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Low- and high-redshift H 11 starburst galaxies obey different
luminosity-velocity dispersion relations
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To determine whether or not H 11 starburst galaxies (H 1G) are standardizable candles, we study the
correlation between the Hf luminosity (L) and the velocity dispersion (o) of the ionized gas from H 1G
measurements by simultaneously constraining the L — o relation parameters and the cosmological model
parameters. We investigate six flat and nonflat relativistic dark energy cosmological models. We find that
low-redshift and high-redshift H nG data subsets are standardizable but obey different L — o relations.
Current H G data are too sparse and too nonuniformly distributed in redshift to allow for a determination
of why the samples follow different relations, but it could be caused by the high-redshift sample containing
relatively fewer intrinsically dimmer sources (Malmquist bias) or it could be a consequence of H G
evolution. Until this issue is better understood, H n1G data cosmological constraints must be treated

with caution.
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I. INTRODUCTION

Current Dbetter-established cosmological data probe
either the lower redshift Universe, at z < 2.3 [1-3], or
the Universe at z ~ 1100, [4]. Among potential cosmo-
logical probes of the intermediate redshift range are bright
H 1 starburst galaxies (H 1nG) that currently reach to
z~2.5, see, e.g., Refs. [5-21]. These galaxies, with their
prominent H 11 regions illuminated by Balmer emission
lines, obey an L — ¢ correlation between their Hf lumi-
nosity (L) and the velocity dispersion (o) of the ionized gas
within the H 1IG starburst galaxy. If valid, with time-
independent intercept and slope, this L — o relation allows
one to use observed Hp fluxes and observed ionized
gas velocity dispersions of H G galaxies to constrain
cosmological parameters.

Other similar emerging cosmological probes include
reverberation-measured Mg 11 and C 1v quasar (QSO) mea-
surements that reach to z ~ 3.4, [22-30], and gamma-ray
burst (GRB) data that reach to z ~ 8.2, [31—40].1 Both
these probes are based on correlations similar to the L — o
relation for H 1G, and we have analyzed these data by
simultaneously constraining correlation parameters and
cosmological parameters in a number of different cosmo-
logical models. This is required to avoid the circularity
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'Of which only 118 Amati-correlated (A118) GRBs, with
lower intrinsic dispersion, are suitable for cosmological
purposes, [38,41-44].
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problem, and also to determine whether or not the
correlation is independent of cosmological model and thus
standardizable [33,45]. In papers cited above, we have
determined that these QSO and GRB data have relevant
correlations that are independent of the assumed cosmo-
logical model and so these data are standardizable and
suitable for cosmological purposes.

QSO x ray and UV flux observations that reach to z ~ 7.5
have been also been studied as a potential cosmological
probe, based on a similar correlation, [46-56], however,
these QSOs are not standardizable as the correlation is
neither cosmological model independent nor redshift inde-
pendent for the latest QSO flux compilation, [51], and so
these data cannot be used for cosmology, [52,53,57-59].

All previous cosmological analyses of H G data have
assumed a fixed L — o relation with slope and intercept
parameter values assumed to be independent of cosmo-
logical model and redshift, and taken from the analyses
of Ref. [16], as discussed in more detail below in Sec. III.
In this paper we examine for the first time whether or not
H G data obey the L — ¢ relation with cosmological model
and time-independent intercept and slope. To do this we
use H 1G flux and velocity dispersion measurements to
simultaneously constrain L — ¢ relation parameters and
cosmological parameters in a number of different cosmo-
logical models. In this paper we also examine for the first
time cosmological constraints from just H 1G data—in
particular, we do not use Giant Extragalactic H 11 Regions
(GH 1R) sources that have been calibrated with primary
distance indicators—as we want to determine H 1G
data cosmological constraints that are independent of
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local calibration data. Our technique of simultaneously
constraining L — ¢ relation parameters and cosmological
parameters in a number of different cosmological models
allows us compute H 1G data alone cosmological
constraints.

In this paper we consider six flat and nonflat relativistic
dark energy cosmological models, including the standard
ACDM model and models with dynamical dark energy.
In the spatially flat ACDM model, [60], dark energy is a
cosmological constant, A, dark matter is cold dark matter
(CDM), and spatially flat hypersurfaces are considered.
While it is the simplest model and fits reasonably well with
most observations, there are some potential discrepancies,
see, e.g., Refs. [61-64]. These potential discrepancies
motivate the consideration of alternate cosmological mod-
els with spatially nonflat hypersurfaces or dynamical dark
energy. By considering a variety of cosmological models,
we can test whether H 11G data are standardizable through
the L — o relation.

We also analyze low-redshift and high-redshift subsets of
these H nG data, to determine whether or not the L — ¢
relation intercept and slope parameters are independent
of redshift, and for reasons described next. Initially, we
analyzed the entire sample of 181 H G measurements [16]
by assuming that they obey the same L — o relation, but we
found that their cosmological parameter constraints were
not consistent with those from better-established Hubble
parameter and baryon acoustic oscillation [H(z) + BAO]
data. To better understand these results, we performed
separate analyses of the 107 low-z H 1G measurements and
of the 74 high-z H 1G measurements.

Analyses of the low-z and high-z H G datasets showed
that both low-z and high-z H 11 starburst galaxies can be
standardized, but obey very different L — o relations,
contradicting the assumption used in all previous analyses
of these data. It is possible that all we have discovered is
that the high-z dataset suffers from Malmquist bias and is
missing intrinsically dimmer sources, or that H 11 starburst
galaxies evolve, but more data, more uniformly distributed
in redshift space, and especially more intrinsically dimmer
high-z sources, are needed to properly determine the cause
of the effect we have found.

The derived low-z and high-z data cosmological con-
straints are weak, and are not consistent in two of the
cosmological models we study. In the other four cosmo-
logical models we jointly analyze low-z + high-z data,
assuming independent slope and intercept parameters for
the low-z and high-z data L — o relations, and find that the
low-z 4+ high-z H G sources are also standardizable.
However, prior to using H 1nG data for cosmological
purposes, it is essential to understand the cause of the
different low-z and high-z data L — o relations.

This paper is organized as follows. In Sec. II we briefly
describe the cosmological models used in our analyses. We
introduce the datasets used in Sec. III and summarize the

analysis methodology in Sec. IV. We then present our main
results in Sec. V. Finally, we draw conclusions in Sec. VI.

II. COSMOLOGICAL MODELS

The Hubble parameter, H(z), a function of redshift z
and cosmological parameters, is fundamental to each
cosmological model we study. H(z) is defined by the
first Friedmann equation, derived from the Friedmann-
Lemaitre-Robertson-Walker metric in the framework of
general relativity.

We consider one massive and two massless neutrino
species in our models. With an effective number of
relativistic neutrino species N = 3.046 and a total neu-
trino mass » _ m, = 0.06 eV, we compute the current value
of the nonrelativistic neutrino physical energy density
parameter as Q,h> = > m,/(93.14 eV), where h is the
Hubble constant (H,) in units of 100 kms~' Mpc~!.
Consequently, the present value of the nonrelativistic
matter density parameter is Q0 = (Q,h* + Q,h* +
Q.h*)/h?, where Q,h* and Q.h* are the present values
of the baryonic and cold dark matter physical energy
density parameters, respectively. As our analysis focuses
on late-time measurements, we ignore the contribution
from photons to the cosmological energy budget.

In the current study we explore the ACDM models and
the XCDM parametrizations, which serve as an extension
to ACDM. These frameworks handle the dark energy
equation of state parameter, wpg = ppe/ppE. the ratio of
the dark energy fluid pressure and energy density, differ-
ently. The ACDM models fix wpg at —1, while the XCDM
parametrizations allow for its variability. The governing
Friedmann equation can be expressed as

H(z) :HO\/Qmo(l +2)* +Qo(142)* +Qpp (1 +2) 7%,
(1)

where €, is the present spatial curvature energy density
parameter2 and Qpg = 1 — Q,,0 — €y is the present dark
energy density parameter. In ACDM, dark energy is the
cosmological constant A, making Qpp = Q,. In XCDM,
dark energy is treated as an X-fluid, with a dynamical dark
energy equation of state parameter, making Qpg = Qxq.
In the analysis involving H 1G data, we set Hy =
70 kms~! Mpc~! and Q, = 0.05 because these parameters
cannot be constrained by H G data. Therefore, the free
cosmological parameters being constrained are {Q., 0}
for ACDM and {Q., wx, Qo } for XCDM. When analyz-
ing H(z) + BAO data, the constrained cosmological
parameters are {Hg, Q,h* Q.h* Q;} for ACDM and

2 . . .
For recent observational constraints on spatlal curvature, see
Refs. [65-80] and references therein.
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{Hy, Quh*, Q.h* wx, Qo) for XCDM. In spatially flat
models Q,, is not a free parameter and is set to 0.

In addition, we also investigate the ¢CDM models
(see,e.g., Refs. [8 1-83])’ where dark energy is a dynamical
scalar field ¢ governed by an inverse power-law potential
energy density

1
V() = 5rmid. )
Here m,, stands for the Planck mass and «a is a positive
constant; when o =0 ¢CDM reduces to ACDM. The
constant « is determined using the shooting method in
the Cosmic Linear Anisotropy Solving System (CLASS)
code, [99]. The Friedmann equation is

H(2)=Hoy/Quo(1+2) +Q(1 42 +Qy(c.a).  (3)

where the scalar field dynamical dark energy density
parameter

Q) = [Lgr + v<¢>] @)

1
6H. |2
is computed by numerically solving the Friedmann equa-
tion (3) and the equation of motion of the scalar field

$+3Hd+V'(¢) =0. (5)

In these equations, an overdot and a prime denote deriv-
atives with respect to time and ¢, respectively. For H G
data, the free cosmological parameters being constrained
are {Q.,a,Q}, while for H(z) + BAO data, the con-
strained cosmological parameters are {H, Q,h?, Q.h?, a,
Qko}, with QkO = 0 in flat ¢CDM

III. DATA

In this paper we test whether H G data obey the
L — o correlation in a model- and redshift-independent
manner, by simultaneously constraining the L — ¢ corre-
lation parameters and cosmological parameters for both
low- and high-redshift H 1G data. These H G data, as well
as H(z) + BAO data used for comparison purposes, are
summarized below.

(i) H uG data. We use 181 H 1G measurements listed
in Table A3 of Ref. [16], with 107 low-z ones
from Ref. [12] recalibrated in Ref. [15], spanning
the redshift range 0.0088 <z <0.16417, and 74
high-z ones spanning the redshift range 0.63427 <
7 <2.545. (In what follows we refer to these data-
sets as low-z and high-z data.) It is believed
that these sources follow the L —o correlation
represented by the equation logL = flogo + v,

3For recent cosmological constraints on the ¢CDM models,
see Refs. [84-98] and references therein.

where log =log;g, and L and ¢ are in units of
erg s~! and km s™!, respectively.’ In Ref. [15], 107
low-z H 1G and 36 GH nR data are used to
determine the L — o relation slope and intercept
parameters,  and y, which are found to be 5.022 +
0.058 and 33.268 £ 0.083, respectively. To infer
distances to the GH 11R sources, the authors relied on
primary indicators such as Cepheids, TRGB, and
theoretical model calibrations, [101]. In Ref. [16],
the authors also simultaneously constrained the
cosmological parameters and L —o correlation
parameters, but with different data (including 36
GH 1R sources) and likelihood function (without
intrinsic scatter and Gaussian likelihood coefficient).
In order to test the correlation, here we consider /3
and y as free parameters to be simultaneously
constrained with the cosmological parameters. The
observed distance modulus of an H 1nG can be
computed as pps = 2.5log L —2.5log f — 100.2,
where f(z) is the measured flux in units of
erg s~ cm™? at redshift z corrected for extinction
using the Gordon, [102], extinction law and L is
obtained from the L — o correlation. The theoretical
distance modulus in a given cosmological model
is uy(z) = 5log Dy (z) + 25, where D;(z) is the
luminosity distance

<) Ginh (Y2 b (2)] if @40 > 0,

e
D;(z) =14 (1+2)D¢(z) if Q =0,
&%@sm[ \/'71) c(2)] if Q4 <0,
(6)
where D¢(z) is the comoving distance
2 d7
Delz)=c | Wi) (7)

and c is the speed of light.

(i) H(z) + BAO data. Here we use 32H(z) and 12 BAO
measurements listed in Tables 1 and 2 of Ref. [103],
spanning the redshift ranges 0.07 < z < 1.965 and
0.122 < 7 <£2.334, respectively.

IV. DATA ANALYSIS METHODOLOGY
The natural log of the H G data likelihood function is

| N
In Ly = ) |:)(%IHG + Zln (Zﬂetzot,i)] ; (8)
i1

*We do not consider three-parameter generalizations of this
L — o relation [11,12,100].
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TABLE 1. Flat priors of the constrained parameters.

Parameter Prior

Cosmological Parameters

Hy* [None, None]
Q,h*° [0, 1]
Q.h? ¢ [0, 1]
Qo [-2, 2]

a [0, 10]
wx [-5, 0.33]

L — o Correlation Parameters

3 [-5, 15]

4 [20, 60]
Cint [0, 5]

*kms~! Mpc~!. In the H uG cases, Hy, = 70 kms~! Mpc~'.
°In the H nG cases, ;, = 0.05.
“In the H uG cases, Q,,y € [0, 1] is ensured.

where

e = i [(ﬂobs,i 2— ﬂth,i)z] (9)

i—1 €tot,i
with total uncertainty

2 _ 2 2
etot,i = Oint + eﬂobs.;

+ €l241h,[ ’ ( 10)

where o, is the intrinsic scatter parameter for H 1G data,
which also accounts for unknown systematic uncertainties.
In the cases of low-z and high-z data, we denote f and y,
and o;,, by adding subscripts of low and high, respectively.
In this study, we compute the likelihoods associated with
H(z) and BAO data by following the methods of Ref. [103].
The parameters we constrain, which are subject to flat
priors, are presented in Table I. We apply the MontePython
Markov chain Monte Carlo code, [104,105], to perform
likelihood analysis, targeting both cosmological and L — ¢
correlation parameters. For subsequent statistical analysis
and visualization, we make use of the GetDist PYTHON
package, [106]. For definitions and details of Information
Criteria (IC) like AIC, BIC, and DIC, we refer readers to
our previous work (see, e.g., Ref. [43]). We assess model
performance using AIC comparing each alternate dark
energy model against the flat ACDM baseline. A AIC
value, whether positive or negative, signifies how well
(worse or better) the model aligns with the dataset relative
to this baseline. In evaluating the models, we categorize the
strength of evidence against them based on AIC values
relative to the model with the minimum IC: weak (0, 2],
positive (2, 6], strong (6, 10], and very strong >10.

V. RESULTS

In Fig. 1 we present all-parameter triangle plots for all
models; the corresponding only cosmological parameter

triangle plots are in Fig. 2. These are for H G low-z, high-
z, low-z + high-z (not in Fig. 2), and H(z) + BAO data.

We list unmarginalized best-fitting parameter values in
Table II, along with corresponding maximum likelihood
L AIC, BIC, DIC, AAIC, ABIC, and ADIC values,
for all models and datasets. In Table III we list the one
dimensional marginalized posterior mean parameter values
and their uncertainties (£ 10 error bars and 1 or 20 limits)
for all models and datasets.

Table IV lists the largest differences between L —o
relation (and oy, ) parameter values measured in the differ-
ent cosmological models, for H nG low-z, high-z, and
low-z + high-z data. Table V lists the differences in the
L — o intercept and slope parameters between low-z and
high-z H 1G data, for all six cosmological models.

From the small Ap and Ay values for H G low-z and
H 1G high-z data in Table IV we conclude that both low-z
H 11G and high-z H G data are standardizable candles.

Panels (b) and (d) of Fig. 2, for the nonflat ACDM and
nonflat XCDM models, show that low-z and high-z H nG
data favor different regions of cosmological parameter
space, with significant amount of 26 contours not over-
lapping. This is consistent with the different Q,,, €40,
and wy (for nonflat XCDM) low-z and high-z H nG data
limits in Table III for these two models. Assuming that the
low-z and high-z H 1G datasets are correct, this incon-
sistency between low-z and high-z data constraints means
that these data rule out the nonflat ACDM and nonflat
XCDM models.

Parenthetically we note that excluding the nonflat
ACDM and nonflat XCDM models, the largest differences
between L — o relation parameter values measured in the
remaining four different cosmological models are Apf,,, =
0.038¢ and Ay, = 0.037¢ for H uG low-z data and
Appigh = 0.0866 and Ay, = 0.1216 for high-z data.
These are significantly smaller than the corresponding
six cosmological model values listed in Table IV, indicating
that in models where the low-z and high-z cosmological
constraints are not mutually inconsistent both low-z H nG
and high-z H 11G data are good standardizable candles.

More significantly, when we compare the differences
in the L — ¢ intercept and slope parameters between low-z
and high-z H 1G data in each of the six cosmological
models, we find significant differences at the ~4-5¢ level,
as shown in Table V.

Supporting these results, in Fig. 3 we display the L — o
relations determined in each of the six cosmological models
for both low-z and high-z H G data, as well as the data
points. The data point D; values are computed using the
posterior mean or best-fitting (for the nonflat XCDM
parametrization due to instability around the mean) cos-
mological parameter values from Table IIl or II. The L — ¢
relations are derived from Monte Carlo simulations
constructed using the posterior mean values of the slope
and intercept parameters listed in Table III along with
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(e) Flat ¢CDM

FIG. 1.

(f) Nonflat ¢CDM

One-dimensional likelihoods and 1o, 20, and 3¢ two-dimensional likelihood confidence contours from H nG low-z (gray),

H 1G high-z (green), H G low-z + high-z (blue), and H(z) + BAO (red) data for six different models, with ACDM, XCDM, and
¢CDM in the top, middle, and bottom rows, and flat (nonflat) models in the left (right) column. The black dashed zero-acceleration
lines, computed for the third cosmological parameter set to the H(z) + BAO data best-fitting values listed in Table II in panels (d) and
(f), divide the parameter space into regions associated with currently-accelerating (below or below left) and currently-decelerating
(above or above right) cosmological expansion. The crimson dash-dot lines represent flat hypersurfaces, with closed spatial

—1, i.e. flat or nonflat ACDM models. The o =0

hypersurfaces either below or to the left. The magenta lines represent wy =
axes correspond to flat and nonflat ACDM models in panels (e) and (f), respectively.
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FIG. 2. Same as Fig. 1, but excluding H G low-z + high-z data results, and for cosmological parameters only.

their corresponding covariance matrices. While, for each of
the two datasets, each model has different L — o relation
and data predictions, the high-z data results appear to
exhibit more variability between models, and, for the

reason mentioned above, the high-z L — o relation (red
line and bands) for the nonflat XCDM parametrization does
not align well with their (green) data points. In contrast,
the (black) low-z data points seem less variable between
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TABLE IV. The largest differences between models from H 11G data, where 16 means the quadrature sum of the

two corresponding 1o error bars.

Dataset Aﬁlow Aylow AO-intA,l()w A;Bhigh AJ/high AO-int,high
H 1G low-z 0.860 0.65¢ 0.500 - e e

H 1uG high-z e EE e 1.210 1.37¢ 1.030
H nG low-z + high-z 041c 0.330 0.25¢ 1.19¢ 1.39¢ 1.07¢

models and seem to align well with their (blue) L — o
relation.

The significantly different low-z data L — ¢ relations
(blue lines and bands) and high-z data L — o relations
(red lines and bands) in each panel of Fig. 3 support the
numerical results of Table V that show significant
differences at the ~4-5¢ level in the L — o intercept
and slope parameters between low-z and high-z H 1G
data. This means that it is incorrect to assume that low-z
and high-z H 1G data obey the same L — o relations when
jointly analyzing low-z + high-z data, as has been assumed
in all previous analyses of these data. However, since the
results of Table IV indicate that both low-z H nG and high-z
H 1G data are standardizable candles, it is still possible to
jointly analyze low-z and high-z data but it is necessary to
use different f, y, and o;,; parameters for low-z and high-z
data, and this is what we do in our joint low-z + high-z data
analyses. However, this doubles the number of nuisance
parameters and so reduces the effectiveness of H nG data
(as far as cosmology is concerned). On the other hand, if the
difference between the low-z and high-z L — o relations is
real, then we have discovered something new, and possibly
interesting, about H 1Gs.

From the small Ap and Ay values from the six cosmo-
logical models joint H 11G low-z + high-z data analyses in
the last line of Table IV we conclude that low-z + high-z
data are standardizable candles. Excluding the nonflat
ACDM and nonflat XCDM models, the largest differences
between L — o relation parameter values measured in
the remaining four different cosmological models joint
H 1uG low-z + high-z data analyses are Af,, = 0.0450,
A}/low = 00380, Aﬂhigh = 00730', and Ayhigh =0.0216.
These are significantly smaller than the corresponding six

TABLE V. Low-z and high-z H n1G data L — ¢ correlation
parameters differences, where 1o means the quadrature sum of
the two corresponding 1o error bars.

Model Ap Ay

Flat ACDM 42106 —4210
Nonflat ACDM 5.80c -597¢
Flat XCDM 4.160 —4.18¢
Nonflat XCDM 5.08¢ -5.25¢6
Flat pCDM 4.300 4216

Nonflat CDM 431c —4.240

cosmological model values listed Table IV, indicating
that in models where the low-z and high-z cosmological
constraints are not mutually inconsistent joint low-z +
high-z H G data are good standardizable candles.

Regarding cosmological constraints, even though the
inconsistency between the low-z and high-z cosmological
constraints rule out the nonflat ACDM model and the noflat
XCDM parametrization, we note that for individual low-z
and high-z H 11G samples, the nonflat ACDM and nonflat
XCDM Q,,0—€2;( constraints also exhibit tensions of >2¢
with H(z) + BAO Q,,—Q;( constraints.

In flat ACDM, although individual H G low-z and high-
z dataresult in Q,,; 26 constraints of > 0.177 and > 0.310,
respectively, consistent with H(z) +BAO (0.29770013),
the joint low-z + high-z data yield constraints of > 0.446
(20), which is inconsistent with H(z) + BAO which favor
lower Q,,, values.

In flat XCDM, H 1G low-z, high-z, and low-z + high-z
data provide Q,,, 20 constraints of > 0.128, > 0.182,
and > 0.160, respectively, consistent with H(z) + BAO
(0.285 +0.019). Weak wyx constraints are also
obtained, with values of —1.4427%9! 247713212 and
—1.4911, 857, respectively, with  H(z) +
BAO (=0.77675-39).

In flat CDM, H 1G low-z, high-z, and low-z + high-z
data yield Q,, constraints of > 0.480 (1o), > 0.243 (20),
and > 0.317 (20), respectively, consistent with H(z) +
BAO (0.272f8‘8§§ ). Weak alo constraints are also obtained,
with values of > 3.833, none, and > 3.863, respectively,
consistent (at the 26 level) with H(z) + BAO (1.2717039).

In nonflat CDM, H 1G low-z, high-z, and low-z +
high-z data yield Q,,; constraints of > 0.430 (1¢), > 0.337
(20), and > 0.422 (20), respectively. The last two are
inconsistent with H(z) +BAO (0.275 £ 0.025). Only H uG

low-z data provide weak alc constraints of 5.4027}3/¢,

consistent (at the 26 level) with H(z) + BAO (1.42770373).
Slightly improved Q,, constraints are also obtained, with
values of —0.02710395, —0.331703%), and —0.38570773,
respectively, consistent (at the 1o level) with H(z) + BAO
(—=0.05270:%83), and indicating a mild preference for closed
hypersurfaces.

Figure 4 shows the cosmological parameter contours
from joint low-z 4+ high-z H G data and from joint
H(z) + BAO data. In the four cosmological models
with not inconsistent low-z and high-z H nG data

consistent
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(f) Nonflat 9CDM

FIG. 3. log L(Hp)-1log o relations for six different models, with ACDM, XCDM, and ¢)CDM in the top, middle, and bottom rows,
and flat (nonflat) models in the left (right) column. Here data point D; values are computed using the corresponding posterior mean
or best-fitting (for the nonflat XCDM parametrization due to instability around the mean) values listed in Tables III or II and the
log L(Hf3)-log o relations are derived from Monte Carlo simulations with given posterior mean values and covariance matrices of the

intercept and slope parameters.

cosmological contours, joint low-z 4+ high-z H nG data
contours, unlike joint H(z) + BAO data contours, tend to
favor currently decelerating cosmological expansion. Flat
XCDM is the only case where joint low-z + high-z

cosmological constraints and H(z) + BAO cosmological
constraints are consistent enough to warrant a joint low-z +
high-z + H(z) + BAO data analysis. We do not do this
here as we feel it is important to first more carefully
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FIG. 4. Same as Fig. 1, but excluding low-z and high-z H nG contours, and for cosmological parameters only.

examine the difference between the low-z and high-z
L — o relations.

We note in passing that the large o;, = 0.6-0.7
values in Table III indicate that current H nG data are

not that constraining, as we have seen. For comparison,
reverberation measured quasars have o;, = 0.24-0.31,
[25-28,30,58], while gamma-ray bursts have o, =
0.35-0.42, [33,38,42,43].
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When considering the AIC, BIC, and DIC values, it
becomes evident that nonflat ACDM and nonflat XCDM,
although ruled out, emerge as the most preferred models.
This observation raises questions about the ability of these
criteria to effectively distinguish between observationally
viable and unviable models.

After excluding these two models, the AIC indicates that
in the H 11G low-z, high-z, and low-z + high-z cases, flat
ACDM, nonflat ¢CDM, and flat XCDM are the most
favored models, respectively. The evidence against other
models is either weak or positive according to this criterion.
Conversely, the BIC strongly favors flat ACDM as the top
model, with the evidence against other models ranging
from positive to strong.

When relying on the relatively more reliable DIC, flat
¢CDM emerges as the most favored model, while the
evidence against other models remains weak or positive.

VI. CONCLUSION

In our previous works that used H 11G data to constrain
cosmological parameters, [17-19,42,103,107], we fol-
lowed the procedure of Refs. [15,16] where the H nG
L — o intercept and slope parameters were determined
by 107 low-z H 1G and 36 GH 1R data. To infer distances
to the GH 1R sources, the authors relied on primary
indicators such as Cepheids, TRGB, and theoretical
model calibrations, [101]. Although in Ref. [16], the
authors also simultaneously constrained the cosmological
parameters and L — o correlation parameters using y?
technique. Here we explore whether the apparent magni-
tude measurements of 181 H 11 starburst galaxies conform
to the L — o relation by simultaneously constraining the

L — o relation and cosmological parameters. Our simul-
taneous constraining approach allows us to not only
determine, for the first time, whether these H G data
obey the L — o relation, but also, for the first time,
to determine H 11G data cosmological constraints that
are independent of other datasets. However, as we are also
simultaneously constraining the L — ¢ relation parame-
ters, our approach offers no constraining power on
cosmological parameters ©,4> and HO.S

Our analysis shows that the 107 low-z and 74 high-z
H 1G sources obey very different L — o relations.®” Both
however are standardizable candles. The low-z and high-z
cosmological constraints are mutually inconsistent in the
nonflat ACDM and nonflat XCDM models; they are
however consistent in the other four cosmological models
and so in these four models it is possible to do a joint
analysis of low-z + high-z H nG data. However, the joint
low-z 4+ high-z H nG data and joint (better-established)
H(z) + BAO data cosmological constraints are not incon-
sistent in only the flat XCDM parametrization.

Given our results, we believe that prior to using H uG
data for cosmological purposes it is necessary to more
carefully examine and understand the difference we have
discovered between the (currently available) low-z and
high-z H G data L — o relations.
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*When also varying ©,h* and H, we found that the resulting H G data cosmological constraints are largely not physical. For
example, in the flat ACDM model the derived Q,,, can spread up to ~20 with H peaked very low, ~0. We hence decided to set
Q, =0.05 and Hy, = 70 kms~! Mpc™' in our analyses here. This differs from the choice made in Refs. [15,16] using a likelihood
function that is marginalized over H,. We emphasize that we treat f and y as two additional (compared to the cosmological) free
parameters to be determined from the dataset being used in the analysis. We also emphasize that the conclusions are not sensitive to a
reasonably chosen H|, prior value.

SThis could be the consequence of H 11G starburst galaxy evolution, but we cannot tell from these data whether this is the case, and if it
is the case whether the evolution is a somewhat continuous function of redshift. This is because the low-z sample spans a small redshift
range, 0.0088 < 7 < 0.16417, that is very distinct from the redshift range of the 74 high-z sources, 0.63427 < 7 < 2.545, and there are
too few high-z sources to study evolution in the high-z range. More H G data in the intermediate and high redshift ranges will allow for
a test of H 11G starburst galaxy evolution, and if continual (in z) evolution is found to be responsible for the different low-z and high-z
L — o relations this will likely make it impossible to cosmologically use H G data.

"There could be other explanations (besides H 1G evolution) of the effect we found. We thank the referee for noting that the high-z
sample suffers from Malmquist bias and suggesting that this could be significant enough to also be a contributing cause. (Figure 3
suggests that Malmquist bias is significant, with the black low-z data points reaching to significantly lower absolute luminosities than do
the green high-z data points; note that at the higher absolute luminosity end there is much less difference between the high-z and
low-z data points.) To superficially study the significance of this known Malmquist bias we computed absolute luminosities of the H nG
sources in a flat ACDM model with Q,,, = 0.29 and then compared a truncated low-z sample of just 57 (of 107) sources whose absolute
luminosity range was restricted to match that of the high-z sample (by discarding 50 intrinsically dimmer low-z sources) and found that
the L — o relation of the truncated low-z sample was consistent, within the error bars, with that of the high-z sample. While this is
consistent with Malmquist bias of the high-z sample being a significant contributor to the cause of the effect we have found, this is not
definitive and certainly an analysis of the effect based on the assumption of a specific cosmological model cannot be used to correctly
study this. Ideally it is much more desirable to correct for Malmquist bias instead of discarding a significant fraction of low-z data to deal
with this problem with current H uG data.
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