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We introduce a diffusion-based generative model to describe the distribution of galaxies in our Universe
directly as a collection of points in 3D space (coordinates) optionally with associated attributes (e.g.,
velocities and masses), without resorting to binning or voxelization. The custom diffusion model can be
used both for emulation, reproducing essential summary statistics of the galaxy distribution, as well as
inference, by computing the conditional likelihood of a galaxy field. We demonstrate a first application to
massive dark matter haloes in the QUIJOTE simulation suite. This approach can be extended to enable a
comprehensive analysis of cosmological data, circumventing limitations inherent to summary statistics, as
well as neural simulation-based inference methods.
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I. INTRODUCTION

Cosmological data analysis is a multidisciplinary field
that involves nuanced interplay between theory and data.
Analysis of late-time observables of structure formation is
especially challenging due to the high dimensionality of
typical data and complexity of the underlying data-gen-
erating process, which aims to model, among others, the
nonlinear collapse of structures, baryonic processes, and
the formation of galaxies in the dark matter cosmic web. An
example of such an observable is galaxy clustering—the
3D distribution of galaxies in the Universe—which is a
powerful probe of cosmology and galaxy formation.
The galaxy clustering signal is typically quantified by

summary statistics like the two-point correlation function
(2PCF), which measures the probability of finding a pair of
galaxies as a function of their separation in excess of
expectation based on a uniform distribution. While rou-
tinely used in cosmological analyses, the 2PCF is not a
complete (sufficient) summary of the galaxy clustering
signal, and other statistics like higher-order correlation

functions [1,2], wavelet scattering transforms [3–5], den-
sity statistics [6,7], void statistics [8,9], k-nearest neighbor
summaries [10], and many others are routinely employed to
capture additional information contained in the clustering
signal, in particular at smaller scales where nonlinear
structure formation is critical to the description of the
field. Recent studies [6,11] have shown that the information
extracted from existing galaxy surveys can be more than
doubled through the use of alternative summary statistics
that go beyond the 2PCF.
Machine learning methods have demonstrated the poten-

tial to significantly impact how cosmological data are
analyzed, and galaxy clustering is no exception [12–14].
More concretely, the ability of neural networks to beat the
curse of dimensionality allows for extraction of information
about the underlying cosmology without having to man-
ually construct summary statistics to describe the galaxy
clustering field.
For galaxy clustering observations, arguably the holy

grail is to obtain a reliable likelihood of an observed galaxy
configuration x given some parametric description θ of
underlying cosmological models of interest, pðxjθÞ which
is additionally amenable to sampling—a “generative
model.” Access to the conditional likelihood can be used
to sample different field configurations, x ∼ pðxjθÞ, for use
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in various downstream tasks or as a surrogate model
(emulation). Additionally, one can use the likelihood to
perform parameter inference and hypothesis testing using a
method of ones choosing. In the context of Bayesian
inference, commonly employed in cosmology, the condi-
tional likelihood can be used in conjunction with a prior
pðθÞ in order to obtain a estimate of the parameter posterior
density, pðθjxÞ ¼ pðxjθÞ · pðθÞ=pðxÞ.
Unfortunately, computing the conditional likelihood is

extremely challenging for most observationally interesting
scenarios. This is because it requires marginalizing over an
essentially infinite-measure space of latent configurations,
denoted z, characterizing possible initial conditions and
their evolution trajectories toward realizing a given obser-
vation x; pðxjθÞ ¼ R dzpðx; zjθÞ. For a collection of
galaxies or dark matter halos, constructing a generative
model involves modeling the joint probability density of
the properties (positions, velocities, etc.) of a large number

of galaxies, p
�
fxigNgal

i¼1 jθ
�
, while simultaneously capturing

the dependence on cosmology—a formidable task.
Machine learning has revolutionized the field of gen-

erative modeling, heralding methods that are able to learn
complex data distributions such as those of natural images
and human-generated text. Much of this success has been
enabled through the use of diffusion models [15,16]—a
class of generative models that, colloquially, learn to
efficiently denoise a corrupted version of the data.
Within the sciences, diffusion models have demonstrated
potential across domains, showing impressive performance
in modeling the distribution of atomistic systems [e.g.,
[17]], proteins and biomolecules [e.g., [18–20]], and
particle jets [e.g., [21–23]], to name a few. Compared to
other generative models, diffusion models tend to be more
expressive than variational autoencoders, allow for more
flexible architecture and training than normalizing flows,
and can estimate approximate likelihoods unlike generative
adversarial networks, while still producing diverse samples.
Within cosmology, generative modeling has recently

been applied in the context of matter density fields
[12,24], initial conditions reconstruction [25], weak lensing
mass maps [26], galaxy images [27,28], and strong lensing
observations [29,30]. In all cases, the common data
modality of 2D or 3D pixelized images or voxelized boxes
is used. While the image representation is appropriate in
many cases, such as weak gravitational lensing, the dis-
tribution of galaxies is, arguably, ideally represented as a
point cloud—a set of points in 3D space, with additional
attributes (e.g., luminosities, velocities, as well as other
galaxy properties) attached to them. Pixelization or voxe-
lization necessarily introduces scale cuts, information loss,
as well as hyperparameter choices, precluding a full in-situ
analysis of observed data.
In this paper, we develop a diffusion-generative model

with the goal of describing the statistical properties of the
distribution of galaxies in our Universe. We focus here on

modeling dark matter halos, leaving a more detailed
exploration including effects of the galaxy-halo connection
and observational effects to future work. We show that our
custom diffusion model, which uses either graph neural
networks or transformers as a backbone, faithfully repro-
duces crucial summary properties of the galaxy field with
expected cosmological dependence. Furthermore, we show
how our model can be used to evaluate the conditional
likelihood of a galaxy field.
This paper is organized as follows. We describe our

methodology, including an overview of the diffusion
modeling framework, the underlying data-processing neu-
ral networks involved, and a description of the dataset and
training procedure in Sec. II. We showcase generated
samples and validate their properties in Sec. III. We
describe in detail the methodological limitations of our
model and discuss future avenues for improvement in
Sec. IV. We conclude in Sec. V.

II. METHODOLOGY

We describe, in turn, the simulation dataset used, the
diffusion model framework, and the noise-prediction neural
network backbones of our model.

A. Dataset and forward model

Our dataset is derived from the high resolution Latin
hypercube set of the QUIJOTE suite of 2000N-body simu-
lations [31] at redshift zero. These simulations follow the
evolution of 10243 cold dark matter particles in a volume of
ð1h−1 GpcÞ3 with periodic boundary conditions from z ¼
127 to z ¼ 0. QUIJOTE uses the TreePM GADGET-III code and
identifies halos using a friends-of-friends [32] halo-finding
algorithm. Each simulation in the Latin hypercube varies
the cosmological parameters described in Table I and the
random phases of the initial conditions simultaneously.
We randomly split the dataset 90%/10% into training and

testing sets. The held-out test is used to (1) compute
validation metrics over the course of training, and (2) evalu-
ate the cosmological parameter dependence of the trained
model. We do not use separate datasets for the two purposes
due to the limited total number of available simulations. To
assess the ability of our model to capture the effect of
cosmic variance, we use a separate set of 50 simulations
with varying random phases in the initial conditions and
cosmological parameters fixed to the fiducial parameter
values specified in Table I.
Dark matter halo coordinates are represented as a 3D

point cloud, selecting the heaviest 5000 halos by halo mass.
We chose to select halos by number density, as opposed to
by choosing a minimum halo mass threshold, since in
observations we only have access to the former. We also use
the velocity and mass attributes from the halo catalogs for a
subset of our experiments to demonstrate the ability of the
model to reproduce correlations in a higher-dimensional
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feature space. Examples of samples from the test dataset are
shown in the bottom row of Fig. 2.

B. Diffusion-based generative modeling

Diffusion models have emerged as state-of-the-art
deep generative models in domains like computer
vision, surpassing in flexibility and expressivity models
like normalizing flows and variational autoencoders.
They admit several closely related formulations. In
one common framing [15], a neural network ϵ̂φðzt; tÞ
learns to iteratively “denoise” a corrupted version zt of
the data x≡ zt¼0 from a time step t∈ ½0; T� by predict-
ing either the additive noise ϵ, the original data point x
directly, or some combination of the two [33]. New
samples can then be generated by sampling Gaussian
random noise zT and iteratively denoising it from t ¼ T
to t ¼ 0. A complementary framing [16] relies on
having a neural network ŝφðzt; tÞ estimate the time-
dependent gradient of the data distribution—the so-
called score function, ∇zt logpðztÞ.
The two formulations are closely related. Considering

Gaussian noise addition with variance σ2t as the forward
process, qðztjxÞ ¼ N ðzt; x; σ2t Þ, the “conditional” score can
be analytically expressed as ∇zt log qðztjxÞ ¼ ðx − ztÞ=
σ2t ¼ −ϵ=σt. Score and noise prediction are hence equiv-
alent up to a time-step-dependent scaling. The intuition
behind the relative negative sign is that, since the noise ϵ
corrupts the data point, moving in its “opposite” direction
will maximize the local (in time t) probability of moving
toward the original data point. Hence, we refer to the noise-
and score-prediction networks interchangeably.

C. Variational diffusion models

Here, we use the “variational diffusion model” formu-
lation [34–36], which frames the diffusion process as a
hierarchical variational autoencoder (VAE) with a specific
(Gaussian) functional form for the transition probability
between latent variable hierarchies in the forward (noise-
addition) process. Much as in a classical VAE [37], the
evidence lower bound objective can be used as a variational
lower bound on the log-likelihood logpðxÞ. We give a
high-level overview of the formalism here; see Kingma
et al. [36] and Luo [38] for further details.

1. The forward process

The forward (noising) process is defined by the distri-
bution qðztjzt−1Þ, which also defined the “noise schedule”
of the diffusion model. This is a critical part of the model
which can have a large impact on the final fidelity and
learning dynamics of the model [39]. We take this to be a
variance preserving,

qðztjzt−1Þ ¼ N
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − βt
p

· zt−1; βt
�

ð1Þ

which corresponds to

qðztjxÞ ¼ N ð ffiffiffiffi
ᾱt

p
· x;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ᾱt

p
Þ ð2Þ

ᾱt ¼
Yt
i¼1

αi; αt ≡ 1 − βt: ð3Þ

This is commonly referred to as the “diffusion kernel” and
can be used to conveniently predict a noised data sample at
any time step t without going through intermediate times.
We further define the signal-to-noise ratio or the mean-to-
standard-noise ratio, SNRðtÞ≡ ᾱt=ð1 − ᾱtÞ.

2. The variational objective

For the diffusion objective, we use the efficient and
numerically stable implementation of the variational evi-
dence lower bound (ELBO) from Kingma et al. [36] and
Kingma and Gao [40]. The ELBO can be written as

logpðxÞ ≥ ELBOðxÞ ¼ −EqðzT jxÞ½DKLðqðzT jxÞkpðzTÞÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Prior matching

þ Eqðzt1 jxÞ½logpðxjzt1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reconstruction

þ LdiffusionðxÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Forward-reverse consistency

ð4Þ

where zT are the latent random variables at the last noising
step, zt1 are the latent variables in the first noising step, and
qðztjxÞ are the (assumed Gaussian) variational posteriors
on the noise addition. The prior-matching and reconstruc-
tion terms are exactly analogous to a classical VAE with a

TABLE I. Definitions and ranges of the cosmological parameters of the QUIJOTE simulation suite.

Parameter Interpretation Range Fiducial

Ωm Matter density [0.1, 0.5] 0.3175
Ωb Baryon density [0.03, 0.07] 0.049
h Dimensionless Hubble constant [0.5, 0.9] 0.6711
σ8 Amplitude of matter fluctuations in 8h−1 Mpc spheres [0.6, 1.0] 0.834
ns Spectral index of the primordial power spectrum [0.8, 1.2] 0.9624
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single bottleneck layer and contain no trainable parameters.
The diffusion loss LdiffusionðxÞ ensures consistency between
the forward (noising) and reverse (denoising) distribution at
each step of the hierarchy [38],

LdiffusionðxÞ¼−
XT
t¼2

EqðztjxÞ½DKLðqðzt−1jzt;xÞkpφðzt−1jztÞÞ�:

ð5Þ

The target denoising step pφðzt−1jztÞ is learned as an
approximation of the ground truth qðzt−1jzt; xÞ, which
corresponds to a local denoising of zt when we have
access to the target image x. For Gaussian diffusion, it can
be shown [38] that the ground-truth denoising distribution
can be written analytically as a Gaussian,

qðzt−1jzt; xÞ ¼ N ðzt−1; μqðzt; xÞ; σqðtÞIÞ; ð6Þ

where we omit the functional forms of μq and σq for brevity.
If we also assume a Gaussian functional form for the
learned transition distribution pφðzt−1jztÞ, minimizing the
Kullback-Leibler (KL) divergence in Eq. (5) reduces to
matching the means and variances of the two Gaussians.
After some algebra, minimizing the target KL-divergence
terms reduce to

arg min
φ

DKLðqðzt−1jzt; xÞkpφðzt−1jztÞÞ

¼ arg min
φ

1

2σ2qðtÞ
ð1 − αtÞ2
ð1 − ᾱtÞαt

h
kϵ − ϵ̂φðzt; tÞk22

i
ð7Þ

where ϵ̂φðzt; tÞ is the noise-prediction neural network that is
optimized during training, parametrized by φ. In practice,
the sum over time steps in Eq. (5) is computed as an
expectation with appropriate scaling,

XT
t¼2

EqðztjxÞ½DKLðqðzt−1jzt; xÞkpφðzt−1jztÞÞ�

≈
NT

2
Et∼Uf1;Tg;qðztjxÞ½DKLðqðzt−1jzt; xÞkpφðzt−1jztÞÞ�: ð8Þ

This makes diffusion models especially efficient to train—
they do not require simulation of the entire trajectory back
to the primal Gaussian at every training step unlike, e.g.,
continuous-time normalizing flows [41].
Finally, the prefactor in Eq. (7) can be elegantly written

in terms of the time-dependent log-SNR, γðtÞ, and the time
step discretization in Eq. (8) can be taken to the continuum
limit, yielding the final diffusion loss

LdiffusionðxÞ ¼
1

2
Eϵ∼N ð0;IÞ;t∼Uð0;TÞ

h
γ0ηðtÞkϵ − ϵ̂φðzt; tÞk22

i
;

ð9Þ

where γ0ηðtÞ≡ dγη=dt is evaluated via automatic differ-
entiation and the expectation over a standard Gaussian
comes via the expectation over qðztjxÞ in Eq. (5).
Equation (9) demonstrates that the variational likelihood
objective is equivalent to the traditional denoising (noise-
prediction) objective [15], with an appropriate weighting
prefactor [40].
The noise schedule γηðtÞ is implicitly parametrized via

the log-SNR, modeled as linearly increasing in time
between learnable extremal values η ¼ fγmin; γmaxg with
γðt ¼ TÞ ¼ γmin and γðt ¼ 0Þ ¼ γmax. The noise-prediction
neural network and noise schedule parameters fφ; ηg are
hence simultaneously optimized toward the maximum-
likelihood bounding objective.

3. Sample generation

With the learned transition step pφðzt−1jzt; t; θÞ at
hand, there are several ways of generating new samples.
The simplest is perhaps through ancestral sampling:
(1) discretize the interval ½0; T� to a chosen number of
time steps, (2) sample an initial random noise configuration
zT ∼N ð0; IÞ, and (3) run the reverse diffusion process by
iteratively sampling zt ∼ pφðzt−1jzt; t; θÞ until we arrive
at a sample at z0 ≡ x ∼ p̂ðxjθÞ. We explicitly reinstate
ft; θg dependence here to emphasize that the transition
distribution (through the noise-prediction network) is con-
ditioned on the diffusion time t and cosmological param-
eters θ ¼ fΩm; σ8g. An example of a sampled point cloud
starting from a 3D Gaussian sample is shown in Fig. 1,
along with the intermediate states. The sampled trajectories
for a subset of particles are shown via the gray lines.
See Appendix A for an alternative deterministic sampling
method based on ordinary differential equations (ODEs)
that produce smoother trajectories. In Appendix A, we also
show how these smoother trajectories vary with a con-
ditioning parameter, Ωm, to produce more or less clustered
point clouds.

4. Likelihood evaluation

The diffusion model is trained using a stochastic estimate
of the variational maximum-likelihood objective, Eqs. (4)
and (5). The same expression can be used to obtain an
estimator of the conditional log-likelihood log p̂ðxjθÞ,
ensuring that the ELBO is evaluated a sufficient number
of times to obtain a good estimate of the expectation value.
In more detail, the interval ½0; T� is discretized into time
steps, and we iteratively draw zt ∼ qðztjzt−1; θÞ starting
from z0 ¼ x, compute the diffusion loss terms in Eq. (7),
which are summed up and added to the prior and
reconstruction terms in Eq. (4).

D. The score-/noise-prediction models

The noise-prediction function ϵ̂φðzt; tÞ∶RNgal×Nf →
RNgal×Nf , where Ngal denotes the number of tracers and
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Nf the number of features per tracer, is a crucial part
of the diffusion model and must be chosen sensitive to the
data modality and generating process. In our case, we
model the distribution of tracers and their properties as a
“point cloud,” i.e., a collection of coordinates (positions),
optionally with attached attributes (e.g., velocities),

p
�
fr⃗i; ½v⃗i;…�gNgal

i¼1 jθ
�
. The number of features is either

Nf ¼ 3 when only modeling tracer coordinates, or Nf ¼ 7

when additionally modeling velocities and masses.
The score model must be (1) equivariant to permutations,

(2) able to process points of arbitrary cardinality, and
(3) able to effectively model the joint correlation structure
of galaxy/halo properties. Variants of the closely related
transformer and graph neural network (GNN) families
satisfy these requirements; here, we show applications
using both, described below. All models are implemented
using the JAX [42] framework.

1. Graph neural network model

We use a variant of the graph-convolutional network
from Battaglia et al. [43]. A local k-nearest-neighbors
graph with k ¼ 20 is constructed using the Euclidean
distance between coordinates as the distance metric,
accounting for periodic boundary conditions, at each
time step in the diffusion process. The relative 3D dis-
tances between input node coordinates are used as input
graph edge features. The time step t is projected onto a
16-dimensional space via sinusoidal encodings, and the
conditioning parameters θ ¼ fΩm; σ8g are linearly pro-
jected also onto a 16-dimensional parameter space. They
are concatenated to form the global conditioning vector g0.

Both the input node features zt and edge features z
pos
t;i − zpost;j

are initially projected into a 16-dimensional latent space via
a four-layer multilayer perceptron (MLP; fully connected
neural network) with 128 hidden features and Gaussian
error linear unit (GELU) activations. All MLPs utilized in
the GNN have these same attributes.
Four message-passing rounds are performed, updating

the edge attributes eij at each round by passing a difference
of the sender and receiver node attributes, edge attributes,
as well as global parameters (a combination of time step
embedding and conditioning parameters fΩm; σ8g) through
an MLP. For each node hi, the neighboring edge attributes
are aggregated, concatenated with the node and global
attributes, and passed through another MLP to obtain the
residual of the updated node features. Featurewise layer
normalization [44] is applied after each layer.
The graph-convolutional layers are defined as

elþ1
ij ¼ ϕl

eðConcat½hli − hlj; e
l
ij; g

0�Þ ð10Þ

hlþ1
i ¼ hli þ ϕl

h

 
Concat

"
hli;

X
j∈N ðiÞ=i

elþ1
ij ; g0

#!
ð11Þ

where the edge- and node-update neural networks ϕl
e and

ϕl
h are both MLPs.N ðiÞ denotes the set of nodes connected

to node (i) by an edge. Each edge and node update is
additionally parametrized by the global (diffusion time and
conditioning) parameters g0. Finally, the latent node fea-
tures are projected back onto Nf dimensions via an MLP.

FIG. 1. A schematic overview of the point cloud diffusion model, showing samples from the diffusion process at different diffusion
times. During training, noise is added to a data sample x using the diffusion kernel qðztjxÞ and a denoising distribution pφðzt−1jztÞ is
learned. To generate samples, we simulate the reverse process—we sample noise from a standard Gaussian distribution and denoise it
iteratively using the learned denoising distribution.
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The GNN model integrates an attention mechanism to
selectively emphasize relevant features in the graph when
updating the edge features—attention scores are computed
for each edge and used to scale the edge features. First, for
each edge ði; jÞ connecting nodes i and j, an attention logit
is calculated using an MLP ϕa,

llij ¼ ϕaðConcat½hli − hlj; e
l
ij; g

0�Þ: ð12Þ

These logits are then normalized across all neighboring
edges via sofmax, ensuring that the attention scores for
edges emanating from a single node sum to one. For a node
i, the attention weight αij for each edge is given by
αij ¼ expðlijÞ=

�P
k∈N ðiÞ expðlikÞ

�
. The edge features are

then scaled by these attention weights, e0ij ¼ eij · αij,
resulting in attention-modified edge features which are
used subsequently in Eq. (10).
The graph neural network was implemented using the

JRAPH [45] package and contains 637,373 trainable
parameters.

2. Transformer model

The transformer [46,47] is a sequence-to-sequence
model that uses self-attention to process sequences of
arbitrary length. We use a encoder-only transformer
without positional encodings or causal masking, which
makes the model permutation equivariant and able to deal
with set-valued data. The input coordinates zt are linearly
projected onto an embedding space of dimension 256,
then processed through four transformer layers each
consisting of multihead self-attention with four heads
and a two-layer MLP of hidden dimension 1024
with GELU activations. A “prelayer” norm configuration,
where features are normalized each time the transformer
residual stream is read from, was found to be crucial for
training stability [48]. The final output is projected down
to the dimensionality of the input attributes. In order to
condition the score model on time step t as well as the
parameters of interest θ ¼ fΩm; σ8g, a linear projection
of the combined conditioning vector g0 (described in the
GNN model above) is added to the input embeddings.
The transformer score model contains 4,776,281 trainable
parameters.
Self-attention scales quadraticallyOðN2

galÞ with the num-
ber of input points, in principle limiting the applicability of
this architecture to larger point clouds. For set-valued data,
however, a specified number Nind of representative “induc-
ing” points can be learned also via attention—essentially an
on-the-fly learned clustering [49]. These are then used for
computing the keys and values in the attention mechanism,
with the input points projected onto queries, scaling the
computation linearly OðNgal · NindÞ with the cardinality of
the point cloud. We implement and test induced attention in
our code, achieving similar performance to full attention, but

did not find it necessary for computational tractability with
our 5000-cardinal point cloud.

III. RESULTS AND DISCUSSION

A. Training

The model is trained using the variational maximum-
likelihood objective in Eq. (4). We run 300,000 iterations of
the AdamW [50,51] optimizer with peak learning rate
3 × 10−4, 5000 linear warmup steps, cosine annealing, and
a batch size of 16. Boxes are randomly translated and
rotated, sensitive to periodic boundary conditions, as a form
of data augmentation. We select the checkpoint used
downstream as the one with the smallest KL divergence
between two-point correlation functions of generated
samples and those from the held-out validation set.
Further details are provided in Appendix B. We train
models on either (1) halo positions only or (2) halo
positions, velocities, and masses. Training takes about
12 h on 4 Nvidia A100 GPUs.

B. Conditional sampling

Sampling a point cloud takes ∼5 sec on a single
Nvidia A100 GPU using 1000 time steps, scaling
sublinearly via vectorization when sampling batches.
We show examples of position-only samples from our
diffusion model, with a GNN backbone, in the top row of
Fig. 2, with the conditioning cosmological parameters
fΩm; σ8g annotated. Boxes from the test set correspond-
ing to these parameters are shown in the bottom row.
Generated boxes are drawn from the same random seed
in order to emphasize the effect of parameter condition-
ing. We see clear signs of clustered structure, with the
expected dependence as the cosmological parameters are
varied. Although the overall clustering of dark matter
particles increases with increasing Ωm, we here select the
most massive 5000 dark matter haloes in each cosmol-
ogy. In cosmologies with a lower value of Ωm this
selection will lead to smaller mass objects that tend to be
near each other, as opposed to big clusters more
separated in space for a larger Ωm cosmology.
A sample from the diffusion model trained on positions,

velocities, and masses with the transformer backbone is
shown in Fig. 3 (left) to be compared with a box from the
test simulation suite with the same underlying cosmology
(right). Velocity directions and magnitudes are indicated
with gray attached arrows, and the size of the marker is
proportional to the mass of the galaxy. Again, clear signs of
clustered structure are visible.

C. Summary statistics validation

We verify the quality of the trained generative model,
including the dependence on cosmological parameters, by
comparing the summary statistics obtained from the gen-
erated point clouds with those from a held-out test set.
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In Fig. 4, we evaluate the positions only model trained
with the GNN score model described in Sec. II D 1. We
compare the parameter dependence of two widely used
clustering statistics: the two-point correlation function and
the cumulative distribution of k-nearest neighbors (k-NNs),
evaluated at five different parameter values of the test set
that have been chosen to span the Ωm parameter space. We
compare the mean and variance of 20 diffusion samples to
one sample from the N-body. Overall the diffusion model
reproduces the trends of the N-body simulations, although
due to the lack of varying seeds in the initial conditions for
theN-body simulations at varying cosmological parameters

we cannot provide a robust quantitative evaluation. Note
that the N-body samples also vary other cosmological
parameters that are implicity marginalized over in the
generated samples, namely, Ωb, h, and ns. Hence we do
not expect a perfect agreement between the two.
In Fig. 5, we show the corresponding evaluation for the

model trained to reproduce the joint probability distribution
of halo positions, masses, and velocities, trained with the
transformer score model described in Sec. II D 2. Here, we
show the mean pairwise velocity distribution (left), to
demonstrate that the model describes the joint distribution
of velocities and positions faithfully, as well as the

FIG. 3. Example of a point cloud generated from the diffusion model trained on positions, velocities, and masses (top row) and those
from the test set (bottom row). Gray arrows correspond to the position and relative magnitude of velocities, and the size of the individual
points is proportional to the masses of the galaxies.

FIG. 2. Examples of point clouds generated from the trained position-only diffusion model (top row) and those from the test set
(bottom row), with each column corresponding to the same set of cosmological parameters, indicated. The generated point clouds are
drawn from the same random seeds.

POINT CLOUD APPROACH TO GENERATIVE MODELING FOR … PHYS. REV. D 109, 123531 (2024)

123531-7



FIG. 4. Summary statistics of the samples generated by the diffusion model compared to those of the N-body simulations for five
equally spaced Ωm values from the test set. For each cosmology, all summary statistics are computed for the same emulated point cloud.
Lines are samples from the N-body simulations with different initial conditions, solid contours represent the mean and variance of 20
samples from the diffusion model at that parameter value. On the left, we show the halo two-point correlation function. On the right, the
cumulative density function for finding a first neighbor at a given distance from a random point in the simulation volume. Lower panels
show the difference between the N-body and the mean of the diffusion samples, in units of the diffusion samples’ standard deviation.

FIG. 5. Velocity (left) and mass (right) summary statistics of the samples generated by the diffusion model compared to those of the
N-body simulations for five equally spacedΩm values from the test set. On the left, we show the mean pairwise velocity as a function of
pair separation. On the right, the cumulative halo mass function.
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cumulative halo mass function (right). We find that the
parameter dependence of the mean pairwise velocity can be
reproduced over a wide range of scales, whereas the
cumulative halo mass function seems to be slightly offset.
Finally, to assess the model’s ability to model cosmic

variance, we compare the mean and variance of 50 dif-
fusion samples’ summary statistics to those of 50 N-body
simulations at the fiducial values, shown in Table I. In the
first row of Fig. 6, we compare the mean of the 2PCF and
of the k-nearest-neighbor statistics for different k values,
k ¼ 1, 5, 9. Although the model can reproduce the
k-NN statistics well, it cannot accurately capture the
behavior of the 2PCF at the baryon acoustic oscillation
(BAO) scale (∼120h−1 Mpc). In the second row, we
demonstrate that the model can indeed recover the standard
deviation of the different summary statistics as a function
of scale due to varying initial conditions for both the
2PCF and k-NN statistics. As already mentioned, the
diffusion model is only conditioned on Ωm and σ8 and
therefore is not expected to reproduce the fiducial distri-
butions perfectly.

D. Likelihood calculation

Figure 7 shows 1-σ intervals on the parameters fΩm; σ8g
for samples from the held-out test set computed using the
diffusion-backed approximate log-likelihood log p̂ðxjθÞ for

the positions-only model (black data points) and model
with all features (red data points). These are computed by
varying the dependent parameter on a 1D grid, while
keeping the other parameter fixed at the ground-truth value.
The learned ELBO in Eq. (4) is evaluated 32 times with 50
discretization time steps ∈ ½0; T ¼ 1� to obtain an estimate
of the conditional log-likelihood, which takes ∼10 sec
when vectorized over the number of evaluations.
Additional results substantiating these choices are shown
in Appendix C.
Although the points follow the expected trend qualita-

tively, it is clear that the learned likelihoods are not well
calibrated. In particular, they are seen to be overconfident
for Ωm.
This is perhaps not surprising—although we see from

Fig. 4 that the model has learned qualitatively good
variation across cosmological parameters in the space of
tested summaries, 1800 samples is likely too small a
training dataset from which to robustly learn this parameter
dependence at the field level, even with aggressive data
augmentation. It can be seen from Fig. 6 that the generated
samples also struggle to reproduce the two-point correla-
tion function at larger scales, suggesting that the large-scale
correlation structure, which influences in particular the Ωm
dependence, is not optimally captured.
Given this, we do not rigorously evaluate posteriors

distributions on cosmological parameters or compare them

FIG. 6. Mean and variances of the diffusion model and the N-body simulations for the two-point correlation function and the nearest-
neighbor statistics at the fiducial parameter values. Blue contours show the mean and variance of the QUIJOTE simulations, whereas red
contours show the mean and variance of the diffusion samples at the same parameter values. The upper row shows a comparison of the
mean, whereas the lower row shows differences in the standard deviation of the statistics as a function of scale.
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to those obtained using two-point correlation function
summaries. We leave model improvements toward bet-
ter-calibrated likelihoods to future work, some of which we
discuss in the next section.

IV. LIMITATIONS AND PROSPECTS

The present paper serves as a proof-of-principle exposition
of some of the capabilities enabled by generativemodeling in
the context of galaxy surveys, i.e., field level emulation and
inference. Although we demonstrate the ability to emulate
cosmological fields at the point cloud level, our GNN and
transformer-backed models are not able to achieve well-
calibrated likelihoods to a level that would be satisfactory for
downstream applications and also show discrepancies
between the emulated and simulated point clouds on large
scales. The availability of larger datasets for training is likely
to partially alleviate this issue. We also outline promising
directions on the methodological side for future study that
could significantly improve the fidelity of our generative
model and enable scaling to a larger number of points.

(i) Periodic boundary conditions: The target point cloud
data are confined to a box with periodic boundary
conditions. Our model does not account for either the
confinement to a box or periodic boundary conditions
at the level of the diffusion model (although note that
the graph neighbor calculation does take into account
distances across box boundaries). Existing methods
used for generation of periodic configurations of
materials [52,53] could be leveraged in this direction.

(ii) Physical symmetries: Cosmological data typically
encode a great deal of physical symmetry—in our
case, Euclidean symmetry associated with the free-
dom to choose an arbitrary coordinate system.

Ourmodel is, on the other hand,manifestly coordinate
dependent, relying on propagating absolute coordi-
nates. Althoughwe aim to partlymitigate this through
data augmentation (i.e., train-time rotations, trans-
lations, and reflections), this is significantly less data
efficient than directly baking in these symmetries
using symmetry-preserving neural networks [54,55],
which have been shown to be provably more robust
in other domains, e.g., the study of atomistic systems
[56–58]. Although translation- and rotation-invariant
neural networks have previously been used within
astrophysics for parameter prediction tasks via invari-
ant feature propagation [59], end-to-end “equivar-
iance” is expected to benefit our model more since
it does not target prediction of globally invariant
properties.

(iii) Physicallymotivated base distributions:Our diffusion
model relies on standard Gaussian diffusion, with the
asymptotic latent distribution being a standard Gaus-
sian zT ∼N ð0; IÞ. This means that the model has to
denoise the standard Gaussian into a box. Recent
classes of deep generative models, e.g., stochastic
interpolants and conditional flow matching [60,61],
allow for the base distribution to be arbitrary and also
implicitly defined through samples. In our case, using
a physically motivated initial distribution, e.g., par-
ticles in a box distributed according to a fiducial two-
point correlation function, can be set up as a poten-
tially easier learning problem.

(iv) Architecture expressivity: Our fiducial score func-
tion is a simple message-passing GNN, which
suffers from known lack of expressivity, in parti-
cular when modeling long-range correlations. A
common culprit is oversmoothing—as the number

FIG. 7. Intervals corresponding to 1-σ containment from the likelihood profiles for Ωm (left) and σ8 (right), obtained by fixing one
parameter at its true value and evaluating the likelihood over the other. Intervals for the position-only model (black data points) and
model with positions, velocities, and masses (red data points) are shown.
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of message-passing hops increases, the feature
neighborhoods become increasingly similar across
nodes, leading node features to collapse to similar
values [62]. Indeed, our summary two-point correla-
tion function does not faithfully capture correlation
features on large spatial scales, such as the BAO peak
(Fig. 6). The use of techniques to explicitly mitigate
these issue [63,64] and enhance modeling of long-
range correlation could therefore be helpful for gen-
erative modeling of cosmic fields as point clouds.

(v) Scalability and hierarchical description of galaxy
field: Our diffusion model is used to represent the
entire input point cloud field, which we choose to
consist of 5000 particles. In practice, the field at
large scales is expected to be highly linear and
Gaussian, which calls for hierarchical methods that
can generate fields described by nonlinear statistics
on small scales while conforming to consistent linear
descriptions on large scales. Designing the diffusion
process in a lower-dimensional latent space via
hierarchical down- and up-sampling [65], also pos-
sible while preserving Euclidean symmetry [66],
could be one avenue toward this.

V. CONCLUSIONS

We introduced a diffusion-based generative model that
captures the complex, non-Gaussian statistics of the galaxy
clustering field along with the underlying cosmology
dependence. The model can be efficiently used for emu-
lation of N-body simulations via sampling, x ∼ pðxjθÞ, as
well as evaluation of the conditional likelihood. While the
model qualitatively reproduces essential summary statistics
associated with the galaxy field, it can struggle to correctly
model the point cloud’s correlation structure, in particular
on larger spatial scales. We discuss the technical limitations
of our model in this direction and avenues for further
improvement.
The model presented in this work was trained on the dark

matter halo distribution generated by N-body simulations.
An application to upcoming galaxy clustering datasets,
such as DESI, would require building a forward model for
the survey that includes: (1) a model of the galaxy-halo
connection, (2) observational effects, such as redshift space
distortions and the Alcock-Paczynski effect, and (3) survey
systematics, such as survey masks and fiber collisions. An
example of such a forward model has been presented in
SIMBIG [14]. A diffusion model for galaxy clustering
trained on such a forward model could provide strong
constraints on the standard ΛCDM cosmological model, as
well as a means to test the robustness of its constraints
through the analysis of posterior samples and likelihood
estimates.

The code used for reproducing the results presented in
this paper is available from GitHub [67].
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APPENDIX A: ALTERNATIVE SAMPLING
METHOD: PROBABILITY FLOW ODE

With the trained noise-prediction neural network
ϵ̂φðzt; tÞ at hand, several sampling techniques other than
the ancestral sampling used in the main text are possible.
Recall from Sec. II B that the noise-prediction network
is equal to the local conditional score of the data distribu-
tion, up to a sign and noise schedule-dependent scal-
ing, ∇zt logpðztÞ ¼ ŝφðzt; tÞ ¼ −ϵ̂φðzt; tÞ=σt.
In the continuous-time, stochastic differential equation

(SDE) formulation [16], taking the time step discretization
to the continuum limit δt → 0, the variance-preserving
forward diffusion process in Eq. (1) can be written as

zt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βtΔt

p
zt−1 þ

ffiffiffiffiffiffiffiffiffi
βtΔt

p
ϵ ðA1Þ

≈ zt−1 −
βtΔt

2
zt−1 þ

ffiffiffiffiffiffiffiffiffi
βtΔt

p
ϵ ðA2Þ

with ϵ ∼N ð0; IÞ. This is an update rule corresponding to
the Euler-Maruyama discretization of the SDE

dzt ¼ −
1

2
βðtÞztdtþ

ffiffiffiffiffiffiffiffi
βðtÞ

p
dwt ðA3Þ

where wt represents a Wiener process, also known as
Brownian motion. This forward SDE has a corresponding
reverse SDE which gives the same marginal distribution
pðztÞ at all times,

dzt ¼
�
−
1

2
βðtÞzt − βðtÞ∇zt logpðztÞ

	
dtþ

ffiffiffiffiffiffiffiffi
βðtÞ

p
dwt:

ðA4Þ
This SDE can be solved with any solver and, in the case pre-
sented, via simple discretization (Euler-Maruyama method).
Remarkably, there exists a deterministic reversible proc-

ess, an ODE (ordinary differential equation), whose tra-
jectories share the same marginal densities pðztÞ as this
reverse SDE [16,35],

dzt ¼ −
1

2
βðtÞ½zt þ∇zt logpðztÞ�dt ðA5Þ
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called the probability flow ODE and which is an instance of
a continuous-time normalizing flow [41].
This highlights the fact that diffusion models essentially

efficiently train a continuous normalizing flow without
requiring simulation the entire forward trajectory. This
ODE can be solved using any ODE solver to obtain
samples from the data distribution; we show in Fig. 8 a
sample and corresponding trajectories for a subset of
particles obtained using Heun’s second-order method via
DIFFRAX [68]. The trajectories can be seen to be smooth, in
contrast with those in Fig. 1.

Sampling via solving the probability flow ODE can
be used to visualize the dependence of the sampling
trajectory on cosmological parameters, unencumbered
by the stochastic component. This is shown in Fig. 9,
which illustrates 2D projected slices of 400 generated
particle coordinates across time steps along with the
sampled trajectories for a subset of the particles.
Starting from the same initial Gaussian distribution,
we condition on different cosmological parameters with
Ωm ¼ 0.13 (red) and Ωm ¼ 0.47 (blue), keeping fixed
σ8 ¼ 0.8. Diverging trajectories across diffusion time

FIG. 8. A sample obtained by solving the probability flow ODE associated with the diffusion SDE. Smooth trajectories from the
primal Gaussian (left) to the sampled halo distribution (right) can be seen, in contrast with the stochastic trajectories in Fig. 1.

FIG. 9. Probability flow ODE trajectories starting from the same initial Gaussian distribution, conditioned on different cosmological
parameters withΩm ¼ 0.13 (red) andΩm ¼ 0.47 (blue), keeping fixed σ8 ¼ 0.8. 2D spatial projections for 400 particles are shown, with
trajectories illustrated for a subset of these.
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can be seen, highlighting the parameter dependence of
the score model.

APPENDIX B: ADDITIONAL
TRAINING DETAILS

In Fig. 10, we show the validation loss curve (evaluated
on the held-out test set), together with the KL divergence
between the N-body two-point correlation functions on
small scales (r < 55h−1 Mpc) and the generated ones. The
KL divergence is computed assuming that both distribu-
tions are Gaussian. We show that a small decrease in the
loss value produces a sharp decrease in the KL divergence

and therefore a large improvement in the quality of the
generated samples. The checkpoint used downstream for
each model is chosen as the one with the smallest KL
divergence in the validation set.

APPENDIX C: LOG-LIKELIHOOD
EVALUATION

The diffusion model is trained by maximizing a stochas-
tic estimate of a variational lower bound on the log-
likelihood, the ELBO in Eq. (4). The same expression
can be used to compute an estimate of the (conditional) log-
likelihood, which we show as delta likelihood profiles in

FIG. 10. Validation loss (left) and KL divergence between the true two-point correlation functions and the generated ones (right) as a
function of training steps. We show both a graph neural network model trained on halo positions only (red) and a transformer model
trained on positions, velocities, and masses (blue).

FIG. 11. For a particular sample in the test test, twice the log-likelihood profiles relative to their maximum value, for Ωm (left) and
σ8 (right). Profiles for different evaluations (gray) as well as averaged over 32 (dashed red) and 64 (solid red) evaluations are shown.
Averaging over 32 realizations is seen to give a converged estimate of the conditional likelihood (RNG refers to random number
generated).
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Fig. 11 when averaged over 32 (dashed red) and 64 (solid
red) evaluations for Ωm (left) and σ8 (right). Fifty discre-
tization steps are used; we found quantitatively similar
results for the mean profiles using a larger number of steps.
Different evaluations are shown as gray lines, demonstrat-
ing that the variance of the approximate likelihood with
respect to the random seed is high relative to the 1σ interval.
It can be seen that the relative log-likelihood has converged

with 32 evaluations, which we use to show the likelihood
profile results in Fig. 7.
Interestingly, variation on the absolute log-likelihood

estimate was observed to significantly larger, Oð100Þ,
compared to the Oð1Þ variation on the relative condi-
tional log-likelihood shown. An estimate of the raw log-
likelihood would therefore require a larger number of
evaluations in this case.
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[58] I. Batatia, D. Péter Kovács, G. N. C. Simm, C. Ortner, and
G. Csányi, MACE: Higher order equivariant message
passing neural networks for fast and accurate force fields,
arXiv:2206.07697.

[59] T. L. Makinen, T. Charnock, P. Lemos, N. Porqueres, A. F.
Heavens, and B. D. Wandelt, The Cosmic graph: Optimal
information extraction from large-scale structure using
catalogues, Open J. Astrophys. 5, 18 (2022).

[60] M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden, Sto-
chastic interpolants: A unifying framework for flows and
diffusions, arXiv:2303.08797.

[61] A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-
Brooks, K. Fatras, G. Wolf, and Y. Bengio, Improving

POINT CLOUD APPROACH TO GENERATIVE MODELING FOR … PHYS. REV. D 109, 123531 (2024)

123531-15

https://arXiv.org/abs/2211.12444
https://doi.org/10.1093/mnrasl/slad152
https://doi.org/10.1093/mnrasl/slad152
https://doi.org/10.1051/0004-6361/202243054
https://doi.org/10.1051/0004-6361/202243054
https://doi.org/10.1093/mnras/stab1214
https://doi.org/10.1093/mnras/stab1214
https://doi.org/10.1093/mnras/stac130
https://doi.org/10.1093/mnras/stac130
https://arXiv.org/abs/2211.03812
https://doi.org/10.3847/2041-8213/acd645
https://doi.org/10.3847/2041-8213/acd645
https://doi.org/10.3847/1538-4365/ab9d82
https://doi.org/10.1086/163168
https://arXiv.org/abs/2202.00512
https://arXiv.org/abs/2107.00630
https://arXiv.org/abs/1312.6114
https://arXiv.org/abs/2208.11970
https://arXiv.org/abs/2301.10972
https://arXiv.org/abs/2303.00848
https://arXiv.org/abs/1810.01367
https://arXiv.org/abs/1810.01367
https://arXiv.org/abs/1806.01261
https://arXiv.org/abs/1607.06450
https://arXiv.org/abs/1706.03762
https://arXiv.org/abs/2304.10557
https://arXiv.org/abs/2304.10557
https://arXiv.org/abs/2002.04745
https://arXiv.org/abs/1810.00825
https://arXiv.org/abs/2110.06197
https://arXiv.org/abs/2307.02707
https://arXiv.org/abs/2207.09453
https://arXiv.org/abs/2102.09844
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-023-36329-y
https://doi.org/10.1038/s41467-023-36329-y
https://arXiv.org/abs/2206.07697
https://arXiv.org/abs/2303.08797


and generalizing flow-based generative models with mini-
batch optimal transport, arXiv:2302.00482.

[62] T. Konstantin Rusch, M. M. Bronstein, and S. Mishra,
A survey on oversmoothing in graph neural networks,
arXiv:2303.10993.

[63] L. Zhao and L. Akoglu, PairNorm: Tackling oversmoothing
in GNNs, arXiv:1909.12223.

[64] J. Tönshoff, M. Ritzert, E. Rosenbluth, and M. Grohe,
Where did the gap go? Reassessing the long-range graph
benchmark, arXiv:2309.00367.

[65] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, PointNet++: Deep
hierarchical feature learning on point sets in a metric space,
arXiv:1706.02413.

[66] C. Fu, K. Yan, L. Wang, W. Y. Au, M. McThrow, T.
Komikado, K. Maruhashi, K. Uchino, X. Qian, and S. Ji,
A latent diffusion model for protein structure generation,
arXiv:2305.04120.

[67] https://github.com/smsharma/point-cloud-galaxy-diffusion.
[68] P. Kidger, On neural differential equations, Ph.D. thesis,

University of Oxford, 2021.

CUESTA-LAZARO and MISHRA-SHARMA PHYS. REV. D 109, 123531 (2024)

123531-16

https://arXiv.org/abs/2302.00482
https://arXiv.org/abs/2303.10993
https://arXiv.org/abs/1909.12223
https://arXiv.org/abs/2309.00367
https://arXiv.org/abs/1706.02413
https://arXiv.org/abs/2305.04120
https://github.com/smsharma/point-cloud-galaxy-diffusion
https://github.com/smsharma/point-cloud-galaxy-diffusion

