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Weak gravitational lensing is an invaluable tool for understanding fundamental cosmological physics.
An unresolved issue in weak lensing cosmology is to accurately reconstruct the lensing convergence κ
maps from discrete shear catalog with survey masks, which the seminal Kaiser-Squire (KS) method is not
designed to address. We present the accurate kappa reconstruction algorithm for masked shear catalog
(AKRA) to address the issue of mask. AKRA is built upon the prior-free maximum-likelihood map making
method (or the unbiased minimum variance linear estimator). It is mathematically robust in dealing with
mask, numerically stable to implement, and practically effective in improving the reconstruction accuracy.
Using simulated maps with mask fractions ranging from 10% to 50% and various mask shapes, we
demonstrate that AKRA outperforms KS at both the map level and summary statistics such as the
autopower spectrum Cκ of the reconstructed map, its cross-correlation coefficient rl with the true κ map,
the scatter plot and the localization measure. Unlike the Wiener filter method, it adopts no priors on the
signal power spectrum, and therefore avoids the Wiener filter related biases at both the map level and cross-
correlation statistics. If we only use the reconstructed map in the unmasked regions, the reconstructed Cκ is
accurate to 1% or better and 1 − rl ≲ 1%, even for extreme cases of mask fraction and shape. As the first
step, the current version of AKRA only addresses the mask issue and therefore ignores complexities such as
curved sky and inhomogeneous shape measurement noise. AKRA is capable of dealing with these issues
straightforwardly, and will be addressed in the next version.
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I. INTRODUCTION

Weak gravitational lensing is a powerful probe of
fundamental cosmological physics such as the nature of
dark matter, dark energy and gravity, and astrophysics such
as the halo abundance/profile and galaxy-halo connection,
to further refine our understanding of cosmology (see
Refs. [1–4] for reviews). Ongoing stage III surveys, such
as the Dark Energy Survey (DES [5]), the Hyper Suprime-
Cam survey (HSC [6]), and the Kilo-Degree survey
(KiDS [7]), have achieved a high signal-to-noise ratio
(SNR) of ≳30 in cosmic shear measurement. Notably,
upcoming stage IV surveys, such as the China Space
Station Telescope (CSST [8,9]), Euclid [10], Rubin
Observatory (previously referred to as the Legacy Survey
of Space and Time [LSST [11])], and the Wide-Field
Infrared Survey Telescope (WFIRST) (also known as
Roman Space Telescope [12]) aim to achieve unprecedented

precision in cosmic shear. These surveys are expected to
increase the SNR of cosmic shear measurement by more
than an order of magnitude, reaching SNR over 400 [9].
Cosmic shear cosmological analysis so far relies heavily

on the two-point correlation function [13–19] or the power
spectrum [15,20–25]. Along with the increasing SNR, new
statistics and new applications of cosmic shear are actively
investigated. The non-Gaussian nature of the lensing fields
implies that there is valuable information presented in
higher-order statistics or non-Gaussian statistics, such as
peaks [26–36], higher-order moments [31,37–41], and
Minkowski functionals [38,42–45]. In addition to employ-
ing these statistics, there has been growing interest in
applying convolutional neural networks (CNN) to analyze
the simulated weak gravitational lensing maps [46–52]. A
significant amount of additional information is expected to
extract from these statistics [30,53–56].
Many of these statistics such as peak/void counts and

Minkowski functionals require cosmic convergence maps,
instead of cosmic shear catalogs. Convergence maps also
make the measurement of higher-order correlation func-
tions more straightforward. So an important task is the
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lensing convergence map making with discrete shear
catalog. This is complicated by issues such as the survey
mask including the survey boundary, inhomogeneous
measurement noise, curved sky and computational issues
associated with matrix operation of large size. Among these
complexities, the survey mask is a major issue to be
resolved. We propose to resolve the mask issue by our
accurate kappa reconstruction algorithm (AKRA) for
masked shear catalog.
The seminal Kaiser-Squire (KS) method [57], further

improved by Bartelmann [58], Kaiser [59], Schneider [60],
Squires and Kaiser [61], performs reconstruction of the
convergence field from the shear field by a linear inversion
between the two fields in the ideal case. However, two
primary drawbacks of the commonly used Kaiser-Squires
algorithm are improper accounting for noise and survey
mask effects on the shear fields and a nonlocal Kaiser-
Squires transformation which requires knowledge of the
entire sky’s shear field. To overcome these limitations,
many of these approaches include the forward modeling
of the shear field from the convergence field via the KS
transformation, and the introduction of aBayesian prior over
the convergence field [62–64]. Proposed techniques include
Wiener filtering [65], sparsity priors [65–67], log-normal
priors [68,69], wavelet-based methods [70,71] and others
e.g., [72]. Various machine learning-based approaches are
now being utilized to reconstruct the convergence field, e.g.,
generative neural network (GNN) [73] and U-Net [74].
In this work, we investigate how to accurately recover

the convergence map from observable shear maps without
losing information in the presence of masks. The relation-
ship between shear and convergence can be viewed as a
linear inversion problem in Fourier space, where the
survey mask can be represented as an element production
that is comparable to Fourier space convolution. A
plausible solution to this challenge is a widely used
deconvolution algorithm in cosmic microwave background
observations [75] and wide-field interferometric imaging.
For synthesized interferometric map making, images
obtained by mapping visibilities and convolving them
with the array synthesized beam are commonly called
dirty images. Linear deconvolution [76–79], which is
performed through matrix operations, can be done theo-
retically, without distinguishing between point sources and
extended emission. The action the interferometer meas-
urement can be described by a relationship between
the discretized sky x, and the measured visibility y,
expressed as

y ¼ Axþ n; ð1Þ

where A represents the interferometric measurement
operator, and n is the thermal noise. Benefits of this
approach include a data product in the image domain that
potentially covers the full celestial sphere, full knowledge

of the point-spread function in all directions, and thorough
knowledge of the covariance matrix relating map pixels.
To focus on the mask issue, we apply AKRA to the

generation of weak-lensing convergence maps in the sce-
nario of a flat sky. In principle, this method can be applied
to any survey geometry, including the entire-sky case.
Furthermore, we ignore shear measurement noise. These
neglected complexities can be taken into account by our
method straightforwardly and will be addressed in future
work. The paper is structured as follows. In Sec. II, we will
present a short review of KSmethod (Sec. II A), then have a
detailed derivation of AKRA algorithm (Sec. II B).
Section III will cover the testing of this algorithm on
simulated shear maps, as well as comparisons to the KS
algorithm. Finally, Sec. IV provides a summary of the results
and discusses future directions including extending to
curved sky with inhomogeneous shape measurement noise.

II. METHOD

In this article, we will discuss how to reconstruct the
convergence from the shear map, using the Fourier space
formalism. In this section, we will first introduce the KS
algorithm [57], which is the most widely used method to
reconstruct the convergence from the shear map. Then we
will introduce our AKRA algorithm, which can deal with
the masked pixels and boundary effects in the shear map.
In order to provide better clarity regarding the physical

quantities and related symbols involved in the
reconstruction process, a detailed table has been created
and is presented in Table I. In addition to the physical
quantities, Table I also includes the mask function and the
convolution kernel from the mask that is utilized in the
reconstruction process. Boldface letters have been utilized
to denote data vectors and matrices in the table. The table
also lists the relevant sections in which each quantity is
firstly discussed.

A. The Kaiser-Squires algorithm

Both the convergence and the two components of shear,
γ1ðθÞ and γ2ðθÞ, are linear combinations of the second
derivatives of the lensing potential, Φ. Thus, the relations
between these quantities in Fourier space are linear.
In Fourier space, they can be expressed as

γ̃1ðl⃗Þ ¼ κ̃ðl⃗Þ cos ð2ϕlÞ; ð2Þ

γ̃2ðl⃗Þ ¼ κ̃ðl⃗Þ sin ð2ϕlÞ; ð3Þ

where ∼ denotes the Fourier transform, l⃗ is the wave vector
in Fourier space, and ϕl is the polar angle. The conver-
gence, κ̃ðl⃗Þ is defined as the weighted projected matter
density contrast, and can be expressed in terms of the
Fourier transform of the gravitational potential.
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Using these relations in Eqs. (2) and (3), we can express
the convergence as a convolution of the shear with an
appropriate kernel function (Kaiser and Squires [57]), and
the convergence can be expressed as

κ̃ðl⃗Þ ¼
"
cos ð2ϕl1Þ
sin ð2ϕl1Þ

#
T

·

 
γ̃1ðl⃗Þ
γ̃2ðl⃗Þ

!
: ð4Þ

It also represents the E-mode components of the conver-
gence map. Due to the scalar nature of the lensing potential
Φ, weak gravitational lensing produces only E modes in
the shear field. The KS inversion is an ideal estimator of the
convergence map in the absence of masks or holes in the
data, but it can introduce spurious features or artifacts when
applied to realistic datasets with incomplete sky coverage.
In this paper, we modify the above formalism and propose a
new algorithm to deal with the masked shear field.

B. Accurate kappa reconstruction algorithm
for masked shear catalog algorithm

We first define a mask function mðθ⃗Þ in real space,
which is equal to 1 for the observed region and 0 for the
masked region. Then the observed shear field can be
expressed as

γmi ðθ⃗Þ ¼ mðθ⃗Þγiðθ⃗Þ; ð5Þ

where the mask function mðθ⃗Þ and the shear field
γiðθ⃗Þ are both defined in real space, and their shapes are
(Nθ, Nθ).
Then in Fourier space, the shear field can be expressed as

the convolution of the mask function and the true shear
field,

TABLE I. The physical quantities and related symbols involved in reconstruction process.

Quantity Symbol Description

Shear γiðθÞ (Sec. II A) Two components γ1 and γ2 of the shear on the flat sky.
Shear in Fourier space γ̃iðl⃗Þ (Sec. II A) The Fourier transform of the shear.
Convergence κðθÞ (Sec. II A) The convergence on the flat sky.
Polar angle ϕl (Sec. II A) The polar angle of the Fourier mode l

!
.

Fourier mode l⃗ (Sec. II A) The Fourier mode.

E-mode Eðl⃗Þ (Sec. II A) The E-modes components.
B-mode Bðl⃗Þ (Sec. II A) The B-modes components.
Unmasked convergence in Fourer space κ̃ðl⃗Þ (Sec. II B) The Fourier transform of the unmasked convergence.
Mask function mðθÞ (Sec. II B) The mask on the flat sky.
Masked shear γmi ðθÞ (Sec. II B) The masked shear on the flat sky.
Masked shear in Fourier space γ̃mi ðL⃗Þ (Sec. II B) The Fourier transform of the masked shear.

Convolution kernel from mask M (Sec. II B) The convolution kernel from mask with shape (N2
l; N

2
l).

Observed shear vector γ (Sec. II B) The observed shear vector, with length 2N2
l.

Real convergence vector κ (Sec. II B) The real convergence vector, with length N2
l.

Noise vector n (Sec. II B) The noise vector, with length 2N2
l.

Convolution kernel matrix A (Sec. II B) The kernel matrix transforms the convolution operation into a matrix
multiplication operation with shape (2N2

l; N
2
l). It includes

information from the mask as well as cosð2ϕlÞ and sinð2ϕlÞ terms.
Hermitian conjugate of a matrix AT (Sec. II B) Denotes the Hermitian conjugate of matrix A.
Inverse of a matrix A−1 (Sec. II B) Denotes the inverse of matrix A.
Pseudo-inverse of a matrix Aþ (Sec. II B) Denotes the Penrose-Moore pseudoinverse of matrix A.
Regularization matrix R (Sec. II B) The regularization matrix, which is proportional to the identity matrix.
Reconstructed convergence κR (Sec. II B) Denotes the reconstructed convergence in Fourier space.
Reconstructed convergence κrec (Sec. II) Denotes the reconstructed convergence map in real space.

Slope s (Sec. III) The slope of a linear regression model, which is used to estimate the
distribution of true (κtrue) and reconstructed (κrec) convergence map in
kernel density estimate plot.

Pearson correlation coefficient (PCC) ρ (Sec. III) The PCC between κtrue and κrec.
The localization measure L (Sec. III) A quantitative assessment of the degree to which the residuals are

concentrated within the masked regions.
Cross-correlation coefficient rðlÞ (Sec. III) The cross correlation coefficient between κtrue and κrec.
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γ̃mi ðL⃗Þ ¼
Z

γiðθ⃗Þmðθ⃗Þe−iL⃗·θ⃗d2θ

¼
Z

d2l1

ð2πÞ2
Z

d2l2γ̃iðl⃗1Þm̃ðl⃗2ÞδDðl⃗1 þ l⃗2 − L⃗Þ

∝
Z

d2l⃗1γ̃iðl⃗1Þm̃ðL⃗ − l⃗1Þ; ð6Þ

where, γ̃iðl⃗1Þ and m̃ðl⃗2Þ are the Fourier transforms of the
true shear and mask functions, respectively, and its shape is
(Nl; Nl). This equation reveals that the observed shear
field is a convolution of the true shear field and mask
function. The Fourier space convolution operation is a
crucial step in reconstructing the convergence field from
the shear map. Then the integral can be discretized as a sum
over Fourier modes,

γ̃mi ðL⃗Þ ¼
XN2

l

l⃗1¼1

γ̃iðl⃗1Þm̃ðL⃗ − l⃗1ÞΔΩ

¼
XN2

l

l⃗1¼1

γ̃iðl⃗1ÞMðL⃗; l⃗1ÞΔΩ; ð7Þ

where ΔΩ is the pixel area in Fourier space, MðL⃗; l⃗1Þ ¼
m̃ðL⃗ − l⃗1Þ is the convolution kernel function from the
mask, and its shape is (N2

l; N
2
l).

Equation (7) can be expressed reasonably well in the
form of matrix multiplication,

γ̃m1 ðL⃗Þ¼M · γ̃1ðl⃗1Þ; γ̃m2 ðL⃗Þ¼M · γ̃2ðl⃗1Þ: ð8Þ

In Eq. (8), the true shear field γiðl⃗1Þ can be reshaped as a
vector with length N2

l, whereas the matrix M is a
convolution kernel with a shape of (N2

l; N
2
l). Using this

equation, the convolution operation between shear and
mask in Fourier space can be simplified to a single matrix
multiplication operation.
Substitute Eqs. (2) and (3) into Eq. (8), we can get the

masked shear field in Fourier space,

γ̃m1 ðL⃗Þ ¼ M · κ̃ðl⃗1Þ cos ð2ϕl1Þ;
γ̃m2 ðL⃗Þ ¼ M · κ̃ðl⃗1Þ sin ð2ϕl1Þ; ð9Þ

where the κ̃ðl⃗1Þ is a vector with length N2
l, and

κ̃ðl⃗1Þ cos ð2ϕl1Þ means multiplying each element of the

vector κ̃ðl⃗1Þ by cos ð2ϕl1
Þ. Then, we can rewrite the above

equation as

"
γ̃m1 ðL⃗Þ
γ̃m2 ðL⃗Þ

#
¼
"
cos ð2ϕl1ÞM
sin ð2ϕl1ÞM

#
· κ̃ðl⃗1Þ; ð10Þ

where cos ð2ϕl1Þ and sin ð2ϕl1Þ are both vectors with
length N2

l, so we can multiply each element in
cos ð2ϕl1Þ [or sin ð2ϕl1Þ� with each row of the matrix
M, and then stack the results together to form a new matrix
A with a shape of 2N2

l × N2
l.

In Eq. (10), the data from shear maps are linearly related
to the convergence field. Grouping the two components of
the shear field together, we can get a new vector γ̃mðL⃗Þwith
length 2N2

l, and then we can rewrite Eq. (10) as

γ ¼ Aκþ n: ð11Þ

With a total of 2N2
l observation points from γ, A is a

2N2
l × N2

l matrix, κ is a N2
l-element vector with each

element corresponding to each Fourier mode of the real
convergence map. Meanwhile, the noise vector, n, has
dimensions of 2N2

l. For a Gaussian random noise model,
with hni ¼ 0 and variance of σ2n, the covariance matrix for
the noise is given by N≡ hnnTi. Here we set N−1 ¼ I for
noise-free case.
Our analysis, which focuses on the weak lensing shear

field, has primarily addressed the mask effect but has not
extensively considered the errors associated with real
measurement. Several factors, including uncertainties in
the point spread function and intrinsic alignment (IA),
contribute to shear measurement errors. These errors lead to
correlated noise, rendering the noise covariance matrix N
nondiagonal. This matrix can be incorporated within the
AKRA framework, albeit in a modified N matrix form. To
mitigate the effects of the point spread function and IA, the
strategies proposed by Giblin et al. [80], Gatti et al. [81],
and Yao et al. [82] also present effective alternatives. Shape
noise persists as the predominant source of contamination
in mass mapping, leading to inhomogeneous noise. By
applying a smoothing kernel to an adequate number of
galaxies, as indicated by Liu et al. [83], we anticipate that
the residual shape noise, after smoothing, will approximate
a Gaussian distribution, pursuant to the central limit
theorem. Further complexities arise from subpixel errors
due to the discrepancy between the sky’s infinite resolution
and the fixed resolution of our maps, a challenge also
prevalent in cosmic microwave background (CMB) map
making [84–86]. Given these considerations, the covari-
ance matrix N of the noise is nonidentity in real observa-
tions. Future studies should investigate these effects to
improve mass mapping analysis accuracy and reliability.
To optimally estimate κ, we use the minimum variance

estimator [75],

κ̂ ¼ DATN−1γ; ð12Þ

where D is some invertible normalization matrix. To
analyze the statistics of this estimator, the mean and
covariance can be calculated. Since the thermal noise
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has hni ¼ 0, we can write the ensemble average of the
estimator as

hκ̂i ¼ hDATN−1γi
¼ DðATN−1AÞκ
≡ Pκ; ð13Þ

where P ¼ DðATN−1AÞ is the matrix-valued PSF.
The covariance of the estimator is

C≡ hðκ̂ − κÞðκ̂ − κÞTi ¼ PDT: ð14Þ

More generally the estimators of κ can be formed with
different choices of D. If we wanted an unbiased estimator
of the sky, we should choose D ¼ ðATN−1AÞ−1 to obtain
idealized PSF P ¼ I. Then Eq. (14) becomes

C ¼ PDT ¼ ðATN−1AÞ−1: ð15Þ

Then the inverse covariance matrix is C−1 ¼ ATN−1A.
This implies that A†N−1A measures the information
content in our maps. In Sec. III B, we will explore the
structure of this matrix for different cases of mask.
In practice, inverse problems related with imaging are

often ill-posed. For example, in the case of interferometric
data reconstruction, the matrix ATN−1A is often numeri-
cally noninvertible due to the instrument’s insensitivity to
certain linear combinations of the sky. Shi et al. [79]
proposed to use a pseudoinverse matrix (the Moore-
Penrose pseudoinverse),

D ∼ ðATN−1AÞþ: ð16Þ

Zheng et al. [76] also demonstrated that a regularization
matrix R could be added in Eq. (12) as follows:

κ̂R ¼ ðATN−1AþRÞ−1ATN−1γ: ð17Þ

We set the deconvolution matrix D ¼ ðATN−1AþRÞ−1,
where R is a diagonal regularization matrix with the same
size as ATN−1A. We choose R ¼ εI, with ε being a small
number that depends on ATN−1A and ensures numerical
stability. Since the maximum eigenvalue of ATN−1A is 1,
we set ε ¼ 10−4 to minimize the numerical error. The PSF
matrix is

P ¼ ðATN−1AþRÞ−1ðATN−1AÞ: ð18Þ

In this paper, we utilize the method of regularization, as
presented in Eq. (17), to calculate the estimator for κ.
Equation (17) can also be extended to include a prior model
with known uncertainties [76]. However, we do not assume
any prior model for the convergence map in this paper to
obtain an unbiased estimator.

To evaluate our estimator in Eq. (17), computational
efficiency warrants careful consideration, especially given
the large data volumes anticipated in forthcoming surveys.
The primary computational expense within our algorithm
is the construction and multiplication of matrices, which
have a computational complexity of OðN2

pixÞ. Fortunately,
the process of matrix multiplication is well-suited for
parallel computation. As a complementary strategy, we
advocate for the segmentation of observational data into
manageable flat-sky patches. Additionally, employing
iterative methods for linear systems, such as the conjugate
gradient method [87], offers an effective alternative for
handling large and sparse systems.

III. SIMULATION

In this section, we present a κ reconstruction simulation
under the assumption of a flat-sky, noise-free, and periodic
boundary conditions.
The simulation process involves several stages:
(1) Generation of convergence field: Use a power

spectrum from cosmological parameters in Planck
2018 flat ΛCDM cosmology [88] to generate a
Gaussian random field. Subsequently, an inverse
Fourier transform is carried out to obtain the con-
vergence map κðθ⃗Þ.

(2) Generation of shear fields: From the convergence
map, generate the shear fields γ1ðθ⃗Þ and γ2ðθ⃗Þ from
the convergence map using Eqs. (2) and (3) in the
Fourier field, followed by an inverse Fourier trans-
form to obtain the shear map in the real field.

(3) Adding a mask to the shear field: The mask is added
to the shear field γ1ðθ⃗Þ and γ2ðθ⃗Þ, which results in
the masked shear field γm1 ðθ⃗Þ and γm2 ðθ⃗Þ. In this
section, we will introduce three kinds of mask.

(4) Generation of convolution kernel matrix: Generate
the convolution kernel M matrix in Eq. (7) from
the mask.

(5) Modification of convolution kernel matrix: Multiply
cosð2ϕlÞ and sinð2ϕlÞ terms into the matrixM, and
then we can get the convolution kernel matrix A
in Eq. (11).

(6) Solving the linear equation: Calculate the estimator
κ̂ by Eq. (17), and then we obtain the reconstructed
convergence map in real space using an inverse
Fourier transform.

To further investigate the quality of the reconstructed
maps in a more quantitative manner, we list a few
commonly used statistics:

(i) The accuracy of the auto power spectrum Crec
l of the

reconstructed convergence κrec, quantified by the
ratio Crec

l =Ctrue
l as a function of multipole l. Here

Ctrue
l is the autopower spectrum of the true map. This

is one of the key measures of map quality for the
purpose of weak-lensing cosmology.
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(ii) The cross-correlation coefficient rl as a function of
multipole l,

rl ≡ Crec−trueðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CrecðlÞCtrueðlÞp : ð19Þ

Here Crec−trueðlÞ is the cross-power spectrum be-
tween the reconstructed and true convergence maps.
rl quantifies the accuracy of reconstructing the
phase. It is also a key measure of map quality.
rl ≠ 1 will cause bias of amplitude of Oð1 − rlÞ in
cross-correlations between κrec and other large-scale
structure fields. Unlike the error in the amplitude
which can be corrected at map level by scaling each
l mode with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Crec=Ctrue

p
estimated from simula-

tions, errors in the phase (rl ≠ 1) can not be
corrected at map level. Therefore, the requirement
of rl ¼ 1 is often more challenging.

(iii) The κrec-κtrue scatter plot, also called kernel density
estimation (KDE). The plot is a nonparametric way
to estimate the probability density function of a
random variable, which is used to compare the
distribution of true convergence map and recon-
structed convergence map. We also define the slope
s as the best-fit to κrec-κtrue by κrec ¼ sκtrue. The
solution for s is

s ¼
P

iκ
rec
i κtrueiP

iκ
true
i κtruei

: ð20Þ

By examining s of the κrec-κtrue scatter plot, we can
discern the level of similarity between the two
distributions. A slope of s ¼ 1 indicates the recon-
structed convergence field exactly matches the true
convergence distribution.

(iv) The Pearson correlation coefficient (PCC). The PCC
is a measure of the linear correlation between two
convergence fields, which is defined as

ρ ¼ hκtrueκreciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðκtrueÞ2i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðκrecÞ2i

p : ð21Þ

The PCC is used to measure the similarity
between true and reconstructed convergence map.
The PCC ranges from −1 to 1. The closer the PCC is
to 1, the more similar the two variables are.

(v) The localization measure, denoted as L, quantifies
the extent to which the residuals are localized within
the masked regions,

L≡
P

ijΔijmi

ð ffiffiffiffiffiffiffiffi
2=π

p
σκtrueÞðNpixð1 − fmaskÞÞ

; ð22Þ

where Δi≡κreci − κtruei . If Gaussian hjκji ¼ ffiffiffiffiffiffiffiffi
2=π

p
σκ.

Npix is the total number of pixels and fmask is the

fraction of masked regions. Ideally, when m ¼ 1,
Δ ¼ 0. But since the shear-convergence relation is
nonlocal in real space, masks in the shear catalog
impact the reconstruction of convergence in the
unmasked regions. Namely L ≠ 0. The value of L
then serves as a measure for the localization of
residuals, indicating to what extent the shear mask
contaminates the convergence reconstruction in the
masked regions. L ≪ 1 is desirable.

We simulate the reconstruction of convergence maps
from shear maps using a flat sky, noise-free, and periodic
model. In this study, we aim to discuss three types of masks
that have been utilized in our simulation. The first one is
obtained from real observations (see Fig. 2), the second
type of mask is randomly generated (see Fig. 10) with
varying mask fractions, and the third one is a mask with a
specific shape and fixed mask fraction (see Fig. 15).

A. Mask from real observation

We use 5.18 million galaxies at redshift bin
0.8 < z < 1.0, which covering ∼13; 000 deg2. To consider
the real survey geometry, we generate the binary mask from
the real observation of DESI imaging surveys DR8 with
nside ¼ 1024. The mask is 1 when if are shear galaxies
located at the pixel, otherwise it is 0. Then downgrade the
resolution to nside ¼ 512. The downgraded mask is 1 when
pixel values ≥ 0.5, otherwise is 0, as depicted in Fig. 1.
The AKRA method described in this paper will focus on

a specific region of the sky. As an example, we selected
three particular patches from real observation mask in
Fig. 1, shown in Fig. 2. The masked pixels are denoted in
black and the unmasked pixels in white. The masked pixels
in position 1 (A1) are randomly distributed, whereas the
mask in position 2 (A2) is more concentrated and results in
a small area full of masked pixels. The mask in position 3
(A3) is a combination of the type of mask in position 1 and
2, with distinct borders. Each of the three patches of sky has
1752 pixels, with a side length of 20°.
In this study, we followed the procedures outlined in the

prior section to acquire the masked shear field and recon-
struct the convergence map. Firstly, in steps 1 and 2, we
generated the shear map γ1ðθ⃗Þ and γ2ðθ⃗Þ by converting the

FIG. 1. The mask is generated from real observations. The
region in red box represents three specific masked region shown
in Fig. 2.
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convergence map κðθ⃗Þ from the power spectrum. We then
subject the shear fields γ1ðθ⃗Þ and γ2ðθ⃗Þ to a mask in step 3 to
produce the masked shear field γm1 ðθ⃗Þ and γm2 ðθ⃗Þ for further
analysis. A representation of the mask maps used in this
process is visible in Fig. 2. Next, we reconstructed the
convergence map κrec by applying KS method and AKRA
algorithm to themasked shear field γm1 ðθ⃗Þ and γm2 ðθ⃗Þ (in steps
4 to 6), respectively.
Figure 3 illustrates the residual maps κtrue-κrec obtained

from the AKRA method (top row) and the KS method
(bottom row). These maps are then normalized by the rms
of the true signal. The KS method produces significant
residuals due to masked pixels in all A1–A3 cases. The

AKRA method, on the other hand, is robust to masked
pixels, as evidenced by the zero residuals in the A1 case.
For the A2 case, the AKRA method performs well for
isolated masked pixels, but slightly deteriorates for clus-
tered masked pixels. For the A3 case, a clear boundary is
visible in the mask map, which is also reflected in the
residual maps from the AKRA method. Above the boun-
dary, where there are no observations and all pixels are
masked, the normalized residual maps are mostly greater
than or equal to 1, indicating that the residual is comparable
to the signal.
The power spectrum ratios in Figs. 4–6 consistently

demonstrate the superior accuracy of AKRA in recovering
the power spectrum compared to the KS method. For the

FIG. 2. Three patches of sky with angular resolution of 6.7 arcmin (HEALPix Nside ¼ 512). Left panel: Position 1 (A1) at RA
[−10°; 10°], Dec. [−10°; 10°]. Middle panel: Position 2 (A2) at RA [20°,40°], Dec. [−60°;−40°]. Right panel: Position 3 (A3) at RA
[−120°; 100°], Dec. [20°,40°]. The masked pixels are denoted in black and the unmasked pixels in white.

FIG. 3. The residual maps normalized by the rms of the true signal from AKRA method (top row) and KS method (bottom row). From
left to right, the three columns correspond to the three patches of sky in Fig. 2. The KS method has large residuals due to masked pixels
in all A1–A3 cases. However, The AKRA method remains mostly robust, except for some regions in A2 and A3 with clustered masked
pixels.
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unmasked pixels, AKRA produces the reconstructed Cl is
accurate to 1% or better. Surprisingly, in the case of A1,
AKRA also accurately reconstructs the masked pixels,
resulting in a power spectrum ratio close to 1.
The cross-correlation analysis presented in Figs. 4–6

further solidifies AKRA’s advantages. It yields significantly
higher agreement between reconstructed and true maps,
demonstrating superior performance versus KS. Notably,
for high-quality regions AKRA attains near-perfect coef-
ficients of 1 − rl ≲ 1%. Equally impressive is its ability to
attain the cross-correlation coefficient of rl ≈ 1 for masked
pixels in A1 case, an unprecedented achievement of
accuracy for masked pixels. This suggests AKRA is
capable of recovering masked pixels in certain situations,
owing to the nonlocal nature of cosmic shear observables
and convergence.

To evaluate the global quality of the maps in real space,
we constructed a κrec-κtrue scatter plot for each patch of sky,
as shown in Fig. 7. The black solid line represents the ideal
result (slope s ¼ 1.0). The reconstructed κ maps generated
using the AKRA method for positions A1 and A2 are
almost indistinguishable from the input κ map. However,
the reconstructed κ map for position A3 differs from the
input κ map due to the mask in this patch containing a large
number of masked pixels, with a slope value of 0.74 much
lower than the ideal result. Moreover, we also present the

FIG. 4. Results for all pixels. Top row: The power spectrum
ratio between the reconstructed map and the true κ map. Bottom
row: The cross-correlation coefficient between the reconstructed
and the true convergence map. From left to right, the three
columns correspond to the three patches of sky in Fig. 1. AKRA
can recover the power spectrum more accurately than KS method
in all cases. AKRA also has a higher cross-correlation coefficient
than KS method, indicating a better agreement between the
reconstructed and the true maps.

FIG. 5. Same as Fig. 4, but only for the unmasked pixels. AKRA
has a significantly higher level of accuracy, with an accuracy of 1%
or better, and a cross-correlation coefficient of 1 − rl ≲ 1%.

FIG. 6. Same as Fig. 4, but only for the masked pixels. For the
A1 case, AKRA performs the power spectrum ratio and cross-
correlation coefficient very well, with both values close to 1. For
the A2 cases, AKRA shows some deviations in estimating the
power spectrum ratio and cross-correlation coefficient, which are
more noticeable at small scales.

FIG. 7. The κrec-κtrue scatter plot for all pixels. From left to
right, the three columns correspond to the three patches of sky in
Fig. 1. The data points are displayed as gray dots, with their
x-axis and y-axis denoting the pixel values for the input κ map
and the reconstructed κ map, respectively. The blue dashed line
represents the result obtained from fitting a regression model of
the pixels from the data points. The black solid line represents the
ideal result. The slope s of the blue dashed line and the PCC ρ are
also shown in the figure. As a result of all pixels, the recovered κ
maps are almost identical to the input κ maps for positions A1 and
A2, while the recovered κ maps differ significantly from the input
κ maps for position A3.
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PCC ρ of the pixels from both maps in Fig. 7. The
coefficient ρ demonstrates the same trend as the slope s.
Table II also show the detailed results of statistics for the

three patches of sky. The third to tenth columns show the
mask fraction, the ratio of the average of the squared off-
diagonal elements of the PSF matrix to the average of the
squared diagonal elements of the PSF matrix, the slope s of
the scatter plots for κrec-κtrue, the Pearson correlation
coefficient ρ, and the localization measure L from both
methods for all pixels. The localization measure L, defined

in Eq. (22), quantifies the level of contamination from mask
in the shear catalog on the reconstructed convergence in the
unmasked regions. L of AKRA is factor of Oð102Þ −
Oð102Þ smaller than that of KS. AKRA achieves signifi-
cantly smaller L than KS for all mask cases, demonstrating
enhanced localization abilities.
To illustrate the effects of masked and unmasked pixels,

we present the scatter plots of the reconstructed and true
convergence (κrec-κtrue) for the unmasked and masked
pixels separately in Figs. 8 and 9. For the unmasked pixels,
AKRA produces κ maps that are almost identical to the
input κ map for all cases. In contrast, the KS method

TABLE II. Mask used in simulation and statistics results. This table summarizes the results of three types of simulations: observation,
random mask, and circular mask. The third to tenth columns show mask fraction, PSF matrix ratio, slope s of the scatter plots for
κrec-κtrue, Pearson correlation coefficient ρ, and localization measure L for both methods. Based on the results of s, ρ, and L, it is evident
that the AKRA method outperforms the KS method in all cases.

Mask name Typea fmask
b

ðOff diagðPÞÞ2
ðDiagðPÞÞ2

c s (KS)d s (AKRA) ρ (KS) ρ (AKRA) L (KS) L (AKRA)

A1 Observation 15% 6.69 × 10−13 0.85 1.00 0.96 1.00 0.256 1.83 × 10−4

A2 Observation 18% 1.55 × 10−7 0.82 0.99 0.94 1.00 0.260 8.88 × 10−4

A3 Observation 39% 3.51 × 10−6 0.61 0.74 0.81 0.86 0.258 4.40 × 10−3

B1 Random 10% 7.98 × 10−14 0.90 1.00 0.97 1.00 0.211 1.38 × 10−4

B2 Random 20% 4.77 × 10−13 0.80 1.00 0.94 1.00 0.333 2.17 × 10−4

B3 Random 30% 3.90 × 10−12 0.70 1.00 0.91 1.00 0.427 4.28 × 10−4

B4 Random 40% 2.33 × 10−10 0.60 1.00 0.86 1.00 0.522 1.74 × 10−3

B5 Random 50% 2.51 × 10−7 0.50 0.98 0.81 0.99 0.611 7.73 × 10−2

C1 Circular 10% 1.21 × 10−13 0.90 1.00 0.97 1.00 0.181 1.38 × 10−4

C2 Circular 10% 1.62 × 10−11 0.90 1.00 0.97 1.00 0.153 1.99 × 10−4

C3 Circular 10% 1.91 × 10−8 0.90 1.00 0.96 1.00 0.127 5.70 × 10−4

C4 Circular 10% 1.54 × 10−7 0.90 0.99 0.96 0.99 0.112 8.70 × 10−4

C5 Circular 10% 3.07 × 10−7 0.90 0.98 0.96 0.99 0.099 9.29 × 10−4

aThe type of mask: observation (Sec. III A), random (Sec. III B), and circular (Sec. III C).
bThe percentage of masked pixels.
cThe ratio of the average of the squared off-diagonal elements of the PSF matrix to the average of the squared diagonal elements of

the PSF matrix.
ds is the slope of the best-fit line to the κrec-κtrue scatter plot, as defined by Eq. (20). ρ is the Pearson correlation coefficient between the

reconstructed and true convergence maps, as given by Eq. (21). L is the localization measure defined by Eq. (22). Here the s and ρ values
listed are calculated using all pixels (both masked and unmasked) from the convergence maps reconstructed with AKRA and KS.

FIG. 8. Same as Fig. 7, but only for the unmasked pixels.
AKRA reconstruct κ map for all cases accurately, with the slope s
close to 1 and the Pearson correlation coefficient ρ equal to 1. In
AKRA results, several points at the boundary for A3 will deviate
slightly from the ideal outcome.

FIG. 9. Same as Fig. 7, but only for the masked pixels. AKRA
can only reconstruct κ map for A1 case accurately.
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exhibits noticeable residuals even for the unmasked pixels.
In the case of masked pixels, the AKRA method produces
accurate κ maps for A1 cases and demonstrates overall
robustness in A2 and A3 cases, apart from specific regions
with clustered masked pixels. However, the KS method
exhibits substantial residuals across all cases.

B. Random mask

The random mask is obtained by selecting pixels
randomly from mðθÞ and converting them to 0. The five
panels in Fig. 10 illustrate the masks with different masked
pixel rates of 10%, 20%, 30%, 40%, and 50%, respectively.
In this section, we provide a detailed analysis of the

matrix ðATN−1AÞ−1. This matrix has two important mean-
ings. First, this matrix approximates the inverse of the
covariance matrix of the maximum-likelihood estimate.
The matrix ðATN−1AÞ−1 contains all information about the
mask. However, we have made the implicit assumption that
we did not account for noise. This assumption implies that
we calculate the inverse covariance matrix as ðATAÞ−1,
neglecting the contribution of noise. When noise is uncor-
related across pixels, the inverse noise matrix, N−1,
becomes diagonal and can also be ignored. We anticipate
that the smallest covariance will be associated with the
greatest inverse covariance.
Secondly, the matrix ðATN−1AÞ−1 is the deconvolution

matrix of the estimate in Eq. (12). The eigendecomposition
of the deconvolution matrix is given by

ðATN−1AÞ−1 ¼ VΛVT;

where V is a matrix whose columns are the eigenvectors
and Λ is a diagonal matrix whose entries are the corre-
sponding eigenvalues. The eigendecomposition can pro-
vide helpful insights into the behavior of the deconvolution
matrix. For instance, the eigenvalues deermine the extent to
which different components of the input signal are ampli-
fied or attenuated during the deconvolution process.
In Fig. 11, we plotted the eigenvalue spectra of the

matrix ðATN−1AÞ for five different mask maps. Our
analysis of the eigenvalue spectra revealed a consistent

trend; as the percentage of masked pixels increased from
type B1 to B5, the amplitude of the eigenvalue spectra
decreased. This decrease in amplitude indicates an increase
in covariance. However, despite the variation in the
eigenvalue spectra, the number of independent modes
remained approximately equal across the different mask
maps. This number of independent modes is determined by
the two observables γm1 ðθÞ and γm2 ðθÞ, which are the shear
components measured within the masked region. It is worth
noting that the two observables γm1 ðθÞ and γm2 ðθÞ have
nonlocal relation with the underlying convergence field
κðθÞ we aim to reconstruct. Therefore, in the presence of a

FIG. 10. The mask is created by randomly selecting masked pixels from mðθÞ and setting them to zero. The masks in panels B1 to B5
have masked pixel rates of 10%, 20%, 30%, 40%, and 50%, respectively.

FIG. 11. Eigenvalue spectrum of the matrix ATN−1A for
different mask maps. The magnitude of the eigenvalues of this
matrix indicates the precision of the measurements for different
modes in the map. It is also the matrix we would have to invert if
we intend to set the PSF to the identity. The amplitude of this
matrix decrease as the mask coverage increases from B1 to B5.
We can also measure similar independent modes with mask
fractions ranging from 10% to 50%. This suggests that the
singularity of the matrix ATN−1A is not solely attributed to the
mask fraction.
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mask with 50% coverage, the number of independent
modes is approximately equal to twice the number of
unmasked pixels. This indicates that, despite the masking,
there is still a substantial amount of independent informa-
tion available for the reconstruction process, captured by
the two observables within the unmasked region.

We also calculate the PSF matrix in Eq. (18). Figures 12
and 13 show the performance of a PSF matrix [Eq. (18)] for
different mask maps. A PSF matrix serves as a tool to
assess the quality of κ map reconstruction from γ1 and γ2
after applying a given mask. Figure 12 displays the
diagonal elements of the PSF matrix, representing the
self-contribution of each pixel to its reconstruction. In an
ideal scenario, these values should be 1, signifying perfect
reconstruction of the pixel. Figure 13 presents the ratio
between the squared off-diagonal elements and the squared
diagonal elements of the PSF matrix. This ratio represents
the influence of neighboring pixels on the reconstruction of
a given pixel. Ideally, the ratio should be 0, which indicates
no cross-talk between pixels. As more pixels are masked,

FIG. 12. Diagonal elements of the PSF matrix P for different
mask maps. A PSF matrix is optimal when it has 1 on the main
diagonal and 0 elsewhere. This indicates that the pixels are well
reconstructed. For cases B1 to B5, the PSF matrix is almost
optimal, with diagonal values very close to 1. In case B5, the
diagonal values are slightly lower than 1 and display minimal
oscillation due to the presence of a large number of masked pixels.

FIG. 13. The ratio of squared off-diagonal elements to squared
diagonal elements of the PSF matrix, corresponding to the fourth
column in Table II. In all cases, the ratio is significantly lower
than 1. With increasing mask fraction or clustering, the ratio will
increase.

FIG. 14. Results for random masks. Top: Power spectrum ratio for 100 realizations (unmasked pixels). The blue and red regions
represent the 1σ confidence interval. Bottom: Cross-correlation coefficient between the reconstructed and the true convergence map.
Here we did not correct the bias in the power spectrum obtained from the KS method, resulting from varying mask rates, as the impact on
different scales is not uniform. AKRA accurately recovers the true power spectrum in the simulation, with a power spectrum ratio and
cross-correlation coefficient in all cases around 1% and 1 − rl ≲ 1%, respectively.
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FIG. 15. Circular mask with same rate (10%) of masked pixels. From left to right, the radius of the circular mask ranges from 1 to
5 pixels, respectively. The top panels show a magnified view of the part region (40 × 40 pixels) in the gray rectangle.

(a)

(b)

FIG. 16. The residual maps of the true κ map and the reconstructed κ map obtained by using AKRA and KS. The top row in each panel
shows a magnified view of the central region (40 × 40 pixels) enclosed by the gray rectangle. The red circle in the magnified region
indicates the boundary of the circular mask. The normalized residual from AKRA is significantly smaller than KS. In cases C1 and C2,
the normalized residual approaches zero in the masked regions. However, in cases C3 to C5, where the masked pixels are more clustered,
the normalized residual increases in magnitude. (a) The residual maps normalized by rms of the true signal from AKRAmethod. (b) The
residual maps normalized by rms of the true signal from KS method.
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the off-diagonal elements become larger, but also consid-
erably smaller than diagonal elements.
Figure 14 shows a significant difference between the

results obtained using AKRA and KS methods. The power
spectrumof reconstructed κmap fromKSmethod is sensitive
to the masked fraction. Conversely, the power spectrum ratio
fromAKRA is close to 1 for mask fraction≤ 50%. This also
suggests that AKRA exhibits lower sensitivity to variations
in the mask fraction. Specifically, even in the B5 case where
only half of the pixels are unmasked, the power spectrum
ratio and cross-correlation coefficient ofAKRA remain close
to 1. The results indicate that AKRA is more effective than
the KS method in reconstructing the κ map from the shear
map in the presence of a mask.

C. Circular mask

In this section, we use circular masks with a fixed 10%
pixel coverage to assess the performance of our algorithm.
Figure 15 presents circular masks with radius ranging from
1 to 5 pixels, corresponding to cases C1 to C5, respectively.
In Fig. 16, we compare the residual maps using the KS

and AKRA algorithm for circular masks with various
radius. KS produces significant residual values within
the masked regions. In contrast, the AKRA algorithm
yields a smaller residual within these areas. Notably, for
small mask radius (cases C1 and C2), the residual is
reduced to zero within the masked regions. For larger
radius (cases C3 to C5), the residual remains small in
comparison to the residual obtained using the KS method.
Accordingly, AKRA perform well at the boundary of
circular mask, and successfully recovers several pixels
near the masked regions.
With a constant 10% mask fraction, AKRA invariably

surpasses KS across C1–C3 cases. Strikingly, for all scenar-
ios AKRA achieves reconstructed Cl accurate to 1% and
better, as seen in the power-spectrum ratios approaching

unity. Equally impressive are the cross-correlation coeffi-
cients of rl ≈ 1, laying bare near-perfect reconstructions.
Figure 17 depicts the power spectrum ratio and cross-

correlation coefficient for the circular masks, when con-
sidering unmasked pixels. With a fixed masked fraction of
10%, AKRA consistently outperforms KS. Surprisingly, it
is worth mentioning that the AKRA produce Crec

l is
accurate to better than 1% and cross correlation coefficient
rl is close to 1 for all cases.

IV. DISCUSSION AND CONCLUSION

In this study, we present AKRA for reconstructing mass
maps from weak-lensing shear observations, inspired by
interferometer mapmaking and CMB mapmaking tech-
niques. Fundamentally the problem of mapmaking is one
of data reduction, where for interferometers, a large set of
time-ordered measurements of visibilities sample different
linear combinations of the sky at various times and in
different ways. Similarly, for the κ map reconstruction, we
have two observables, γ1 and γ2, which sample different
linear combinations of the true κ map in distinct ways.
Based on it, AKRA utilizes a prior-free maximum like-
lihood framework to calculate the minimum variance
estimate of the κ map. Through extensive simulations with
varying mask fractions (10% to 50%) and mask shapes, we
demonstrate that AKRA not only significantly outperforms
the widely used KS method in terms of map quality and
summary statistics, but recovers the true convergence signal
with an accuracy of 1% or even better.
Interestingly, AKRA is able to perform effectively in

both unmasked and random masked pixels. In the case of
unmasked pixels, AKRA achieves high accuracy, with the
reconstructed autopower spectrum (Crec

l ) accurate to 1% or
better, and a high cross-correlation coefficient (rl) close to
1, even under extreme conditions of mask fraction and

FIG. 17. Same as Fig. 14, but for circular masks with a fixed 10% mask fraction (unmasked pixels). The power spectrum ratio and
cross-correlation coefficient from AKRA are better than that from KS.
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shape. Notably, AKRA surpasses existing reconstruction
algorithms by successfully recovering the information from
random masked pixels. This capability is attributed to the
nonlocal nature of the two observables, γ1 and γ2, enabling
effective reconstruction even in masked regions. We also
introduce new ways to quantify the mask effects by
examining the information content or the PSF matrix,
providing insights into the impact of masks on κ map
reconstruction. The localization measure L that we define
further reveals to what extend the mask in the shear catalog
contaminates the convergence reconstruction in the
unmasked regions due to the nonlocal relation between
shear and convergence. L of ARKA is a factor of Oð10Þ −
Oð102Þ smaller than that of KS. The typical value of L in
AKRA is ≲10−3, meaning that the contamination is in
general negligible. This explains the excellent performance
of AKRA if we only use the reconstructed convergence in
the unmasked regions.
Since in the current version we only aim to resolve the

mask issue, several significant simplifications have been
adopted. Firstly, it assumes a flat-sky and periodic-boundary
conditions, but it can be extended to handle the curved sky
using the spherical harmonic transform with spin instead of
the Fourier transform. Secondly, the current implementation
of AKRA assumes noise-free shear maps. This is equivalent
to setting the noise covariance matrixN ¼ I. As a reminder,
N≡ hnnTi. In reality, the shear measurement noise is not
only nonzero, but inhomogeneous, meaning a nontrivial N.
Since AKRA contains this key ingredient [Eq. (18)], the
issue of inhomogeneous measurement noise can be appro-
priately considered by replacing N ¼ I with N estimated
from the realistic shear catalog. Noise is an inherent
component that can significantly affect the accuracy of

mass-map reconstruction. More detailed processing is
required for realistic data, which includes factors such as
shear measurement errors, intrinsic alignment, point spread
function leakages/residuals, etc., as these elements could
potentially introduce correlated noise and render the N
matrix nondiagonal. Future research should focus on
extending AKRA to handle noisy shear maps and properly
account for the nondiagonal covariance matrix of the shear
field. Extending AKRA to handle the curved sky and
incorporating noise effects would be crucial for enhancing
its applicability and accuracy in real observational scenarios.
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APPENDIX A: EIGENVALUES
AND POINT SPREAD FUNCTION

In the main text, we examined the performance of AKRA
and KS for three types of masks to demonstrate AKRA’s
advantages. In this section, we will provide some additional
results to complement the analysis in the main text.

FIG. 18. Eigenvalues of ATN−1A and diagonal elements of PSF matrix for A1–A3 cases. (a) Same as Fig. 11, but for A1-A3 cases.
(b) Same as Fig. 12, but for A1-A3 cases.
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In Sec. III B, we introduced quantifying mask effects by
examining the information content via the eigenvalues of
the matrix ATN−1A and the diagonal values of the point
spread function (PSF) matrix. This provides insights into
how masks impact κ map reconstruction.
In the main text, these results were only shown for the

B1–B5 mask cases. Here we present the eigenvalues of
matrix ATN−1A and diagonal values for A1–A3 and
C1–C5 cases.
Figure 18(a) shows that the eigenvalues decrease as mask

fraction increases from A1 to A2, respectively, but similar
independent modes can be reconstructed. This also agrees
with our finding in the main text that the inverse covariance
declines with larger masks. In contrast, the irregularly
shaped A3 mask yields significantly lower eigenvalues
compared to A1 and A2, suggesting its geometry affects the
information content more than the fractional coverage
alone. Figure 19(a) also indicates that clustered circular
masks like C3–C5 (radius 3–5 pixels) will lose more
independent modes than less clustered C1–C2 (radius
1–2 pixels) of the same mask fraction. The eigenvalue
spectra also suggest the mask geometry/clustering affects
information content, not just mask fraction.

Figures 18(b) and 19(b) also show the diagonal values of
PSF matrix correlate with reconstruction quality trends.
Scenarios with diagonal values closer to unity (e.g., A1,
C1, C2) exhibit smaller residuals and better power spec-
trum/cross-correlation recovery in the main text.

APPENDIX B: RESULTS FOR ALL PIXELS

We discuss the reconstruction of masked pixels in the
main text. Here we complement that analysis by presenting
results for AKRA when considering all pixels. Figures 20
and 21 show the power spectrum ratios and cross-correlation
coefficients for the B1–B5 random and C1–C5 circular
masks, respectively, now over all pixels rather than just the
masked regions. For the mask fraction ranging from 10% to
50%,AKRA achieves power spectrum ratio and coefficients
within 5% of ideal across all cases, demonstrating it can
accurately recover the full original convergence field.
Figure 21 indicates AKRAmaintains perfect reconstruction
for C1–C2 masks. However, for larger clustered circular
masks deviations up to≲10% emerge at small scales, albeit
still a significant improvement over KS.

FIG. 19. Eigenvalues of ATN−1A and diagonal elements of PSF matrix for C1–C5 cases. (a) Same as Fig. 11, but for C1-C5 cases.
(b) Same as Fig. 12, but for C1-C5 cases.
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