set to 10 and 15 h−1Mpc, and the
resulting FoF cosmic webs are also displayed (bottom). All
maps are selected within the range of R:A: ∈ ½200°; 208°�
and Dec∈ ½30°; 38°�, corresponding to a slice of side length
183.96 × 183.96 h−1Mpc, respectively. The depth of these
maps is 227.54 h−1Mpc, corresponding to the redshift
range of z∈ ½0.45; 0.55�.
Clearly, the skeletons of maps are observed through

connections, and the number of connections decreases
when increasing β, confirming the definition proposed

FIG. 1. Comparison of the spatial and redshift distributions for
observational galaxies and simulation samples. Upper: the R.A.–
Dec. distribution of CMASS-NGC galaxies in redshift space is
illustrated for the range of z∈ ½0.45; 0.55�. Middle: the R.A.–Dec.
distribution of generated COLA mock halos for Ωm ¼ 0.31,
showing the same angular distribution as CMASS-NGC galaxies.
Bottom: the histograms of the number of galaxies (divided into
150 z-bins) are presented for CMASS-NGC (red solid) and
COLA simulations with Ωm ¼ 0.31 (blue dashed-dotted), 0.25
(orange dashed), and 0.4 (green dotted), respectively. As seen, the
redshift distributions of the three COLA samples closely match
that of CMASS-NGC.

2https://github.com/xiaodongli1986/LSSCode.
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for the β skeleton. Specifically, as β increases, the empty
regions also increase. In essence, the requirement for
establishing a connection between two galaxies becomes
more stringent. Specifically, considering the CMASS-NGC
plot, for β ¼ 3, we detected 1182 connections, which is
very comparable to the number of galaxies (Ngal ¼ 1345)
in each CMASS-NGC plot. However, at β ¼ 1, we iden-
tified 3610 connections, significantly exceeding the

number of galaxy points. Conversely, for β ¼ 5, we only
detected 800 connections.
Moreover, filamentlike structures are generated from the

galaxy sample by the β-skeleton; this is most clearly
detected when β ¼ 3. More densely and sparsely distrib-
uted filaments are produced by larger and smaller values of
β, unlike cosmic webs observed in reality. Additionally,
“knots” within the structure are formed by some of these
galaxies, where three or more galaxies are connected.
Moreover, there are isolated structures with a relatively
small number of group members. Varying β strongly
influences the overall shape of the skeleton maps. For
instance, when β ¼ 1, it roughly corresponds to computing
two-point correlations, resulting in numerous connections
being generated, irrespective of whether these connections
lie within a filament or not. With β ¼ 3, the generated set of
structures closely approximates the observed cosmic web,
with the number of connections comparable to the actual
number of galaxies. In contrast, when β ¼ 5, connections
are sparse, as expected, identifying and connecting only the
small and relatively isolated compact groups of galaxies.
Moreover, statistically, the connection length, denoted as
Lcon, varies with β. As β increases, Lcon tends to decrease
and appears more concentrated. This is because the
stringent threshold makes connecting two points separated
by a large distance more challenging. Also, upon visual
inspection, it may be challenging to identify obvious
differences in the skeleton graphs corresponding to differ-
ent values of Ωm.
From these β-skeleton cosmic webs, we can quantify

several relevant statistical measures. These include the
comoving distance (r), the connection length of each pair
of galaxies (Lcon), the orientation of these connections (μ),
and the number of surrounding neighbors of each gal-
axy (Ncon).
In Fig. 3, we present the measured statistics of the

resulting cosmic webs obtained by applying the β-skeleton
algorithm with β ¼ 3. In the left panel, the distribution of
the comoving distance r of the nodes is shown. The red
solid line represents the CMASS-NGC data, and for
comparison, three different cases in the COLA simulations
are considered with Ωm values of 0.31 (blue dashed-
dotted), 0.25 (orange-dashed), and 0.4 (green-dotted).
The deviations between the real data and COLA sim-

ulations, regardless of the Ωm values used, are considerably
small, with no significant differences observed. The mean
comoving distance r is 1346.1 h−1Mpc for CMASS-NGC,
1345.7 h−1 Mpc for Ωm ¼ 0.25, 1346.7 h−1Mpc for
Ωm ¼ 0.31, and 1344.8 h−1Mpc for Ωm ¼ 0.4. These
values suggest that when varying Ωm, the changes in r
for COLA are on the order of 0.1%, making it challenging
to rely solely on this quantity for distinguishing between
cosmologies.
Similarly, the density distributions of the connection

length Lcon and the orientation of these connections, μ, are

FIG. 2. Visualization of cosmic webs produced by the β-
skeleton and Friend-of-Friend (FoF) algorithms for comparison.
All maps are selected within the range of R:A:∈ ½200°; 208°� and
Dec∈ ½30°; 38°�. In the visualization, the scatter represents
galaxies, and the resulting connections between galaxy pairs
are also depicted. The color is indicative of the comoving distance
of the respective galaxies. Upper: the β-skeleton web of CMASS-
NGC galaxies is illustrated for β ¼ 1 (left) and β ¼ 5 (right). The
second and third rows: the β-skeleton web is obtained by
choosing β ¼ 3 for CMASS-NGC and COLA simulations with
Ωm ¼ 0.31, Ωm ¼ 0.25, Ωm ¼ 0.4. Bottom: the cosmic web
obtained from FoF with link lengths, Llink, set to 10 (left) and
15 (right), respectively. In comparison to Llink ¼ 10 and 15 in
FoF, the β-skeleton is adaptive to both low and high-density
regions. As observed, the β-skeleton graph is more reliable and
natural compared to the cosmic webs produced by FoF, high-
lighting the advantages of the β-skeleton graph. β ¼ 3 is found to
be optimal and better corresponds to the real cosmic web,
represented as the plot of Ωm ¼ 0.31, β ¼ 3, in contrast to the
two graphs that exhibit overly dense (β ¼ 1) or overly sparse
(β ¼ 5) patterns.
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illustrated in the middle and right panels. We observe that
the discrepancies in either Lcon or μ between real data and
COLA simulations are statistically insignificant. For in-
stance, the mean Lcon is 8.83 h−1Mpc for CMASS-NGC,
and 8.70, 8.68, and 8.71 h−1Mpc for Ωm ¼ 0.25, 0.31, and
0.4, respectively, leading to deviations of less than 2%
across all cases. Additionally, the mean values of μ,
averaged over the range of μ∈ ½0; 0.97�, are 0.50 for
CMASS-NGC, and 0.51, 0.52, 0.53 for Ωm ¼ 0.25,
0.31, 0.4 in COLA, respectively. This suggests that the
directions of the connections in all cases are consistently
randomly distributed, with no preferred orientation.
Moreover, we can clearly observe a rise in density when
μ > 0.9. This is likely due to the Finger of God (FoG)
effect, increasing the orientation along LOS.
In Fig. 4, we present a histogram illustrating the

connectivity (denoted as Ncon), representing the number

of neighbors around each galaxy, displaying the values
within the range of [0, 5] for the obtained β-skeleton cosmic
webs. We observe 8284, 57111, 102639, 41781, 3581
galaxies with Ncon ¼ 0, 1, 2, 3, 4, respectively, along with
only 42 galaxies having Ncon ¼ 5. In the case of COLA
galaxies under Ωm ¼ 0.31, the numbers of galaxies are
7857, 57261, 103680, 41642, 3657, and 35, respectively,
for Ncon ranging from 0 to 5. Notably, the variation in
connectivity is found to be negligible across three distinct
Ωm values for the COLA mocks. Therefore, the sensitivity
of Ncon to Ωm is insignificant.
In Fig. 5, we illustrate the averaged connection lengths

(denoted as D̄nei) between each galaxy and its surrounding
neighbors, where neighbor galaxies are determined by their
skeleton graph in the case of β ¼ 3. On the left side, the
histograms (divided into 150 bins) display the number of
galaxies over D̄nei for both CMASS-NGC data and COLA
mocks across Ωm ¼ 0.31, 0.25, and 0.4, respectively. In all
cases, the histograms peak at D̄nei ¼ 0, indicating that
galaxies with no connections dominate the cosmic webs.
We observe that within the range of D̄nei from 0 to

30 h−1Mpc for CMASS-NGC, the total number of gal-
axies is 213,438. However, beyond this range, the total
number decreases exponentially to 86. For the COLA
mocks, we find that for Ωm ¼ 0.31, the total number is
214,132 within the range of D̄nei from 0 to 30 h−1Mpc, and
95 beyond this range. For Ωm ¼ 0.25 and 0.4, the corre-
sponding totals are 213,428 and 214,472 within the interval
of ½0; 30� h−1 Mpc, and 103 and 69 outside this range.
Moreover, the mean value of D̄nei is approximately
8 Mpc=h across all cases.
On the right side, four violin plots depict the dependence

of D̄nei distributions on connectivity Ncon, ranging from 1 to
5. The cases of CMASS-NGC data and COLA mocks under
three differentΩm values are presented sequentially. As seen,
all COLA results are nearly identical to the CMASS-NGC
case when Ncon < 5. However, when Ncon ¼ 5, the distri-
bution of D̄nei exhibits slight variation, with mean values of

FIG. 4. Histogram of the number of neighbors around each
galaxy, referred to as connectivity (Ncon), in the range of [0, 5]
within the β-skeleton cosmic webs. It peaks at Ncon ¼ 2 and then
decreases rapidly. The variation in connectivity is negligible for
both CMASS-NGC data and COLA mocks under three different
Ωm values.

FIG. 3. Measured statistics of the β-skeleton cosmic webs for β ¼ 3 in both the CMASS-NGC and COLA simulations, considering
Ωm values of 0.31, 0.25, and 0.4, respectively. Left: the normalized histogram of the comoving distance r of the nodes. Middle: the
distribution of the connection length Lcon. Right: the density distribution of the orientation of these connections, defined as μ ¼ cosðθÞ,
where θ is the angle between LOS and the connection line. As seen, the variation in these statistics concerning Ωm is minimal, resulting
in the β-skeleton cosmic web being insensitive solely to this cosmological parameter.
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D̄nei¼11.52;12.38;11.27;12.78h−1Mpc for CMASS-
NGC and COLA simulations with Ωm ¼ 0.31, 0.25,
and 0.4.
The above analysis is based on the statistics of the

β-skeleton graphs. We observe that relying on these
statistics alone does not enable us to distinguish between
cosmologies with significantly different values of Ωm.
Consequently, in the following we will demonstrate that
by utilizing the obtained β-skeleton statistics as weights,
the MCF method exhibits high sensitivity to Ωm.

B. MCFs using the β-skeleton statistics

Next, we will perform an analysis through MCFs using
the weights from the β-skeleton statistics. A standard
cosmological analysis generally involves the computation
of the 2PCF to infer cosmological information from galaxy
clustering properties. Meanwhile, MCFs assign weights to
different features of galaxies to extract non-Gaussian
information on LSS effectively capturing more detailed
clustering information. Considering that the β-skeleton
statistics provide different measures of LSS, we then use
these statistics as weights in MCFs to study their sensi-
tivities to the cosmological parameter, the present-day
matter density Ωm.
In the previous sections, we have introduced several

statistical measures for β-skeleton graph. We will specifi-
cally focus on the following three statistics as the weights of
MCFs: the number of neighbors around each galaxy, Ncon,
the averaged connection length between each galaxy and its
surrounding neighbors, D̄nei, and its reciprocal, 1=D̄nei.
Note that, in the following, all MCF analyses will be
performed with β fixed at 3 for the β-skeleton measure-
ments. This is the first time to perform an analysis on real
and mock LSS data by combiningMCFs and the β-skeleton
statistics.

Briefly, the procedure for calculating the MCFs remains
the same as the standard one; however, the weights are
assigned based on the measures of the β-skeleton statistics.
Compared with the traditional 2PCF, defined as
ξðrÞ ¼ hδðxÞδðxþ rÞi, the form of MCF, following [45],
is given by

WðrÞ ¼ hδðxÞwðxÞδðxþ rÞwðxþ rÞi; ð1Þ

where the term wðxÞ denotes the chosen weights used in
MCFs. The term δðxÞ denotes the pointlike density con-
trast, expressed as δðxÞ ¼ δρ=ρ̄.
As mentioned earlier, three different weights are chosen

for each galaxy in this study, specifically,

wðxÞ ¼

8>><
>>:

NconðxÞ; case I

D̄neiðxÞ; case II

1=D̄neiðxÞ; case III

: ð2Þ

Here, wðxÞ is obtained from the β-skeleton at the position x.
Note that the β-skeleton graph may have a fraction of
samples (detected by knots in the skeleton) compared to the
full observed samples of galaxies. Consequently, some
galaxies may lack these statistical measurements. In such
cases, we assign wðxÞ ¼ 0. Additionally, when D̄nei ¼ 0, to
prevent divergence for 1=D̄nei, we also assign wðxÞ ¼ 0 for
case III.
We utilize the widely adopted Landy–Szalay estimator

[69], expressed as

Wðs; μÞ ¼ WW − 2WRþ RR
RR

; ð3Þ

Here, WW denotes the weighted count of galaxy-galaxy
pairs, WR corresponds to galaxy-random pairs, and RR

FIG. 5. Distribution of the averaged connection length between each galaxy and its surrounding neighbor galaxies, denoted as D̄nei, in
the case of β ¼ 3, where the neighbor galaxies are determined by their skeleton graph. Left: the histograms display the number of
galaxies over D̄nei for both CMASS-NGC data and COLA mocks under three distinct Ωm values. The first peak is located at D̄nei ¼ 0,
indicating that galaxies with no connections dominate the cosmic webs for β ¼ 3. The mean value of D̄nei is approximately 8 h−1 Mpc
among all cases. Right (four violin plots): dependence of the distributions of D̄nei on Ncon, ranging from 1 to 5. We present, in sequence,
the cases of CMASS-NGC data and COLA mocks for Ωm ¼ 0.31, 0.25, 0.4, respectively.
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represents random-random pairs. These pairs are deter-
mined within a distance defined by s� Δs and μ� Δμ,
where s represents the distance between pairs, and μ is
defined as cosðθÞ. Here, θ is the angle between the line of
sight (LOS) direction and the line connecting the pair.
The random sample comprises 10 times the number of

objects compared to the CMASS-NGC galaxies, and each
PATCHY simulation for covariance estimation includes 20
times the number of objects than CMASS-NGC. Based on
our testing, results converge with a random sample con-
taining about 10 times more objects than CMASS-NGC,
and the weights for the random samples are consistently set
to unity.

C. One-dimensional MCFs: Ŵ0ðsÞ and ŴΔsðμÞ
By integrating Wðs; μÞ over either s or μ, two one-

dimensional statistical quantities can be defined. The first
one is the monopole of the MCF, a function of the
clustering scale, represented as

W0ðsÞ ¼
Z

1

0

Wðs; μÞdμ: ð4Þ

The second quantity is the μ-dependent function, repre-
sented as

WΔsðμÞ ¼
Z

smax

smin

Wðs; μÞ ds: ð5Þ

The values smin ¼ 15 h−1Mpc and smax ¼ 40 h−1Mpc have
been used for quantifying both redshift-space distortions

(RSDs) and Alcock-Paczyński (AP) distortions within the
context of the tomographic AP method [70].
To mitigate the impact of galaxy bias and enhance the

accuracy of the analysis, it is common to employ normal-
ized statistics, which utilize the shape rather than the
amplitude to extract cosmological information. By doing
this, the normalized quantities based on Eqs. (4) and (5) can
be expressed as follows:

Ŵ0ðsÞ ¼
W0ðsÞR

b
a W0ðsÞds

;

ŴΔsðμÞ ¼
WΔsðμÞR μmax

0 WΔsðμÞdμ
: ð6Þ

In choosing a ¼ 15 h−1Mpc, b ¼ 57 h−1Mpc, and μmax ¼
0.97 (to reduce effects of fiber collisions and RSDs),
extensive testing indicates that the selected parameters
are effective for studying clustering features and for
enhancing the sensitivity on different cosmologies. From
tests, we find that opting for equally spaced divisions of s
within the range of s∈ ½15; 57� h−1Mpc and μ in the
interval μ∈ ½0; 0.97� into seven bins results in optimal
and robust constraints on Ωm.

IV. RESULTS

Figure 6 illustrates an analysis of the one-dimensional
MCFs utilizing various weighting schemes on the CMASS-
NGC dataset. On the left panel, contrasting with the 2PCF
(red solid), the monopoles of MCFs, s2W0ðsÞ [as defined in
Eq. (4)], are illustrated for three distinct weights: Ncon (blue
dashed-dotted), D̄nei (orange dashed), and 1=D̄nei (green

FIG. 6. Comparison of one-dimensional MCFs with different weighting schemes for the CMASS-NGC dataset. Left: In comparison to
the 2PCF (red solid), the monopole of MCFs, s2W0ðsÞ [as defined in Eq. (4)], is shown for three different weights: Ncon (blue dashed-
dotted), D̄nei (orange dashed), and 1=D̄nei (green dotted). Right: Same as in the left panel, but for focusing on the anisotropic clustering
in MCFs, WΔsðμÞ [as defined in Eq. (5)]. As observed, using the weight 1=D̄nei leads to the highest magnitudes in both panels. This is
because a number of objects in underdense regions are assigned a larger weight, significantly enhancing the amplitudes of these two-
point functions. Conversely, assigning D̄nei as the weight will lead to the lowest amplitudes in both panels. In either the left or right
panel, the MCF with Ncon as the weight results in the amplitude and shape very comparable to those of the 2PCF, implying it is not
statistically related to the local properties of each galaxy.
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dotted). The right panel depicts the same comparison but
emphasizes the anisotropic clustering in MCFs,WΔsðμÞ [as
defined in Eq. (5)]. Notably, the use of the weight 1=D̄nei
yields the highest magnitudes in both panels. This is
attributed to the assignment of a larger weight to numerous
objects in underdense regions, significantly enhancing the
amplitudes of these MCFs. Conversely, assigning D̄nei as
the weight results in the lowest amplitudes. Furthermore, in
either panel, employing Ncon as the weighting scheme for
MCFs results in the amplitude and the shape that agree with
those of the 2PCF. This is because Ncon is not statistically
related to the clustering strength of the structure (e.g., a
galaxy in a low-density region can have a larger Ncon than a
galaxy in a high-density region). Therefore, using it as
weights does not significantly alter the statistical clustering.
In Fig. 7, a comparison of one-dimensional MCFs

s2W0ðsÞ (top) and WΔsðμÞ (bottom) is presented for four
datasets: CMASS-NGC (red solid), COLA mocks with
Ωm ¼ 0.31 (blue dashed-dotted), Ωm ¼ 0.25 (orange
dashed), and Ωm ¼ 0.4 (green dotted), respectively. The
results for the 2PCF and MCFs using the weights Ncon,
D̄nei, and 1=D̄nei are displayed from left to right. The gray-
shaded region represents 2σ errors estimated using
PATCHY mocks. For the COLA mock with Ωm ¼ 0.31,

all derived MCFs in the s and μ regions (s∈ ½0; 150�,
μ∈ ½0; 0.97�) match well with those of CMASS-NGC
within the 2σ level. However, when Ωm ¼ 0.4 or 0.25 in
COLA, there is a significant deviation from the true value in
CMASS-NGC, causing both 2PCFs and MCFs to become
markedly inconsistent with the observational data beyond
the 2σ level.
Moreover, Fig. 8 illustrates the normalized MCFs,

s2Ŵ0ðsÞ (top) within the range s∈ ½15; 57� h−1 Mpc, and
ŴΔsðμÞ (bottom) within the range μ∈ ½0; 0.97�, evenly
spaced and divided into seven bins. The gray-shaded region
denotes 2σ errors estimated from PATCHY mocks. The
results of COLAmocks underΩm ¼ 0.31 arewell consistent
with those of CMASS-NGC. However, deviations become
noticeable for larger and smaller Ωm values, particularly for
the statistic s2Ŵ0ðsÞ. Significantly, the weight 1=D̄nei serves
as a sensitive indicator for Ωm, where an incorrect value can
lead to substantial deviations from those observed in the
CMASS-NGC data, exceeding the 2σ level.
To test the potential improvement of cosmological

constraints using β-skeleton weighting schemes, we select
Ŵ0ðsÞ and ŴΔsðμÞmeasurements. We utilize the χ2 statistic
to quantitatively distinguish the wrong cosmologies
from the correct one and evaluate the performance in

FIG. 7. Comparison of one-dimensional MCFs s2W0ðsÞ (top) and WΔsðμÞ (bottom) for four datasets: CMASS-NGC (red solid),
COLA mocks with Ωm ¼ 0.31 (blue dashed-dotted), Ωm ¼ 0.25 (orange dashed), Ωm ¼ 0.4 (green dotted), respectively. From left to
right, we present the results for the 2PCF and MCFs using the weights Ncon, D̄nei, and 1=D̄nei, respectively. The gray-shaded region
represents 2σ errors estimated using PATCHY mocks. For the COLA mock with Ωm ¼ 0.31, all derived MCFs in the s and μ regions we
considered (s∈ ½0; 150� h−1 Mpc, μ∈ ½0; 0.97�) match well with those of CMASS-NGC within 2σ level. However, when Ωm ¼ 0.4 or
0.25 in COLA largely deviates from the true value in CMASS-NGC, both 2PCFs and MCFs become significantly inconsistent with the
observational data beyond 2σ level.
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constraining power. The χ2 function for fitting the data is
given by

χ2 ¼ ðΔpÞT · C−1 · Δp; ð7Þ
where

Δp ¼ pmodel − pdata: ð8Þ
Here, pmodel ¼ pCOLAðΩmÞ represents various statistical
quantities of the COLA mocks, including the 2PCF,
Ŵ0ðsÞ, ŴΔsðμÞ, and their combinations. The symbol
pdata denotes the measurements from the observational
CMASS-NGC data. By varying Ωm within the COLA
simulations for Ωm ¼ 0.25, Ωm ¼ 0.31, and Ωm ¼ 0.4, the
resulting χ2 values are then used to assess the sensitivity of
the proposed statistics to Ωm.
The corresponding covariance matrix, denoted by C, is

evaluated using the PATCHY simulation mocks.
Specifically, the empirical covariance matrix of a vector
p is given by

C ¼ hðp − p̄Þðp − p̄ÞTi ð9Þ

¼ 1

Nmock − 1

XNmock

i¼1

ðpi − p̄Þðpi − p̄ÞT; ð10Þ

by averaging over all Nmock mock samples. Here, pi, with a
length of Np, denotes a vector containing all statistical
quantities for the ith mock sample. Note that the mean of p
over all mocks is denoted by p̄. We utilized 1000 PATCHY
mocks to accurately estimate the relevant covariance
matrices for the various considered statistics.
In Fig. 9, the correlation coefficient matrices of the

2PCF, Ŵ0ðsÞ (top) and ŴΔsðμÞ (bottom), along with their
combinations, are illustrated. To clearly depict the corre-
lation strength between different statistics, each matrix
displays the cross and auto-correlation coefficients between
2PCF and MCFs for three weighting schemes: Ncon, D̄nei,
and 1=D̄nei. The correlation between 2PCF and MCFs is
notably strong for the weight of Ncon, while such corre-
lations between 2PCF and the other weights become
relatively weaker. Additionally, the correlations for combi-
nations of the total of four statistical measurements,
including 2PCF and MCFs with the three weights, are
shown. These combinations are used to estimate the χ2

values for the joint analysis.
To quantitatively assess the sensitivity of various stat-

istical measurements for different Ωm values, we further
define the change of χ2 deviating from the same statistical
measurement under the fiducial value of Ωm ¼ 0.31 (the
corresponding χ2 is denoted by χmin),

FIG. 8. Similar to Fig. 7, but for the normalized MCFs, s2Ŵ0ðsÞ (top) in the range of s∈ ½15; 57� h−1 Mpc, and ŴΔsðμÞ (bottom) in the
range of μ∈ ½0; 0.97�, equally spaced and divided into seven bins. The gray-shaded region represents 2σ errors estimated by the
PATCHY mocks. We observe that the results of COLA mocks under Ωm ¼ 0.31 agree well with those of CMASS-NGC, whereas larger
and smallerΩm values can lead to apparent deviations, especially for the statistic s2Ŵ0. Additionally, we note that the weight 1=D̄nei can
provide a sensitive probe to Ωm, as an incorrect value can result in significant deviations from those of the CMASS-NGC data beyond
the 2σ level.
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Δχ2 ≡ χ2 − χ2min: ð11Þ

Displayed in Fig. 10 are the changes in χ2 values,
according to Eq. (11), for Ŵ0ðsÞ (left) and ŴΔsðμÞ (right)
while Ωm ranges from 0.25 to 0.4. The calculation of χ2min
utilizes the COLAmock withΩm ¼ 0.31 following Eq. (7),
where the minima in χ2 values are reached compared to
those for the other two Ωm values. As observed, MCFs
exhibit a notably distinct dependence of χ2 on Ωm com-
pared to the 2PCF. As expected, the use of a combination of
2PCF and MCFs with the β-skeleton weights yields the

highest sensitivity to Ωm. This is evident from the rapid
changes in χ2 when varying Ωm.
Moreover, the relative changes of Δχ2 with respect to

that of the 2PCF, defined as

r ¼ Δχ2

Δχ22PCF
− 1: ð12Þ

The r values are summarized in Table I. These relative
changes can offer another indication of the sensitivity to
Ωm. The measurements involve various combinations of
2PCF and MCFs with three different weights. The

FIG. 10. Changes of χ2 values [as defined in Eq. (7)] for Ŵ0ðsÞ (left) and ŴΔsðμÞ (right) as Ωm varies from 0.25 to 0.4. Here, χ2min is
calculated by using Ωm ¼ 0.31 for χ2, where the χ2 values reach the minimum for either left and right panel compared to those for the
other two Ωm values. As seen, compared to the 2PCF, MCFs provide an apparently different dependence of χ2 on Ωm. As expected,
employing a combination of 2PCF and MCFs with the three β-skeleton weights results in the highest sensitivity to Ωm. This is evident
from the rapid changes in χ2 when Ωm is varied.

FIG. 9. Correlation coefficient matrices of 2PCF, Ŵ0ðsÞ (top) and ŴΔsðμÞ (bottom). The correlation coefficients are estimated using
the 1000 PATCHY mocks, where Ωm ¼ 0.31. To clearly illustrate the correlation strength between different statistics, each matrix
displays the cross and auto-correlation coefficients between 2PCF and MCF with three weighting schemes for Ncon, D̄nei, and 1=D̄nei.
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comprehensive joint analysis, including all four statistics
[labeled as “All (I)” for the combination of 2PCF and three
Ŵ0 statistics, and “All (II)” for 2PCF and three ŴΔs
statistics], exhibits the highest sensitivity to Ωm in either
the Ŵ0 or ŴΔs measurements. These relative changes
indicate a substantial enhancement in the constraint on
Ωm through the combination of 2PCF and three MCFs. For
instance, the χ2 values for Ωm ¼ 0.25 are enhanced by
204.06% for “All (I)” and 855.47% for “All (II)”. Likewise,
when these statistics are combined, enhancements of
149.49% and 928.33% are achieved for Ωm ¼ 0.40,
respectively.

V. CONCLUDING REMARKS

The β-skeleton approach proves to be a convenient tool
for constructing the cosmic web based on the spatial
geometry distribution of galaxies, especially in sparse
samples. It plays a crucial role in establishing the three-
dimensional structure of the Universe and serves as a
quantitative tool for characterizing the nature of the cosmic
web. Moreover, MCFs, by assigning weights to different
features of galaxies to extract non-Gaussian information on
large-scale structure (LSS), have proven effective in cap-
turing more detailed clustering information.
This study marks the first application of combining

mark weighted correlation function (MCFs) and β-skeleton

statistics to real observational data. We have introduced the
β-skeleton information as weights in MCFs, presenting a
novel statistical measure. The study applies the β-skeleton
approach to the CMASS NGC galaxy samples from SDSS
BOSS DR12 in the redshift interval 0.45 ≤ z ≤ 0.55.
Additionally, to evaluate the measurements for different
cosmologies, we conducted three COLA cosmological
simulations with different settings (Ωm¼0.25, Ωm¼0.31,
Ωm ¼ 0.4) for comparison.
We have measured three MCFs, each weighted by

(i) the number of neighboring galaxies around each
galaxy, Ncon; (ii) the average distance of each galaxy
from its surrounding neighbors, D̄nei; and (iii) the recip-
rocal of the average distance of each galaxy from its
surrounding neighbors, 1=D̄nei. Through a comparison of
measurements and the calculation of corresponding χ2

statistics, we observe a substantial improvement in the
constraints on the cosmological parameter Ωm by con-
ducting a joint analysis of the standard 2PCF and all three
MCFs for different weights.
In the joint analysis, the highest sensitivity to Ωm is

observed in either the Ŵ0 (monopoles of MCFs) or ŴΔs
(anisotropic clustering of MCFs) measurements. The χ2

values for the joint analysis are improved by approximately
150%–928% compared to the 2PCF alone. Overall, the
joint analysis robustly enhances sensitivity to Ωm, allowing
for the rejection of incorrect cosmologies at a signifi-
cant level.
Our study has introduced a novel MCF weighting

strategy using β-skeleton information to maximize the
extraction of LSS information. This approach holds the
potential to be extended to other surveys and datasets,
contributing to the constraint of cosmological parameters.
In future work, simulation mocks for a wide range of
cosmological parameters can be generated through emu-
lator approaches, allowing for a thorough assessment of
parameter constraints. The method presented here is
expected to serve as a valuable analysis tool for upcoming
stage-IV surveys, including the Chinese Space Station
Telescope (CSST).
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TABLE I. Comparison of relative changes of χ2 with respective
to that of 2PCF, i.e., the r value as defined in Eq. (12), for
different measurements with varying Ωm from 0.25 to 0.4. The
measurements are based on various combinations of 2PCF and
MCFs with three different weights. The overall joint analysis,
containing all four statistics (labeled as “All (I)” for the
combination of 2PCF and three Ŵ0 statistics and “All (II)” for
2PCF and three ŴΔs statistics), shows the highest sensitivity to
Ωm in either the Ŵ0 or ŴΔs measurements. Such relative changes
indicate that the combination of the 2PCF and three MCFs leads
to a significant improvement in Ωm constraint. For instance, the
χ2 values for Ωm ¼ 0.25 are enhanced by 204.06% for “All (I)”
and 855.47% for “All (II)”. Similarly, combining these two yields
enhancements of 149.49% and 928.33%, respectively.

Statistics Ωm ¼ 0.25 Ωm ¼ 0.40

2PCF 0 0

2PCFþ Ŵ0ðNconÞ −61.61% 28.14%

2PCFþ Ŵ0ðD̄neiÞ 136.97% 3.33%

2PCFþ Ŵ0ð1=D̄neiÞ 200.91% 66.94%

All (I) 204.06% 149.49%
2PCF 0 0

2PCFþ ŴΔsðNconÞ 257.52% 123.15%

2PCFþ ŴΔsðD̄neiÞ −58.80% 312.19%

2PCFþ ŴΔsð1=D̄neiÞ 797.33% 326.86%

All (II) 855.47% 928.33%
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APPENDIX

To ensure that the accuracy of COLA simulation is
sufficient for this analysis, here we have made a compari-
son between the statistics measured in COLA and
GADGET [71–73] simulations. GADGET is a massively
parallel TreeSPH code for accurate N-body/SPH simula-
tions [74], which can simulate a collisionless fluid by the
N-body method or an ideal gas with smoothed particle
hydrodynamics (SPH). [50] combines the subhalo abun-
dance matching (SHAM) procedure with COLA and
GADGET simulations to create mocks for BOSS
CMASS NGC galaxies by fitting the correlation function
at s∈ ½4; 20� h−1 Mpc within the redshift interval
z∈ ½0.45; 0.55�. Below we compare the clustering proper-
ties of the COLA, GADGET, and PATCHYmocks with the
observed data.
To ensure the reliability of our analysis, the COLA and

GADGET mocks used the same cosmological parameters
fΩm ¼ 0.2951;ΩΛ ¼ 0.7049;Ωb ¼ 0.0468;w¼ −1.0;σ8 ¼
0.80; ns ¼ 0.96g for simulating DM particles and ran
simulations under identical conditions with 10243 particles
in a box measuring 800 h−1Mpc.
In Fig. 11, we present a comparison of the 2PCF s2W0ðsÞ

(top) obtained from four datasets: CMASS-NGC (red
solid), COLA mock with Ωm ¼ 0.2951 (blue dashed-
dotted), GADGET with Ωm ¼ 0.2951 (orange dashed),
and PATCHY with Ωm ¼ 0.307 (green dotted). We also
display their ratios to that of CMASS-NGC, W0=WCMASS

0

(bottom). The gray shaded region represents the 2σ error
estimated from the PATCHY mocks.
Observably, utilizing the SHAM procedure by fitting the

2PCF in the range of s∈ ½4; 20� h−1Mpc to that of CMASS-
NGC, both the 2PCFs of COLA and GADGET agree with
the data on the fitting scale within the 2σ level. The COLA
and GADGET simulations do not share the same initial
condition. Therefore, they have differences caused by the
cosmic variance. Due to the use of a different Ωm in the
PATCHY simulation, 2PCF of PATCHY is essentially on
the edge of the 2σ uncertainty. Furthermore, at smaller
scales (s < 4 h−1Mpc), we observe deviations for COLA
and GADGET from the data slightly exceeding the 2σ
level. This discrepancy arises because this scale extends
beyond our fitting range in the SHAM procedure.
To further validate the consistency of the COLA mock,

we conducted a comparison of the normalized 2PCF and
MCFs derived from the CMASS-NGC data, GADGET,
and PATCHY. This comparison focuses on larger cluster-
ing scales within the range of s∈ ½15; 57� h−1Mpc, which

are relevant for the χ2 calculations [refer to Eq. (7)]. The
results are shown in Fig. 12 to illustrate the normalized
MCFs, s2Ŵ0ðsÞ (top) and Ŵ0=Ŵ

CMASS
0 (bottom). The

error bars represent the 2σ errors, estimated using the
PATCHY mocks.
It is evident that the normalized statistics for the COLA

and GADGET mocks exhibit good agreement under the
same cosmological parameter Ωm ¼ 0.2951. Both COLA
and GADGET simulations closely match the CMASS data
within approximately 2σ level. These statistics from
PATCHY are also in agreement with those from the
CMASS data at the 2σ level. Both the COLA and
GADGET simulations show one point beyond 2σ in all
four cases, essentially due to the cosmic variance. Thus, we
observe a good consistency between COLA and the high-
accuracy GADGET simulations, indicating that COLA
adequately ensures the reliability of our analysis.
For the stage-III surveys such as SDSS, the accuracy of

COLA is sufficient given the associated statistical error of
the data sample. However, for the ongoing stage-IV
surveys, the statistical error of the sample is greatly

FIG. 11. Comparison of 2PCFs s2W0ðsÞ for CMASS-NGC (red
solid), COLA mock with Ωm ¼ 0.2951 (blue dashed-dotted),
GADGET with Ωm ¼ 0.2951 (orange dashed), and PATCHY
with Ωm ¼ 0.307 (green dotted), along with their ratios to
CMASS-NGC, W0=WCMASS

0 (bottom). The gray shaded region
indicates the 2σ error estimated from the PATCHYmocks. 2PCFs
of COLA and GADGET agree with the data within 2σ on the
fitting scale (s∈ ½4; 20� h−1 Mpc) using the SHAM procedure,
while that of PATCHY resides at the boundary of 2σ due to using
the different Ωm. For scales s < 4 h−1Mpc, COLA and
GADGET deviate slightly more than 2σ, since this scale exceeds
the SHAM fitting range.
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reduced. In this case, it is necessary to improve the work of
[50] to ensure that the COLA achieves a higher degree of
accuracy. Alternatively, one can directly utilize large-scale,

high-accuracy cosmological N-body simulations that match
the stage-IV surveys such as AbacusSummit [75] and
Uchuu [76].
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