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We use a recent Pantheonþ SH0ES compilation of type Ia supernova distance measurements at low-
redshift, i.e., 0.01 ≤ z ≤ 0.10, in order to investigate the directional dependency of the deceleration
parameter (q0) in different patches (60° size) across the sky, as a probe of the statistical isotropy of the
Universe. We adopt a cosmographic approach to compute the cosmological distances, fixing H0 andMB to
reference values provided by the collaboration. By looking at 500 different patches randomly taken across
the sky, we find a maximum ∼3σ CL anisotropy level for q0, whose direction points orthogonally to
the cosmic microwave background (CMB) dipole axis, i.e., ðRASN; DECSNÞ ¼ ð267°; 6°Þ vs
ðRACMB; DECCMBÞ ¼ ð167°;−7°Þ. We assessed the statistical significance of those results, finding that
such a signal is expected due to the limitations of the observational sample. These results support that there
is no significant evidence for a departure from the cosmic isotropy assumption, one of the pillars of the
standard cosmological model.
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I. INTRODUCTION

One of the foundations of the current standard cosmo-
logical model, also known as Λ—cold dark matter
(ΛCDM) scenario, is the assumption of the validity of
the cosmological principle (CP) at large scales [1–5]. In
other words, it states that the Universe should appear
statistically homogeneous and isotropic at those scales,
so that we can measure cosmological distances and ages
using the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric. Recent analysis of redshift surveys of galaxies and
quasars indicate that there is indeed a transition scale from a
locally inhomogeneous Universe to a smoother, statistically
homogeneous one, as described by the CP, at about
70–120 Mpc [6–11].
Hence, we must test the assumption of the cosmological

isotropy as well in order to confirm (or rule out) the CP as a
valid physical assumption. If ruled out, the standard model
would require a profound reformulation of its basic
hypotheses, including the physical origin of the mechanism
behind cosmic acceleration. One possible way to test such a
hypothesis involves analyzing the cosmological parame-
ters’ directional dependency, as estimated from the lumi-
nosity distance measurements of type Ia supernova (SNe).

This method has been explored since the release of the
earliest SN compilations, using a variety of approaches,
yielding inconclusive results due to the limited sampling of
objects—in terms of small number of SNe available,
distance measurement uncertainties, and especially uneven
sky coverage [12–33]. The latest SN compilation, namely
the Pantheonþ SH0ES dataset [34] (see also [35,36]),
provides 1701 light curve measurements of 1550 SN
objects. This corresponds to a significant improvement
from previous figures of earlier SN compilations—for
instance, the previous Pantheon and JLA compilations
comprised 1048 and 740 SN distance measurements,
respectively. However, recent analyses still yield incon-
clusive results regarding the validity of cosmic isotropy,
depending on the sample selection and the methodology
adopted [37–43].
Given this scenario, we look further at the isotropy of the

Pantheonþ SH0ES data. In this case, we carry out a
directional analysis of the deceleration parameter (q0)
across the celestial sphere. Similar approaches were
adopted in [40,43], although the authors focused on the
H0 andΩm parameters, as given by the standard model, i.e.,
within the flat ΛCDM framework. Instead, we rely on a
cosmographic description of the Universe so that no further
assumptions on its dynamic content, e.g., the nature of dark
matter and dark energy, are needed—as long as we restrict
our analysis to the lower redshift threshold of the sample.
We also estimate the statistical significance of our results in
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light of the assumptions made on data analysis, or the non-
uniformity of the SN sky distribution.
The paper is structured as follows: Sec. II is dedicated to

explaining our method and the data selection and prepa-
ration. Section III presents the results obtained from this
method, along with the statistical significance tests.
Section IV provides the discussion and our concluding
remarks.

II. METHOD

A. Data preparation

We use the Pantheonþ SH0ES compilation, as retrieved
from the Github repository.1 This dataset consists on 1701
light curve measurements of 1550 distinct SNe within the
0.001 < z < 2.26 redshift range, which also comprises 77
data points from Cepheid host galaxies at very low red-
shifts, i.e., 0.00122 < z < 0.01682. Those measurements
are designated in the data release as a Boolean variable, so
that we use the Cepheid host distances provided in those
cases, instead of the distance modulus measured by the
corresponding SN. Note we use the redshift given in the
zHD variable, since it includes the correction from
the heliocentric to the cosmic microwave background
rest-frame, as well as further corrections due to the nearby
SN peculiar velocities [44,45]. Still, we caution that the
effect of those peculiar velocities can lead to spurious
anisotropy in the Hubble flow, if not properly accounted
for [46–50]. Although some doubts have been cast on the
modeling of the SN peculiar velocities in this sample (see
Ref. [37]), we will not attempt to reevaluate their effects on
the isotropy test we perform in this work.
It is important to avoid possible biases from the original

sample as much as possible, because it consists of an SN
compilation from observations performed by various sur-
veys that have (or had) different designs and sky coverage.
Thus, the original SN compilation is expected to be affected
mainly by uneven sky coverage. Due to this, we impose
two different redshift cutoffs before we proceed to the
isotropy test. The first one consists of an upper redshift
cutoff at the z > 0.10 range, since the SN sky distribution
becomes much more sparse at higher redshifts (see upper
panel of Fig. 1 for a visual explanation). This is something
expected, since those objects were observed by spectro-
scopic surveys designed to cover only those specific
regions of the sky, in order to obtain the highest-resolution
spectroscopy possible. Also, we can safely use cosmo-
graphic expansion on Eq. (1) since it is a good approxi-
mation in that redshift range. Secondly, we impose a lower
redshift cutoff at z < 0.01, except for the distance mea-
surements within Cepheid host galaxies. Hence, we end up
with a working sample of 697 SN data points, as displayed
in the lower panel of Fig. 1.

B. Estimator

We assume a cosmographic expression of the luminosity
distance [51–53],

DLðzÞ ¼ ðc=H0Þ½zþ ð1 − q0Þz2=2�; ð1Þ

where H0 and q0 stand for the Hubble constant and the
deceleration parameter, respectively, and DLðzÞ is given in
Mpc. As the distance modulus definition reads

μmodelðzÞ≡m −M ¼ 5 log10 ðDLðzÞ=MpcÞ þ 25; ð2Þ

we obtain the best-fit for the q0 through a χ2 minimization,
as given by

χ2 ¼ δT
!ðCstatþsysÞ−1δ⃗; ð3Þ

so that Cstatþsys denotes the full SN covariance matrix, and

δi¼
�
mi−M−μi; i∈Cepheid hosts

mi−M−μmodelðziÞ otherwise:
ð4Þ

We adopt the following estimator to test the isotropy
of the local cosmic acceleration by a similar fashion
of [40,43], as follows:

Δq0 ¼

���qð“northcap”Þ0

���−���qð“southcap”Þ0

���
σ2
qð“northcap”Þ
0

þ σ2
qð“southcap”Þ
0

; ð5Þ

where Δq0 is given in units of confidence level (CL). We
compute the best-fitted value for the deceleration param-
eters at opposite patches across the entire celestial sphere
(60° size) along a specific axis randomly selected across the
sky. A total of 500 axes were taken in our analysis. In

Eq. (5), these quantities are denoted by qð“northcap”Þ0 , and

qð“southcap”Þ0 , correspondingly, while σ2
qð“northcap”Þ
0

and σ2
qð“southcap”Þ
0

provides their respective uncertainties at 1σ CL. Explicitly,

we do so by computing likelihoods of the qð“northcap”Þ0 , and

qð“southcap”Þ0 according to L ∝ exp−χ2=2, where χ2 corre-
sponds to Eq. (3). Then, we use the CURVEFIT routine of the
SciPy module to fit a Gaussian curve to the likelihoods at
each cap, and we take its mean value and standard deviation
as our corresponding q0 and σq0 in each “north/south” cap,
respectively, in Eq. (5).
Finally, we stress two more points: (i) We perform our

analysis within 60° size spherical caps, instead of the
typical choice of 90° size ones—which encompasses an
entire hemisphere—for the sake of computational time.
Nonetheless, we expect that this choice should not impact1https://github.com/PantheonPlusSH0ES/DataRelease.
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our conclusions, as the results obtained from 60° caps
show good agreement with those assuming 90° caps—see
Fig. 18 in [43]; (ii) The fact that we are assuming a
cosmographic expansion, rather than the exact expression
for the luminosity distance in the ΛCDM framework, does
not bias our inferences. The relative difference between
the distance modulus predicted by both cases, assuming
self-consistent cosmological parameters, i.e., q0 ¼
−0.499 for former, and Ωm ¼ 0.334 for the latter—and
both assuming H0 ¼ 73.3 km s−1 Mpc−1—only differ at
about 0.35% at z ¼ 0.1, which is the highest redshift
covered by our SN subsample. Since the uncertainties of
the SN measurements are typically larger than those
values, our analysis and conclusions should not be
affected by that.

III. RESULTS

A. Real data analysis

We show the result of the Δq0 analysis in the left panel of
Fig. 2. We represent it as a map in Cartesian coordinates of
the Δq0 values obtained across the 500 randomly selected
directions in the sky for the Pantheonþ SH0ES SN sample.
Here, Δq0 is given in units of standard deviations. The
green diamond mark displays the maximum anisotropy
direction found, along the ðRASN; DECSNÞ ¼ ð267°; 6°Þ
axis, as represented by the green dashed lines, while the
black solid lines and black dotted mark represents the
cosmic microwave background (CMB) dipole direction,
i.e., ðRACMB; DECCMBÞ ¼ ð167°;−7°Þ. We report a maxi-
mum Δq0 value of Δq0 ¼ 3.06 in this case.

FIG. 1. AMollweide projection of the SN positions in the sky. In the upper panel, we assign their positions in such a way that the color
bar is truncated in z ¼ 0.1, so that all SNe with z > 0.1 are shown in blue. On the other hand, the lower panel displays the SNe that made
our imposed redshift cut, i.e., 0.01 < z < 0.10, in addition to the SNe in Cepheid host galaxies, for a color range z ¼ 0 (reddest) to
z ¼ 0.1 (bluest). Both maps are projected in celestial sky coordinates ðRA;DECÞ.
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For the sake of consistency, we also display the reduced
χ2 value in the right panel of the same figure, as defined by
χ2red ≡ χ2=d:o:f:, where d.o.f. denotes the number of
degrees of freedom in each celestial cap, and χ2 is given
by Eq. (3). We can see that the bluest dots, which denote the
poorest q0 fits to the data, do not coincide with the bluest
regions in the Δq0 map. This result indicates that the largest
Δq0 values do not occur due to a poor fit of the data, and
that the largest χ2red values are rather due to undersampling
of SN objects in the corresponding sky regions.
Accordingly, in the left panel of Fig. 3, we present

examples of the normalized q0 likelihood functions
obtained from four different directions in the sky to
visualize better the fits. In this case, different colors denote

different sky directions, whereas the solid and dashed-
dotted curves stand for the “northern” and “southern”
counterpart of each direction respectively. In addition,
the right panel of the same figure shows a histogram of
the Δq0 values, as given in confidence levels. We find that
this distribution peaks at Δq0 ∼ 0.5, which corresponds to
the most frequent value for the q0 anisotropy level, and that
its maximum value is Δq0 ¼ 3.06—as also shown in the
left panel of Fig. 2.

B. Statistical significance of the results

As for the statistical significance of our results, we test
three main cases: (i) How the Δq0 values can be affected
under the assumption of different H0 values to be fixed in

FIG. 2. Left panel: A Cartesian projection map of theΔq0 analysis. We take 500 random directions on our Pantheonþ SH0ES selected
subsample, as represented by each coloured point in this map, for a color bar at the range 0 < Δq0 < 3.5 (C.L.). The green diamond
mark displays the maximum anisotropy direction, found along the ðRASN; DECSNÞ ¼ ð267°; 6°Þ axis, whereas the black dotted mark
represents the axis of the CMB dipole direction, i.e., ðRACMB; DECCMBÞ ¼ ð167°;−7°Þ. Right panel: Same as left panel, but rather for
the reduced χ2 value, χ2red, obtained in each of those random sky directions.

FIG. 3. Left panel: Examples of the q0 normalized likelihood from four different directions across the sky. The black, red, blue and teal
solid (dashed-dotted) curves represent the “northern” (“southern”) counterpart of each of those directions. Right panel: A histogram of
Δq0 values, given in function of C.L. (σ).
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our analysis; (ii) How the Δq0 values can be affected when
assuming a fiducial q0 value; (iii) How the Δq0 values can
be affected if the SN celestial distribution is considered
uniform. In all three cases, we stress that we are assuming
the same SN covariance matrix as the original one, apart
from the redshift selection imposed.
As for case (i): In Fig. 4, we display the normalised

likelihoods for q0 when assuming different Hubble con-
stant values, i.e., H0 ¼ 70.18 km s−1Mpc−1 (left panel),
andH0 ¼ 76.42 km s−1Mpc−1 (right panel). We find that a
higher H0 value leads to highly negative values for the
deceleration parameter. In contrast, the opposite trend
occurs for lower H0 values—see how those likelihoods
are skewed to the right and left, respectively, compared to
those shown in the left panel of Fig. 3, where we assumed
the SH0ES H0 measurement. Hence, we find that the q0 fit
is very sensitive to theH0 assumption, which is an expected
result, since this parameter is degenerated with the absolute
magnitudeMB value—and so we would need to adjust MB

accordingly to the change in the H0. We will leave a more
thorough examination of the possible degeneracy in the
ðMB;H0; q0Þ plane in a future work.
As for case (ii): In Fig. 5, we show the results obtained

by means of a set of 200 realizations named lcdm. In this
case, we fixed the observed modulus distance to the value
given by the flat ΛCDM best-fit for q0 from the original
Pantheonþ SH0ES, i.e., q0 ¼ −0.499, as Ωm0 ¼ 0.334
and thus q0 ¼ ð3=2ÞΩm0 − 1 ¼ −0.499. The goal is to
assess the residuals of our q0 best-fit estimator due to the
limited sampling of SNe across the sky given our 60° patch
size. As we can see in its left panel, we are able to robustly
recover the fiducial q0 best-fit in all cases, albeit with larger
uncertainty in some of them—which naturally occur due to
the SN sky sampling in those specific patches. On the other
hand, the histogram displayed in the right panel shows a
maximum value of Δq0 ¼ 0.24 in those realizations. We
interpret this result as the maximum variance we can expect
from our analysis due only to the effect of the SN sample
incompleteness across the celestial sphere.

FIG. 4. Same as left panel of Fig. 3, but rather for the normalised likelihoods for q0 when assuming different Hubble constant values,
i.e., H0 ¼ 70.18 km s−1 Mpc−1 (left panel), and H0 ¼ 76.42 km s−1 Mpc−1 (right panel).

FIG. 5. Same as Fig. 3, but rather for the lcdm realizations.
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As for case (iii): In Fig. 6, we present normalized q0 for
five realizations (left panel), and the Δq0 histogram (right
panel) for a set of 400 iso realizations. Conversely, from the
previous cases, we assume a uniform SN sky distribution
by replacing the original SN coordinates with a random
direction across the celestial sphere. We obtain a maximum
value of Δq0 ¼ 2.96 in this case. Such a result is in good
agreement with the Δq0 ¼ 3.06 result obtained for the real
data case—especially considering the Δq0 ¼ 0.24 residual
obtained for the lcdm realizations, as previously described.
Therefore, we conclude that there is no statistically sig-
nificant indication for a breakdown of the cosmic isotropy
hypothesis in this case.

IV. DISCUSSION AND CONCLUSIONS

The validity of the cosmological principle, i.e., the large-
scale isotropy and homogeneity of the Universe, constitutes
one of the core assumptions of modern cosmology. Even
though the available observational data favours the ΛCDM
scenario based on this hypothesis, it has seldom been tested
directly. Hence, developing and performing such tests is
crucial since any hint of a statistically significant breakdown
of such an assumption would require an extensive reformu-
lation of the standard cosmological model from the basics.
We used the latest type Ia supernova compilation of

distance measurements, namely the Pantheonþ SH0ES
data set to test the isotropy of the Universe. We did so
by assessing the directional dependence of the deceleration
parameter, where we split the data into subsets across
randomly selected directions in the sky, in which we
obtained their best-fitted values. After restricting our data
to the 0.01 < z < 0.10 range, except for the SN in Cepheid
host galaxies, we found a maximum variation of Δq0 ¼
3.06 at roughly 90° from the CMB dipole direction—a
signal ascribed to our relative motion concerning its rest
frame. Moreover, we found that this result does not
manifest from the assumptions made during the parameter

estimation—e.g., by fixing the Hubble constant and SN
absolute magnitude to its default values or by the incoher-
ent fitting of the deceleration parameter—and most impor-
tantly, we found that such a variation is in good agreement
with simulations assuming a uniform sky distribution of the
SN data points. Therefore, we can conclude that this result
is not statistically significant and that it should occur due to
intrinsic fluctuations in the data—primarily due to the
uncertainties in its covariance matrix.
Our results present an improvement from analyses made

on the previous SN compilation, i.e., the Pantheon dataset,
where it was found from similar tests that the directional
dependence of the cosmological parameters could be
ascribed to the inhomogeneous SN celestial distribution—
see, for instance, [23]. In addition, we extend and comple-
ment former analyses in the literature [39–43], as we avoided
the assumption of dark energy using the cosmographic
expansion,2 and performed more stringent cuts in the sample
to avoid possible biases. Hence, in contrast with some of
those results, we found no significant evidence for a possible
deviation from the cosmological principle assumption in the
Pantheonþ SH0ES data. This is in good agreement with
previous tests using other types cosmological observations,
e.g. galaxy clusters [54], infrared galaxies [55], gamma ray
bursts [56], and quasars [57].
Given the advent of ongoing and forthcoming redshift

surveys, such as eROSITA [58], Vera C. Rubin Observatory
[59], Euclid [60], Square Kilometer Array Observatory
[61], besides distance measurements by standard sirens
from LIGO and Einstein Telescope, we expect that this
variance should be reduced even further, and thus, we will

FIG. 6. Same as Fig. 5, but rather for the iso realizations.

2We note that future SN distance measurements might have to
assume a higher order cosmographic expansion, as their respective
uncertainties might get smaller than the 0.35% difference between
the predictions from the cosmography expansion up to the second
order in redshift, as assumed here, and the ΛCDM predictions.
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be able to pinpoint if the cosmological principle provides a
realistic representation of the Universe at large scales.
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Amparo à Pesquisa do Estado do Rio de Janeiro
(FAPERJ) Grant No. 259610 (2021). This work was
developed thanks to the National Observatory Data
Center (CPDON).

[1] J. Goodman, Geocentrism reexamined, Phys. Rev. D 52,
1821 (1995).

[2] C. Clarkson and R. Maartens, Inhomogeneity and the
foundations of concordance cosmology, Classical Quantum
Gravity 27, 124008 (2010).

[3] R. Maartens, Is the Universe homogeneous?, Phil. Trans. R.
Soc. A 369, 5115 (2011).

[4] C. Clarkson, Establishing homogeneity of the universe in
the shadow of dark energy, C.R. Phys. 13, 682 (2012).

[5] P. K. Aluri, P. Cea, P. Chingangbam, M. C. Chu, R. G.
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