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We demonstrate that pairwise peculiar velocity correlations for galaxy clusters can be directly
reconstructed from the kinematic Sunyaev-Zel’dovich (kSZ) signature imprinted in the cosmic microwave
background (CMB) using a machine learning model with a gradient boosting algorithm trained on high-
fidelity kSZ simulations. The machine learning model is trained using six to seven cluster features that are
directly related to observables from CMB and large-scale structure surveys. We validate the capabilities of
the approach in light of the presence of primary CMB, detector noise, and potential uncertainties in the
cluster mass estimate and cluster center location. The pairwise velocity statistics extracted using the
techniques developed here have the potential to elicit valuable cosmological constraints on dark energy,
modified gravity models, and massive neutrinos with kSZ measurements from upcoming CMB surveys,
including the Simons Observatory, CMB-S4 and CCAT, and the DESI and SDSS galaxy surveys.

DOI: 10.1103/PhysRevD.109.123525

I. INTRODUCTION

The origin of accelerated cosmic expansion remains a
critical outstanding problem in physics. Measurements of
the cosmic microwave background (CMB) radiation [1–8],
baryon acoustic oscillations (BAO) (e.g. [9–14]), and type
1a supernovae (e.g. [15–18]) together provide exquisite
constraints on the expansion history of the Universe.
This expansion history is consistent with the standard
cosmological model, which assumes general relativity
(GR) and a cosmological constant, Λ, the simplest form
of dark energy, as the component of the cosmic matter
density proposed to explain the accelerated expansion of
the Universe (e.g. [19–22]). Given the fine-tuning and
coincidence problems [23–31] related to the discordance
between the observed value of Λ and those naturally
predicted from theory, modifications of gravity, beyond
GR, have also been actively considered as alternative
explanations for the accelerated expansion (e.g. see
Ref. [32] for a review). Such modifications can be
developed to match a ΛCDM expansion history but
concurrently predict differences in the growth and dynami-
cal properties of inhomogeneities, probed through the
clustering and dynamical properties of large-scale structure
(LSS), galaxies, and clusters of galaxies (e.g. [32–38]).
In the context of this paper, we focus on the use of the

dynamics of galaxy clusters as a cosmological tracer of
the underlying gravitational field. Galaxy clusters can be
detected observationally through unique signatures left in
CMB photons when they interact with the hot gas of a
galaxy cluster, the Sunyaev-Zel’dovich (SZ) effect. The SZ
effect occurs when CMB photons interact with electrons in

galaxy clusters and can be separated into two principle
components: the thermal Sunyaev-Zel’dovich (tSZ) effect
and the kinematic Sunyaev-Zel’dovich effect (kSZ)
[39–41] (and see reviews [42,43]). The tSZ is caused by
the hot electrons with random velocities boosting the
blackbody spectrum imprinting a characteristic fre-
quency-dependent signature that facilitates its isolation
from the CMB through multifrequency measurements.
The kSZ is produced by the peculiar (bulk) line of sight
motion of a galaxy cluster creating a Doppler shift of the
CMB spectrum, and is one order of magnitude smaller than
the tSZ effect and largely frequency independent making it
harder to extract.
The kSZ signature is an observational tracer of the

underlying peculiar velocities of clusters and, in turn, the
gravitational potential [44–47]. The gravitational attraction
between pairs of clusters creates inherent infall toward each
other. This gravitational attraction leads to a pairwise
correlation statistic that can provide a potentially sensitive
measurement of the large-scale velocity field [48–51].
Despite the comparative challenges in kSZ versus tSZ

detection, the prospect of extracting the peculiar velocities
of galaxy clusters from the kSZ effect is actively inves-
tigated as it offers a potentially powerful technique for
cosmological inference (e.g. [52–59]) and complementary
constraints on the properties of gravity on cosmic scales
and the neutrino mass sum to those from galaxy lensing and
clustering measurements [60–63].
The pairwise cluster momentum has been a principal

estimator used to extract out the kSZ signal. The mean
pairwise cluster momentum estimator was first detected
from the kSZ signal in [64] with the Atacama Cosmology
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Telescope (ACT) CMB observations [65] and the LSS
surveys of Sloan Digital Sky Survey (SDSS) [66,67].
Measurements from subsequent ACT and SDSS data
releases, covering a greater survey area and expanded
catalogs, have also been made [68,69]. The kSZ signal
has also been detected using the same estimator, by the
Planck Collaboration with SDSS [70] and the South Pole
Telescope (SPT) Collaboration [71] using a cluster catalog
from the Dark Energy Survey (DES) [72,73].
The kSZ signal can also be utilized with techniques

other than pairwise momentum, including projected
fields [74–78], velocity reconstruction [79–82], kSZ tomo-
graphy [83,84], individual cluster measurement [85,86],
CMB temperature dispersion [59], 21 cm intensity map-
ping [87], signatures from CMB anisotropies [88], and
Fourier space analysis [89].
Typically, the extraction of pairwise velocity statistics is

undertaken by combining the pairwise kSZ momentum
estimators with observational estimation of the optical depths
for the same cluster sample. This requires a clear under-
standing of how the kSZ signal and optical depth measure-
ments are related in terms of their respective sampling of the
cluster properties [90,91]. Optical depth estimates can be
obtained using one or more observables such as the tSZ
effect and x-ray observations; however, the optical depth
estimation presents challenges in introducing additional
uncertainties and potential biases [69,73,86,92–95].
In this work, we demonstrate the efficacy of an alter-

native approach focused on extracting cluster velocity
information from the kSZ measurements directly, using a
machine learning technique. These velocity estimates are
then used to infer the pairwise velocity, rather than
calculating it from separate measurements of the pairwise
momentum and optical depth.
Machine learning, a subfield of artificial intelligence and

computer science, is a powerful tool that uses statistical
techniques to efficiently analyze and identify patterns in
massive and complex datasets to acquire knowledge that
may be computationally intractable using other approaches.
With the growth in complexity and volume of astro-
nomical data, machine learning methods have been used
for a range of applications, including cluster mass estima-
tion [96–105], cluster scaling relations [106–109], simu-
lation and maps [110–113], cosmological parameter
constraint and estimation [114–118], cosmic structure
formation [119–122], reconstruction of the cosmological
density and velocity fields [123–126], strong gravitational
lensing [127–130], and weak gravitational lensing [131–137],
amongst others (e.g. see Refs. [138–141]). Algorithms are
normally designed without specific programming of phys-
ics, hence, machine learning provides an alternative data-
driven method to the physics model-driven analysis
paradigm.
Deep learning techniques have been used to recover

galaxy cluster peculiar velocities [81,142] using 2D SZ

images and 3D galaxy distributions respectively with a
neural network. In this work, we use an alternative machine
learning technique, the gradient boosting algorithm that has
successfully been applied to other areas of astronomy
([143–146]), to reconstruct the pairwise peculiar velocity
using 1D features that are commonly distilled from
observations for use in kSZ analyses. This includes the
disk kSZ temperatures, redshifts, and halo mass estimates.
We test the capability of the model under conditions
including realistic primordial CMB and detector noise for
upcoming CMB observations as well as the impact of some
key potential systematic effects. We train our machine
learning algorithm on one kSZ simulation and apply it to
test samples from two simulation datasets that consider
similar astrophysical effects and cosmological models.
Both datasets provide us with complete halo information
including the redshift, mass, peculiar line-of-sight velocity,
kSZ temperatures, and other key properties. This informa-
tion allows us to efficiently train our model to reconstruct
an unbiased cluster’s peculiar velocity.
The following is a summary of the paper’s outline: The

theory for the kSZ signal extraction techniques and pair-
wise estimator is introduced in Sec. II, along with a
description of the kSZ simulation datasets and halo catalogs
that we used in this work. In Sec. III, we describe our
feature engineering process, the structure of our machine
learning model, and covariance estimates. In Sec. IV, we
present the findings, including the sensitivity to various
modeling assumptions and to systematic errors that might
arise from cluster center mislocation and scattering in the
cluster mass estimation. We cross-validate the model by
training on one set of simulations and inferring the velocities
from completely distinct kSZ and halo simulations. In
Sec. V, we conclude with a summary of the approach, the
key findings, and implications for future study.

II. BACKGROUND

The primary goal is to recover an estimate of the pairwise
peculiar velocity correlations for a cosmological galaxy
cluster sample using the information from galaxy surveys
and kSZ temperatures measured from CMB observations.
In Sec. II A, we discuss the simulated galaxy and CMB
datasets used in this work. In Sec. II B, we describe the kSZ
signal extraction techniques, and the pairwise statistical
estimator is described in Sec. II C.

A. Datasets

In this work, we use the simulated kSZ maps from [147]1

(the Flender simulation) to train and test our machine
learning model. The kSZ maps were generated to represent
the signal expected from the passage through dark matter
large-scale structures in a single realization from the Mira

1https://www.hep.anl.gov/cosmology/ksz.html.
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Universe simulation suite [148] using the HACC
(Hardware/Hybrid Accelerated Cosmology Code N-body
simulation) framework [149]. The simulation adopts
WMAP7 cosmological parameters [150] and is simulated
with 32003 particles in a ð2.1 GpcÞ3 volume and a mass
resolution of 1010M⊙. A friends-of-friends algorithm is
used to identify dark matter halos. The simulation provides
a full-sky halo catalog spanning redshifts 0 < z < 1 and
masses 1010M⊙ < M < 3 × 1015M⊙.
The kSZ signal is simulated under three different models

of the intracluster gas: Model 1 assumes baryons trace the
dark matter at all scales (i.e. gas traces mass) and includes
the diffuse (nonhalo) component. Model 2 follows an
intracluster gas prescription from [91] and ignores the
diffuse kSZ component. Model 3 (herein FL3) is a
combination of Model 2 and the diffuse kSZ components
from Model 1. As Model 3 is the most realistic kSZ model,
it is the principal kSZ signal used in this work. The Flender
kSZ maps are simulated at a resolution of 0.43′ which is
comparable to the recent CMB experiments such as the
ACT data [151].
We also consider a second simulated kSZ map from

[152]2 (the Websky simulation) to cross-validate the model
that is trained on the Flender simulation. The kSZ maps in
this case were generated from a lightcone realization of
N-body with 61443 particles in a ð7.7 GpcÞ3 volume that
covers redshift 0 < z < 4.6 over the full sky. The astro-
physical effects and cosmological model considered in
Websky are very similar to the Flender simulation such as
star formation, feedback, and nonthermal pressure simu-
lated using parametric models informed by hydrodynam-
ical simulations. A primary distinction between the two
simulations is that the resolution of the Websky simulation,
0.87′, is lower than the Flender simulation.
We also test the feasibility of our model to anticipate

CMB observations by simulating the detector noise and
primordial CMB. We run CAMB [153] to generate the
angular power spectrum of the primary CMB anisotropies
with best-fit Planck cosmological parameters for a zero-
curvature universe [154]. The instrument noise is simulated
in accordance with the upcoming observation from Simons
Observatory (SO) [155] at 145 GHz. Specifically, we simu-
late the instrument noise as white noise at a 6.3 μK-arcmin
noise level. A Gaussian beam (FWHM ¼ 1.4 arcmin) is
also considered in accordance with the SO instrument beam
at 145 GHz.

B. kSZ effect and signal extraction

The CMB temperature change resulting from the kSZ
effect is given by

δTkSZ

T0

¼ −
Z
los

σTne
vlos
c

dl; ð1Þ

where σT is the Thomson cross section, ne is the electron
number density, c is the speed of light, vlos is the line-of-
sight peculiar velocity, and T0 ¼ 2.726 K is the average
CMB temperature.

1. Aperture photometry

Aperture photometry is a filtering method that measures
an average disk temperature by averaging the temperatures
within the central disk and subtracting the average temper-
ature in a surrounding ring annulus of equal area to mitigate
potential background contamination. For a disk located at
position n̂, the aperture photometry temperature can be
written as

TAPðn̂; θAPÞ ¼ Tdiskðn̂; θAPÞ − Tringðn̂; θAPÞ; ð2Þ

where angular radius θAP is the filter scale. Note that a
correction factor that takes into consideration the kSZ
signal in the annulus being subtracted is necessary for
aperture photometry to relate TAP to the disk kSZ temper-
ature [95].

2. Matched filter

Given a predefined template profile embedded under a
noisy signal, a matched filter can be constructed to detect
the presence of the template profile with minimum vari-
ance. For the kSZ signal template, we use the projected
Navarro-Frenk-White (NFW) profile [156] τ which is
written as

τðxÞ ¼ A
x2 − 1

8>>><
>>>:

1 − 2ffiffiffiffiffiffiffiffi
1−x2

p tanh−1
ffiffiffiffiffiffi
1−x
xþ1

q
0 < x < 1

0 x ¼ 1

1 − 2ffiffiffiffiffiffiffiffi
x2−1

p tan−1
ffiffiffiffiffiffi
x−1
xþ1

q
x > 1;

ð3Þ

where x ¼ θ=θs, and θs is the scale angle. In Fourier space,
the matched filter can be written as

ΨðkÞ ¼ σ2
τðkÞBðkÞ
PðkÞ ; ð4Þ

where τðkÞ is the signal template profile in Fourier space,
BðkÞ is the instrument beam, and σ2 denotes the filter
variance that

σ2 ¼
�Z jτðkÞBðkÞj2

PðkÞ
d2k
ð2πÞ2

�−1
; ð5Þ

where PðkÞ is the noise power spectrum.
We implement the matched filter in Fourier space by

filtering a postage cutout centered at the cluster, and the
2https://mocks.cita.utoronto.ca/index.php/WebSky_Extragalactic_

CMB_Mocks.
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matched filtered temperature, TMFðn̂; θsÞ, is measured from
the filtered cutout.
Matched filters are commonly used to determine the

central peak amplitude; however in this work, we imple-
ment the matched filter differently. Following [95], a
matching filter, as opposed to aperture photometry, can
directly extract an unbiased disk kSZ temperature using a
carefully calibrated NFW signal template profile para-
metrized solely with the scale radius θs. Specifically, the
matched filter is built in a way similar to minimizing
the mean sum of squares (MSS) between the difference
of the matched filtered amplitude and the true amplitude of
the kSZ radial profile at each position r within a certain
angular scale θ, denoted as

MSS ¼ 1

N

Xr¼θ0

r¼00
ðTr − TMF;rÞ2; ð6Þ

where Tr is the signal amplitude at r. This is done by tuning
the filter’s signal temple profile τ through θs. In this work,
θs is set by selecting a subsample of 20,000 halos from the
sample at random and searching for the value of θs that
minimizes the difference of the average disk temperature
between the true and matched filtered estimate for this
subsample.

C. Pairwise estimator

The pairwise velocity of clusters given each of their line
of sight peculiar velocity vi, is given by [50]

V̂ðrÞ ¼ −
P

ijðvi − vjÞcijP
ijc

2
ij

; ð7Þ

where the sum is over all cluster pairs with separation rij ¼
jri − rjj that fall in a radial bin centered around distance r.
cij is the geometric weight projected along the line of sight
given by

cij ¼ r̂ij
˙r̂i − r̂j
2

¼ ðri − rjÞð1þ cos θÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ r2j − 2rirj cos θ

q ; ð8Þ

where ri, rj are the comoving distance, and θ is the angle
between vectors ri and rj.
Replacing the velocity with the kSZ temperature of each

cluster gives the pairwise kSZ momentums estimator and is
written as [64]

p̂ðri; ziÞ ¼ −
P

ijðδTi − δTjÞcijP
ijc

2
ij

; ð9Þ

where

δTiðn̂i; ziÞ ¼ Tðn̂iÞ − T̄ðn̂i; zi; σzÞ: ð10Þ

Tðn̂iÞ is the kSZ signal, that can be Tdisk, TAP, or TMF. The
subtraction of T̄ðn̂i; zi; σzÞ given by

T̄ðn̂i; zi; σzÞ ¼
P

jTðn̂iÞwðzi; zj; σzÞP
jwðzi; zj; σzÞ

ð11Þ

mitigates a potential redshift-dependent systematic that
could contaminate the pairwise signal where

wðzi; zj; σzÞ ¼ exp

�
−
ðzi − zjÞ2

2σ2z

�
; ð12Þ

with σz ¼ 0.01, following [157].
We measure the pairwise signal in 15 comoving pair

separation bins of equal width between 0 and 150 Mpc, and
four additional bin edges on 200, 250, 315, and 395 Mpc
in accordance with [69]. The covariance of the pairwise
signal is estimated with the bootstrap resampling analysis
during which we randomly replace the peculiar velocities
(or temperature decrements), v (or δT), of galaxy posi-
tions with replacement. We then estimate the covariance
matrix, Cij, by repeating this process 1000 times and then
calculating the covariance of the list of pairwise momentum
estimators calculated from each of the new samples.

III. FEATURE ENGINEERING
AND LEARNING MODEL

In this section, we present the machine learning model
used to recover the pairwise peculiar velocity. Machine
learning, or statistical learning, is a field of study that
utilizes a large amount of data for the computer to learn and
understand the inherent patterns and interconnections in
data and thereby make predictions and inferences without
knowledge of the underlying physical laws or processes.
The inputs that machine learning models utilize for training
and inference to make predictions are known as model
features. Model features are important as the accuracy of a
machine learning model depends on the precise selection
and composition of the features. The process of extraction
and transformation of the features from raw data is called
feature engineering. The motivation of feature engineering
is to use these features to enhance the quality of the
inference results as opposed to simply providing raw data
to the machine learning algorithm.
One central goal of predictive modeling is to build a

model that can make accurate predictions on new data that
the model has never seen. In machine learning, data leakage
refers to the situation when the model training process uses
information that would not be expected to be available at
the time of prediction. This happens when the model
includes information on test data in the training process,
and as a result, it achieves high performance while testing
but might perform poorly for unseen data.
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In this work, we use machine learning to predict the
peculiar velocity of each individual cluster using features
measured from the kSZ signal. We consider a sample of
300,000 cluster-mass halos randomly extracted from the
Flender simulations spanning 0 < z < 1 and 1013M⊙ <
M500 < 3 × 1015M⊙, and associated kSZ maps, for training
and testing purposes. To avoid data leakage, we use a train-
test split procedure in which we train our model with 70%
of the sample (the “training sample” of 210,000 halos)
and use the remaining 30% of them (“Flender test sample I”
of 90,000 halos) [142,158], which the training model
has never seen, for testing and model validation. In this
way, we simulate how the model would perform on new,
unseen data.
For velocity reconstruction when detector noise and

primordial CMB are present, we examine a second testing
dataset from the Flender data (“Flender test sample II”)
with a higher minimum mass threshold, as will be moti-
vated in the next section. This sample consists of 86,866
Flender simulated halos 0 < z < 1, 8 × 1013M⊙ < M500 <
3 × 1015M⊙ drawn separately from test sample I from the
Flender simulation.
To facilitate the assessment of the approach beyond

purely training and testing on a single simulation dataset,
we consider a dataset distinct from the Flender data, using
the Websky simulations. Specifically, we use a randomly
extracted sample of 300,000 cluster-mass halos spanning
0 < z < 1 and 1013M⊙ < M500 < 3 × 1015M⊙ split 70%/
30% into distinct training and testing subsamples. We also
consider a fourth separate test sample for analysis with
primary CMB and noise of 90,000 Websky simulated
halos (the “Websky test sample”), with 0 < z < 1 and
8 × 1013M⊙ < M500 < 3 × 1015M⊙.
These studies, and the use of ∼90; 000 cluster test

samples in our analysis, are motivated in the anticipation
of baryon oscillation spectroscopic survey (BOSS) and
dark energy spectroscopic instrument (DESI) data

providing spectroscopic redshifts for photometrically
selected galaxy clusters in the SDSS survey. Specifically,
we use clusters of the Wen Han Liu (WHL) catalog [159] as
a guide. This catalog covers a redshift range of 0.05 < z <
0.75 with a minimum mass of 5 × 1013M⊙ and consists of
158,103 galaxy clusters with photometric redshifts.
Spectroscopic redshifts from BOSS are available for
121,103 (77%) of the galaxy cluster sample, and of these
102,033 have M500 > 8 × 1013M⊙, with the expectation
that DESI will provide additional spectroscopic redshifts.
The full-sky Planck temperature maps would naturally have
the same sky coverage as this catalog but the Planck map
does not have enough resolution to do a matched filter [95],
a key process for our model that will be discussed below.
On the other hand, the ACT maps with higher resolution do
allow a matched filter approach, but they have a smaller sky
coverage overlap with theWHL catalog. The motivation for
developing the machine learning approaches here is to
apply the approach to a spectroscopic catalog similar to
WHL in combination with an upcoming multifrequency
CMB data, such as from SO, CMB-S4, and CCAT, that is of
higher resolution and higher sensitivity than Planck but will
also survey a significant fraction of the sky.
For each cluster, we create seven features for training and

testing purposes, summarized in Fig. 1. Given the peculiar
velocity is directly proportional to the kSZ temperature, as
in (1), we consider the kSZ temperatures as our key
features: TDisk in the training data (and TMF in the testing
data) and TAP. For Tdisk (training dataset) and TMF (test
dataset) the mean and the standard deviation of the temper-
atures of the pixels within the aperture are used as input
features.
These temperature features are directly measured from

the observation map at the location of each cluster. For the
Tdisk and TMF data we consider two different aperture sizes
for the disk kSZ temperatures: where the signal-to-noise
ratio (SNR) peaks at 2.1′ [95,147] and also a 1.3′ aperture

FIG. 1. Feature engineering process and the features used for our machine learning model for (left) the training and (right) the testing
datasets. We consider seven features for each halo object, i.e. the mass and redshift, z, of each halo, the mean and standard deviation of
disk kSZ temperatures, Tdisk and σdisk, and the aperture photometry (AP) temperature, TAP, within different angular scales (i.e. 1.3 and
2.1 arcminutes) from the halo center. For the test data, we use a matched filter (MF) approach to estimate the disk temperature properties
and consider scenarios with both pure kSZ and also data which includes primary CMB and detector noise.
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size that focuses more on the central peak kSZ signals.
We also include a spectroscopic redshift and mass estimate
for each halo in the set of features. In this work, we use the
cluster mass estimate itself as the feature rather than a
feature related to the mass proxy. Observationally, the
cluster mass estimate could be inferred from one or more
potential observable proxies of cluster mass, such as using
richness [160,161], x-ray [162–164], and weak lensing
observations [165–167]. We discuss the potential effect of
inaccuracies in the mass estimate on the modeling in more
detail in Sec. IV C 2.
For training purposes, one can choose to train the model

with either noise-free or noisy data. Noise-free data enables
the machine learning models to concentrate on the under-
lying structures and patterns we seek to extract. We have
considered models trained on noise-free data and data
including primary CMB and noise but find the latter
perform significantly less well in reconstructing the fea-
tures. Given this, and following the approach frequently
employed with the machine learning technique, as listed in
Sec. I, we train our model on the kSZ signal alone, without
primary CMB and noise. Aperture photometry features are
measured from the beam-convolved kSZ map, and the disk
features are measured directly from the unfiltered pure kSZ
map as summarized in the left of Fig. 1. Note that we
convolve the kSZ map with a beam for AP to account for
the beam effect in real data analysis.
We test our training model in two scenarios, one with a

pure kSZ signal and the other when CMB anisotropies and
detector noise are present. Similar to the training process,
aperture photometry features are again measured from
the kSZ map with beam convolution. Different from the
training process, the disk temperature features are measured
using the matched filter from the kSZ map with beam
convolution as summarized in the right of Fig. 1. The intent
of using the matched filter and the beam-convolved kSZ
map during the testing process is to mimic the signal
extraction process when analyzing the real observation
data. When adapting to real observations (e.g. when
detector noise and CMB anisotropies are present), follow-
ing [81], the CMB-dominated signals above 30 arcminutes
are filtered out, and the small-scale kSZ-related signals
below 15 arcminutes are preserved, before we measure kSZ
temperatures with AP and MF.
This work aims to recover the pairwise peculiar velocity

of the cluster sample through a one-step machine learning
inference of estimating the individual peculiar velocity for
each cluster in the testing sample. We train the model to
predict a peculiar velocity for each cluster based on the
seven features described above. This process is akin to a
regression problem, making an inference based on the
numerical model features. We adopt a gradient boosting
algorithm, LightGBM [168],3 that has demonstrated

stability and out-performance in making regression infer-
ences with a set of one-dimensional numerical model
features. The gradient boosting model is in the form of
an ensemble of weak learners, where a weak learner usually
means a simple model that is slightly more accurate than
random prediction. The model is trained sequentially, and
in each iteration, a new weak learner is trained and added to
the ensemble to correct for the previous model. In this
process, several weak learners are combined into strong
learners, in which each new weak learner is trained to
minimize the prior model’s loss; specifically the mean
squared error is used here.
One of the main challenges during the training process is

to avoid overfitting while achieving model accuracy and
convergence. Below, we will briefly discuss our choice of
two of the main hyperparameters of the LightGBM model,
i.e. the learning rate and the number of iterations. The
learning rate determines how much the model corrects for
the error at each iteration toward achieving a minimum of
the loss. While a learning rate that is too low will take a
long training time to converge and stuck in an unwanted
local minimum, a learning rate that is too high will cause
the learning to bounce over minima and never converge.
The number of iterations, on the other hand, controls how
many times the model corrects for the error. Too many
iterations will usually cause an overfitting of the training
data that the model provides precise forecasts for training
data, but not for unseen data, while too few iterations will
not let the model learn sufficiently. To achieve higher
accuracy, a common strategy is to let the model learn over
more iterations and have a low learning rate. This is
equivalent to finding a good combination of iterations
and learning rates. In this work, we choose a learning rate
value of 0.03 which is commonly used in many applica-
tions. We find that the model begins to converge after 3,000
iterations and starts to overfit after 5,000 iterations.
We stopped our models at 3,600 iterations to avoid over-
fitting while also achieving high accuracy. The other
hyperparameters of the model are determined using a grid
search cross-validation technique running Scikit-Learn’s
GridSearchCV [169]. Cross-validation is a technique that
splits the dataset into subsets, or folds, with the purpose of
using each fold as a validating set and the remaining folds
for training. We evaluate the model performance on the
validation set, where each fold is used exactly once as
the validation set during the iterations of this process. The
results from each iteration are then averaged to obtain the
performance of the model. In the GridSearchCValgorithm,
a grid of hyperparameters with possible values is first
defined. Cross-validation is then used to train the model
and assess its performance for each combination of hyper-
parameters as it explores the hyperparameter space. In this
way, it helps in determining the ideal hyperparameter
combination that yields the best model performance.
In assessing the efficacy of the machine learning velo-

city reconstruction, we utilize the following statistics.3https://lightgbm.readthedocs.io/en/stable/.
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We measure the strength of linear correlation between
variables using the Pearson correlation coefficient. For a
pair of random variables (X, Y), the correlation coefficient
can be written as P

n
i¼1ðxi − x̄Þðyi − ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðxi − x̄Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1ðyi − ȳÞ2

p ; ð13Þ

where xi, yi are the individual sample data points, n is the
sample size, and x̄; ȳ are the sample mean.
The SNR for the machine learning model predicted

pairwise velocity signal, is evaluated as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

V̂i;predC−1
ij V̂j;pred

s
ð14Þ

with V̂i;pred the predicted pairwise velocity estimator using
the machine learning model for the ith pair separation bin,
and C−1

ij is the inverse of the covariance matrix estimated
off a bootstrap of the dataset as discussed in Sec. II C.
We determine how well the pairwise velocity predicted

by the model fits to that obtained directly from the true
velocities in the simulation with the χ2,

χ2 ¼
X
ij

ΔV̂iC−1
ij ΔV̂j; ð15Þ

with ΔV̂i ¼ V̂i;true − V̂i;pred, where V̂i;true is the true pair-
wise velocity estimator for the test data. The best-fit model
is achieved with the minimum χ2.
It is important to note how the χ2 should be interpreted

in this analysis. Usually, we are comparing the fit of a
theoretical model to observational survey data which can be
viewed as a random realization of that model, modulated
by cosmic variance and measurement uncertainties. In that
case, a good fit to the data is characterized by a reduced χ2,
χ2 per degree of freedom, value of around one as long as the
covariance has been accurately estimated. In this analysis,
however, we are comparing how well the machine learning
model predicted velocity statistics for the test data com-
pared with that true velocity correlation. In the limit of
perfect reconstruction, the χ2 would be zero. The degree of
variation between the predicted and true signals is affected
by the intrinsic uncertainties in the training model data set
and the efficacy of the training algorithm to recreate the test
dataset. The training data set used here is over twice the size
of the test data and will have commensurately smaller
statistical uncertainties than the test data. For the model to
work well, the prediction uncertainties, ΔV̂i, should be
substantially smaller than the statistical uncertainties in the
test data, characterized by the covariance Cij. As such,
the prediction from a well-performing machine learning
algorithm should have a χ2 per degree of freedom that is
well below one.

IV. ANALYSIS AND RESULTS

In Sec. IVAwe consider the relation between the model
features and peculiar velocities, and test the performance of
the machine learning model to recover the individual halo
velocities. In Sec. IV B we consider the pairwise velocity
predicted using test data with solely the kSZ signal and,
more akin to real observations, when detector noise and
primordial CMB are included. We discuss the effects of
systematic errors from cluster miscentering and mass
misestimation in Sec. IV C. Finally, in Sec. IV D we
consider the performance of the machine learning model
when trained and tested using different kSZ simulations.

A. Individual halo velocity reconstruction

In advance of developing the machine learning model,
we first establish how the key model features relate to the
halo’s peculiar velocity. In Fig. 2, we show the correlation
coefficient between two of the key features, TMF (2.1′) and
TAP (2.1′), and the true peculiar velocity of each halo, vt, as
a function of the halo mass for four kSZ datasets that
include solely the kSZ, and combinations of the primary
CMB and detection noise.
When just the kSZ is included the correlation of the MF

and AP temperatures with the true velocity are both high
and consistent with one another. For the highest mass halos,
the correlation is nearly perfect. For lower mass halos the
correlation falls, to just above 0.6 for masses of 1013M⊙.
This is consistent with the kSZ signal being smaller for
lower mass clusters and thus the relative contribution from
other kSZ sources along the line of sight, but unrelated to
the cluster mass halo, becomes more important, creating the
noisier signal.
When detector noise and/or primordial CMB are

included in the test data, there is, as is to be expected, a
weaker correlation between the measured model features
and the true peculiar velocity. We find that, in general, kSZ
signals extracted with matched filter have a tighter corre-
lation with the cluster peculiar velocity than those extracted
with aperture photometry. The inclusion of the primary
CMB has the largest impact on weakening the correlation
for both signal extraction methods.
Using a correlation of around 0.5 as a guiding thresh-

old [170], we find that an overall correlation of 0.46
between TMF and the true peculiar velocities is maintained
for a test sample with minimum mass threshold M500 ¼
8 × 1013M⊙. By contrast, a sample needs to have M500 >
3 × 1014M⊙ for TAP to retain a correlation of 0.5 of higher.
We seek to include as many halos as possible to minimize
statistical uncertainties and maximize performance. Given
the poorer correlation of the AP features, and the restrictive
mass threshold this would impose when the detector noise
and primordial CMB are present, we exclude the AP
temperature features (i.e. TAP) and preserve only the
MF-filtered kSZ temperature features (i.e. TMF).
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Motivated by this, we create a second halo testing
sample, Flender test sample II with M500 > 8 × 1013M⊙,
containing 86,866 objects distinct from those used in the
training model. Figure 3 shows the comparison of the
predicted velocity using the machine learning model with
only the matched-filtered kSZ temperature inputs from the
test sample to the true velocity for this sample. We find that
the application of the machine learning model allows us to
recover the peculiar velocities without bias for both kSZ-
only signals and when the detector noise and primordial
CMB are added.

In Fig. 4 we show the correlation between the halo
velocity predicted by the machine learning model, jvpj, and
the true velocity, jvtj, as a function of mass for Flender test
sample II with four different kSZ datasets: kSZ alone, and
when noise and primary CMB are included. We find that
the trends in correlation are consistent with those observed
between kSZ temperatures and the true velocity shown in
Fig. 2. The correlation for the overall correlation across all
mass bins is 0.43, reinforcing that 8 × 1013M⊙ is a
reasonable minimum mass threshold for the analysis.

FIG. 2. Correlation between two of the key features the matched filter, TMF (2.1′) (left) and aperture photometry TAP (2.1′) (right), and
the true peculiar velocity of each halo in Flender test sample I as a function of halo mass, when the test data includes just pure kSZ data
(orange, cross), kSZ plus detector noise (red, triangle), kSZ plus primary CMB (purple, square) and kSZ, primary CMB and detector
noise (green, circle). Note large-scale signals are filtered out before employing the MF and AP filters.

FIG. 3. Comparison of the machine learning predicted peculiar
velocities, vp, to the true peculiar velocities, vt, for the Flender
test sample II halo catalog, when the test data includes just kSZ
(orange, cross), kSZ and detector noise (red, triangle), and kSZ
and both primary CMB and detector noise (green, circle). The
mean signal binned by vt is shown with 1σ standard errors.

FIG. 4. Correlation between the predicted and true velocities,
jvpj and jvtj, as a function of halo mass for Flender test sample II,
when the test data includes only kSZ (orange, cross), kSZþ
detector noise (red, triangle), kSZþ primary CMB (purple,
square) and kSZ, primary CMB and detector noise (green, circle).
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In the rest of the paper, we will focus the analysis on the
samples withM500 > 8 × 1013M⊙ and also exclude the AP
temperature features as discussed above.

B. Pairwise peculiar velocity reconstruction

Using Flender test sample II, we start by testing how well
we can recover the pairwise peculiar velocity using the pure
kSZ signals in the test set model features. Figure 5 shows
the pairwise velocity statistics associated with the predicted
individual halo velocities described in Sec. IVA. We find
that the predicted statistic, V̂p, recovers the true estimator,
V̂t, well within the statistical errors estimated from boot-
strapping the sample. Comparing the reconstructed pair-
wise signal to the true one gives a best-fit χ2 ¼ 1.6 for 19
bins covering all the pair separations to 395 Mpc.
We then test the feasibility of our machine learning

model to extract the estimator from more realistic obser-
vations, when both primary CMB and detector noise are
included which all together can be orders of magnitude
larger than the kSZ signal alone.
We generate 10 realizations of both the detector noise

and primary CMB as described in Sec. II A. We generate
independent primary CMB and detector noise realizations
from each of their individual power spectra without kSZ
included. Thus, there will be no correlation between these
10 realizations. For each of these 10 realizations, primary
CMB is added to the Flender model 3 map before a beam
convolution of FWHM ¼ 1.40 , after which the detector
noise is included. As mentioned in Sec. III, the large-scale

CMB-dominated signals are filtered out before the model
features are created for each halo object. The mean pairwise
peculiar velocity estimator across the 10 realizations is
calculated and errors are estimated by conducting a boot-
strap on one realization.
The results are shown in Fig. 5. We first conduct a null

test in which the mean signal is obtained for purely the
10 maps of detector noise and primary CMB with no kSZ.
The reconstructed signal is consistent with V̂ ¼ 0. When
the kSZ signal is included, the machine learning model
recovers an unbiased estimate of the pairwise peculiar
velocity for cluster pair separations below 200 Mpc. For
the 16 bins with r < 200 Mpc, we find a best-fit χ2 ¼ 9
for the mean pairwise signal over the 10 realizations and
SNR ¼ 11. For separations greater than 200 Mpc, the
intrinsic amplitude of the pairwise signal is very small.
While the signal is able to be recovered for the pure kSZ
inputs, once detector noise and primary CMB anisotropies
are included, and dwarf the kSZ signal in the test features,
the machine learning algorithm is unable to recover a robust
prediction of these low amplitude signals; the inferences are
systematically biased for these large pair separations. For
this reason, the analyses in the rest of the paper focus on the
pairwise separations below 200 Mpc.
The machine learning inference presents an alternative to

the approach in which the pairwise velocity estimator is
reconstructed by combining the pairwise kSZ momentum
with associated optical depth estimates. The pairwise kSZ
momentum estimator calculated from the MF temperature
features has SNR ¼ 11. If we consider an optical depth
estimate using tSZ or x-ray observations with an assumed
18% uncertainty [93,94], we would estimate a pairwise
velocity reconstruction with SNR ¼ 7, compared to
SNR ¼ 11 using the machine learning method in this work.
To understand how the model learns to break the de-

generacy between velocity and optical depth from the kSZ
temperature, we have tested the feature importance by
excluding one feature at a time and evaluating the model
performance after the exclusion of each feature. Note that
each time, we retrain and test the model using solely the
selected features. In Fig. 6, we show the 1σ standard errors
for 40 < r < 80 Mpc for the pairwise velocity statistics
derived from the predicted peculiar velocity when each
feature is excluded from the model. The exclusion of the
halo mass in the training data gives the largest increase in
the 1σ errors on pairwise velocity statistics. This suggests
that the mass information plays an important role in
velocity estimation model consistent with the expectation
that the mass feature serves as a proxy for the optical depth
estimate and can therefore improve the model accuracy
through an implicit cluster M500 − τ relation.

C. Effects of uncertainties in the test data

In this section, we discuss how the machine learning
model performs when accounting for potential systematic

FIG. 5. Top: pairwise peculiar velocity estimator calculated for
the true velocity (V̂t) (blue, square) and predicted velocity (V̂p)
with pure kSZ signals (orange, cross), the mean of 10 realizations
when detector noise and primary CMB are included (green,
circle), and the null test of using just the CMB and detector
noise (and no kSZ) (red, star) for Flender test sample II.
Bottom: difference between prediction and expectation (e.g.
ΔV̂ ¼ V̂p − V̂t) scaled relative to the respective uncertainty, σ,
for each sample.
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errors arising due to cluster miscentering and mass mis-
estimation.

1. Miscentering bias

While in simulations we can identify the gravitational
center of a cluster halo, observationally this is not the case.
Typically, following the “central galaxy paradigm” [171],
the most massive, and brightest, galaxy in the cluster will
be the most centrally located. As such, the brightest galaxy
identified in a cluster will commonly be used as the
proxy to define the center of a cluster. The position of
the brightest galaxy may not always be the gravitational
potential minimum of the cluster, however, and the bright-
est galaxy may also not be the closest cluster member to the
center. Roughly 30% of cluster mass systems, in halos
1013–1014.5M⊙, are found to not have the brightest galaxy
as the central most member [172–176]. Hence, the cluster
center estimated from the brightest galaxy can be biased
from the true cluster center. This can lead to biases in the
calculated pairwise signal kSZ [177] as well as other cluster
measurements such as in the x ray [178].
Saro et al. [175] compared the cluster center derived

from the tSZ profile to the position of the brightest galaxy
and found that 63% of clusters have a miscentering of
σ0 ¼ 0.07h−1 Mpc, and the rest have a miscentering of
σ1 ¼ 0.25h−1 Mpc. This miscentering can be expressed in
terms of a bimodal Gaussian distribution,

PðxÞ ¼ 2πx

�
ρ0

2πσ20
exp

�
−

x2

2σ20

�
þ 1 − ρ0

2πσ21
exp

�
−

x2

2σ21

��
;

ð16Þ
with ρ0 ¼ 0.63.

Following Saro et al., we create a modified version of
Flender test sample II in which the test model features are
created using halo centers which have a random offset
applied using (16). In Fig. 7, we present the resulting
predicted pairwise velocity statistics when test features are
just for the kSZ alone (with no detector noise and CMB
included). Miscentering at the level of the Saro model
reduces the predicted pairwise peculiar velocity (V̂) by 9%
relative to that derived using the true centers to derive the
test data model features.
To alleviate the suppression of the amplitude of the

pairwise velocity estimator caused by miscentering, we
consider an alternative centering approach in which the
center is located using the tSZ signal profile. The process is
summarized as follows. We first assign each cluster a new
center following the Saro et al. model. We then use the tSZ
map and search around the new center to locate the peak
tSZ signal. By following these steps we reflect the practical
process that we would do with real data in which the initial
guess of the center is determined by the Saro et al. model.
We finally assign a center for each cluster based on the
location of the identified peak tSZ signal and calculate
model features using that assumed center.
Using the tSZ-derived center, the predicted pairwise

peculiar velocity (V̂) is reduced by only 3% on average;
the associated results are shown in Fig. 7. We conclude that
using the cluster center derived from the peak tSZ signal could
alleviate the suppression of the amplitude of the pairwise
velocity estimator caused by miscentering if the optically
brightest galaxies are purely used as the cluster center proxy.

FIG. 6. Sensitivity of the 1σ standard errors on the pairwise
peculiar velocity momentum derived from the machine learning
algorithm when trained and tested without one of the features
included. The cluster feature set that excludes M500 (blue),
TDiskð2.10Þ (orange), TDiskð1.30Þ (green), redshift (red), and no
feature exclusion (purple) are shown for Flender test sample II.

FIG. 7. Fractional difference (ΔV̂=V̂t) between the estimator
(V̂t) derived from the true velocity and the prediction (V̂p)
derived from the machine learning model for Flender test sample
II when the test data is kSZ alone. Predictions when the test
model features are calculated assuming cluster centers modeled
from the true center (blue, square), from displacements based on
Saro et al. (red, star), and when the peak tSZ signal is used as the
cluster center (orange, cross). The mean signal deviation across
the whole sample is also shown for each case (dashed line).
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In Fig. 8, using one realization of kSZ, CMB, and noise,
we compare the machine learning pairwise V̂ prediction
derived from the peak tSZ center model to the true V̂
derived from the true halo velocity provided in the catalog.
We find that the inclusion of detector noise and CMB
anisotropies does not additionally suppress the amplitude
from the miscentering and that the offset due to miscenter-
ing is smaller than the sample’s statistical errors. A best-fit
χ2 of 11 is found for the predicted pairwise signal from the
single CMB and noise realization, relative to the underlying
true pairwise velocities when the centers are derived from
the tSZ peak. This just is slightly larger than the best-fit
χ2 ¼ 10 when the true cluster centers are used for the test
feature for the same noise and CMB realization.

2. Mass scatter bias

In addition to uncertainties related to the location of the
cluster center, the cluster mass is also a model feature that
will need to be estimated from observational proxies. For
a galaxy survey, a common approach, as used in [69,94],
is to estimate the stellar mass from the luminosity of the
brightest galaxy using the mass-to-light ratio [179–182],
and then the halo mass is derived from the stellar-to-virial
mass relation, M⋆ −Mvir [180]. Other approaches to mass
estimation include using the mass-richness relation, and
calibration from combinations of x-ray, weak lensing, and
tSZ observations. Any uncertainty in these relationships
could lead to added dispersion or bias between the halo
mass estimated as the input feature and the true halo mass.

We consider a scatter in the logarithmic mass estimate of
20% for each halo mass, reflective of mass uncertainty
estimates using mass-richness and weak lensing calibration
approaches (e.g. [183–186]). We use the Flender test
sample II and augment it with a random subsample of
lower mass halos down to 1013Msun. Using the sample size
of Flender test sample II as a reference, the attached
subsample is selected with number distribution following
the halo-mass function of the Flender simulation. In this
way, we avoid attaching too few or too many lower-
mass halos, and the combined subsample can have the
same halo mass distribution as the whole catalog. For
each cluster, we assign a new mass based on relation
lnMnew ¼ lnM500 þ Δ, where Δ is drawn from a Gaussian
distribution with zero mean and standard deviation σ ¼ 0.2.
We first note that introducing this uncertainty has

implications for the minimum mass threshold imposed to
create the sample. The scattering results in some clusters in
the original sample with true masses M500 > 8 × 1013M⊙
being excluded based on the mass estimate; we find 87%
of the original sample objects are retained in the new
sample. The new “augmented Flender test sample II” will
also include some clusters with true masses M500 < 8 ×
1013M⊙ for which the inferred mass now exceeds the
threshold. Because the cluster mass function decreases as
one goes to larger masses, we find that the overall test
sample size, with the scatter included, would increase
by 8% as more lower-mass halos will move above the
threshold than higher-mass ones will fall below. Given our
model takes the cluster mass as an input feature, we start by
testing how the mass scatter would affect the model
prediction with pure kSZ signals when each cluster is
assigned the “wrong” mass and this is used as an input
feature.
In Fig. 9, we compare the predicted V̂ with the true V̂ for

the new augmented Flender test sample II. We find that
mass scatter reduces the predicted pairwise signal by 3% on
average for the new sample. This is understandable given
the sample with the mass scatter will include lower mass
halos, that had previously fallen below the mass threshold,
for which the mass is overestimated. As such, with the
higher wrong input mass as an input feature along with the
kSZ temperature, with an amplitude consistent with its true
lower mass, the machine learning model will predict a
smaller absolute velocity on average.
In Sec. IVA, we demonstrated that the correlation

between velocity and the input features falls below 0.5
for cluster samples withM500 < 8 × 1013M⊙ when primary
CMB and detector noise are included. Given the halos in
our sample selected based on mass estimates incorporating
scatter have true mass M500 < 8 × 1013M⊙, we want to
consider the effect of mass scatter when these lower mass
halos and primary CMB and detector noise are present in
the input features. In Fig. 10, we find that the mass scatter
does produce a systematic ∼3% reduction in the estimated

FIG. 8. Fractional difference (ΔV̂=V̂t) between the pairwise
velocity estimator from the true velocity (V̂t) and that from the
machine learning prediction (V̂p) derived from kSZ and a single
realization of the primary CMB and detector noise for Flender
test sample II when the location of the peak tSZ signal is used as
the proxy for the cluster center (filled circle) and the true cluster
center from the simulations is used (empty circle). 1σ error bars
estimated from a bootstrap of the test data are shown.
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pairwise velocity when the CMB and noise are included,
relative to that inferred if the true halo masses are used as
input features. The deviations are largely captured within
the 1σ bootstrap uncertainties.

The best-fit χ2 for the predicted pairwise signal from the
single CMB and noise realization, relative to the underlying
true pairwise velocities, is 11 for the 16 bins when the mass
scatter is included, versus 10 when we assume perfect
knowledge of the cluster masses.
Note here, to demonstrate the machine learning predic-

tion efficacy, the comparisons above are between the
predicted and true velocity correlations for the augmented
Flender test sample II sample. Separately from this, the true
pairwise velocity statistic for the augmented sample is in
itself intrinsically 2.4% lower, on average, than that for the
original Flender test sample II, because the augmented
sample has a lower mean mass. Both effects, the difference
in the two samples and the bias in the machine learning
prediction, each arising from the mass misestimation,
would have to be factored in if the derived pairwise
velocity is to be compared to theoretical cosmological
predictions that assume a given cluster mass distribution.

D. Application to other simulations

To broaden beyond the Flender simulation, we also test
the machine learning model on a second kSZ simulation,
the Websky simulation [152]. We upgrade the Websky kSZ
map to the same resolution as the Flender simulation before
we measure the model features, and we use the same signal
template profile (parameters), calibrated based on FL3, for
the matched filter across different simulations.
Similar to the Flender simulation, we find that training

on 70% of the pure kSZ signals on the Websky simulation
and testing it on the remaining 30% of the Websky
simulation gives an unbiased reconstruction of the pairwise
peculiar velocity estimator. Note that we find the Websky
trained machine learning model performs poorly for scales
above 200 Mpc, because the systematic errors dominate, as
it did for the Flender trained one.
We then cross-validate our model by applying the model

trained on the Flender simulation to predict the velocities
in the Websky test sample with a mass sample M500 >
8 × 1013M⊙, as outlined in Sec. II A. The 10 realizations of
the detector noise and primary CMB used on the Flender
analysis were also included and a bootstrap analysis of one
realization was performed to estimate the signal covariance.
We find that the machine learning algorithms respectively
trained on the Flender simulations and Websky simulations
can both recover the true V̂ well for the Websky training
sample as shown in Fig. 11.
When the model is trained on the Flender simulations,

the mean predicted pairwise signal over the 10 realizations
for the Websky test data has a best-fit χ2 of 11 and an
SNR of 9, for the 16 bins for r < 200 Mpc. When trained
on the Websky simulations, using the same 10 realizations
of CMB and noise, the predicted signal has a best-fit χ2 of
11 and SNR of 10. The two predictions, trained on the
different simulation sets, are therefore very consistent,
showing that the approach is not limited to simply

FIG. 9. Fractional difference (ΔV̂=V̂t) between the true esti-
mator (V̂t) derived from the true velocity and the prediction (V̂p)
derived from the machine learning model for pure kSZ test data
for the augmented Flender test sample II. The predicted velocity
when the true cluster masses are used as input features (blue,
square) is shown along with that when the mass features
incorporate scatter to reflect misestimation (orange, cross). The
mean fractional difference (dashed line) is also given for each
sample.

FIG. 10. Fractional difference (ΔV̂=V̂t) between the pairwise
velocity estimator from the true velocity (V̂t) and that predicted
by the machine learning model (V̂p) derived from kSZ þ a single
realization of the primary CMB and detector noise for the
augmented Flender test sample II. The velocity when the true
mass is used as a model feature (empty circle) is compared to that
when the mass feature is modified to account for mass mis-
estimation (filled circle). 1-σ error bars estimated using a boot-
strap of the test data are also shown.
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reconstruction of test data derived from the same simu-
lations as the training set. This demonstrates the potential
for using this machine learning model, trained on the
Flender simulations (or other future high fidelity kSZ and
galaxy simulations), as a suitable approach for the analysis
of real survey data.

V. CONCLUSION

In this work, we have demonstrated that a machine
learning model using the gradient boosting algorithm
trained on high-fidelity simulations can be used to recover
an unbiased estimate of pairwise peculiar velocity from
kSZ and halo catalog data. This provides a tantalizing
alternative to the two-step process currently used to extract
the velocity estimate, combining a pairwise kSZ momen-
tum estimator with a separate estimate of the cluster optical
depths, with the additional uncertainties that involves.
For the machine learning approach, we consider seven

halo features for training and prediction. Following [95],
we consider two signal extraction techniques, matched
filter and aperture photometry, to create the kSZ temper-
ature features. We measure kSZ signals after filtering out
CMB-dominated signals (l < 360) when adapting to real
observations.
We first test the feasibility of our machine learning

model to recover the halo individual peculiar velocity. We
find that the model is efficient at recovering an unbiased
measurement of the individual peculiar velocity for both
pure kSZ signals and when detector noise and primary
CMB are added. Given that the primary CMB dominates at
large scales, and the detector noise dominates at small

scales, the tSZ anisotropies and foreground contaminations
are subdominant than the primary CMB and detector noise.
We thus did not test the presence of these noises in this
work. We suggest testing the deprojection and the presence
of these foreground contaminations in future work. While
the presence of the CMB and noise makes the correlation
weaker between temperature features and peculiar veloc-
ities, we find that a minimum mass threshold of M500 >
8 × 1013M⊙ is practical for confidently recovering the halo
velocities with the model using a matched filter. The
correlation is lower when using aperture photometry, which
translates into a far higher minimum mass threshold.
For this reason, aperture photometry features are not in-
corporated in the main analysis. At large separations, of
r > 200 Mpc, the kSZ signal becomes very small, and non-
kSZ signals dominate leading to inaccurate and biased
predictions. For separations r < 200 Mpc, the machine
learning approach provides an unbiased prediction of the
velocities with modeling uncertainty levels that are sig-
nificantly smaller than the statistical uncertainties estimated
to be inherent in the test sample itself. We also test the
model feature importance by excluding different features
from the model and evaluating the model performance.
We find that the mass information is the most important
feature that break the degeneracy between velocity and
optical depth from the kSZ signals. The mass serves as a
proxy for optical depth through an implicit cluster mass—τ
relation that allows the model to differentiate among
the different levels of kSZ temperature and velocity
combinations.
We consider the effects of two potentially significant

systematic effects: cluster location miscentering and mass
misestimation. We find that using the location of the peak
tSZ signal as the proxy to define the cluster center could
reduce the systematic error in the positional offset intro-
duced by using the brightest galaxy as a proxy for the halo
center. The pairwise velocity amplitude suppression from
miscentering is reduced from 9%, when modeling centering
using a brightest galaxy, to 3% when using the peak tSZ
signal as the proxy center. In considering the impact of
cluster mass misestimation, we find that a 20% mass scatter
would reduce the predicted pairwise velocity estimator by
3% for both pure kSZ signals and when detector noise and
primary CMB are added. Such 3% offsets fall well within
the 1σ statistical sample uncertainty estimates.
While the main analysis uses the Flender simulations to

train and test the machine learning model, we also consider
its performance with a second kSZ simulation to demon-
strate its robustness and ability to be generalized. We use
the Websky simulation which includes similar astrophysi-
cal effects to the Flender simulation while at a lower
resolution. We find that the model trained on the Websky
simulation is efficient at reconstructing the pairwise veloc-
ity estimator when applied to the Websky test data.
Furthermore, the velocity statistics in the Websky test data

FIG. 11. Average fractional difference (ΔV̂=V̂t) between the
mean pairwise velocity estimator from the true velocity (V̂t) and
that from the machine learning prediction (V̂p) for the Websky
test sample over 10 realizations of the detector noise and primary
CMB, using the machine learning model trained on data from the
Flender simulation (filled circle/full line) and trained on the
Websky simulation (open circle/dashed line).
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are also able to be accurately reconstructed with the
Flender-trained model.
In this work, we show the feasibility of using a machine

learning model that uses cluster properties measurable with
survey data as features to recover the pairwise velocity
estimator with the intent to demonstrate its applicability to
upcoming real observations. We focus on one approach
using a gradient-boosting algorithm, LightGBM. Given
other machine learning applications to the analysis of
galaxy clusters, for example, neural networks for the study
of mass estimation [104], further opportunities for
improved performance could well be realized by using
additional model features together with a more complex
feature engineering process. This could include enhancing
the kSZ temperature features by including additional
velocity information using velocity reconstruction with
the galaxy number density field [187,188] or additional
cluster features, such as the tSZ, weak lensing, x-ray, and
richness statistics related to target clusters, to augment the
cluster fitting model. Improvement of the mass calibration
might also be achieved through machine learning
approaches trained on large-scale simulations to refine
calibration/scaling relations. Novel multifrequency tech-
niques [189–192] have been developed to deproject the
Compton-y and foreground contaminations, such as the
cosmic infrared background (CIB), from the CMB obser-
vations. Such techniques have been used, for example, to
provide a cleaned kSZþ CMB − only map as the data
products of ACT DR4 [189], analyzed in [69,94]. It would

be interesting to consider how the presence of residual tSZ
or CIB foreground components, or emission from radio and
dusty star-forming galaxies, might affect, or be identified
through, the machine learning approach. We leave the
integration of such extensions to future work.
In summary, this work provides a promising method to

measure the pairwise peculiar velocity estimator using a
machine learning model. The model utilizes the relation-
ships between cluster observables derived from high-
fidelity simulations to predict the velocity directly from
the kSZ data rather than measuring additional optical
depth information derived from observations. The approach
will be valuable in analyses of the upcoming CMB experi-
ments, from the CCAT, Simons Observatory, and CMB-S4
surveys, along with galaxy surveys from DESI, SDSS,
Euclid, and LSST to use cluster velocity correlations
to constrain the properties of gravity, dark energy, and
neutrinos.
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