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We study the scalar modes that, being observable today, were trans-Planckian before inflation, within the
context of hybrid loop quantum cosmology (LQC). We analyze the dynamics of these highly ultraviolet
modes by introducing modified dispersion relations to their equations of motion and discuss the impact that
these relations would introduce in the power spectrum by computing the adiabaticity coefficient. More
precisely, we consider two different models compatible with observations for the standard linear dispersion
relation which are based on different initial conditions for the perturbations and background. One of these
models avoids the issue altogether by generating less e-folds of inflation, so that the observable modes are
never trans-Planckian, whereas the other suffers (arguably softly) from the trans-Planckian problem. This
shows that the existence of the trans-Planckian problem in LQC is model dependent.
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I. INTRODUCTION

The classical cosmological description of the evolution of
the Universe in terms of the old big bang model starts to fail
as one goes back in time. This is reflected in the existence of
different problems that arise in such a framework, namely,
the flatness, horizon, and monopole problems [1]. The
solution to them comes from the introduction of an early
stage of the Universe with accelerated expansion, known as
inflation [2,3]. In fact, inflationary theories are not only good
models because they can solve these problems. The main
success of inflation is that it describes and explains the origin
of the cosmological perturbations measured in the cosmic
microwave background (CMB) through quantum fluctua-
tions of the scalar and gravitational fields. The amplitude of
these perturbations is determined by the power spectrum of
primordial fluctuations, which turns out to be nearly scale
invariant [4].

Although the inflationary theory succeeds in explaining
the issues mentioned above, it also presents different
problems. One of them, which will be the focus of this
work, is the so-called trans-Planckian problem of infla-
tionary cosmology [5]. In most current models, inflation
involves a huge expansion of the Universe in order to solve
the classical problems, which means that physical wave-
lengths that correspond to large-scale structures we observe
today in the CMB were much smaller than the Planck
length at the onset of inflation. This questions the validity
of the standard results concerning the power spectrum and
forces one to consider trans-Planckian effects.
This problem is analogous to the trans-Planckian prob-

lem of black hole physics [6]. In this context, it was shown
that the thermal Hawking spectrum of black holes is robust
against modifications of physics in the high-energy sector,
which were represented by modified dispersion relations
that deviate from the standard one above some ultraviolet
scale [7,8].
In inflationary cosmology, the problem has been ana-

lyzed following the same approach [5,9–15]. The equations
of motion of perturbations were changed by introducing
modified dispersion relations. The robustness of the pre-
dictions of classical cosmology was then analyzed by
means of the so-called adiabaticity coefficient [10,14],
which accounts for the adiabatic evolution of perturbations
modes while they are trans-Planckian. The result is that as
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long as there is scale separation between the ultraviolet
scale and the rate of expansion of the Universe, the imprint
in the power spectrum will be negligible, provided that the
modified dispersion relation is monotonic.
However, all these analyses ignore the preinflationary

evolution of the Universe. Naturally, if trans-Planckian
physics is important in inflationary theories, so it will be in
a preinflationary stage, since the Universe is smaller and
hence physical wavelengths too. There are different theo-
ries that attempt to introduce a preinflationary description
of the Universe. Among them, loop quantum cosmology
(LQC) [16] has become in recent years a promising
approach, given its predictive power and the capacity to
compute power spectra within this framework [17]. The
main result of LQC is that it removes the initial singularity
of classical cosmology by means of a quantum bounce, due
to quantum geometry effects. This leads to effective
modified Einstein equations for the background and pro-
vides a well-defined evolution. With this description of the
background, one can introduce cosmological perturbations
and compute predictions for the primordial power spectra
that can be contrasted with observations. In fact, several
proposals have been found to be compatible with current
observations [18,19]. So far, cosmological perturbations
have been introduced in this framework by means of a Fock
quantization, as in standard cosmology, while the tech-
niques of LQC are only considered for the quantization of
the background. This leads to an effective description of the
propagation of perturbations, where trans-Planckian effects
originating from the quantum nature of geometry are only
obtained for the background. Although these influence the
propagation of the perturbations, they are not the correc-
tions to trans-Planckian modes one expects to obtain from a
full theory of quantum gravity. Thus, just as in standard
cosmology, one may ask whether these scenarios suffer
from the trans-Planckian problem.
In this work, we study the trans-Planckian problem

considering preinflationary scenarios described by LQC,
following the same steps that have been taken in the context
of inflation. In particular, we consider two different back-
ground evolutions introduced in [20,19]. Both models are
compatible with current observations for the standard linear
dispersion relation (see Ref. [18] for the analysis regarding
the first model). This will allow us to determine whether the
predictions of the primordial power spectrum are robust
when these scenarios are taken into consideration.
We find that the first model suffers from the trans-

Planckian problem, as the adiabaticity coefficient of some
of the observable modes becomes non-negligible while
they are trans-Planckian prior to inflation. This means that
the observable portion of the primordial power spectrum is
somewhat sensitive to trans-Planckian physics in this
model. In contrast, the second model circumvents the
problem altogether by generating less e-folds of inflation,
so that the observable modes are never trans-Planckian in

the early Universe. This suggests that the existence of the
trans-Planckian problem in LQC is model dependent. This
work also motivates the future study of the trans-Planckian
problem from deep, fully geometrical arguments, rather
than by introducing modifications to the theory by hand, in
order to delve into this subject from a theoretical point
of view.
The remainder of this work is structured as follows. In

Sec. II we briefly review the inflationary theory and the
origin of primordial fluctuations that can be measured in the
CMB, whose amplitude is fixed by the power spectrum. In
Sec. III we give an overview of the trans-Planckian problem
of inflationary cosmology and the methodology used to
study it. In Sec. IV we introduce the dynamics of LQC both
for the background and the perturbations, and proceed to
analyze the trans-Planckian problemwithin LQC. SectionV
is devoted entirely to the numerical results and their
discussion for the particular LQC models under consider-
ation. Finally, in Sec. VI we summarize the main results of
this work, its limitations, and future research paths in this
area. The convention used in this work is ℏ ¼ c ¼ 1 and
m2

Pl ¼ 1=G. We also use Planckian units: lPl ¼ tPl ¼ m−1
Pl .

II. INFLATION AND GENERATION
OF FLUCTUATIONS

A. Inflation and slow-roll regime

The main idea of inflation [2,3] is that the scale factor
evolves nearly exponentially in cosmological time, and the
Universe is suffering an accelerated expansion. This can
be achieved in many ways, but the usual and simpler
approach is based on the existence of a scalar field, known
as inflaton [21]. An inflaton ϕðtÞ can be described as a
perfect fluid, so that its energy density and pressure are

ρ¼ ϕ̇2=2þVðϕÞ; p¼ ϕ̇2=2−VðϕÞ; ð1Þ

where VðϕÞ is the potential of the inflaton and the dot
means derivative with respect to cosmological time t.
Hence, if one assumes that the Universe is filled with an
inflaton, two independent equations of motion arise for a
Friedmann-Lemaître-Robertson-Walker (FLRW) universe,
namely,

H2 ¼ 8π

3m2
Pl

ρ; ϕ̈þ3HðtÞϕ̇þV 0ðϕÞ¼ 0; ð2Þ

where HðtÞ ¼ ȧðtÞ=aðtÞ is the Hubble parameter and aðtÞ
is the scale factor. In order to get inflation one must
impose p ≈ −ρ, that is to say, that the condition ϕ̇2 ≪
VðϕÞ for the inflaton holds during a sufficiently long
period of time. This can be achieved if the term ϕ̈ is
negligible, which is commonly referred to as the slow-roll
regime. When this slow-roll regime ceases to be valid

GARAY, GONZÁLEZ, MARTÍN-BENITO, and NEVES PHYS. REV. D 109, 123534 (2024)

123534-2



inflation ends, the inflaton begins to oscillate, and the
Universe starts decelerating.
The so-called number of e-folds N ¼ log½aðtfÞ=aðtiÞ�

quantifies the exponential increase, where ti and tf are the
times when inflation starts and ends.

B. Primordial fluctuations

We consider linear cosmological perturbations around a
homogeneous background (see Ref. [4] for an exhaustive
review) which explain the origin of primordial fluctuations
measured in the CMB by means of the power spectrum. We
will focus on scalar perturbations, as they are the ones that
leave that observable imprint in the CMB. Tensor pertur-
bations admit a similar analysis but are related to primordial
gravitational waves, which have not been observed yet,
while vector perturbations are diluted in cosmological
evolution [22].
Due to the gauge freedom and the connection between

metric and matter perturbations through the Einstein
equations, scalar perturbations can be described by means
of a single degree of freedom that we will take as the
Mukhanov-Sasaki variable v ¼ zR. Here R is the comov-
ing curvature perturbation, which is gauge invariant and
accounts for metric and matter perturbations, and
z ¼ aϕ̇=H. Up to linear order in perturbations and decom-
posing v in Fourier modes, one gets the Mukhanov-Sasaki
equation [4]:

v00k þω2
kðηÞvk ¼ 0; ω2

kðηÞ¼ k2−z00=z; ð3Þ

where k ¼ jk⃗j is the comoving wave number of the mode vk
and the prime denotes derivative with respect to conformal
time η defined via dt ¼ a dη. We see that z00=z introduces a
scale in the dynamics: In the sub-Hubble limit k2 ≫ z00=z,
the modes oscillate with constant frequency k (they do not
feel the curvature of spacetime), while in the super-Hubble
limit k2 ≪ z00=z the modes behave as vk ∼ z (they do feel
the curvature), implying thatR is constant for those modes.
Notice that, since the modes vk have a time-dependent

frequency, the associated Hamiltonian depends explicitly
on time and hence the choice of the vacuum of the theory
cannot be done in a time-independent way. Thus, one has to
pick an initial time η0 and define there the vacuum as the
lowest-energy state. In the limit where η0 → −∞ this state
is called the Bunch-Davies vacuum [23] and corresponds to
the recovery of plane wave solutions in the asymptotic past
for sub-Hubble modes (with k ≫ aH).
From the comoving curvature perturbation one can

define the power spectrum as the Fourier transform of
its spacetime two-point correlation function [4] yielding

PR ¼ k3

2π2

���� vkz
����2: ð4Þ

This quantifies the contribution to the variance of R of
modes with comoving wave number k, that is, of quantum
zero-point fluctuations. This power spectrum may be
evaluated at superhorizon scales, due to constancy of R
for those modes, whence it follows that the power spectrum
can be written as

PRðkÞ ¼ ASðk=k�ÞnS−1; ð5Þ

where nS is the scalar spectral index (or tilt), AS is the scalar
amplitude, and k� is commonly known as the pivot scale
from which the power spectrum is measured. The most
recent measurements [24] provide the following values at
the pivot scale k� ¼ 0.05 Mpc−1:

AS¼ð2.092�0.034Þ×10−9; nS¼0.9626�0.0057: ð6Þ

This means that the power spectrum of fluctuations is
nearly scale invariant (nS ≈ 1), in agreement with the
description provided by slow-roll inflation.

III. TRANS-PLANCKIAN PROBLEM
IN INFLATION

Despite the great success of the inflationary theory,
which we have summarized in Sec. II, this theory also
faces several problems. One of them, which is the one that
concerns this work, is commonly referred to as the trans-
Planckian problem of inflationary cosmology [5].
In most inflationary models based on an inflaton, the

inflationary stage lasts a very large number of e-folds. Due
to the fact that physical wave numbers κ ¼ k=a at different
times are related through κðt1Þaðt1Þ ¼ κðt2Þaðt2Þ, one gets
that κðtiÞ ¼ eNκðtfÞ. Hence, some of the physical wave
numbers and energies corresponding nowadays to large-
scale structures that can be measured in the CMB could be
larger (indeed, much larger) than the Planck mass at the
beginning of the inflationary stage.
This is clearly a severe issue, since it implies that the

power spectrum of cosmological fluctuations (which is
calculated on pure classical gravity) depends as well on
high-energy physics. Moreover, the power spectrum we
observe today may be altered by any slight modification of
physics above the Planck scale. Therefore, to compute it, it
is necessary to be aware of trans-Planckian effects through
the evolution of perturbations. However, these effects are
yet unknown, and thus the only way to proceed is by
introducing reasonable modifications to the theory that try
to simulate those effects.
The usual approach to do so is by introducing modified

dispersion relations in the equation ofmotion (3), as was first
done in [5] following the steps of the analog problem in black
hole physics [6]. In this case, due to the spacetime expansion,
the analysis is not just an extension of what was done with
black holes. When considering possible trans-Planckian
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effects, a way of implementing them is by modifying the
standard frequency to

ω2
FðηÞ ¼ ½aðηÞFðκÞ�2 − z00=z; ð7Þ

where FðκÞ ¼ Fðk=aÞ is some nonlinear function that
deviates from the standard linear dispersion relation for
physical wave numbers κ ≫ κc and recovers the linear
behavior for κ ≪ κc, where κc is some ultraviolet scale
(expected to be of the order of the Planckmass).When doing
so, a non-Lorentz invariant (in free fall) dispersion relation
results, so one must stipulate the reference frame where the
dispersion relation is defined.
Since now the dispersion relation is nonlinear, the vacuum

cannot be defined as the Bunch-Davies state. Here, we will
take the adiabatic approach [25]. The adiabatic vacuum is
defined by the positive frequency WKB solution to the
Mukhanov-Sasaki equation with modified dispersion rela-
tion, appropriately normalized [5]. In this vacuum themodes
with κ ≪ H are in the ground state [26].
Different modified dispersion relations have been con-

sidered until now, some of them shown in Fig. 1. This
includes the so-called Unruh dispersion relation FU [7] or
the generalized Corley-Jacobson dispersion relation FCJ
(introduced in [5] based on the one used in [8]):

FUðκÞ ¼ κc tanh ðκ=κcÞ; ð8Þ

FCJðκÞ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bmðκ=κcÞ2m

q
; ð9Þ

where bm reflects the subluminal (bm < 0) or superluminal
(bm > 0) character of FCJ. In this last family of modified
dispersion relations, the nonlinear term must be understood
as the first term of a power expansion of a generic
dispersion relation; otherwise, one would get (for the
subluminal case) pathological behavior for physical wave

numbers κ > κcjbmj2m, where FCJðκÞ becomes purely
imaginary. Furthermore, in this case the energy may not
be bounded from below and the definition of vacuum
would not be clear. For these reasons, we will not consider
this modified dispersion relation with bm < 0 and we will
focus only on monotonic dispersion relations. Other
modified dispersion relations have been studied in different
works [27–29].
In most works, the robustness of the predictions of

inflationary cosmology against trans-Planckian physics is
studied in terms of the adiabaticity coefficient defined as
in [14] (for an alternative, but equivalent definition see
Ref. [5]):

εðη; kÞ ¼ jω0
F=ω

2
Fj: ð10Þ

This coefficient serves as an estimator of how sensitive the
power spectrum is to trans-Planckian effects, since a very
small value of ε for trans-Planckian wave numbers kmeans
that they are very adiabatic in the trans-Planckian regime,
and this gives rise to a negligible modification in the power
spectrum with respect to the standard prediction, as we
will see.
This expression is only valid when the modes are inside

the horizon, that is, when ω2 > 0. In the case ω2 < 0, the
modes fail to be adiabatic as they cross the horizon and
instead of oscillating they suffer an exponential amplifi-
cation. Nevertheless, observable modes are already sub-
Planckian when they cross the horizon during slow roll and
thus ω2 becomes negative when the dispersion relation is
the standard one. In particular, we are interested in the value
of εðη; kÞ during inflation, when a concrete mode is trans-
Planckian. Hence, in its evaluation, the second term
in (7) can be safely neglected, since observable modes
are inside the horizon while being trans-Planckian and their
dispersion relation dominates over spacetime expansion.
Under this approximation, the adiabaticity coefficient can
be readily computed:

εðη; kÞ ≈
����HF −

Hκ

F2

dF
dκ

���� ¼ H
κc

���� ddκ
�
κκc
F

�����: ð11Þ

It is easy to see that ε is bounded by H=κc for every
monotonic dispersion relation. Therefore, one can conclude
that as long as the scale separation condition

H=κc ≪ 1 ð12Þ

is met, the adiabaticity coefficient is εðη; kÞ ≪ 1 for all
monotonic modified dispersion relations [14], and modi-
fying the standard dispersion relation above the scale κc
will not have an imprint on the power spectrum [12]. This
is in good agreement with the analytical results obtained
in [5,10]. Physically, this can be seen as if the modes
with κ > κc (which are affected by modified dispersion

FIG. 1. Sketch of the different dispersion relations considered
in this work. For the Corley-Jacobson dispersion relation we have
considered m ¼ 1 and bm ¼ �1.
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relations) have enough time to adapt to the standard vacuum
solution provided that their evolution is adiabatic, since
F ≥ H for those κ values that satisfy the adiabaticity
condition.Moreover, scale separation (12) is satisfied during
slow roll, as long as κc ∼mPl, since then H=κc ≲ 10−5.

IV. LOOP QUANTUM COSMOLOGY AND
THE TRANS-PLANCKIAN PROBLEM

A. Loop quantum cosmology: Background

Let us first summarize the evolution of the homogeneous
background obtained in LQC (for a complete review of this
theory and its derivation, see Refs. [16,30]).
The quantum geometry effects that this theory introduces

allow us to remove the classical big bang singularity of
FLRW models, replacing it by a quantum bounce, hence
giving rise to a well-defined background evolution of the
Universe. In fact, LQC leads to a family of semiclassical
states that follow well-defined trajectories. These trajecto-
ries correspond to an effective dynamics encoded in the
following modified Einstein equation with quantum cor-
rections [16]:

H2
LQC ¼ 8π

3m2
Pl

ρð1 − ρ=ρ�Þ; ð13Þ

where ρ� is a critical density of the order of the Planck
density, which is usually taken to be ρ� ≈ 0.41m4

Pl due to
geometrical arguments [31]. We see that, indeed, Eq. (13)
leads to a bounce, where the Hubble parameter vanishes,
when ρ ¼ ρ�. This is a feature of LQC that is not present in
general relativity (GR) and guarantees that physical quan-
tities (such as the energy density or the Ricci scalar) that
diverge in GR are bounded in LQC. Moreover, the term
ρ=ρ� is negligible a few Planck seconds after the bounce, so
one recovers GR soon after it.
In LQC, the scalar field can also be described as a perfect

fluid obeying (2), but now with the Hubble parameter given
by (13). This set of equations is analytically intractable
except for the free scalar field case (and a few others). In
this case where VðϕÞ ¼ 0 the analytical solution in terms of
cosmological time t is (from now on, the subscript LQC
will be omitted unless necessary for comparison with GR)

aðtÞ¼
��

t
t�

�
2

þ1

�
1=6

; HðtÞ¼ t
3t2�a6ðtÞ

;

ϕðtÞ¼ϕð0Þþ mPlffiffiffiffiffiffiffiffi
12π

p arcsinh

�
t
t�

�
; ρðtÞ¼ ρ�

a6ðtÞ ; ð14Þ

where t� ¼ mPl=ð24πρ�Þ1=2 is the time when the
Hubble parameter achieves its maximum value Hðt�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πρ�=ð3m2

PlÞ
p

and we have chosen as normalization the
scale factor at the bounce að0Þ ¼ 1. For ρ� ¼ 0.41m4

Pl this
maximum is Hðt�Þ ≈ 0.93mPl. The Hubble parameter is

depicted in Fig. 2, in comparison with the classical GR
behavior. Similar plots can be portrayed for the other
background variables, leading to the conclusion that
LQC cures the initial singularity standard cosmology
displays for a free scalar field and enables us to define a
preinflationary dynamics.
In addition to solving the singularity problem, LQC also

provides natural initial conditions that ensure the infla-
tionary paradigm with the required number of e-folds for
suitable potentials [32,33], after a very short phase of
superinflation takes place. However, to make the infla-
tionary stage happen we need a nonvanishing potential,
which requires numerical treatment. In this paper, we will
use both the quadratic and Starobinsky family of potentials:

V2ðϕÞ ¼
1

2
m2ϕ2; ð15Þ

VSðϕÞ ¼ V0

0
@1 − exp

8<
:−

ffiffiffiffiffiffiffiffiffiffi
16π

3m2
Pl

s
ϕ

9=
;
1
A2

; ð16Þ

where m and V0 are the parameters that determine the
concrete potential of these families. We will mainly focus
on the Starobinsky potential model, which is favored by
data in the case of standard cosmology [34], and based on
the conclusions obtained we will briefly review a quadratic
potential model.
In Sec. V we will see that, as long as there is kinetic

dominance at the bounce (which is the case we will be
interested in), the background evolution is that of the free
field case from the bounce until a short time after the
maximum ofH and, after some time, the Hubble parameter
goes to a nonvanishing constant, thus causing inflation

FIG. 2. Hubble parameter for a free scalar field in GR and
LQC (with ρ� ¼ 0.41m4

Pl). HLQC is always bounded and the GR
behavior is restored soon after the bounce. For larger (smaller)
values of ρ�, GR is recovered sooner (later) and the maximum of
HLQC is different.
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(which implies a dominance of the potential). Moreover,
numerical simulations show that under this assumption the
background evolution for nonvanishing potentials at early
times does not depend strongly on the choice of initial
conditions or on the concrete shape of the potential, and can
be well described by the zero-potential solution [35]; thus,
the maximum of H and the time when it is reached depend
only on the value of ρ�.

B. Loop quantum cosmology: Perturbations

We next consider cosmological perturbation theory in an
LQC effective cosmological background. This would
enhance our knowledge of the Universe evolution and
enable us to connect the Planck era with observable
quantities. In this case, in addition to possible effects of
trans-Planckian physics in ultraviolet modes (as those
described in Sec. III), modifications on infrared modes
could arise as well due to a different evolution of the
background: Since these modes feel the curvature at the
bounce (their wavelength is bigger than the curvature
radius of the Universe at that time) they can evolve to
an excited state. Indeed, observable modes could in
principle exit and reenter the curvature radius before
inflation takes place, thus reaching the onset of inflation
in a vacuum other than Bunch-Davies.
Current techniques only allow us to obtain these infrared

corrections to the propagation of the perturbations, as a
consequence of the LQC quantization of the background.
Different strategies have been followed to accomplish this
task (see Ref. [17] for a review), namely, the so-called
dressed metric approach [36–39], the deformed algebra
approach [40], the hybrid quantization [41,42], or the
separate Universe loop quantization [43]. For our purposes
we will consider hybrid LQC. This is because the separate
Universe approach is only valid for infrared modes,
whereas the deformed algebra approach seems to be
incompatible with observations [44]. On the other hand,
hybrid and dressed metric approaches are based mainly on
the same grounds, but their equations of motion for
perturbations are not the same, due to the different ways
of quantizing.
In particular, in hybrid LQC, when neglecting the

backreaction of the perturbation modes, the equation for
scalar perturbation modes has the same structure as (3) but
with a time-dependent frequency [45]

ω2
kðηÞ¼ k2þ sðηÞ; s¼−

4π

3m2
Pl

a2ðρ−3pÞþa2u; ð17Þ

where u is an effective potential given by

u¼V 00ðϕÞþ48π

m2
Pl

VðϕÞ
�
1−

VðϕÞ
ρ

�
þ6

a0ϕ0

a3ρ
V 0ðϕÞ: ð18Þ

In the classical limit where the effective dynamics reduces to
GR, that is, when ρ� → ∞, we recover the classical
Mukhanov-Sasaki equation (3). We also note that during
kinetic dominance the above function sðtÞ is positive, unlike
the analog function in the dressedmetric approach [45]. This
is the reason why we will choose to work within hybrid
LQC, avoiding further problems related to the presence of
modes with complex frequencies at the bounce, as we will
see later in Sec. V B.

C. Trans-Planckian problem
in loop quantum cosmology

Now that we have the explicit form of the infrared
corrections to the perturbations coming from LQC, we may
wonder how and why LQC and Planck-scale physics may
affect the power spectrum in the ultraviolet, in analogy with
Sec. III that focused solely on inflation. An extra drawback
appears in the context of LQC, as was mentioned before,
namely, the relevance of the background in modes which
are sensitive to the curvature. Moreover, LQC introduces a
scale as it already happened in inflation. In this case, this
scale results from the competition between the physical
wave number of the modes and the Ricci scalar in the
Mukhanov-Sasaki equation (equivalently, between the
physical wavelength and the curvature radius). The dis-
crimination between which modes feel the curvature and
which do not is precisely the value of the Ricci scalar at the
bounce, where it is maximum, and constitutes the charac-
teristic energy scale of LQC:

κLQC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð0Þ=6

p
¼ ð

ffiffiffi
3

p
t�Þ−1 ≈ 3.21mPl: ð19Þ

Modes with κ ≲ κLQC will be the ones which feel the
curvature since they have a wavelength longer than
the LQC wavelength. Consequently, they exit and enter
the curvature radius in the bouncing stage, before they exit
again in inflation, which can have an imprint on the power
spectrum due to background effects.
Another central issue is the choice of initial conditions

for the perturbations. There are different alternatives,
namely, setting them far away before the bounce (in the
contracting branch) or at the bounce itself. The former
allows us to set initial conditions at some point where
effects of modified dispersion relations disappear, but
requires fixing them at the concrete points where sðηÞ¼ 0
for stability [46]. On the other hand, the latter, although
facing the problem that the bounce is the most affected
region by LQC, at least guarantees that all perturbations
behave there as harmonic oscillators with real frequencies.
However, it is only the infrared part of the spectrum that is
sensitive to the choice of initial conditions. For a review of
this topic and the computation of the power spectrum for
several monomial potentials with the standard dispersion
relation, see Ref. [46].
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The methodology that we will follow is the same as
before. One includes in (17) modified dispersion relations
(replacing k2 by a2F2) and analyzes how fair the
assumption of WKB solution is by means of the pertinent
adiabaticity coefficient when modes are trans-Planckian.
To our knowledge, not much work has been done in the

trans-Planckian problem in LQC. In particular, only in [47]
modified dispersion relations were considered within the
framework of LQC. In that work, the emphasis was placed
on computing the power spectrum in different approaches
and comparing with the standard scenario, rather than
understanding the possible modification and its origin
qualitatively. The main result was that the power spectrum
is modified when considering modified dispersion relations
and that this change depends on the concrete value of the
ultraviolet scale κc, possibly leading to a power spectrum
with oscillations or enhancement in its ultraviolet sector,
thus making relevant the trans-Planckian effects. This
opens the question of whether such effects affect or not
the observable window.
The calculation of the adiabaticity coefficient can be

carried out easily for the kinetic dominated regime close to
the bounce, as it is well approximated by the free scalar
field case, where the explicit background solution is
known and u ¼ 0, yielding s0ðηÞ ¼ 8πρa2=ð3m2

PlÞ, with
ρ ¼ ϕ̇2=2. In this case, we have

ε0ðη; kÞ ¼
HF3

κcW3
0

���� ddκ
�
κκc
F

�
−

16π

3m2
Pl

ρκc
F3

����; ð20Þ

where

W0 ¼
ω

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 8π

3m2
Pl

ρ

s
: ð21Þ

Let us qualitatively analyze this adiabaticity coefficient.
First, notice that it is proportional to H, so that the

adiabaticity condition ε0 ≪ 1 for trans-Planckian modes
again follows from the condition H=κc ≪ 1. According
to (13), we have that ε0ðη; kÞ ∝ ð1 − ρ=ρ�Þ1=2. Hence, as
long as F is not too steep, all the modes satisfy the
adiabaticity condition very close to the bounce (where
ρ ≈ ρ�). Moreover, ε0ðη; kÞ is exactly zero at the bounce.
Therefore, all the modes can be set up at the bounce in their
adiabatic vacuum, regardless of the specific modified
dispersion relation and the physical wave number of
the modes.
Second, when the evolution of perturbations is fully

determined by its dispersion relation (that is to say, when
W0 ≈ F), we recover the inflationary result (11).
A similar result to (20) can be derived when the potential

cannot be ignored, with an extra term that depends only on
the specific potential and on the background, but not on the
modified dispersion relation. In this case, we do not have an

analytical solution for the background evolution, so we will
need to compute εðη; kÞ numerically introducing (17) in the
definition (10).

V. NUMERICAL RESULTS

A. Background dynamics

Let us start with the evolution of the background
solution, which is necessary to analyze the evolution of
primordial perturbations. As stated in the previous section,
we will concentrate on the Starobinsky potential model. We
have taken V0 ¼ 1.77 × 10−13m4

Pl in order to consider a
model in LQC that is compatible with observations for the
standard dispersion relation [48].
The background evolution is completely characterized

by the initial condition ϕð0Þ, since ϕ̇ð0Þ is fixed by
ρð0Þ ¼ ρ�, as H ¼ 0 at the bounce. We fix the normali-
zation of the scale factor at the bounce to be að0Þ ¼ 1, as in
the zero-potential example above.
We have considered two different background evolutions

which are compatible with observations in the CMB for the
standard dispersion relation. The first one is based on [20].
This work, employing the dressed metric approach, fixes
initial conditions according to first principles that aim to
link quantum geometry and Heisenberg uncertainties in the
Planck epoch with late time physics. This leads to a
background evolution given by ϕð0Þ ¼ −1.42mPl, which
produces 141.30 e-folds from the bounce until today, as
found in [20]. We will adopt this background initial
condition in the hybrid LQC approach, and refer to it as
model A.1 The second one is based on [19]. This work,
using the hybrid LQC approach, considers a family of
vacua for cosmological perturbations that lead to a power
spectrum with infrared exponential suppression. The scale
where this suppression occurs is fixed so that it is preferred
by Planck data, via a Bayesian analysis. In this case,
ϕð0Þ ¼ −1.46mPl, which produces 131.83 e-folds from the
bounce until today2 We will refer to this as model B.

1As mentioned, we work with the hybrid approach because of
the drawbacks of the dressed metric approach. Nevertheless, the
initial conditions we are concerned with at the moment refer only
to the background dynamics, which is the same in both of them.
When analyzing the results, we comment on what would happen
if we had followed the dressed metric procedure, which further
corroborates our choice.

2In [19] only the number of e-folds of inflation is cited. We
have computed the total number of e-folds by comparing
the physical wave number of a reference scale today and at the
bounce: N ¼ lnðκðbounceÞ=κðtodayÞÞ. Specifically, we take the
pivot scale of the Planck Collaboration κpðtodayÞ ¼ 0.05 Mpc−1

which is defined as the scale at which the primordial power
spectrum has the amplitude As ¼ e3.047 × 10−10 [24]. By iden-
tifying the value of κp at the end of inflation from the primordial
power spectrum, we track it back to the bounce and determine
κpðbounceÞ ≃ 0.05l−1

pl .
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This difference in the total number of e-folds is related to
the different expansions that the Universe suffers during
its evolution. As we will see later, whereas the number of
e-folds during the preinflationary period is almost the same
for both models, model A has more e-folds of inflation than
model B.
The simulations have been done in cosmological time t,

and run up to t ∼ 107tPl in order to reach inflation. The
background evolution is depicted in Fig. 3 for model A. As
it can be seen on the upper panel, the Hubble parameter
evolves near the bounce as if the scalar field were free and,
around t ∼ 105tPl, the Starobinsky and zero-potential lines
begin to differentiate. From this moment on, HðtÞ is
roughly constant, which means that the scale factor there
grows exponentially and slow-roll inflation takes place. To
get further insight, we have also plotted on the lower panel
of Fig. 3 the parameter of state defined as

wðϕÞ ¼ p
ρ
¼ ϕ̇2=2 − VðϕÞ

ϕ̇2=2þ VðϕÞ : ð22Þ

Near the bounce there is kinetic dominance and hence
w ≈ 1, while during slow-roll inflation w ≈ −1, thus con-
firming potential dominance. After inflation, since the
scalar field begins to oscillate, so will w.
Similar portraits result when depicting the background

solution of model B. The difference arises in the number of
e-folds of the inflationary period.3 Results for both models
are displayed in Table I. As we can see, the preinflationary
stage lasts almost the same number of e-folds independent
of the model we are using, that is to say, independent of the
initial conditions considered. This is because the initial
conditions considered reproduce a kinetic dominance
bouncing stage, in which case the choice of initial con-
ditions does not strongly affect the background evolution at
early times, as we stated at the end of Sec. IVA. On the
other hand, the number of e-folds during inflation is
different depending on the model. In particular, inflation
lasts almost 11 e-folds more in model A than in model B. In
summary, the initial condition at the bounce ϕð0Þ only
affects the number of e-folds of inflation.

B. Perturbations

Let us now focus on the dynamics of the perturbations in
each model, so that we can determine whether there is a
trans-Planckian problem in them. As described in the
previous section, such evaluation will rely on the adiaba-
ticity coefficient of the different modes while they are trans-
Planckian. Concretely, the problem arises when observable
modes (today) were trans-Planckian at some point in the
past while not being adiabatic, as this would indicate that
the primordial power spectra are very sensitive to trans-
Planckian physics. Thus, we first need to determine
whether the observable modes were ever trans-Planckian
in these models. This requires choosing a specific value for
the ultraviolet scale κc. Although other choices could be

FIG. 3. Background evolution for model A. Upper panel:
Hubble parameter under the Starobinsky potential compared to
the zero-potential case. Lower panel: parameter of state of the
inflaton. Inflation begins when w becomes smaller than −1=3.
Comparing with the upper panel, one sees that the potential only
becomes relevant close to the onset of inflation. Model B results
in similar curves for the range plotted in these figures. The
differences arise later during the inflationary period, as evidenced
by Table I.

TABLE I. Number of e-folds for both models with the
Starobinsky and quadratic potentials (commented on at the
end of Sec. V B). Model A has more inflation than model B,
but the preinflationary stage lasts essentially the same number of
e-folds.

Starobinsky Quadratic

Model A Model B Model A Model B

Npreinf 4.862 4.863 4.228 4.237
Ninf 72.245 61.325 68.109 64.512

3Here, the start and end of inflation is determined by the
condition w ¼ −1=3, that is to say, when the Universe begins or
stops its accelerated expansion, respectively.
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made, we have chosen κc ¼ κLQC for both models, since it
seems natural that the ultraviolet modifications arise when
the energy scale of LQC is dominant. We also need to track
the observable window measured in the CMB. In the
case of model A we have 141.3 e-folds from the bounce
until today [20], which means that the observable window
today, κtoday ∈ ½10−4 Mpc−1; 0.5 Mpc−1� [34], at the bounce
becomes κð0Þ∈ ½1.2mPl; 6.1 × 103mPl�. Meanwhile, for
model B, since there are 131.83 e-folds from the bounce
until today, the observable window at the bounce
is κð0Þ∈ ½9.3 × 10−5mPl; 4.7 × 10−1mPl�.
We have evolved these windows from the bounce to the

end of the simulation along with the curvature radius. The
results are shown in Fig. 4 in terms of physical wave-
lengths, where the ultraviolet scale λc ¼ 1=κc ≈ 0.31lPl is
also depicted.
Focusing first on model A (upper panel), we see that the

observable window presents the two kinds of modes that
we have been discussing. On the one hand, it contains
modes whose physical wavelength is below λc, not only at
the bounce, but also at the onset of inflation, which means
they are trans-Planckian. On the other hand, some modes

are outside the curvature radius at the bouncing epoch and
thus are affected by the dynamics of the background
(carrying the effects of LQC). These most infrared modes
of the observable window will then have an imprint on the
power spectrum due to LQC effects reflected in the loss of
near scale invariance in that sector [17]. Notice as well that
all the modes cross the horizon during inflation when they
are no longer trans-Planckian, that is to say, when their
physical wavelength is well above the ultraviolet scale λc.
On the other hand, for model B the whole observable

window in the lower panel of Fig. 4 always has a wave-
length greater than the ultraviolet scale λc, which means
that all the modes are sensitive to the curvature in the
preinflationary epoch but are never trans-Planckian. This
drastic difference with respect to model A has to do with the
different number of e-folds that both models predict in
order to be compatible with observations for the standard
dispersion relation. We note that, even though all of these
modes are indeed sensitive to the background dynamics in
the preinflationary epoch in this model, the vacuum chosen
in [19] is such that departure from near scale invariance in
the primordial power spectrum only occurs for the most
infrared observable modes. This leads to predictions that
are compatible and indeed preferred by the data.

C. Adiabaticity coefficient

It is now time to compute the adiabaticity coefficient for
the different modified dispersion relations that affect the
ultraviolet sector while the modes are trans-Planckian. This
will allow us to determine if the ultraviolet part of the
observed power spectrum is robust against trans-Planckian
effects in these models within LQC.
We have to recall here that model A is taken from a

context where the dressed metric approach is used to
analyze primordial perturbations. In this paper, we only
use the initial conditions and the background solution of
this model, and we apply it to hybrid LQC. Otherwise, if
the dressed metric approach were to be used, according to
its expression for the time-dependent frequency (see
Ref. [45]), the time-dependent mass s [analog to (17)]
would be negative at the bounce and equal to sðt ¼ 0Þ ¼
−8πρ�=m2

Pl ¼ −κ2c, where we have ignored the potential
contribution completely. Therefore, at the bounce wewould
have ω2

kðt ¼ 0Þ ¼ k2 − κ2c for the standard dispersion
relation, so that modes with k < κc at the bounce (more
infrared than κc) would have a complex time-dependent
frequency (ω2 < 0). This reveals that in the dressed metric
approach the adiabaticity for these modes is completely lost
in the trans-Planckian regime, and that such a framework
suffers from a severe trans-Planckian problem.
This is no longer the case in hybrid LQC. According

to (17) at the bounce we have sðt ¼ 0Þ ¼ 8πρ�=
ð3m2

PlÞ ¼ κ2c=3, making the time-dependent frequency
always positive for every monotonic dispersion relation.
Indeed, s is always positive in hybrid LQC [45] until we

FIG. 4. Evolution of the observable window (shaded region)
from the bounce to inflation. Upper panel: model A. A big part of
the window is trans-Planckian during the evolution (even at the
onset of inflation) before exiting the horizon. Lower panel: model
B. The whole window is always above the ultraviolet scale λc.

ADIABATIC APPROACH TO THE TRANS-PLANCKIAN PROBLEM … PHYS. REV. D 109, 123534 (2024)

123534-9



reach inflation, making it possible to perform an adiabatic
analysis for all the modes while trans-Planckian effects may
be important.
We have calculated the adiabaticity coefficient εðη; kÞ

both for the Unruh and superluminal Corley-Jacobson
modified dispersion relations, as well as for the linear
one. The results are depicted in Fig. 5 for both models. We
have only represented the ultraviolet end point of the
observable window, since it is the most sensitive mode
to modified dispersion relations among the observ-
able modes.
We now summarize the main results that follow from

the analysis of these graphics. First, the adiabaticity
coefficient is noticeably different depending on the model
we are using: For model A, ε is always below 1 despite the
modified dispersion relation we are considering, whereas

model B presents an adiabaticity coefficient which is above
1 at certain points of the cosmological evolution. Another
thing to notice is that, regardless of the model, the
adiabaticity coefficient achieves its maximum around the
same time (t ∼ 10−1tPl) which is around the time at which
the Hubble parameter achieves its maximum. This means
that, in the preinflationary epoch, modes are the least
adiabatic around the peak ofH. This reinforces the idea that
scale separation (12) is required in order to have ε ≪ 1,
which we discussed in Sec. III. Indeed, we have H=κc ≈
0.29 at the maximum ofH, which is not so far below 1, so it
is not surprising that in this region the adiabaticity
coefficient is not negligible.
Let us focus on the upper panel of Fig. 5 corresponding

to the results for model A. We see that the adiabaticity
coefficient of the shortest wavelength mode differs depend-
ing on the modified dispersion relation. In particular, for the
linear and superluminal Corley-Jacobson dispersion rela-
tions ε remains far below 1 at every instant while the mode
is trans-Planckian. On the other hand, with the Unruh
dispersion relation ε is non-negligible at the bounce and
afterward, reaching a value of almost 0.2 for the shortest
wavelength mode. This implies that the whole observable
window is nonadiabatic right after the bounce, when most
of the modes are trans-Planckian (according to Fig. 4, upper
panel). We therefore conclude that model A presents a
trans-Planckian problem: As a result of our analysis we can
foresee that the power spectrum depends on the particular
modified dispersion relation, suffering non-negligible
departures from near scale invariance in the most ultraviolet
observable modes. However, we note that this dependence
is soft (as ε < 1), and that for some dispersion relations all
the observable modes remain adiabatic throughout the
whole preinflationary epoch. One may argue that this is
a soft trans-Planckian problem, especially when compared
to the same initial conditions within the dressed metric
approach, since in the latter case ε diverges for some
observable modes close to the bounce.
Now let us look at the lower panel of Fig. 5 representing

the results obtained formodel B.Noticeably, the adiabaticity
coefficient is larger than 1 for an extended period of time. In
contrastwithmodelA, there is a period of the preinflationary
evolution when (at least some of) the observable modes are
categorically nonadiabatic. However, this is not a problem in
this model since the modes are not trans-Planckian in this
epoch. In fact, it is just as in standard cosmology when the
modes are not adiabatic as they cross the horizon during
inflation. We see that for the three dispersion relations
considered in this work the adiabaticity coefficient is the
same and the three different curves overlap. This is because
thewhole observablewindow is sub-Planckian in this epoch
(according to Fig. 4, lower panel), and therefore corresponds
to the approximately linear regime of all dispersion rela-
tions. Thus, the observable window of the primordial power
spectra will not be affected by the choice of dispersion
relation.

FIG. 5. Adiabaticity coefficient for the different dispersion
relations considered in this work. All the lines depicted tend
to zero at the bounce (t ¼ 0). Upper panel: model A. The
adiabaticity coefficient is different depending on the modified
dispersion relation. In particular, it becomes non-negligible after
the bounce for the Unruh dispersion relation, whereas it remains
essentially zero for the linear and superluminal Corley-Jacobson
dispersion, as evidenced by the inset. Lower panel: model B. The
adiabaticity coefficient is the same regardless of the modified
dispersion relation since the three curves overlap.
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D. Quadratic potential

To conclude this section, let us dedicate a comment to
the quadratic potential case. For this potential, we have to
take m ¼ 1.21 × 10−6mPl so that we have agreement with
observations for the standard dispersion relation. Moreover,
in this case the initial conditions at the bounce for the scalar
field are ϕð0Þ ¼ 1.033mPl for model A [20], which
produces again 141.30 e-folds from the bounce until today,
and ϕð0Þ ¼ 0.94mPl for model B [19], which now produces
130.19 e-folds in total following a procedure entirely
analogous to the Starobinsky case; see footnote 2. This
being said, the corresponding number of e-folds of the
preinflationary and inflationary periods for the quadratic
potentials are displayed in Table I along with the
Starobinsky potential analog values. As we can see, within
each model the preinflationary stage lasts almost the same,
independent of the potential we are using, so that the
concrete shape of the potential does not severely influence
the preinflationary stage, as stated at the end of Sec. IVA.
However, the potential does leave a trace in the inflationary
period, changing the number of e-folds within this era. In
particular, although inflation lasts more in model A than in
model B for both potentials, the Starobinsky potential
produces more inflation in model A whereas quadratic
potential does so in model B.
Focusing now on the analysis of perturbations, within

model A the results we would obtain would be the same as
with the Starobinsky potential, since we have the same
number of e-folds from the bounce until today by definition
and the background evolution is essentially the same (it only
changes the duration of inflation, which now diminishes, but
all the modes exit the horizon during this period). In the case
of model B, for the quadratic potential we have 130.19
e-folds, which differs from the 131.825 of the Starobinsky
potential. This means that the observable window with the
quadratic potential in model B would be slightly more
infrared than with the Starobinsky potential and, as a
consequence, it would be less adiabatic but also further
away from the ultraviolet scale, hence producing the same
adiabaticity coefficient regardless of the dispersion relation
and avoiding any kind of trans-Planckian problem while
being compatible with observations.

VI. CONCLUSIONS

In this work, we have dealt with the trans-Planckian
problem in models of LQC with cosmological perturba-
tions. In order to describe trans-Planckian effects, we have
considered two different modified dispersion relations
above some ultraviolet scale κc, namely, the ones intro-
duced by Unruh and by Corley and Jacobson. We have
argued that the imprints that these modifications may leave
in the power spectrum can be studied in terms of the
adiabaticity coefficient of the modes while they were trans-
Planckian. In particular, we have found that this parameter

is of orderH=κc, so that when this quantity is very small we
do not expect any modification in the power spectrum. This
is the case during inflation, but not in the preinflationary
dynamics usually obtained in LQC models.
This work complements the one carried out in [47],

where the power spectra with modified dispersion relations
were computed in different LQC approaches to perturba-
tions, but no insight was placed in understanding the origin
of the modifications to those power spectra.
We have investigated two concrete scenarios within

hybrid LQC. The first one taking the initial conditions
determined in [20] (although that work followed the dressed
metric approach instead), which we have named model A,
and the second adopting the initial conditions of [19], which
we have called model B. These two models have been
motivated in their own right within LQC and provide
different primordial power spectra and e-folds of inflation.
Given the total number of e-folds from the bounce until
today, we have first tracked the observable window in both
models to determine if observable modes were ever trans-
Planckian, particularly during the preinflationary epoch.
Then we have analyzed the evolution of the adiabaticity
coefficient of themost ultraviolet observablemode given the
different dispersion relations.
This analysis shows that the existence of the trans-

Planckian problem depends on the model we are using,
both being compatible with observations for the linear
dispersion relation. On the one side, model A faces a
trans-Planckian problem, albeit arguably a soft one, as
the adiabaticity coefficient becomes non-negligible for
the Unruh dispersion relation when a large portion of the
observable window is trans-Planckian. Moreover, the value
of this coefficient for the trans-Planckian modes strongly
depends on the dispersion relation adopted and so will the
primordial power spectrum.By contrast, inmodel Bwe have
found that even though observable modes lose adiabaticity
during the preinflationary epoch, they are not trans-
Planckian in that period, and so the primordial power
spectrum is not sensitive to modifications of the dispersion
relation. In this case there is no trans-Planckian issue,
according to our analysis. This is fundamentally due to
the fact that the initial conditions adopted in this model
generate approximately 11 e-folds less of inflation. In
general, with such a background it would be expected that
the departure from near scale invariance in the primordial
power spectrum already with the standard dispersion rela-
tion would spoil agreement with observations. However, the
particular vacuum chosen in [19] assures that the only
departure with respect to near scale invariance is a power
suppression of infrared modes, that seems to be favored by
Planck data. Our analysis has revealed that, in general, the
trans-Planckian problem should not be disregarded in LQC
as observable modes might be trans-Planckian in the
preinflationary epoch and may lose the adiabaticity which
is required for the trans-Planckian effects to be erased during
inflation.
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Nevertheless, this analysis presents some limitations that
are important to mention. These are mainly three. The first
one is that we have restricted ourselves to two concrete
modified monotonic dispersion relations to account for
trans-Planckian effects. These modifications were first
introduced in the context of black holes [6–8] from a
rather phenomenological perspective. It would be interest-
ing to introduce trans-Planckian modifications directly
rooted at the quantum nature of geometry, following
geometrical arguments of loop quantum gravity. In addition
to this, we have chosen a specific ultraviolet scale, namely,
the one that is related to the curvature radius at the bounce
of LQC. This choice above others seems to be justified, but
other choices could be made. Lastly, in this work we have
only carried out a qualitative analysis of the trans-Planckian
problem, for two particular models with specific numbers
of e-folds and for a concrete potential, focusing on the
evolution of the adiabaticity coefficient for trans-Planckian
modes, rather than computing the power spectrum for
completeness. We leave these calculations, as well as the
consideration of other suitable potentials and models with
different number of e-folds, for future research. However,

the study carried out here anticipates what the results will
be, as we do not expect deep minima in the power spectrum
at the initial stages of the expansion. Such a behavior could
also lead to strong deviations in the primordial power
spectrum, as shown in [49] in an analog condensed matter
model to the de Sitter cosmos given by an expanding quasi-
two-dimensional Bose-Einstein condensate with dominant
dipole-dipole interactions.
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