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In contrast to our understanding of density field tracers, the modeling of direct statistics pertaining to the
cosmic velocity field remains open to significant opportunities for improvement. The lack of accurate
modeling for the nonlinear domain of pairwise velocities restricts our capacity to fully exploit the
information encoded in this observable. We present a robust approach for modeling the mean infall
velocities, v12ðr; aÞ, with broad applicability spanning sub-megaparsec scales and cosmologies extending
beyond the standard ΛCDM paradigm. Our approach involves solving the full pair-conservation equation
using accurate nonlinear power spectrum descriptions. To assess the robustness of our model, we extend it
to cosmologies beyond the standard ΛCDM, in particular, the Hu-Sawicki fðRÞ-gravity and Dvali-
Gabadadze-Porrati (DGP) modified gravity models. Remarkably, our predictions for pairwise velocities of
dark matter particles at kiloparsec scales exhibit excellent agreement with N-body simulations throughout
the entire dynamical range (0.1 ≲ ξ≲ 1000, or r ≥ 0.4h−1 Mpc). Furthermore we show that different
gravity models leave distinct signatures in the shape and dynamics of the mean pairwise velocities,
providing a potent test of cosmological gravity laws.

DOI: 10.1103/PhysRevD.109.123528

I. INTRODUCTION

Pairwise velocities and the large-scale velocity fields
serve as crucial statistics for the large-scale structure (LSS),
offering valuable insights that complement the widely
utilized density-based measurements. However, unlike our
understanding of cosmic density, the modeling and under-
stating of direct statistics of the cosmic velocity field still
have considerable room for improvement. This deficiency
is one of the main reasons why the rich information
encoded in the velocity field and its potential as a
cosmological probe is still largely untapped.
Various approaches have been employed to model the

nonlinear regime of structure formation in the density field.
These include the standard perturbation theory (SPT)
(see [1–5]), regularized perturbation theory [6], fitting
formulas like Halofit and HMCODE (see [7–9]), and
emulator approaches (see e.g. [10–13]).
As we delve into the small-scale features of the Universe,

it becomes increasingly vital to harness the complementary
information embedded in peculiar velocity fields. Pairwise
velocities, measuring the typical relative velocity between
objects at specific separations, contain information about
the peculiar motions induced by gravity. As such the
information encoded in the moments of the pairwise

velocity distribution may be considered as crucial for
modeling and deciphering the nonlinear regime.
The velocity field data has been already effectively utilized

in various applications, including redshift-space distortions
(RSD) growth-rate estimates (for instance [14,15]), bulk-
flow measures ([16]), cosmic web analysis (see [17]),
measuring the velocity power spectrum (e.g. [18]), or in
field reconstructions (see [19,20] or [21] where the authors
reconstruct the density and velocity fields using [22], the
most recent update to the cosmic flows catalog [23]).
In the late 1970s, a potent method for modeling mean

pairwise velocities (MPV) emerged [24–27]. This approach
led to the application of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of equations, which
describe the dynamic evolution of self-gravitating particle
systems, for modeling of the large-scale cosmic velocity
fields. Within this hierarchy, the first moment is known as
the pair-conservation equation [25,26], represented as:

∂ξ

∂t
þ 1

x2a
∂

∂x
½x2ð1þ ξÞv� ¼ 0: ð1Þ

It expresses the conservation of particle pairs separated by a
comoving distance x in terms of the two-point correlation
function (2PCF) of density fluctuations, ξðx; tÞ, and the
relative velocity of pairs, v. Here, t denotes cosmological
time, and a stands for the scale factor.*jaber@cft.edu.pl
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The result derived from Eq. (1) was employed by [28] to
propose an interpolation-based ansatz for the mean pair-
wise velocity (MPV), bridging the gap between linear and
nonlinear regimes, and improving the results proposed
by [29]. The physical reason behind the coefficients of [28]’s
fitting formula was later explained in [30] and extended to
treat galaxies in [31].
The BBGKY formalism was used to constrain the

cosmic matter density parameter ΩM (as seen in [32])
and for testing cosmological models, including those with
nonzero curvature [28]. However, its performance signifi-
cantly deteriorates on highly nonlinear scales.
MPVs capture the dynamics of peculiar motions driven

by gravitational interactions in an expanding background
Universe. This sensitivity has motivated research efforts
aimed at using MPVs to identify deviations from GR in
large-scale structure formation (as demonstrated in [33–38]).
The absence of precise modeling for the nonlinear regime of
pairwise velocities hinders our ability to fully harness the
physical information inherent in this observable.
In this paper, we introduce a precise modeling approach

for pairwise velocities. Our primary focus lies in enhancing
predictions on nonlinear scales. We validate our predictions
against N-body simulations, and show the versatility and
strength of this modeling, by stress-testing it for nonstand-
ard cosmologies such as modified gravity (MG) scenarios.
We aim to construct our model using well-established

and readily available methodologies rather than introducing
new analytical or numerical tools. By demonstrating
the effective application of these methods for precise
predictions on sub-megaparsec separations, we seek to
provide the community with a robust framework for
modeling MPVs and using them to test the underlying
gravity model.
This paper is organized as follows: in Sec. II we review

the pair conservation equation, describe the models for
nonlinear scales included in our work and our simulation
data. In Sec. III we present our results for the MPV in
ΛCDM and for MG scenarios, which we discuss in Sec. IV
and we present our main conclusions in Sec. V.

II. METHODS

We proceed to describe the analytical models, numerical
techniques and simulation data we used to build and test
our pairwise velocity modeling.

A. Model

Our model for computing the mean pairwise velocities,
v12ðx; aÞ, relies in the consistent numerical solution of the
following equation [28]:

a
3½1þ ξðx; aÞ�

∂ξ̄ðx; aÞ
∂a

¼ −
v12ðx; aÞ
HðaÞr ð2Þ

where ξ̄ðr; aÞ ¼ 3x−3
R
x
0 ξðy; aÞy2dy is the volume-aver-

aged 2PCF, HðaÞ is the Hubble function, and r ¼ ax is the
proper separation between pairs.
Before describing the different approaches for the non-

linear clustering, let us briefly examine the limiting values
of Eq. (2). In the case of pairs separated at x ≪ 1h−1 Mpc
or, equivalently, high values of ξ ≫ 1 we recover the stable
clustering regime. This regime consists of scales where
the natural tendency of a pair to collapse, as induced by
the gravitational clustering, dominates over the back-
ground Hubble expansion, thus a regime where the term
ðv12ðrÞ þHrÞ is negative. The opposite case, i.e., at large x
where ξðx; tÞ ≪ 1, is known as the linear regime (see for
e.g. [27]). Here the growing mode of structure formation
dominates and we have ξðr; tÞ ¼ DðtÞ2ξðr; t ¼ 0Þ ¼
DðtÞ2ξ0ðrÞ, with which we get:

v12ðx; aÞ ¼ −
2

3
axHf ¯̄ξðx; aÞ; ð3Þ

where ¯̄ξðx; aÞ≡ ξ̄ðx; aÞ=½1þ ξðx; aÞ� and f is the logarith-
mic derivative of the growth function, f ≡ d lnD=d ln a. It
is important to recall that the splitting of ξðr; tÞ in a time,
DðtÞ, and a space dependent function, ξ0ðrÞ, requires that
the linear growth function is scale independent, which is
generally satisfied in the GR and nDGP cases.
An essential aspect is the transition point where the

influence of the Hubble flow on large scales gives way to
the stable clustering regime at smaller separations, and then
further into the virialized regime, where the orbits inside
the collapsed haloes are essentially randomized. These
transitions are of particular significance, especially when
considering cosmologies with different growth-rate histor-
ies, such as MG theories.

B. Modified gravity

In our study, as a way of stress-testing our model, we
include non-ΛCDM cosmologies. In particular, we explore
MG models as extensions to ΛCDM. These MG theories
introduce alterations to the standard framework, leading to
distinct phenomenological consequences that are relevant
for our research. Specifically, we focus on two MG
theories:
(1) The normal branch of the Dvali-Gabadadze-Porrati

(nDGP) model. This theory seeks to explain the
accelerated expansion of the universe by introducing
extra dimensions that influence gravity on large scales
while preserving standard general relativity (GR) at
small scales. It does so by introducing a scalar field,
called the brane-bending mode, which influences the
gravitational interaction on large scales. This modi-
fication allows for a departure from standard gravi-
tational laws at cosmic distances. [39].

(2) The Hu-Sawicki form of fðRÞ-gravity [40]. This
widely adopted extension of the Hilbert-Einstein
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action introduces a functional dependence of the
Ricci scalar, R, within the Einstein-Hilbert equa-
tions, which characterizes the curvature of space-
time. The function fðRÞ allows for variations in the
gravitational force as a function of the curvature so
that this modification aims to explain cosmic accel-
eration without invoking dark energy (for a review
see for instance [41,42]).

To deviate from GR on cosmological scales while
respecting both high-density and strong-field regime con-
straints, these MG theories introduce “screening mecha-
nisms.” These mechanisms are theoretical concepts
designed to reconcile the predictions of MG with exper-
imental observations on cosmological and astrophysical
scales, effectively concealing modifications to Einstein’s
field equations in various environments (the regime of high
densities or small distances). The first family illustrates the
Vainshtein screening mechanism [43], implemented in the
nDGP gravity model. The Vainshtein mechanism relies on
the nonlinearity of equations of motion for the scalar field,
leading to a suppression of its effects at small scales. On the
other hand, the specific form of fðRÞ gravity we consider
employs the Chameleon screening mechanism [44]. In the
Chameleon mechanism, a scalar field possesses a variable
effective mass dependent on local matter density, allowing
it to be screened in high-density environments while
remaining active in low-density regions. For a thorough
review on this type of theories we refer the reader to [45].

C. Data

For calibration and testing the pairwise-velocity model,
we use data generated from the suite of DM-only MG
N-body simulations: ELEPHANT (Extended Lensing Physics
using Analytic ray Tracing), [46], as these simulations
provide a good test-bed to study the impact of both the
Chameleon and Vainshtein screening mechanisms on the
large scale nonlinear clustering of matter.
This set of N-body simulations assumes a ΛCDM

background, and implements on top of this the solution
of the scalar field and modified Einstein equations in the
MG models described above: normal branch of the DGP
theory, or nDGP, and the Hu-Sawicki form of fðRÞ. In the
first case, the specific values of the extra parameter are
Hrc ¼ 1, 5 (referred to as N1 and N5, respectively), and for
the second model, the strength of the modification is
codified by the present-day value of the derivative of the
fðRÞ function, jfR;0j, taking the values 10−5, and 10−6

(referred to as F5 and F6, respectively). N1 codifies a model
that deviates more strongly from GR than N5, in a similar
way just as F5 deviates more from GR than F6.
For each model and redshift, we have five independent

realizations. The different MG models have the same
fiducial ΛCDM background. For a detailed explanation
of the numerical parameters used in this suite of simulations
we refer the reader to Sec. 2.2 from [47].

For the direct calculation of the pairwise velocities in the
simulation data, we use the positions and velocities of the
dark-matter particles and analyse the snapshots at z ¼ 0,
0.3 and 0.5.

D. Nonlinear power spectrum

To model the MPV accurately for sub-Mpc separations,
we must address the nonlinear clustering component in
Eq. (2). To achieve this, we employ various proposals for
the nonlinear power spectrum, denoted as Pnlðk; zÞ. These
Pnlðk; zÞ are subjected to an inverse Fourier transform (IFT)
to provide the corresponding nonlinear two-point correla-
tion function (2PCF), denoted as ξnlðr; aÞ, as required
in Eq. (2).
Nonlinear clustering in ΛCDM: In our study, we test and

employ the Halofit solution which is implemented in the
cosmological Boltzmann solver CAMB [48,49]. We fix the
cosmological parameters to the values of the ELEPHANT

simulations. The Halofit formula is an accurate fitting
formula for the nonlinear matter power spectrum, presented
in [50] and recalibrated in [8]. We choose to use the Halofit
model for the ΛCDM case due to its established accuracy,
tested to be up to ∼5% for k ≤ 10h−1 Mpc, and z ≤ 2,
for a variety of ΛCDM and wCDM cosmologies (see for
instance [8]).
Additionally, we also compare our results against the

solution from the Convolution Lagrangian Perturbation
Theory (CLPT) [51], which is a nonperturbative resumma-
tion of Lagrangian perturbation theory and provides as an
output, an estimation for v12ðr; aÞ.
Nonlinear clustering in modified gravity: In the context

of MG scenarios, which deviate from the standard para-
digm, there is less consensus on the optimal approach for
modeling the nonlinear power spectrum. Various proposals
exist, some of which compute it directly using N-body
simulations [52,53], perturbation theory [54], post-
Friedman formalism (PPF) [55], or via the spherical
collapse model [56]. Specifically for fðRÞ gravity, a MG
version of the standard Halofit, known as “MG-Halofit,”
has been introduced [57]. It is essential to note that these
approaches are based on certain assumptions and have
limitations, which restrict their applicability and generality.
Instead, we primarily utilize the following two tools: the
standard Halofit solution and MGCAMB1 [58], a modified
version of CAMB specifically designed to handle both the
fðRÞ and nDGP gravity models. Our choice of background
cosmology remains consistent between theΛCDM andMG
cases, aligning with the setup of the ELEPHANT simulations.
Consequently, the primary differences between GR and the
MG models manifest in the growth of perturbations. It is
important to stress that the version of Halofit that we use is
agnostic to MG as it was developed and tested for ΛCDM
and wCDM cosmologies [8]. An in-depth exploration of

1https://github.com/HAWinther/FofrFittingFunction.
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the limitations to model the nonlinear PðkÞ for MG models
can be found in [59]. However, and as we will demonstrate
in following sections, albeit its lower precision to model
nonlinear PðkÞ in MGmodels, is already enough for getting
percent-level predictions for v12ðr; aÞ.
For a quick comparison with our MGCAMBþ Halofit

solutions, we also include a recent approach proposed
by [59] to compute the nonlinear matter power spectrum in
the context of MG. This work introduces a nonlinear matter
power spectrum for MG, Pnl;MGðk; zÞ, in terms of a ΛCDM
nonlinear power spectrum, Pnl;ΛCDMðk; zÞ, and a halo
model response function, ϒðk; zÞ, which has been cali-
brated against the ELEPHANT suite of simulations. The
resulting power spectrum as function of scale, k, and
redshift, z, Pnl;MGðk; zÞ can be expressed as:

Pnl;MGðk; zÞ ¼ ϒðk; zÞ × Pnl;ΛCDMðk; zÞ; ð4Þ

where ϒðk; zÞ represents a function that encapsulates the
power deviation of ΛCDM concerning the specified MG
model. For Pnl;ΛCDMðk; zÞ in Eq. (4), we also employed the
Halofit prediction from CAMB, consistent with the cos-
mological parameters used in the ELEPHANT simulations.
The specific components of the halo model for MG were
detailed in [59], where the authors report a 5% accuracy up
to nonlinear scales of k≲ 2.5–3h−1 Mpc in their resulting
power spectra.

III. RESULTS

In this section, we present the outcomes of our study,
which revolves around the modeling of MPVs in the
nonlinear regime. To achieve this, we utilize the previously
mentioned methodologies for computing the nonlinear
matter power spectrum and solve for v12ðr; aÞ using
Eq. (2). Our presentation begins with a focus on the
ΛCDM model, followed by an exploration of the appli-
cability of our MPV model in the context of MG scenarios.

A. MPV for the ΛCDM model

Figure 1 displays the solution for Eq. (2) for ΛCDM
across different panels. Moving from top to bottom, we
present the MPV, denoted as v12ðr; aÞ in units of km s−1, at
varying redshift values. The panels labeled with their
redshift value: z ¼ 0; 0.30.5, encompass our findings for
separations ranging between r∈ 0.05–140h−1 Mpc, shown
in linear scaling, allowing us to cover both the linear and
nonlinear regimes simultaneously. Below these, we zoom
in on the region r∈ 0.05–40h−1 Mpc, now in logarithmic
x-axis scaling, providing a more detailed view of our
solution’s behavior in the nonlinear regime. Finally, the
panels marked with Δv12, also in logarithmic x-axis
scaling, depict the ratio of our numerical solution for
v12ðr; aÞ with respect to the simulation data, represented

as Δv12 ≡ ðv12 − v12;simÞ=v12;sim. The simulation MPVs,
v12;simðrÞ, are determined directly calculating the projected
velocity differences of pairs of dark matter particles. These
simulation results are indicated by black dots, with error
bars illustrating the variance across five independent
realizations of each snapshot.

FIG. 1. Pairwise velocity models for DM tracers, v12ðr; aÞ, in
units of km s−1 and for the ΛCDM cosmology. Points correspond
to velocities from ELEPHANT runs, lines correspond to the
different theoretical models: the full solution to Eq. (2) using
the linear CAMB matter power spectrum (dashed green), solution
obtained via nonlinear Halofit based power spectrum (solid red),
the quasilinear approximation given by eq. Eq. (3) (dot-dashed
purple), and the prediction from CLPT (dotted blue).
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To obtain numerical solutions for v12ðr; aÞ, we utilize
Eq. (2) with specific prescriptions. We employ the non-
linear output from Halofit, represented by red solid lines
labeled as “BBKGY-Halofit.” We also include the linear
power spectrum from CAMB, shown as green dashed lines
and labeled as “BBKGY-linear.” To facilitate comparison
with the results of [28], we present a solution to Eq. (3)
using the Halofit power spectrum as input, indicated by
purple dot-dashed lines and labeled as the “quasilinear”
solution. Lastly, we include the solution for v12ðr; aÞ
obtained from the numerical implementation of the con-
volution Lagrangian perturbation theory (CLPT),2 provid-
ing the real-space pairwise in-fall velocity in units of
v=aHðaÞf. These results are represented by the dotted
blue lines.
It is worth noting the agreement among all the solutions

for separations r ≥ 80h−1 Mpc. This agreement is expected
since these scales fall well within the linear regime, where
the dynamics of pairwise velocities are primarily driven by
the Hubble expansion. It is important to mention that the
results from CLPT were originally optimized for galaxy
clustering analysis, specifically for extracting the baryonic
acoustic oscillations (BAO) feature from the 2PCF of
biased tracers. As a result, CLPT provides a robust solution
around BAO scales (rBAO ∼ 100h−1 Mpc). However, we
observe deviations for separations below r ∼ 80h−1 Mpc.
Both the perturbative CLPT and the “quasilinear” solution
start to diverge from the simulation data and the other
solutions, which becomes especially noticeable in the
middle row panel where we focus on separations below
r ¼ 40h−1 Mpc. On these smaller scales, the CLPT sol-
ution follows a trajectory similar to the quasi-linear solution
up to r ∼ 11h−1 Mpc, below which it deviates the most
within the nonlinear regime. The “BBKGY-linear” solution
performs better than the previous two cases, tracking the
evolution of the simulation data within 5% of accuracy up
to separations of r ∼ 11h−1 Mpc across all redshift values,
but it deviates in the intermediate and nonlinear regimes.
Lastly, the fully nonlinear solution derived from Eq. (2)
with PnonlinðkÞ from Halofit closely mirrors the full non-
linear dynamics of dark matter particles in the simulation,
achieving an accuracy of approximately ∼10% up to sepa-
ration of r ∼ 1.1h−1 Mpc, for z ¼ 0 and, r ∼ 1h−1 Mpc, for
z ¼ 0.3, 0.5. Our solution exhibits a consistent trend with
redshift when compared to the simulation data, showing a
gradual decrease in the v12ðr; aÞ value at its minimum
during earlier snapshots. We delve deeper into the analysis
of this characteristic within the framework of various MG
models.
For the remainder of the paper, unless explicitly specified

otherwise, it is presumed that the solutions presented
pertain to the “BBKGY-Halofit” method.

B. MPV in MG theories

In our treatment of MG theories, the modifications to GR
are contained in the linear power spectra from MGCAMB,
which properly takes into account the modified gravita-
tional interactions for a Hu-Sawicky fðRÞ-gravity, and the
nDGP model. The nonlinear part of the solution, however,
is generated from the standard ΛCDM-Halofit fitting
formulas. This setting will be referred to as “BBGKY-
Halofit” in our presentation.
The resulting v12 models are visualized in Fig. 2 in units

of km s−1, which, as done previously for the ΛCDM case,
consists of three rows corresponding to three snapshots
from the simulations: from top to bottom, z ¼ 0, 0.3, 0.5.
The rows labeled with the corresponding snapshot value
showcase the trend of v12ðr; aÞ in these MG models over
the range of separations r∈ ½0.05; 40�h−1 Mpc. Specifi-
cally, the six panels on the left illustrate the results for fðRÞ
variants (F5 and F6), while the six panels on the right depict
the results for the nDGP variants (N1 and N5). The data
points with associated errors represent the simulation
outputs obtained directly calculating the projected velocity
differences of pairs of dark matter particles. To facilitate
comparison, we also present the simulation results for GR
in all the figures, denoted by the solid points, as well as the
corresponding Halofit solutions to Eq. (2), in black lines.
In each case, the bottom subpanel displays the ratio

of the solution for v12ðr; aÞ with respect to the corres-
ponding MG model simulation, expressed as Δv12 ≡
ðv12 − v12;simÞ=v12;sim. The shaded regions in these subplots
represent the corresponding relative errors associated with
the simulation data.
Starting with the plots which illustrate the full evolution

of v12ðr; aÞ, we observe that the simulation data for the F6
(blue points) and N5 (magenta points) models closely track
the evolution seen in the GR case (black points). This trend
persists as we move from top to bottom in Fig. 2, indicating
that our model captures the temporal evolution even in
these non-ΛCDM scenarios.
Regarding our model for v12ðr; aÞ (solid lines), we see

how our solution from the BBGKY-Halofit model captures
the trends of the simulation data in all cases and for all
snapshots. For the case of Hu-Sawicki fðRÞ gravity, we
find that our model follows more closely the simulation
data in the weaker version of the theory (F6, indicated by
green lines and green points). For the F5 variant, we notice
that our solutions deviate from the simulation data at the
larger separations r > 10, 5, 1h−1 Mpc, for the snapshots
z ¼ 0.5, 0.3, 0, respectively. To better appreciate how the
dynamics of pairwise velocities is captured by our model,
we refer to the ratios Δv12 shown in the narrow subplots at
each panel. Starting from the left side, or the fðRÞ model,
we notice a constant offset of the BBKGY-Halofit solu-
tion at large scales (r ≈ 40h−1 Mpc). This offset reaches
Δv12 ∼ 10% for the F6 case, and it is more prominent
(Δv12 ∼ 20%) for the stronger variant of the model, F5.2https://github.com/wll745881210/CLPT-GSRSD.
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In contrast, the solutions obtained with Eq. (4) or BBKGY-
Gupta(2023), recover the expected values at these large
separations.
Generally speaking, our model with the BBKGY-Halofit

solution accurately captures the dynamics from the fðRÞ
simulations with better than 10% accuracy for separations
of a few h−1 Mpc (between 2–10h−1 Mpc). However, as
we approach the fully nonlinear regime or sub-megaparsec
separations, there are noticeable deviations from the data,
particularly for F5 at z ¼ 0.3. The results from using the
BBKGY-Gupta(2023) prescription perform better in all the
cases mentioned above.
We notice how both solutions perform well for the

z ¼ 0.5 snapshot, achieving an accuracy of 10% or better

for scales down to r ∼ 0.3ð0.15Þh−1 Mpc, for F5 and F6,
respectively.
Turning to our nDGP solutions (right column of Fig. 2),

we observe a better agreement between our model and the
simulation data, for the specific case of the BBKGY-Halofit
solution. In each sub-panel presenting the ratio Δv12,
we see that our prediction initially shows an offset of
∼10% at 40h−1 Mpc separations but then converges to the
result from direct calculation in the simulation data for
separations between a few and 10h−1 Mpc. At z ¼ 0 our
model captures the nonlinear evolution of v12ðr; aÞ with
10% accuracy or better for pairs separated between
3–40h−1 Mpc. This level of accuracy is similarly observed
at z ¼ 0.3, and it improves further at z ¼ 0.5, where we

FIG. 2. Pairwise velocities, v12ðr; aÞ in units of km s−1, and models in MG theories. Points correspond to DM particles from the
ELEPHANT runs, solid lines to the result from BBKGY-Halofit prediction, and dotted lines to the solution using Eq. (4), labeled as
“BBKGY-Gupta(2023)”. The results for the GR case are represented in black, the F5 model with turquoise, F6 in blue, N1 in orange and
N5 in magenta.
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achieve an agreement better than 10% for scales
r ≥ 1h−1 Mpc. For our model using the BBKGY-Gupta
(2023) prescription (shown in dotted lines) we notice that
these solutions under-perform in comparison to the BBKGY-
Halofit solution, particularly for z ¼ 0.3, at which the
pairwise velocities offset by 10% or more the direct cal-
culation from our simulations, for separations r ∼ 5h−1 Mpc.
To understand better where these differences among

gravity models come from, in Fig. 3 we illustrate the
various components of the source term (left-hand side) of
Eq. (2). The clustering itself, denoted by ξðr; aÞ, exhibits
minimal variation among gravity models (depicted in the
inset figure for redshift values, z ¼ 0, and 0.5, for variants
F5, F6, N1, N5, and the GR case). However, its time
evolution, represented by ∂ξ̄=∂a, reveals notable differences
across models.
Specifically, the more pronounced modifications of GR,

N1, and F5 exhibit a maximum deviation of approximately
13% from GR, at z ¼ 0 (shown in solid lines), in contrast
to the milder variants (N5 and F6), which deviate around
3–4% from the GR prediction at their maximum.
Notably, while at z ¼ 0, the values for ∂ξ̄=∂a for models

F6 and N1 coincide, these models display different values
at z ¼ 0.5. In this case, their relative deviations from GR
are approximately 11% and 14%, respectively, while the
N5 and F6 variants show deviations of around 2%–4%
compared to the GR prediction.

C. Signatures of MG in the MPVs

Comparing pairwise dynamics across different gravity
models reveals interesting characteristics. As we can see in
Fig. 2, the minimum value of v12ðr; aÞ undergoes variations

based on the gravity model. Specifically, for the stronger
deviations from GR, v12ðr; aÞ reaches a more pronounced
minimum compared to scenarios involving weaker mod-
ifications of gravity or adhering to the GR framework.
To quantify this effect, we present the maximum value of

jv12ðr; aÞj, denoted as jv̂12j, as a function of redshift, z, in
the top row of Fig. 4. As anticipated, during earlier cosmic
times, relative velocities attain smaller magnitudes in
comparison to the present epoch. Across all cases displayed
in the top row of Fig. 4, there is a consistent trend toward
smaller jv̂12j (indicated by shallower curves for v12ðr; aÞ in
earlier snapshots, as seen in Fig. 1–2). The noteworthy
observation lies in how this value varies across distinct
gravity models.
First we focus on the values from the simulation data.

These are represented by the error bar points at each
snapshot value: jv̂12jðz ¼ 0; 0.3; 0.5Þ. The errors express
the standard deviation relative to the mean calculated from
all realizations, also shown in the respective shaded
regions. The distinctions between the values of jv̂12j for
GR and MG models become quite apparent. While the
value of jv̂12ðzÞj for the weaker modifications of GR (the
variants F6 and N5 denoted by blue crosses and purple
diamonds, respectively) closely tracks the trend of GR
(indicated by black circles), we see that for the more
pronounced MG variants (F5 and N1, represented by
green triangles and orange squares, respectively) jv̂12ðzÞj
exhibits significant deviations from the GR values.
In particular, at z ¼ 0, the relative difference, defined as

FIG. 3. Source (left-hand side) term of Eq. (2) with a focus on
the time derivative of the volume-averaged correlation function
part, for the different gravity models (GR, F5, F6, N1, and N5),
and for z ¼ 0 (solid lines), z ¼ 0.5 (dashed lines). As an inset
plot we show the factor multiplying ∂ξ̄=∂a, for the same models,
z values, and r range. FIG. 4. Prediction of the maximum value of the infall pairwise

velocity, jv̂12ðzÞj, and the stable-clustering crossing scale, R�, as
function of redshift. The expectation of a decreasing function for
higher values of z is present for all models; however, we notice
differences compared to GR.
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Δjv̂12j≡ ðjv̂12;MGj=jv̂12;GRj − 1Þ, reaches 16% (or an incre-
ment of 52 km s−1), for the N1 case. Similarly, the F5
variant has Δjv̂12j ∼ 14% with respect to the GR value (an
increment of ∼47 km=s). For the models N5 and F6, this
deviations are negligible with respect of the uncertainties
(Δv̂12 ≈ 3.6; 1.2%, respectively). For earlier snapshots, the
deviation between N1 or F5 and GR is of the same order of
magnitude: Δjv̂12j ≈ 12–13%. Importantly, these devia-
tions between gravity models are larger than the uncer-
tainties in Δjv̂12j from the simulation data. Conversely, for
the weaker modifications of GR, as expressed in the F6 and
N5 variants, the relative deviations are contained within the
data uncertainties. We add the solutions from our model,
shown as dotted lines.
For the GR case, and the N1 and F5 variants, our

prediction for jv̂12j agrees within the data uncertainties,
except for N1 at z ¼ 0.3, while our prediction for jv̂12j in
the case F6 and N5 presents an offset with respect to the
simulation data. However, in all cases we recover the two
main trends shown in our data: a decreasing value of jv̂12j
for earlier snapshots, and more importantly, the relative
increment with respect to GR in the different MG scenarios.
In particular, we recover the maximum deviation for the N1
variant, followed by the F5 case, then the N5 variant, and
lastly, the F6 model.
Another interesting aspect to consider is the scale at

which each model transitions into the stable clustering
regime. We denote this specific scale as R� and defined to
be such that aR�HðzÞ − v12ðR�Þ ¼ 0. To illustrate this
point, in Fig. 5, we explicitly show the values for
−v12ðr; z ¼ 0Þ for all the models under study, together
with the Hubble velocity, rH0 (dashed line). In vertical
dotted lines we indicate the value of r at which both lines
cross each other, in other words, the value for r ¼ R� for
each model.
As previously explained, v12ðr; aÞ is dominated by the

Hubble flow at large separations, gradually transitioning
into the stable clustering regime as pairs of objects draw
closer ([29,30]). However, the scale R� at which this
transition takes place varies depending on the underlying
gravity theory. The outcomes of this analysis are presented
in the bottom panel of Fig. 4.
In the bottom panel of Fig. 4 we show the stable-

clustering crossing scale R�ðzÞ for each gravity model. The
values from our simulation data are shown in solid lines
with error bars and the corresponding model prediction, in
dotted lines. An interesting result is how this scale increases
for the MG models that deviate more prominently from the
GR case. We recover a similar behavior as the variation of
jv̂12j with the gravity model, namely, that the strongest
deviation in the value of R� is found for the N1 variant,
followed by the F5 case, the N5 and lastly, the F6 case.
Our model predictions lie outside the data uncertainties.
Nevertheless, we recover the data trends for each one of the
MG cases.

IV. DISCUSSION

In this paper we have presented the modeling for the
evolution of pairwise velocities, for the linear, quasilinear,
and fully nonlinear regime. Our model relies on the proper
solution of the clustering in said regimes, and at its core, it
sits on the pair-conservation equation as derived from the
BBGKY hierarchy. The elegance of this approach allowed
us to test its validity beyond the standard framework of GR
and ΛCDM.
In Fig. 1 we have shown the solution from Eq. (2)

and compared it against known approximations, and also
against the direct calculation of the projected relative
velocity differences of pairs in our N-body simulations.
In particular we see that the fully consistent solution

of Eq. (2), using the Halofit template for the clustering
(BBKGY-Halofit), provides excellent agreement with
the ΛCDM simulation data throughout all the range

FIG. 5. Stable-clustering crossing scale, R�, at z ¼ 0 for the
different models used in this work. In both panels we show the
term −v12ðrÞ for each model, and the Hubble flow rHðzÞ, which
is identical in all models. The data points represent the values
extracted from the simulation data with error bars displaying the
variance from five independent box realizations. In the top panel
we show the v12ðr; aÞ for the F5 and F6 variants of fðRÞ-gravity,
and the bottom panel shows the N1 and N5 variants of
the nDGP model.
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(r∈ ½0.05–140�h−1 Mpc), and importantly so, in the sub-
megaparsec regime.
It is essential to acknowledge the limitations of our direct

estimation from simulation data, with the smallest resolved
scales being at r ¼ 0.05h−1 Mpc. A recent study [60]
delved into the accuracy of pairwise velocities in N-body
simulations, albeit in a scale-invariant Einstein-de-Sitter
cosmology (Ωtot ¼ Ωm ¼ 1). Despite this limitation, their
findings revealed that the direct calculation of projected
velocities between particle pairs in the simulation and the
estimation using the 2PCF in the conservation equation are
equivalent. Importantly, their simulations reached smaller
scales than those covered in our work, which encompasses
the range of scales presented in our analysis.
While perturbative solutions, such as CLPT, were

proposed to provide accurate solutions in the BAO regime,
they understandably do not match the evolution of the
v12ðr; aÞ below several tens of h−1 Mpc. The ansatz
proposed by the authors of [28] (labeled in our solutions
as “quasilinear”) shows a better performance in comparison
to the perturbative treatment of CLPT. While the behavior
of v12ðr; aÞ for CLPT shows an nonphysical turn toward
positive values of v12ðr; aÞ in the range of r ≤ 10h−1 Mpc,
the quasilinear approximation correctly shows the tendency
to a decreasing value in the v12ðr; aÞ in such regime.
Importantly too, we can notice how the quasilinear con-
verges to the solution of the full BBKGY hierarchy using as
an input a linear model for the 2PCF (a solution we named
BBKGY-linear). This result shows the power of consis-
tently solving Eq. (2), and its ability to provide better
results than with other approximations.
In the bottom panel of Fig. 1 we show that our numerical

solution is within 10% accuracy for the three snapshots, all
the way down to r ≈ 1h−1 Mpc. In the particular case of
z ¼ 0.5, however, our numerical solution is consistent with
numerical errors (which are below the 10% lines) even at
separations of r ∼ 300–400 kpc=h. For the intermediate
snapshot, z ¼ 0.3, this is achieved up to r ∼ 1h−1 Mpc, and
for z ¼ 0, up to r ∼ 2h−1 Mpc.
The underlying assumptions for the validity of Eq. (2)

are tied to the conservation of pairs of dark matter particles
in an expanding Universe (see chapter IV of [27] and the
discussion in [31]). We check whether the solutions can be
applied to cosmological models beyond ΛCDM. In par-
ticular, we have investigated the case when we relax the
assumption of general relativity as the underlying law of
gravity at all scales.
In Fig. 2 we can see the remarkable agreement between

the solution of Eq. (2) and the simulation data obtained for
the MG scenarios described in Sec. II. In this case we
present the results of fully solving the BBKGY hierarchy
Eq. (2) with the Halofit prescription to obtain the nonlinear
power spectrum, Pnlðk; zÞ, from the linear power spectrum
in the MG scenarios under consideration, Plin;MGðkÞ.
While, as mentioned previously, the Halofit ingredients

were calibrated to match the nonlinear clustering in
ΛCDM, our Plin;MGðkÞ properly takes into account the
modified gravitational interactions for a Hu-Sawicky fðRÞ-
gravity, and the nDGP model.
In the first MG scenario, the Hu-Sawicki fðRÞ theory, we

found a constant shift between our solution and the simu-
lation data, for pairs separated a few tens of h−1 Mpc.
While one plausible explanation for this deviation might
stem from the absence of a well-defined large-scale limit
for pairwise velocities, as discussed in [1], an alternative
hypothesis implicates the potential influence of the absent
effective screening mechanism in this intermediate regime
[at approximately (r ¼ 30h−1 Mpc)]. The observed con-
stant shift prompts speculation about the nuanced interplay
between the characteristics of the fðRÞ theory and the
larger-scale dynamics, necessitating further investigation to
discern the precise origins of this discrepancy.
Note however that this offset is not present when we use

the solution from [59] for the fðRÞ model. Instead, the
regime of applicability of our model is extended using the
BBGKY-Gupta solution in our prediction for v12ðr; aÞ. We
recall that the response function in Eq. (4) was calibrated
against the ELEPHANT suite of simulations, to provide a
proper modeling for the nonlinear clustering in the MG
scenarios under consideration.
On the other hand, for the nDGP case (bottom panel

of the second row of Fig. 2) we show that our solution
properly models the dynamics for pairs separated
r⪆2h−1 Mpc for the snapshots z ¼ 0, 0.3, and for pairs
separated at r⪆1h−1 Mpc, for z ¼ 0.5. We compare our
model against the numerical results obtained from the
simulation data, and shown as shaded regions around
the value Δv12ðr; aÞ≡ ½v12 − v12;sim�=v12;sim. This level
of agreement is achieved with our BBKGY-Halofit pre-
diction. In the case of the BBKGY-Gupta(2023) solution
the results deviate beyond the propagated error range of the
simulation data across all values of r, in the specific case of
N1, at the snapshots z ¼ 0, 0.3, but we obtained a better
match for the value z ¼ 0.5. The solution for the N5 variant
from the BBKGY-Gupta(2023) was found more consistent
with the uncertainties from the simulation particles in the
three z values. We speculate that this can be an effect of
the offset in their response functions (Fig. 2 of [59]) for the
specific case of N1.
In all the cases that we discussed, both in GR and MG

cosmologies, we find better agreement between our sol-
utions and the simulation data for the higher redshift
snapshot (z ¼ 0.5), in comparison to the subsequent values,
z ¼ 0.3, 0. This can be attributed to the fact that the more
recent snapshots represent highly nonlinear stages of the
evolution of the Universe, therefore, the scale at which our
prediction is accurate decreases with the redshift.
From examining the left hand side term of Eq. (2), we

conclude that it is the time evolution of ξ̄ what determines
the dependence of v12ðr; aÞ on the gravity model.
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A perhaps more interesting result can be seen in the
results shown in Fig. 4, where we study the differences in
the dynamics of v12ðr; aÞ between the various gravity
prescriptions. We focus on two distinct features, the value
of v12ðr; aÞ at its minimum as a function of redshift, v̂12ðzÞ,
and the scale at which the pairs enter the stable clustering
regime, R�ðzÞ, instead of being dominated by the Hubble
flow. This scale is defined by the ratio of the streaming
velocity to the Hubble expansion. It is important to
remember that the modifications of the underlying gravity
model are taken into consideration only at perturbation
level in the ELEPHANT suite of simulations, keeping the
same background as in GR for all the models under
scrutiny. In other words, the effect of changes in the expan-
sion rates that such models have (see for instance [61–63]
where the specific case of fðRÞ-gravity theories in the
cosmological context is discussed) are not considered in
our simulations. Therefore, the differences found in the
value of R�ðzÞ express changes arising only from gravita-
tional clustering in these MG scenarios, which helps to
pinpointing changes attributed to the modified force law
rather than by the modified expansion dynamics. The same
claim is valid for the maximum value of jv12ðzÞj, denoted as
jv̂12ðzÞj, which encodes the enhanced infall velocities of
pairs of galaxies in this alternative gravity models, with
respect to GR.
Interestingly, we see a connection between the effect of

the strength of the modification of gravity and the changes
in the values of jv̂12ðzÞj for a given z: Δjv̂12j≡
jv̂12;MGj=jv̂12;GRj. The stronger modification of GR in the
nDGP model, the case N1, displays the larger difference
Δjv̂12j, followed closely by the F5 case of the fðRÞ model.
These findings point to a distinct and recognizable

signature from modifications of gravity on cosmological
scales, which can potentially help detect the clear effect
predicted by the implementation of these models, support-
ing the results presented in the letter [33], where different
statistics for the pairwise velocities were analyzed. In that
work, the authors focus on the amplitude of σ12, the line-of-
sight centered pairwise dispersion, also derived under the
BBKGY formalism. A direct comparison to their results is
not possible, as their analysis was based on the halo
occupation distribution (HOD) mock galaxies, while we
have kept our analysis on the dark matter particles, for
which we are guaranteed that the conservation of pairs is
fulfilled throughout cosmic history in the different snap-
shots we analyzed. However, some indirect comparison
can be made as a part of the signal in σ12 that originates, in
fact, from Δv12ðr; aÞ. Their results showed an increase in
the amplitude of σ12, for F5 with respect to GR, of
approximately 25% at separations of r ¼ 1h−1 Mpc and
r ¼ 5h−1 Mpc, the two cases probed in their analysis. This
reinforces the primary finding that pairwise velocities serve
as a potent tool for assessing the validity of general
relativity (GR) on cosmological scales.

V. CONCLUSIONS

In summary, this study has outlined a robust methodol-
ogy for accurately computing pairwise velocities across a
wide range of regimes, encompassing linear, mildly non-
linear, and fully nonlinear stages. We have demonstrated
that by adequately considering the clustering aspects and
their temporal evolution, our approach can effectively
predict the mean pairwise velocities (MPVs) within the
range covered by our clustering model. Our analysis relies
on the fundamental equation derived from the BBGKY
hierarchy and employs nonlinear power spectrum models.
Through Fourier transformation, we obtain the nonlinear
two-point correlation function ξnonlinðr; aÞ, which serves as
the input to our core equation.
It is important to emphasize that this approach does not

necessitate simplifications or approximations to generate
reliable predictions for v12ðr; aÞ.
Furthermore, we have shown that this model is appli-

cable to gravity models other than GR. Specifically, we
have established that by appropriately accounting for
nonlinear clustering in these alternative gravity models,
our equation can seamlessly provide predictions for the
infall velocities of pairs in these modified gravity (MG)
scenarios. This highlights the versatility and robustness of
our methodology, making it suitable for a broader range of
cosmological investigations.
Even more, the different MG scenarios have a particular

imprint in the dynamics of in-fall velocities. We have
shown that the physical scale at which the dynamics
between pairs is dominated by their gravitational attraction,
as opposed to being dominated by the Hubble flow
(crossing scale in the stable-clustering regime, R�), is
distinctively affected by the MG families of theories we
analyzed. As screening mechanisms are a relatively generic
prediction of viable MG theories, detecting deviations in
the pairwise dynamics as we have described them would be
a signature of physics beyond GR.
Furthermore, the pairwise velocity dispersion (PVD),

σ12, appears in the first moment of the second BBKGY
equation [24,33]. The analysis of PVD is a vital component
of redshift space distortions (RSD) models. To harness the
full potential of ongoing and future data collection cos-
mological surveys like DESI [64], Euclid [65], and 4MOST
surveys (CRS [66], and 4HS [67]), we must push the
boundaries of our current RSDmodels. An extension of our
model could result in physically-motivated model for RSD
that could be applicable to a variety of gravity theories.
However, as we delve into smaller separations, the

interplay between baryonic physics and dark matter dis-
tribution becomes increasingly significant. Specifically, the
effect of baryons on RSDs, cosmic density and velocity
fields has been thoroughly investigated in [68] by employ-
ing comprehensive hydrodynamical simulations. Their
findings reveal that the impact of baryonic matter on halo
and galaxy velocities becomes notable only at very small
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separations, typically in the order of kiloparsecs. In fact,
for separation scales smaller than r ∼ 0.6h−1 Mpc, the
deviation in the total matter power spectrum is anticipated
to be less than 20%. Furthermore, over a broad range of
distances spanning from r ∼ 1.6 to 62h−1 Mpc, the overall
amplitude of the power spectrum deviates in less than 1%
when compared to DM-only simulations. Therefore, the
impact of baryons on the velocities of the DM samples
employed in our work remains negligible over the broad
range of scales under consideration.
However, for a realistic detection of such signatures we

need to consider a number of systematic effects. The most
immediate one is that we have modeled the signal directly
on the pairs of dark matter particles, which can be
guaranteed to be a closed system therefore ensuring the
conservation of pairs. Conversely, halos and galaxies
evolve through mergers and accretion, leading to a number
density that is a stochastic function of the underlying dark
matter distribution—a relationship known as bias.
While on large scales, we can expect a linear bias

relationship, we aim to describe the dynamics of streaming
motions on a wide range of scales. Therefore, a nonlinear
bias model is crucial to properly account for the dynamics
of pairs at sub-megaparsec scales. Although the studies
by [30,31] have laid the groundwork in this area, the
scenario involving theories with scale-dependent growth,

and therefore, a scale-dependent bias, needs further explo-
ration. These are immediate steps we plan to tackle in a
follow-up paper.
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