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Cosmological probes constructed in large-scale surveys are independent of the underlying theory of
gravity, and their relativistic descriptions are indeed applicable to any theory of gravity. It was shown that
the presence of fluctuations with wavelengths much larger than the characteristic scales of the surveys has
no impact on cosmological probes if the matter content is adiabatic and the Einstein equations are used. In
this paper we study the sensitivity of cosmological probes to infrared fluctuations in the Horndeski theory.
We find that the extra degree of freedom (dof) in the Horndeski scalar field can induce sensitivity to infrared
fluctuations in the cosmological probes, even when the matter components are adiabatic on large scales. A
generalized adiabatic condition including the extra dof, in contrast, guarantees that cosmological probes are
devoid of infrared sensitivity, and this solution corresponds to the adiabatic modes à la Weinberg in the
Horndeski theory, which can be removed by a coordinate transformation in the infrared limit. We discuss
the implications of our findings and the connections to the initial conditions.
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I. INTRODUCTION

The standard model of cosmology has been extremely
successful in describing cosmological observations from
small scales to very large scales. The key assumption in the
standard model is that the general theory of relativity
correctly describes gravitational interactions on large
scales, and this assumption is well tested, thanks to the
remarkably precise measurements in the solar system [1–3]
and recent detections of gravitational waves [4–10].
However, on cosmological scales where gravity is weak,
precision measurements are rather difficult, though obser-
vations of cosmic microwave background (CMB) anisot-
ropies provide tight constraints on any deviation from
general relativity in the early universe [11]. In particular,
the cosmic acceleration in the late time and the existence of
elusive dark matter in the standard model are often invoked
for the possibility that gravitational interactions might be
different on large scales in the late time (see, e.g., [12–16]
for recent reviews).
From a theoretical point of view, the Lovelock theorem

[17] states that general relativity is unique in the sense that
it is the only local theory that leads to equations of motion
that contain up to the second derivative of the four-
dimensional spacetime metric. Once the premise of the
Lovelock theorem is dropped, a plethora of alternatives
are permitted. The most well-known modification is the

Brans-Dicke theory [18], in which an extra scalar field
couples to the metric tensor, acting as an additional
gravitational degree of freedom. The Brans-Dicke scalar
traces the matter content of the universe, following the
Mach principle, and it effectively plays the role of a
spacetime-dependent gravitational coupling, different from
the Newton constant. This type of scalar-tensor theory of
gravity was further generalized by Horndeski [19] to
classify all the possibilities with one extra scalar field in
four spacetime dimensions that give rise to no more than
second-order derivatives in the equations of motion.
Theories with higher-order derivatives are often plagued
with particles with negative kinetic energy leading to
Ostrogradski instabilities, and they are not favored (see,
e.g., [20–23] for higher derivative theories without ghosts).
Recently, great attention was paid to the Horndeski

theory as an alternative to dark energy, in which a
modification of gravity on large scales is responsible for
the late-time cosmic acceleration [24–32]. The theory is
further constrained by the recent observation of a neutron
star merger with a black hole through gravitational-wave
propagation [4,6] but, despite this development, the
Horndeski theory still encompasses rich phenomenology
[12,24–26,33–39]. Here we study the Horndeski theory as a
model of gravity beyond general relativity.
The theoretical descriptions of cosmological probes such

as the CMB temperature anisotropies, galaxy clustering,
luminosity distance, and weak gravitational lensing are
independent of the theory of gravity, be it general relativity
or a metric theory such as the Horndeski theory. In fact,
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under the assumption that light propagates along null
geodesics of the metric, a geometric construction of
cosmological probes is possible, which leads to the
gauge-invariant relativistic descriptions of cosmological
probes (see [40–55]). While Newtonian contributions are
of course dominant on small scales, the relativistic con-
tributions in cosmological probes take over on large scales.
The presence of fluctuations on scales larger than the
horizon scale, therefore, indicates that cosmological probes
may be strongly affected by such large-scale (infrared)
modes.
This observation contradicts our intuition that while

cosmological probes aremodulated by infrared fluctuations,
their influence progressively wanes as thewavelength of the
fluctuations increases. Detailed studies using the relativistic
description of cosmological probes [47,56–62] show
that while infrared fluctuations can in principle lead to
pathological behavior of cosmological probes, such
infrared contributions are in fact canceled to confirm our
intuition, if the matter content is adiabatic and the Einstein
equations are used. In this paper, we attempt to answer the
question of whether general relativity is special in terms
of this infrared sensitivity in cosmological probes by
investigating large-scale solutions in the Horndeski
theory under the assumption that the matter content is
adiabatic.
In Sec. II we outline the theoretical framework under-

lying this paper. We first recapitulate the results of our
previous work on general conditions for infrared insensi-
tivity, and then present our strategy for applying these
results to the Horndeski theory. In Sec. III, we search for
infrared solutions in the Horndeski theory assuming adia-
batic conditions between the matter fields on large scales.
First, we derive the solution in the Brans-Dicke limit and
then infer the solution in the Horndeski theory. In Sec. IV
we demonstrate the connections of the infrared solutions in
the Horndeski theory to the adiabatic modes by Weinberg.
In Sec. V we conclude and discuss our results.

II. THEORETICAL FRAMEWORK

In this section, we introduce the concept of infrared
sensitivity of cosmological probes, as presented in a
previous paper [63]. After summarizing the key results
that characterize the infrared sensitivity, we review the
Horndeski theory of gravity, which we will use as a
gravitational theory beyond general relativity.

A. General conditions for infrared insensitivity
in any gravity theories

Here we briefly summarize the main findings in [63]
for the impact of infrared fluctuations on cosmo-
logical probes. Consider a perturbed Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime with a line element
given by

ds2 ¼ −a2ð1þ 2αÞdη2 − 2a2∂iβdηdxi

þ a2½ð1þ 2φÞδij þ 2∂i∂jγ�dxidxj; ð1Þ

where aðηÞ is the scale factor as a function of conformal
time, xi are comoving coordinates, and αðη; xÞ, βðη; xÞ,
γðη; xÞ, and φðη; xÞ are the scalar metric perturbations
expressed in a generic gauge. We have assumed spatially
flat slices (K ¼ 0), and throughout the paper we will
restrict our attention to linear-order scalar perturbations.
We specify the matter content of the universe as a
perfect fluid consisting of a mixture of pressureless matter,
denoted by the subscript m, and radiation, denoted by the
subscript γ . The energy-momentum tensor of such a perfect
fluid reads

−T0
0 ¼ ρ ¼ ρm þ ργ; Ti

j ¼ pδij ¼ pγδ
i
j;

−T0
i ¼ ðp̄þ ρ̄Þ∂iv ¼ ρ̄m∂ivm þ 4

3
ρ̄γ∂ivγ; ð2Þ

where ρ, p, and v are the total energy density, pressure, and
velocity potential of the fluid, respectively. Quantities with
a subscript refer to the individual components, and we
denote background FLRW fluid quantities with an overbar.
In [63] we have shown that if the fluid quantities above

satisfy certain relations, then cosmological probes of large-
scale structure and CMB temperature anisotropies do not
show a pronounced sensitivity to perturbations with wave-
lengths much larger than the distance between the observer
and the source. In other words, the cosmological probes are
affected by longer wavelength perturbations with a pro-
gressively smaller impact, vanishing in the limit the wave-
length becomes infinite. We call such long-wavelength
perturbations infrared perturbations, and the conditions for
infrared insensitivity in [63] guarantee the absence of
infrared sensitivity for cosmological probes, because con-
tributions of such infrared fluctuations cancel each other.
Such conditions can be conveniently expressed by intro-
ducing the comoving-gauge curvature perturbations R and
the uniform-density gauge curvature perturbation ζ. These
curvature perturbations are gauge invariant at linear order in
perturbations and are defined as

RI ≔ φ −HvI; ζI ≔ φ −H
δρI
ρ̄0I

; ð3Þ

where the subscript I indicates that the fluid quantities on
the right-hand side are calculated for a single species,
which in our case is either pressureless matter (I ¼ m) or
radiation (I ¼ γ). When no subscript is specified, the
definitions in Eq. (3) apply to the total fluid. The general
conditions for the absence of infrared sensitivity in the
scalar sector are derived in [63] as
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δρm
ρ̄0m

¼δργ
ρ̄0γ

; Rm¼ ζm; ∇vmðηzÞ¼∇vγðηzÞ; ð4Þ

where the equality requirement holds only on sufficiently
large scales and at all times, except for the relative velocity
which only needs to vanish at the redshift of the source,
corresponding to the conformal time ηz.
Given a generic scalar perturbation fðxÞ in the theoreti-

cal description of a probe with characteristic comoving size
r̄, e.g., the comoving distance of the last scattering surface
r̄� for the CMB temperature anisotropies, we can define the
long-wavelength contribution fLðxÞ by smoothing fðxÞ in
real space on a scale R ≫ r̄. Independently of the details of
the smoothing, fLðxÞ can be written in a spatial expansion
such that the terms in the expansion with the lowest number
of spatial derivatives dominate for an appropriate choice of
sufficiently large R. For a spatial expansion on the line of
sight xi ¼ r̄ni we derive the following expression for long-
wavelength fluctuations:

fLðη; xÞ ¼ fLðηÞ þ xi∂ifLðηÞ þOðx2Þ
≕ f0ðηÞ þ r̄f1ðη; nÞ þOðx2Þ: ð5Þ

In [63] we showed that the infrared sensitivity is controlled
by the first two coefficients of the above spatial expansion;
hence, our conditions in Eq. (4) apply to the coefficients f0
and f1 of the perturbations in Eq. (4). When the general
conditions in Eq. (4) are satisfied, we proved in [63] that the
first two coefficients of the luminosity distance fluctuation
δDL [59,60,64–66], galaxy clustering δg [47,56–58,67],
and the CMB temperature anisotropies Θ [61,68] com-
pletely vanish:

ðδDLÞ0;1 ¼ 0; ðδgÞ0;1 ¼ 0; Θ0;1 ¼ 0: ð6Þ

We recall that δDL and δg are essentially the fluctuations of
the physical area and volume occupied by the source,
together with the matter density fluctuations at the source
position, while Θ is essentially the same as the observed
redshift fluctuations, assuming that recombination takes
place instantaneously at the temperature set by atomic
physics. Despite the presence of numerous relativistic
contributions in the first two coefficients of the spatial
expansion, the conditions for their precise cancellation in
the cosmological probes δDL, δg, and Θ are independent of
the underlying theory of gravity (or valid for any gravity
theories), and it only requires that light follows null
geodesics of the metric in Eq. (1) from the source to the
position of the observer.
The first equality in Eq. (4) is the large-scale adiabatic

condition for the matter content of the universe. In terms of
total fluid quantities it reads

δp
p̄0 ¼

δρ

ρ̄0
¼ δρm

ρ̄0m
¼ δργ

ρ̄0γ
: ð7Þ

Throughout this paper we assume that pressureless matter
and radiation satisfy the adiabaticity condition in Eq. (7) on
large scales, and we do not discuss the mechanism by
which adiabaticity is established on such large scales. A
direct consequence of adiabaticity is that ζ is conserved in
time on large scales:

ζ ¼ ζm ¼ ζγ; ζ0 ¼ 1

3ðp̄þ ρ̄Þ2 ðρ̄
0δp − p̄0δρÞ ¼ 0; ð8Þ

which originates from the covariant conservation of the
energy-momentum tensor. All the equivalences hold for the
first two coefficients of a spatial expansion, but we suppress
the subscripts 0 and 1 and simply refer to them as being
valid on large scales. Given the assumption that matter
components are adiabatic, if the following condition for the
total matter component holds

R ¼ ζ; ð9Þ

the general conditions for infrared insensitivity are fully
satisfied. In fact, since pressureless matter and radiation
redshift differently, the above condition implies

Rm ¼ Rγ ¼ R ¼ ζ ¼ ζm ¼ ζγ; vm ¼ vγ; ð10Þ

which are the stronger version of Eq. (4). Again, these
equalities hold only on large scales.
The equality of Eq. (9) is a condition that should

be checked in any theory of gravity. For general relativity,
it is well-known that the condition R ¼ ζ is automatically
satisfied by the Einstein equations if perturbations
are adiabatic on large scales. Here we investigate whether
R ¼ ζ also holds in Horndeski gravity theory, or in other
words, whether adiabaticity in the matter content alone is
sufficient to guarantee the infrared insensitivity of cosmo-
logical probes beyond the Einstein gravity.

B. Horndeski theory

The Horndeski theory of gravity is the most general
scalar-tensor theory in four dimensions with up to second-
order differential covariant equations of motion, which
allows no degree of freedom for ghosts and thereby ensures
the stability of the theory (see, e.g., [24–27] for recent
reviews). We present the basic equations of the Horndeski
theory of gravity and apply them to cosmology.
The Horndeski theory is specified by the action [19]

SH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðL2 þ L3 þ L4 þ L5Þ; ð11Þ

and the individual Lagrangians are
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L2 ¼ G2; L3 ¼ G3□ϕ;

L4 ¼ G4Rþ ∂XG4½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;

L5 ¼ −
1

6
∂XG5½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�

þG5Gμν∇μ∇νϕ; ð12Þ

where ϕðη; xÞ is the additional scalar field that is respon-
sible for gravity together with the metric tensor gμνðη; xÞ.
The functions Giðϕ; XÞ, with i ¼ 2; 3; 4; 5, are arbitrary
functions of ϕ and its kinetic term X ¼ − 1

2
gμν∇μϕ∇νϕ.

Finally, Gμν is the Einstein tensor, R is the Ricci scalar, and
□ ¼ gμν∇μ∇ν is the D’Alambert operator in curved space-
time. Horndeski [19] proved that the sum of the above
Lagrangians Li keeps the field equations up to second-
order derivatives, so that Ostrogradsky [69] instabilities do
not affect the theory.

The recent observation of a neutron star merger with a
black hole [4,6] put tight constraints on the Lagrangians in
Eq. (12) by the condition that gravitational waves propa-
gate at the speed of light. Therefore, the observationally
viable action for the Horndeski theory reduces to [70–73]

SH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðG4ðϕÞRþG3ðϕ; XÞ□ϕþ G2ðϕ; XÞÞ:

ð13Þ

In this paper we restrict our attention to this subset of the
Horndeski theory.
Varying the action in Eq. (13) with respect to the metric

gμν, and with respect to the scalar field ϕ, we obtain the
field equations and the Klein-Gordon-like equation,
respectively,

−
1

2
G2;X∇μϕ∇vϕ −

1

2
G2gμν þ

1

2
G3;X□ϕ∇μϕ∇vϕþ∇ðμG3∇vÞϕ −

1

2
gμν∇λG3∇λϕ

þG4Gμν þ gμvðG4;ϕ□ϕ − 2XG4;ϕϕÞ −G4;ϕ∇μ∇vϕ − G4;ϕϕ∇μϕ∇vϕ ¼ 1

2
Tμν; ð14Þ

−∇μG2;X∇μϕ −G2;X□ϕ −G2;ϕ þ 2G3;ϕ□ϕþ∇μG3;ϕ∇μϕþ∇μG3;X□ϕ∇μϕ

þ∇μG3;X∇μX þ G3;X½ð□ϕÞ2−ð∇α∇βϕÞ2 − Rμv∇μϕ∇vϕ� − G4;ϕR ¼ 0; ð15Þ

where the energy-momentum tensor Tμν is associated with
the matter Lagrangian. Independently of the gravity sector,
the energy-momentum tensor is covariantly conserved as a
consequence of diffeomorphism symmetry

∇μTμν ¼ 0: ð16Þ

The phenomenology of Horndeski gravity is very rich
(see, e.g., [12,24–26,33–39]), and for some given choices
of free functions it describes well-known classes of scalar-
tensor theories. For example, Brans-Dicke theory [18] is
obtained in the limit

G2ðϕ;XÞ→
ω

ϕ
X; G3ðϕ;XÞ→0; G4ðϕÞ→

1

2
ϕ: ð17Þ

Finally, general relativity is recovered forG4 ¼ ð16πGNÞ−1
with vanishing G2 and G3 in Eq. (13).

The simplest cosmological solution governed by the
Horndeski theory is the evolution of a spatially flat FLRW
universe specified by the background metric

ds2 ¼ −a2ðηÞdη2 þ a2ðηÞδijdxidxj: ð18Þ

Given the high degree of symmetry of the homogeneous
and isotropic FLRW metric, the only consistent scalar field
configuration is a time-dependent function ϕ̄ðηÞ, and the
matter content is described by the total background energy
density ρ̄ðηÞ and pressure p̄ðηÞ. A straightforward sub-
stitution of the FLRW quantities in the field equations (14)
leads to the generalization of the Friedmann equations in
general relativity, while the same substitution in Eq. (15)
leads to the background Klein-Gordon equation:

a2ρ̄ ¼ 1

2
a2G2 þ 3H2G4 −

1

2
ϕ̄02G2;X −

3

2a2
Hϕ̄03G3;X þ 1

2
ϕ̄02G3;ϕ þ 3Hϕ̄0G4;ϕ;

a2p̄ ¼ −
1

2
a2G2 − ðH2 þ 2H0ÞG4 þ

1

2a2
ϕ̄02ðϕ̄00 − ϕ̄0ÞG3;X þ 1

2
ϕ̄02G3;ϕ − ðϕ̄00 þHϕ̄0ÞG4;ϕ − ϕ̄02G4;ϕϕ; ð19Þ
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a4ð3p̄ − ρ̄Þ ¼ −a2ðϕ̄00 þ 2Hϕ̄0ÞG4G2;X − ϕ̄02ðϕ̄00 −Hϕ̄0ÞG4G2;XX þ a4G4G2;ϕ − a2ϕ̄02G4G2;ϕX

− 3ϕ̄0ð2Hϕ̄00 þH0ϕ̄0ÞG4G3;X −
3

a2
Hϕ̄03ðϕ̄00 −Hϕ̄0ÞG4G3;XX þ 2a2ðϕ̄00 þ 2Hϕ̄0ÞG4G3;ϕ

þ ϕ̄02ðϕ̄00 − 4Hϕ̄0ÞG4G3;ϕX − 2a4G2G4;ϕ þ
1

2
a2ϕ̄02G2;XG4;ϕ þ

3

2
ϕ̄02ϕ̄00G3;XG4;ϕ

þ a2ϕ̄02G3;ϕG4;ϕ − 3a2ðϕ̄00 þ 2Hϕ̄0ÞG2
4;ϕ þ a2ϕ̄02G4G3;ϕϕ − 3a2ϕ̄02G4;ϕG4;ϕϕ; ð20Þ

where a prime indicates derivatives with respect to the
conformal time η, and H ¼ a0

a is the conformal Hubble
parameter.
The conservation of the energy-momentum tensor in

Eq. (16) reduces to

ρ̄0 ¼ −3Hðp̄þ ρ̄Þ; ð21Þ

which is the same relation as in general relativity.

III. INFRARED SOLUTIONS
OF THE HORNDESKI THEORY

In this section we derive the linear-order Horndeski field
equations in the uniform scalar-field gauge and investigate
for infrared solutions. To simplify the complicated equa-
tions while preserving the physical picture, we resort to the
Brans-Dicke limit of Horndeski gravity to find infrared
solutions and use them to infer the solutions of the
Horndeski theory.

A. Linear-order evolution equations
in Horndeski cosmology

At linear order in perturbations the line element is given in
Eq. (1), and the scalar field ϕðxÞ can be split as

ϕ̄ðηÞ þ δϕðη; xÞ. The covariant conservation of the energy-
momentum tensor in Eq. (16) at linear order becomes

δρ0 þ 3Hðδpþ δρÞ þ 3ðp̄þ ρ̄Þφ0 ¼ ðp̄þ ρ̄ÞΔv; ð22Þ

for the time component, and

∂i

�
αþ δp

p̄þ ρ̄
−

1

a4ðp̄þ ρ̄Þ ∂η½a
4ðp̄þ ρ̄Þv�

�
¼ 0; ð23Þ

for the space component. Both equations are valid in any
choice of gauge condition, and again they are independent of
gravity theories in Jordan frames.1

To facilitate the computation of the linear-order
Horndeski field equations we exploit the gauge freedom
in the diffeomorphism symmetry and choose the uniform
scalar-field gauge defined by

ϕu ≡ ϕ̄ðηÞ; δϕu ≡ 0; ð24Þ

as the temporal gauge condition, and γ ≡ 0 as our spatial
gauge condition, so that there is no remaining gauge
freedom. Expanding Eq. (14) to linear order in perturba-
tions, and taking the uniform scalar-field gauge we derive

a2

2
δρu ¼

�
−6HðHG4 þ ϕ̄0G4;ϕÞ þ

ϕ̄04

2a2

�
G2;XX −G3;ϕX þ 12

ϕ̄0 HG3;X þ 3

a2
Hϕ̄0G3;XX

�

þ ϕ̄02
�
G2;X

2
−G3;ϕ

��
αu þ 3

�
2HG4 −

ϕ̄03G3;X

2a2
þ ϕ̄0G4;ϕ

��
φ0
u þ

Δβu
3a

�
− 2G4Δφu; ð25Þ

a2

2
ðp̄þ ρ̄Þ∂ivu ¼

�
2HG4 −

ϕ̄03G3;X

2a2
þ ϕ̄0G4;ϕ

�
∂iαu − 2G4∂iφ

0
u; ð26Þ

0 ¼ ∂i∂j

�
G4

�
βu
a

�0
þ
�
βu
a

�
ð2HG4 þ ϕ̄0G4;ϕÞ −G4ðαu þ φuÞ

�
; ð27Þ

1The expressions for the observables in the Jordan and Einstein frames coincide because the conformal transformation that relates the
two frames does not affect light propagation. However, since the energy-momentum tensor is not covariantly conserved in the Einstein
frame, the conditions for infrared insensitivity will take a different form in the Einstein frame.
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a2

2
δpu ¼

�
ðH2 þ 2H0ÞG4 þ

1

4
ϕ̄02G2;X −

ϕ̄02

a2
ðϕ̄00 −Hϕ̄0ÞG3;X −

ϕ̄04

4a2
ðϕ̄00 −Hϕ̄0ÞG3;XX −

1

2
ϕ̄02G3;ϕ

−
ϕ̄04

4a2
G3;ϕX þ ðϕ̄00 þHϕ̄0ÞG4;ϕ þ ϕ̄02G4;ϕϕ

�
αu þ

�
HG4

1

4a2
ϕ̄03G3;X þ 1

2
ϕ̄0G4;ϕ

�
α0u

− ð2HG4 þ ϕ̄0G4;ϕÞ
�
φ0
u þ

Δβu
3a

�
− G4

�
φ00
u þ

�
Δβu
3a

�0
−
Δαu
3

−
Δφu

3

�
; ð28Þ

which correspond respectively to the time-time component,
the time-space components, the traceless spatial compo-
nents with i ≠ j, and the spatial trace.
As our interest lies in the long-wavelength fluctuations,

the Laplacians in the above equations can be ignored
considering only the lowest-order coefficients f0 and f1
in our spatial expansion. We remark that Eqs. (23) and (26)
are trivially satisfied by f0, while Eq. (27) involves only
orders higher than f1 due to the spatial derivatives applied
to the equation. As noted byWeinberg [74], since f0 and f1
need to be the large-scale limit of any physical solutions,
the solutions to Eqs. (23), (26), and (27) should be
continuous on all scales, so that we impose the equality
without overall spatial derivatives.

B. Brans-Dicke limit of the Horndeski theory

A simple analytical solution of the background equations
can be derived in the Brans-Dicke limit [24]. Taking the
limit in Eq. (17) the background equations in Sec. II B
become

3Hϕ̄0 þ 3H2ϕ̄ −
ω

2

ϕ̄02

ϕ̄
¼ a2ρ̄;

ϕ̄00 þHϕ̄0 þH2ϕ̄þ 2H0ϕ̄þ ω

2

ϕ̄02

ϕ̄
¼ −a2p̄;

ϕ̄00 þ 2Hϕ̄0 ¼ ρ̄ − 3p̄
3þ 2ω

a2: ð29Þ

Combining these equations we obtain the background
governing equation for the scalar field

ϕ̄00 þ 2Hϕ̄0 −
3

ω
ðH2 þH0Þϕ̄ −

1

2

ϕ̄02

ϕ̄
¼ 0; ð30Þ

which does not contain matter fields directly. We look for
power-law solutions of the form

aðηÞ ∝ ηn; ϕ̄ðηÞ ∝ ηm; ð31Þ

by assuming a constant equation of state p̄ ¼ Wρ̄, and
plugging the power-law ansatz in the first equation of (29)
we obtain

m ¼ 2 − nð1þ 3WÞ: ð32Þ

Finally, using the governing equation for the scalar field
(30) we derive the exponents

n ¼ 1þ ωð1 −WÞ
1þ ðω=2Þð1þ 2W − 3W2Þ ;

m ¼ 1 − 3W
1þ ðω=2Þð1þ 2W − 3W2Þ ; ð33Þ

and the power-law solutions of the background equations in
Brans-Dicke gravity are

aðηÞ ¼ a0

�
η

η0

� 1þωð1−WÞ
1þðω=2Þð1þ2W−3W2Þ;

ϕ̄ðηÞ ¼ 1

8πGN

�
η

η0

� 1−3W
1þðω=2Þð1þ2W−3W2Þ; ð34Þ

where the proportionality constants are taken to match the
general-relativity limit for ω → ∞:

aðηÞ ¼ a0

�
η

η0

� 2
1þ3W

; ϕ̄ðηÞ ¼ 1

8πGN
; ð35Þ

where η0 is an arbitrary reference time at which the scale
factor is a0 and GN is the Newton gravitational constant.
Noteworthy limits of the background solutions are the

case of matter-dominated era (MDE) where the universe is
filled only by pressureless matter, i.e., W ¼ 0,

aðηÞ ¼ a0

�
η

η0

� 1þω
1þω=2

; ϕ̄ðηÞ ¼ 1

8πGN

�
η

η0

� 2
2þω

; ð36Þ

and the case of radiation-dominated era (RDE) with
W ¼ 1=3,

aðηÞ ¼ a0

�
η

η0

�
; ϕ̄ ¼ 1

8πGN
: ð37Þ

The case of MDE contains nontrivial power-law solutions
that indeed reduce to the FLRW solutions of general
relativity in the limit ω → ∞. On the other hand, the
scaling of the RDE solution coincides with that of general
relativity, without any dependence on the parameter ω of
the Brans-Dicke theory as the scalar field in RDE becomes
nondynamical.
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Taking the limit in Eq. (17) of the linear-order field
equations of the Horndeski theory in Sec. III A, we derive
the linear-order evolution equations in Brans-Dicke theory
in the uniform scalar-field gauge. The time-time component
of the field equations reads

αu

�
ω
ϕ̄02

ϕ̄
− 6Hϕ̄0 − 6H2ϕ̄

�
þ 3φ0

uðϕ̄0 þ 2Hϕ̄Þ ¼ a2δρu;

ð38Þ
while the time space

∂iαuðϕ̄0 þ 2Hϕ̄Þ − 2ϕ̄∂iφ
0
u ¼ a2ðρ̄þ p̄Þ∂ivu; ð39Þ

the traceless spatial components with i ≠ j,

∂i∂j

�
ϕ̄

�
βu
a

�0
þ
�
βu
a

�
ðϕ̄0 þ 2Hϕ̄Þ − ϕ̄ðαu þ φuÞ

�
¼ 0;

ð40Þ

and the spatial trace

αu

�
ϕ̄00 þHϕ̄0 þH2ϕ̄þ 2H0ϕ̄þ ω

2

ϕ̄02

ϕ̄

�
− ϕ̄φu

00

þ ðϕ̄0 þ 2Hϕ̄Þðα0u − 2φ0
uÞ ¼

a2

2
δpu: ð41Þ

Infrared solutions in the Brans-Dicke theory will be
computed in Sec. III C together with infrared solutions
in the Horndeski theory.

C. Infrared sensitivity of cosmological probes
in the Horndeski theory

Having derived the Horndeski field equations we
are ready to address the issue of infrared sensitivity of
the cosmological probes by studying the conditions in
Sec. II A, i.e., the difference between the two curvature
perturbations R and ζ in the Horndeski theory. From the
definitions of the curvature perturbations in Eq. (3) a
straightforward substitution yields

R − ζ ¼ −
1

3ðp̄þ ρ̄Þ ½δρþ 3Hðp̄þ ρ̄Þv�: ð42Þ

We remark that the difference in the curvature perturbations
is gauge invariant at linear order in perturbations; hence, its
computation is independent of our gauge choice. Using the
time-time and time-space components of the field equa-
tions (25) and (26), we can rearrange the equation forR − ζ
in the uniform scalar-field gauge (δϕu ≡ 0) as

−3a2ðp̄þ ρ̄ÞðR − ζÞ ¼ ϕ̄0

2

�
9

a2
Hϕ̄02G3;X þ 3

a4
Hϕ̄04G3;XX þ ϕ̄0ðG2;X − 2G3;ϕÞ

þ ϕ̄03

a2
ðG2;XX −G3;ϕXÞ − 6HG4;ϕ

�
αu þ

ϕ̄0

2

�
6G4;ϕ −

3

a2
ϕ̄02G3;X

�
φ0
u; ð43Þ

where the Laplacians in Eq. (25) have been neglected as we
are interested in the large-scale limit, i.e., when only the
two lowest-order coefficients in the spatial expansion in
Eq. (5) are considered. Here we look for solutions to
Eq. (43) under the assumption that the matter content
satisfies the adiabaticity condition in Eq. (7) on large scales.
The covariant conservation of the energy-momentum

tensor in Eqs. (22) and (23), together with the adiabatic
condition, allows us to derive the following expressions
that relate the metric perturbations to the fluctuations in the
matter fields:

φ0
u ¼ −

3Hðp̄0 þ ρ̄0Þδρu þ ρ̄0δρ0u
3ðp̄þ ρ̄Þρ̄0 ;

αu ¼
�
−1þ H0

H2
−

p̄0

Hðp̄þ ρ̄Þ
�
ðR − ζÞ −R0

H

þ 1

ρ̄02
½ðHρ̄ − ρ̄00Þδρu þ δρ0u�; ð44Þ

where we used Eq. (42) to replace the velocity potential v,
and we evaluated the perturbations in the uniform scalar-
field gauge. With such results we can recast Eq. (43) to the
simple form

C1ðR − ζÞ þ C2δρu þ C3δρ0u þ C4R0 ¼ 0; ð45Þ

where we defined the following background functions of
conformal time:

C1 ¼ H
�
−1þ H0

H2
−

p̄0

Hðp̄þ ρ̄Þ
�
C4 − 3a2ðp̄þ ρ̄Þ; ð46Þ

C2 ¼ −
ϕ̄0

2a2ðp̄þ ρ̄Þ
�
p̄0 þ ρ̄0

p̄þ ρ̄

�
ðϕ̄02G3;X − 2a2G4;ϕÞ

þH
�
H
ρ̄0

−
ρ̄00

ρ̄02

�
C4; ð47Þ
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C3 ¼
H
ρ̄0
C4 −

ϕ̄0

2a2ðp̄þ ρ̄Þ ðϕ̄
02G3;X − 2a2G4;ϕÞ; ð48Þ

C4 ¼
ϕ̄0

2H

�
9

a2
Hϕ̄02G3;X þ 3

a4
Hϕ̄04G3;XX þ ϕ̄0ðG2;X

− 2G3;ϕÞ þ
ϕ̄03

a2
ðG2;XX −G3;ϕXÞ − 6HG4;ϕ

�
: ð49Þ

Thanks to the simple structure of the ordinary differential
equation in Eq. (45) it is evident that an infrared solution
with R ¼ ζ in the Horndeski theory is guaranteed if
δρu ¼ 0. We discuss this solution later, and we first check
if other solutions with R ¼ ζ but δρu ≠ 0 exist. In
particular, since ζ0 ¼ 0, we look for more general solutions
with R0 ¼ 0.
As an explicit example, we take the Brans-Dicke limit in

Eq. (17) and consider a universe filled with pressureless
matter. Using the background solution for MDE in Eq. (36),
the governing equation (45) simplifies to

1

ρ̄0

�
η

η0

�6þ6ω
2þω ½ð12þ 11ωÞδρu − ωð2þ ωÞηδρ0u�

þ 3ð3þ 2ωÞð4þ 3ωÞ2ðRm − ζmÞ ¼ 0; ð50Þ

where ρ̄0 is the background density value at the reference
time η0. With a power-law ansatz for the density fluctuation
in the uniform scalar-field gauge

δρu ¼ ρ̄0δu

�
η

η0

�
r
; ð51Þ

we derive two solutions to Eq. (50): R0
m ¼ ζ0m ¼ 0 but

Rm ≠ ζm,

δρu ¼ −3ρ̄0ð4þ 3ωÞðRm − ζmÞ
�
η

η0

�
−6þ6ω

2þω

; ð52Þ

and one for which R0
m ¼ ζ0m ¼ 0 and Rm ¼ ζm,

δρu ¼ ρ̄0δu

�
η

η0

�12þ11ω
ωð2þωÞ

; ð53Þ

where the constant amplitude δu is undetermined. Note,
however, that as we have only used the time-time and time-
space components of the field equations, together with the
conservation of the energy-momentum tensor, we need to
verify if these solutions also satisfy the spatial trace
component of the field equations. In Brans-Dicke gravity
the field equation for the spatial trace is given in Eq. (41),
and it simplifies in MDE as

6ð10þ 19ωþ 9ω2Þδρu þ 2ð2þ ωÞð9þ 8ωÞ
�
η

η0

�
δρ0u

þ ð2þ ωÞ2
�
η

η0

�
2

δρ00u ¼ 0; ð54Þ

where we used Eq. (44) again and looked for solution with
R0

m ¼ 0. A general solution to this second-order ordinary
differential equation is given in terms of power laws:

δρu ¼ ρ̄0δu1

�
η

η0

�
−10þ9ω

2þω þ ρ̄0δu2

�
η

η0

�
−6þ6ω

2þω

: ð55Þ

The only nontrivial solution with δρu ≠ 0 that is consistent
with the field equations is the one in Eq. (52) with
Rm ≠ ζm, for which the cosmological probes are sensitive
to the presence of infrared fluctuations.
Although our computation has been carried out only for

the simple limit of Brans-Dicke gravity in MDE, the
conclusion is also applicable to the more general
Horndeski theory, but of course with more involved
algebra. For instance, a nontrivial solution to Eq. (45) with
R ¼ ζ implies the following profile for the density fluc-
tuation in the uniform-field gauge:

δρu ¼ ρ̄0δu exp

�
−
Z

η

η0

dη̃
C2
C3

�
; ð56Þ

which can then be substituted in the spatial trace compo-
nent in Eq. (28). With the adiabatic condition on large
scales and by employing Eq. (44) the resulting ordinary
differential equation takes the functional form

F½Gi; ϕ̄; a; p̄; ρ̄�δu ¼ 0; ð57Þ

where F½Gi; ϕ̄; a; p̄; ρ̄� is an involved expression that
contains derivatives of the background Horndeski quan-
tities. Given the unique time dependence of the background
quantities, the function F is a nontrivial function of time.
Therefore, the only solution with R ¼ ζ to Eq. (57) is one
with δρu ¼ 0 on large scales. In conclusion, there is only
one infrared solution in Horndeski gravity, for which the
cosmological probes are insensitive to the presence of
infrared fluctuations. This solution is characterized by

φu ≡R ¼ ζ; βu ¼
R
aG4

Z
η

0

dη̃ a2G4;

αu ¼ vu ¼ δρu ¼ δpu ¼ 0; ð58Þ

whereR is set by the initial conditions and the solution for
βu is obtained integrating Eq. (27). Importantly, the
solution in general relativity without infrared sensitivity
has the same structure, with the only difference that G4 is
replaced by ð16πGNÞ−1, which is indeed true in the general-
relativity limit of the Horndeski theory.
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IV. ADIABATIC MODES IN THE
HORNDESKI THEORY

Here we attempt to gain a better understanding of the two
solutions in the Horndeski theory, with and without infrared
sensitivity of cosmological probes by connecting them
to diffeomorphism symmetry in the infrared limit, i.e.,
adiabatic modes à la Weinberg [74]. Given a general
but infinitesimal coordinate transformation x̃μðxÞ ¼
xμ þ ξμðxÞ, the scalar field fluctuation gauge transforms
as [75,76]

fδϕ ¼ δϕu − ξ0ϕ̄0 ¼ −ξ0ϕ̄0; ð59Þ

and the fluid quantities transform as 16

eδρ ¼ δρu − ξ0ρ̄0; fδp ¼ δpu − ξ0p̄0;

∂iṽ ¼ ∂ivu − ∂iξ
0: ð60Þ

The metric perturbations in Eq. (1) also gauge transform as

φ̃δijþ∂i∂jγ̃¼φuδij−Hξ0δij−
1

2
∂iξ

kδkj−
1

2
∂jξ

kδki;

α̃¼αu−
1

a
ðaξ0Þ0; ∂iβ̃¼∂iβu−∂iξ

0þξ0jδij;

ð61Þ

where γ ≡ 0 in the uniform scalar-field gauge. If the gauge
vector ξμ goes to zero at spatial infinity, which is the
ordinary case (or small gauge transformations), then there
exists no residual gauge freedom in the uniform scalar-field
gauge. However, if ξμ induces instead a large gauge
transformation that is not bounded in space, the uniform
scalar-field gauge has residual gauge freedom in the
infrared limit [77].
We exploit this redundancy to build physical solutions

from gauge modes as shown in Weinberg [74]. Consider a
background solution of Horndeski gravity with no pertur-
bations, and perform a coordinate transformation. The
gauge transformation equations (59), (60), and (61) can
be used to show how gauge modes are generated as a
consequence of the coordinate transformation of the back-
ground solution without any perturbations:

δϕ

ϕ̄0 ¼
δρ

ρ̄0
¼ δp

p̄0 ¼ −ξ0; ∂iv ¼ −∂iξ0;

α ¼ −
1

a
ðaξ0Þ0; ∂iβ ¼ −∂iξ0 þ ξ0jδij;

φδij þ ∂i∂jγ ¼ −Hξ0δij − ∂ðiξjÞ: ð62Þ

These perturbation solutions are equivalent to the back-
ground solution, which can be removed again; hence they
represent the residual gauge mode in the infrared limit of
vanishing Fourier mode k ¼ 0. With our choice of the

uniform scalar-field gauge condition in Eq. (24), the
temporal part of the transformation is fixed ξ0 ¼ 0, and
the matter content as well as the scalar field satisfies the
adiabatic condition. Moreover, the spatial gauge condition
γ ≡ 0 constrains the expression for the curvature perturba-
tion φu to be related to spatial part ξi of the transformation
in a specific way. Considering a large gauge transformation
of the form ξμðxÞ ¼ λðηÞxiδμi (see [78] for more sophisti-
cated choices), the only nonvanishing fictitious perturba-
tions in the uniform scalar-field gauge conditions are

φu ≡ R ¼ ζ ¼ −
1

3
λ; βu ¼ fðηÞ þ 1

2
λ0xixjδij: ð63Þ

Though this solution is a pure gauge mode at zero Fourier
mode k ¼ 0, it is possible to promote it to a physical
solution by demanding that the perturbation solutions in
Eq. (63) satisfy the field equations in Eqs. (26) and (27) at
k > 0. The physical solution is

λ0 ¼ 0; fðηÞ ¼ −
λ

3aG4

Z
η

0

dη̃ a2G4; ð64Þ

and it is the adiabatic mode à laWeinberg in the Horndeski
theory.
Remarkably, we notice that the solution as an adiabatic

mode is equivalent to the solution in Sec. III C [Eq. (58)]
without infrared sensitivity in the cosmological probes. It is
now clear that the physical condition for such a solution is
the generalized adiabaticity among all matter content
including the Horndeski scalar field2:

δpu

p̄0 ¼ δρu
ρ̄0

¼ δϕu

ϕ̄0 ¼ 0: ð65Þ

Notice that the last equality is specific to the uniform scalar-
field gauge, while the other equalities are valid in any
gauge. The other infrared solution in Sec. III C [Eq. (52)]
with infrared sensitivity (R0 ¼ 0, R ≠ ζ) is in fact not
adiabatic in this generalized sense:

δρu
ρ̄0m

¼ ð2þ ωÞð4þ 3ωÞ
2þ 2ω

ðRm − ζmÞη ≠
δϕu

ϕ̄0
m

¼ 0: ð66Þ

We conclude that if all matter fields satisfy the generalized
adiabatic condition, the general covariance of the theory
ensures the existence of a long-wavelength adiabatic
solution, which is continuously mapped into a pure gauge
mode at k ¼ 0 that can be removed by a coordinate
transformation; i.e., the presence of such infrared fluctua-
tions cannot affect cosmological probes. Given that this

2In this generalized sense we consider the Horndeski scalar
field ϕ as part of the matter content, though it is actually
contributing to the gravity sector and does not have an en-
ergy-momentum tensor with a simple fluid description.
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conclusion is valid in general relativity beyond linear-order
perturbations [62], we suspect that our conclusion in the
Horndeski theory is likely to remain valid nonlinearly.

V. SUMMARY AND DISCUSSION

Cosmological observations in large-scale surveys
are used to construct cosmological probes such as
galaxy clustering, weak gravitational lensing, luminosity
distance, and cosmic microwave background anisotropies.
Theoretical descriptions of the cosmological probes show
that they can be constructed with a minimal assumption that
the light propagation follows null geodesics in a four-
dimensional metric theory, independently of the underlying
theory of gravity. Furthermore, their relativistic descrip-
tions revealed that cosmological probes are affected by
numerous relativistic effects [43–47,50–52,54,55,79].
However, the presence of relativistic effects in cosmo-
logical probes such as gravitational potential can be
problematic, because a change in the uniform gravitational
potential cannot have a physical impact on local measure-
ments according to the equivalence principle. Applied to
cosmological probes, any long-wavelength fluctuations can
modulate the cosmological probes, but fluctuations with a
wavelength larger than the separation of the observer and
the source should have a progressively diminishing impact
as the wavelength becomes larger. This is indeed the case in
general relativity—long wavelength or infrared fluctuations
exist in cosmological probes, but they add up to cancel each
other only if the Einstein equations are used.
Motivated by this observation, we have derived [63] the

general conditions without using the Einstein equations,
under which cosmological probes are devoid of such
infrared sensitivity. We have shown in this work that
the general conditions can be rephrased as the adiabatic
conditions for the matter content and the equality of the
comoving gauge curvature perturbationR and the uniform-
density gauge curvature perturbation ζ. In general relativity,
the equality is guaranteed by the Einstein equations in the
infrared, and the adiabatic condition imposes that ζ is
constant in the infrared. To go beyond Einstein, we have
investigated the infrared solutions first in the Brans-Dicke
theory and then in the Horndeski theory. Despite the
adiabaticity in the matter content, there exist solutions in
the infrared where the general condition R ¼ ζ is violated
and hence retain the sensitivity to infrared fluctuations.
This class of solutions in the Horndeski theory could lead to
extraordinary phenomena such as modulation by super-
horizon fluctuations or even pathology such as infrared
divergence, if infrared fluctuations are scale invariant to the
limit k ¼ 0.
The Horndeski theory with the Brans-Dicke theory

included admits general relativity as a limiting case, and
hence solutions that satisfy the general conditions are
expected to exist in the Horndeski theory. Indeed, we have
found an explicit solution in the Brans-Dicke theory and

thereby inferred a solution in the Horndeski theory. This
class of solutions in Eq. (58) takes the same form as in
general relativity, in which all the metric and fluid pertur-
bations vanish in the infrared, except for

R ¼ ζ ≠ 0; βu ¼
R
aG4

Z
η

0

dη̃ a2G4; ð67Þ

completely set by the nonvanishing constant R from the
initial conditions. The Horndeski function G4 reduces to a
constant in general relativity. Given the initial conditions in
terms ofR, the value of βu in the infrared can be different in
the Horndeski theory from general relativity, but the
structure of perturbations is identical and the value of βu
is only affected by the background evolution. In short, the
infrared sensitivity of cosmological probes, which could
lead to pathological behavior in cosmological observations,
can be avoided in the Horndeski theory, for an infrared
solution with the same structure of general relativity but
with different numerical values.
To better understand the solution, we have considered

adiabatic modes à la Weinberg [74]. With diffeomorphism
symmetry in general relativity and the Horndeski theory,
nontrivial solutions can be generated in the limit k ¼ 0 by a
large gauge transformation. Ordinary coordinate transfor-
mations, which can be obtained by a small deformation
from identity, induce the standard (or small) gauge trans-
formation, and perturbation variables are fully specified
once the coordinate transformation is fixed (see, e.g., [75]).
In contrast, large gauge transformations, which are by
definition not small gauge transformations, allow extra
gauge freedom for perturbation variables at k ¼ 0, even
though they are completely specified at k > 0. Not all the
perturbations generated by large gauge transformations are
physical, rather fictitious gauge modes. However, some of
those gauge modes can be smoothly connected to physical
solutions at k > 0, and they are called the adiabatic modes.
With a small gauge transformation fixed, a large gauge
transformation applied to the background solution induces
the fluctuations at k ¼ 0 that satisfy the adiabatic condition.
Applied to the Horndeski theory, we have found a

physical adiabatic mode by a large gauge transformation
(see also [80,81] for a derivation of the adiabatic mode in
the Horndeski theory in the nonrelativistic limit). The
adiabatic mode that is valid at k > 0 takes the form of
the solution we found by explicitly solving the field
equation in the infrared, under the condition that cosmo-
logical probes are devoid of any infrared sensitivity. In
other words, the general conditions, under which cosmo-
logical probes are not sensitive to infrared modes, are
indistinguishable from a physical adiabatic mode that is
continuously mapped into a pure gauge mode at k ¼ 0.
This gauge mode at k ¼ 0 can be eliminated by a large
gauge transformation, and hence the physical solution is
equivalent to the situation where there is no infrared
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fluctuations and hence no impact on cosmological probes.
Furthermore, the adiabatic mode from a large gauge
transformation reveals that the adiabatic condition is
imposed not only on the matter content, but also on the
Horndeski scalar field. With our choice of a uniform scalar-
field gauge, the adiabatic condition corresponds to δρu ¼ 0
in the infrared. Put it differently, the generalized adiabatic
condition on the matter content, including the Horndeski
scalar field, guarantees an infrared-insensitive solution with
which no pathological behaviors exist in the cosmological
probes, as in general relativity.
If the generalized adiabatic condition is violated in the

infrared, cosmological probes in large-scale surveys can be
sensitive to infrared fluctuations or exhibit pathological
behavior, depending on the level of violation and the
amplitude of infrared fluctuations. Such a violation of
the adiabatic condition is often found in multifield infla-
tionary models [82–87] or cosmological defect models
such as cosmic strings and branes [88,89]. These models
are often classified as models of isocurvature perturbations.
Naturally, the presence of isocurvature perturbations vio-
lates the adiabatic condition, and the deviation in multifluid
fluctuations in the infrared would lead to an apparent
violation of the equivalence principle. Such a violation can
also arise from long-range nongravitational interactions, for
example, primordial non-Gaussianity in the initial condi-
tion [90,91], interactions in the dark sector [92], and large-
scale cosmological backreaction [93–98]. Given the tight
constraint on the level of isocurvature perturbations in
CMB observations [99,100], the level of infrared sensitivity
in cosmological probes is small in general relativity (indeed
exactly zero in theΛCDMmodel), and our work shows that
this remains true in the Horndeski theory.

What physical mechanism establishes the adiabatic
condition in the infrared? In the standard model, an
inflationary mechanism generates adiabatic fluctuations
in the infrared, originating from a single inflaton field
(see, e.g., [101–103]). While multifield models can
generate nonadiabatic perturbations in the infrared,
these perturbations are often converted into adiabatic
perturbations [104–107]. Furthermore, any nonadiabatic
perturbations in the initial conditions decay away in the
infrared [108] if a local thermal equilibrium is established
after the perturbation generation. It appears that it is
difficult in general relativity to maintain any deviation
from the adiabatic condition in the infrared. What about the
generalized adiabatic condition in theories beyond general
relativity? As opposed to the ΛCDM model with a single
source of perturbation generation, no physical mechanism
is known to exist in the presence of an additional gravi-
tational degree of freedom, which sets the same time shift
for matter and gravitational scalar field. Since infrared-
insensitive solutions exist in both general relativity and the
Horndeski theory, we cannot use the existence of this type
of solution as a criterion for preferring one theory over the
other. However, given the simplicity of the mechanism by
which the initial conditions for infrared-insensitive solu-
tions are realized, we can conclude that general relativity is
favored.
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