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By means of N-body simulations, we study early structure formation in the presence of a scaling
distribution of cosmic string loops. Cosmic string loops dominate the high redshift halo mass function
while the fluctuations seeded by the standard structure formation scenario dominate structure at low
redshifts. In our study, the effects of the cosmic string loops are taken into account by displacing the dark
matter particles and their velocities at the initial time of the simulation by amounts determined by the
analytical analysis which makes use of the Zel’dovich approximation. We find that the resulting halo mass
function is to a good approximation given by the sum of the analytically determined cosmic string halo
mass function and the halo mass function obtained from the standard ΛCDM model.
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I. INTRODUCTION

A subset of particle physics models beyond the Standard
Model have solutions corresponding to cosmic string
defects (see, e.g., [1–3] for reviews of cosmic strings
and their role in early universe cosmology). If Nature is
described by such a model, then causality arguments [4]
imply that a network of cosmic strings will form in the early
universe and persist to the present time. Cosmic strings
correspond to lines of trapped energy, and the induced
gravitational effects lead to signatures in cosmology. The
gravitational effects of strings depend on only one free
parameter, namely the string tension μ which is of the order
η2, where η is the energy scale of the phase transition which
leads to defect formation. Searching for the signals of
cosmic strings in the sky is hence a way to probe particle
physics “from top down” (since the effects are larger
for larger values of η), while usual accelerator searches
probe new physics “from bottom up” (since they are more
sensitive to physics at lower values of η).
After the phase transition during which strings form,

the distribution of strings rapidly approaches a “scaling
solution” [4] according to which the statistical properties of
the string distribution are invariant in time t if all lengths are
scaled to the Hubble radius t.1 The string network consists
of a random-walk-like network of “long strings” (strings
with curvature radius comparable to or larger than t) and a

distribution of string loops which result from the inter-
commutation of long strings. While the scaling distribution
of long strings is robust since it is derived from general
causality arguments, the distribution of string loops is less
certain since it depends on the decay channels of string
loops. It is generally believed that gravitational radiation [5]
dominates the loop decay, but some field theory simula-
tions indicate that particle emission might have a large
effect [6]. In this paper we shall work in the context of the
Nambu-Goto cosmic strings and the “one-scale model” of
the distribution of string loops [7] which is supported by the
numerical simulations of [8]. According to this model, at
any given time t there are string loops with radii R in the
range γGμt < R < αt, where the constant α indicates the
mean loop radius R ¼ αt at the time t when the loop is
formed, and γ ∼ 102 is a constant determined by the
strength of gravitational radiation from loop oscillations.
The number density in comoving coordinates nðR; tÞdR of
loops in the radius interval between R and Rþ dR is (for
times after the time of matter and radiation equality, teq) is
given by

nðR; tÞ ¼ Nα2β−2t−20 R−2 ð1Þ

for αteq ≤ R ≤ αt, and

nðR; tÞ ¼ Nα5=2β−5=2t1=2eq t−20 R−5=2 ð2Þ

for γGμt < R < αteq, where N is a constant determined by
the number of long strings per Hubble volume, and βR is
the mean length of a loop with radius R. Loops with radius
smaller than γGμt live for less than a Hubble expansion
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time and their comoving number density can be taken to be
independent of R.
The strongest robust bound on the string tension stems

from the angular power spectrum of cosmic microwave
background (CMB) anisotropies and is Gμ < 10−7, which
is true for both Nambu-Goto cosmic strings [9] and Abelian
Higgs cosmic strings [10]. By looking at signals of long
strings in angular maps and making use of dedicated statis-
tics such as wavelets, the bound could be strengthened [11].
Long strings also yield distinctive signals in 21-cm redshift
maps [12], and 21-cm surveys which probe the epoch
before reionization have the potential to yield comparable
bounds [13].
Since strings form nonlinear density fluctuations begin-

ning at the time when they form, string loops will dominate
early nonlinear structure formation and could explain the
origin of high redshift supermassive black holes [14] (see,
e.g., [15] for a review on supermassive black holes). In a
previous paper [16], we have computed the halo mass
function obtained from a scaling distribution of string
loops. As expected, we found that the resulting halo mass
function dominates over the corresponding mass function
from the standard ΛCDM scenario (based on Gaussian
adiabatic primordial fluctuations) at high redshifts. This is
illustrated in Fig. 1 which is an updated version2 of the
corresponding figure in [16]. Our previous work [16]
indicates that for a string tension in the range 10−9 <
Gμ < 10−8, cosmic strings could explain recent JWST
results [17] which indicate an overabundance of high
redshift galaxies compared to what the standard ΛCDM
model predicts. Our ΛCDM curves make use of the Press-
Schechter mass function [18] at redshifts greater than or
equal to 10, and the Sheth-Tormen mass function [19] at
lower redshifts.3

In our previous work, we did not consider the interplay
between fluctuations seeded by strings and those generated
by the ΛCDM perturbations. At high redshifts, this is
a reasonable approximation, but as soon as the ΛCDM-
induced inhomogeneities become important, this approxi-
mation breaks down, and the interplay between the
fluctuations seeded by the two sources must be considered.
Here, we take a first step towards addressing this challenge.
We perform N-body simulations of structure formation
with both of the effects of string loops and ΛCDM
fluctuations included. The bottom line of our study is that
the resulting halo mass function closely follows that mass
function obtained by adding the mass functions of the
individual sources. This result will be useful in analyzing

the effects of cosmic string loops in the mildly nonlinear
phase of structure formation.

II. NUMERICAL SETUP

Our numerical simulations make use of the Gadget-2

code [21] with ΛCDM initial conditions generated from
Planck-normalized Gaussian ΛCDM fluctuations by means
of the N-GencIC code [22].4 The initial conditions for the
N-body simulations were set at a redshift of zþ 1 ¼ 32,
deep in the region where linear perturbation theory can be
trusted. The resulting initial positions and velocities of the
particles were then displaced according to the effects which
a scaling distribution of cosmic string loops would have,
computed in the Zel’dovich approximation [24]. This
procedure is discussed in detail in the Appendix.
The Rockstar code [25] is used to identify halos in the

output of the simulations. We ran simulations with
Nparticle ¼ 2563 particles in a box of comoving box size

FIG. 1. Comparison of the halo mass function sourced by a
scaling distribution of string loops with the corresponding mass
function in the ΛCDM model. The halo mass is indicated on the
bottom horizontal axis (while the top one indicates the stellar
mass as a function of the stellar formation efficiency parameter ϵ
and the baryon fraction fb). The black curves show the halo mass
function in the ΛCDM model for redshifts zþ 1 ¼ 1 (solid
curves) and zþ 1 ¼ 10 (dashed curves). In orange and blue are
the corresponding halo mass functions due to strings at the
corresponding redshifts. The results for two interesting values
of the string tension are shown: Gμ ¼ 10−8 in orange and
Gμ ¼ 10−10 in blue. While the ΛCDM mass function dominates
at late times, the effect of the string loops is more important at
higher redshifts. The turnover redshift above which the strings
dominate depends on Gμ. Considering redshifts close to the
turnover, we see that the string loops dominate at the higher mass
end while the ΛCDM fluctuations are more important for smaller
masses. This can be seen by considering the mass functions at
redshift z ¼ 10 for Gμ ¼ 10−8.

2Compared to the work of [16], we here included an extra
factor of 2=5 in the accretion by a string loop of mass, following
the prescription in [1].

3As shown in [20], the Sheth-Tormen formalism predicts the
halo mass function more accurately at low redshifts but over-
estimates the abundance of halos at redshift z≳ 10.

4We use the PYTHON package LensTools [23] to read and write
Gadget snapshots.
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100h−1 Mpc, where h is the value of the Hubble constant in
units of 100 km= sec Mpc and we set it to be 0.7 in our
simulations.
Note that the falloff of our mass function at the low

mass end is due to the fact that because of computational
limits, we only consider cosmic string loops with mass
greater than 1016ðGμÞM⊙, which corresponds to a loop
radius R ¼ 0.002teq, and there are 263 loops in our
simulation box.
The following figures show snapshots of our results.

Figures 2 and 3 show the distribution of the mass points in a
pure ΛCDM simulation at a redshifts of zþ 1 ¼ 4 and
zþ 1 ¼ 1, respectively, while Figs. 4 and 5 are corre-
sponding to snapshots at the same redshifts if the effects of
a scaling distribution of cosmic strings with a large value
Gμ ¼ 10−7 of the string tension are added. Note that the
Gaussian seeds were taken to be the same in the simulations
with and without the strings. As expected, the effects of
cosmic strings are very difficult to be identified by eye at
these low redshifts. Only a couple of cosmic string loop-
seeded halos can be seen at redshift zþ 1 ¼ 4, which are
indicated by red circles in Fig. 4.
The code was tested in various ways. First, the numeri-

cally obtained halo mass function in a pure ΛCDM model
was compared to the analytical results obtained using the
combination of the Sheth-Tormen [19] and Press-Schechter
[18] formalisms. The numerical and analytical results are
indeed in good agreement as is shown in Fig. 6.5 As is
apparent, there are no nonlinear halos at high redshifts.

Figure 7 shows the corresponding mass functions in a
simulation with only cosmic strings (with tension
Gμ ¼ 10−7). The numerical results are the solid curves,
and the analytical curves are given by the dotted lines. First
of all, we note that cosmic strings seed large mass nonlinear
halos at high redshifts. Second, we note a good agreement
between the slopes of the numerical and analytical curves
for middle masses. At redshift ðzþ 1Þ ¼ 16, the two mass
functions almost overlap, while at lower redshifts, the
numerical curves are roughly a factor 2 greater than the
theoretical ones, due to the fact that the Zel’dovich

FIG. 2. Distribution of dark matter particles in a pure ΛCDM
simulation at redshift zþ 1 ¼ 4. These particles are illustrated by
semitransparent, pale blue points, and overdensities are shown by
a deeper shade of blue.

FIG. 3. The distribution of dark matter particles in the same
simulation as Fig. 2 at redshift zþ 1 ¼ 1.

FIG. 4. Distribution of dark matter particles in a simulation
which includes both ΛCDM fluctuations (with the same seeds as
those in Fig. 2) and cosmic strings with tension Gμ ¼ 10−7 at
redshift zþ 1 ¼ 4. The red circles mark the position of several
prominent loop-seeded halos.

5Due to the resolution limit, the numerical mass function at the
low-mass end is inaccurate.
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approximation is only valid for linear perturbations and
nonlinear effects will enhance the clustering at low redshifs.
Thus, the mass function calculated with the Zel’dovich
approximation underpredicts the abundance of loop-seeded
halos at redshifts ðzþ 1Þ ≤ 8. However, we can find that
the evolution of these loop-seeded halos can still be roughly
described by the growth factor Mloop−seededðtÞ ∝ ðzþ 1Þ−1.
Therefore, we add a factor 2 to the theoretical cosmic string
mass function artificially for ðzþ 1Þ ≤ 8 (when nonlinear

effects become important) when we study the interplay
between loop-seeded overdensities and ΛCDM fluctuations.
The dropoff of the numerical mass functions for small

masses results from the cutoff of loops with mass smaller
than 1016ðGμÞM⊙, which corresponds to loop-seeded halo
mass 1.3 × 1012ðzþ 1Þ−1M⊙ for Gμ ¼ 10−7 and is con-
sistent with the lower bound of these numerical curves. The
numerical mass function is inaccurate at the highest mass
end due to the small number of samples in these mass bins.
Now that we have hopefully persuaded the reader that

our code is working correctly, we can turn to the results.

III. RESULTS

We have performed a series of N-body simulations6

containing both ΛCDM fluctuations and a scaling distri-
bution of string loops with various values of the string
tensionGμ. The key question we wish to address is how the
numerically computed halo mass function compares to the
sum of the analytically computed string halo mass function
superposed with the analytical ΛCDM mass function
obtained by means of the extended Press-Schechter model.
Figure 8 shows the results for simulations with

Gμ ¼ 10−7 at a redshift ðzþ 1Þ ¼ 6, a redshift chosen
because for the value of Gμ used, the two analytical
mass functions cross—the string-induced mass function

FIG. 6. Comparison between the numerically obtained halo
mass function (solid curves) with the analytical approximation
(dotted curves) in a pure ΛCDM simulation at two redshifts. The
vertical axis gives the number of halos in the mass bin with width
d lgðM=M⊙Þ ¼ 0.2 in the simulation volume. Note that there are
too few halos at a redshift zþ 1 ¼ 16 to be found in the
simulation volume, and are therefore not shown.

FIG. 7. Comparison between the numerically obtained halo
mass function (solid curves) with the analytical approximation
(dotted curves) in a pure cosmic string simulation with
Gμ ¼ 10−7. The results at three redshifts are shown. Note that
cosmic strings lead to large mass nonlinear halos at high redshifts
while the standard ΛCDM model does not.

FIG. 5. Distribution of dark matter particles in the simulation of
Fig. 4 at redshift zþ 1 ¼ 1.

6We ran 9 simulations with different N-GenIC seeds and
different distributions of loops following the number density
in (1) and (2) and random spatial distribution to get the average
and standard deviation (shaded region in Figs. 8–10) of the halo
mass function.
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(indicated by th-CS) dominating for larger masses while the
ΛCDM curve (indicated by th-LCDM) is higher at the low
mass end. The results of the numerical analysis are shown
in color (with the spread indicating the variance of the
results). We see that the results agree well with the theory
curve (indicated by th-LCDM+CS) which is the addition of
the cosmic string and ΛCDM theory curves.
With the small number of mass points which we have

simulated we have a limited mass resolution. To obtain
results for a wider range of masses we have patched together
simulations (including both strings and ΛCDM fluctuations)
in different sized boxes.7 The resulting mass functions are
shown in Figs. 9 and 10, the former for Gμ ¼ 10−7 and the
latter for Gμ ¼ 10−8. Note that the error bars in each
simulation are large at the high mass end. Hence, when
we combine the three simulations, the error bars are large at
values of the mass at the transition points between the low
and high mass ends of the different simulations.

IV. DISCUSSION

We have studied early nonlinear structure formation for a
model in which, in addition to the standard Gaussian
ΛCDM fluctuations, there is a scaling distribution of
cosmic string loops. We find that the resulting numerically
computed halo mass function matches well a theoretical
curve which is the superposition of the string loop-induced

FIG. 9. Mass function in simulations with both cosmic strings
(Gμ ¼ 10−7) and ΛCDM fluctuations at redshifts zþ 1 ¼ 8
(yellow) and zþ 1 ¼ 16 (green). Here, simulations in three
different box sizes were patched together, and thus the envelope
of the three numerical curves for each color should be considered.
The dotted curves correspond to the ΛCDM theory predictions,
the dashed one to the cosmic string predictions, and the dot-
dashed curve to the total theory curves (note that these faint
curves are also color-coded). The numerically determined halo
mass function follows the total theory curve except for small
masses, which is due to the mass resolution of these simulations.

FIG. 8. Mass function in simulations with both cosmic strings
(Gμ ¼ 10−7) and ΛCDM fluctuations at the redshift ðzþ 1Þ ¼ 6
when the theoretical cosmic string and ΛCDM mass functions
cross. The purple line is the average of mass functions in the 9
simulations and the shaded region shows the standard deviation.
Gray lines with plus signs, thin crosses and thick crosses are
analytical mass functions with only cosmic strings, only ΛCDM
fluctuations and both of them, separately. The numerical simu-
lations show that the resulting mass function closely follows the
sum of the two theory curves.

FIG. 10. Same as Fig. 9 but for Gμ ¼ 10−8.
7Here we consider three different box sizes—102h−1 Mpc,

103=2h−1 Mpc, and 10h−1 Mpc, and run 9 simulations with
Nparticle ¼ 2563 particles for each of them. The cutoff mass of
cosmic string loops in the different simulations was chosen to
keep the numbers of loops in the simulations the same. In the
simulation in a box of size 103=2h−1 Mpc simulation, the cutoff
mass is 1015ðGμÞM⊙ while it is Mcutoff ¼ 1014ðGμÞM⊙ for box
size equal to 10h−1 Mpc. Therefore, the masses of loops in
smaller boxes are systematically smaller, leading to loop-seeded
halos in lower mass range.
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halo mass function and the usual ΛCDM halo mass
function at high redshifts, while for ð1þ zÞ≲ 10, the
loop-induced halo mass should be increased by a factor
two according to the N-body simulations. This result
will allow us to more reliably compute the effects of
cosmic strings on early structure formation in the mildly
nonlinear region, in particular in the redshift range of
reionization.
Our analysis demonstrates that ΛCDM fluctuations do

not interfere with the role that cosmic string loops could
play in early structure formation, e.g., in generating the
seeds for high redshift supermassive black holes [14] and
high redshift galaxies [16]. The string tensions we have
explored are below the current robust upper bound, but
higher than the value of Gμ ∼ 10−10.5 which is preferred if
cosmic strings are to explain the recently detected [26]
gravitational wave signal in millisecond pulsar timing
arrays (PTAs) [27] (see also [28] for earlier work). In this
context, it is important to take into account that it is smaller
loops which dominate the PTA signal while it is larger
loops which are relevant for supermassive black hole
formation, and for explaining early galaxy formation. The
small loop distribution is more affected by the unknown
physics that goes into establishing a formula for the loop
distribution function such as the “one-scale model” than the
distribution of larger loops. Hence, cosmic strings with
tension Gμ > 10−10.5 could well be consistent with the
PTA constraints.
In this work, we consider Nambu-Goto cosmic strings

with the “one-scale model” of the string loop distribution
given by (1) and (2), which is consistent with the results
from the more recent Nambu-Goto simulations of [8], in
particular with the BOS model (the fifth item in [8]) which
is model A in the recent article by the LIGO-VirgoKAGRA
collaboration [29]). The reader should be aware that there
remain uncertainties in the string loop distribution. Due to
the very large hierarchy of scales between cosmological
length scales and the width of a string, there are serious
obstacles toward deriving robust predictions. In fact, some
field theory simulations [30] (which resolve the string
width) indicate that loops may decay predominantly into
particles, thus greatly suppressing the loop density. But
these field theory simulations do not have access to
cosmological scales. Nambu-Goto simulations, on the other
hand, cannot resolve processes like loop intersections and
rely on extra assumptions. Hence, different cosmic string
models can generate different loop distributions. However,
these uncertainties do not effect our main conclusions,
namely that cosmic string loops will dominate the high
redshift halo mass function, and that the existence of
ΛCDM fluctuations does not systematically influence the
evolution of loop-seeded halos, and thus, the mass function
derived from the corresponding loop distribution is still
reliable at low redshifts with small modifications due to
nonlinear effects.
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APPENDIX: ACCRETION ONTO
A STRING LOOP

Here we explain how we modify the initial conditions
for our Gadget-2 simulations to take into account the effect
of a scaling distribution of string loops. We start with a
distribution of dark matter particles generated from Planck-
normalized Gaussian ΛCDM fluctuations obtained from
the N-GencIC code. We then consider a distribution of cosmic
string loops with a size distribution obtained from the
cosmic string scaling solution described in the Introduction
section, and with uncorrelated loop positions.
We use the Zel’dovich approximation [24] to calculate

the displacement and velocity of dark matter particles
due to a loop which are used in the initial conditions for
the Gadget-2 simulation. For each dark matter particle in the
simulation, we consider the change in position and velocity
induced by string loops, treating the effects of each loop
independently.
The Zel’dovich approximation considers the evolution of

mass shells surrounding the string loops. The Newtonian
gravity effect of the loop causes the Hubble expansion
of the shell to slow down, and eventually the shell “turns
around”, i.e. the physical distance of the shell from the
loops stops increasing. The Zel’dovich approximation is
only valid before the particles turn around. After turn-
around, we assume that the particles virialize before the
initial time of the numerical simulation.
It is justified to view the cosmic string loop as a point

source since the separation of the particles in our simulation
is large compared to the loop size (note that the impact of
the finite size of oscillating loops is studied in [31]).
Therefore, the accretion onto a loop is spherically sym-
metric and thus we only need to calculate the radial
component of the coordinates and velocities of the particles
relative to the center of the loop.
In the Zel’dovich approximation, we consider the physi-

cal distance hðq; tÞ of a shell with initial comoving distance
q from the loop, and denote by ψðq; tÞ the comoving
displacement of the shell as a consequence of the gravi-
tational attraction. We consider only accretion in the matter-
dominated era and hence take the scale factor to be
aðtÞ ¼ ðt=t0Þ2=3. The relation between h and ψ is

hðq; tÞ ¼ aðtÞðq − ψðq; tÞÞ: ðA1Þ
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The dynamics of the test particle is described by Newtonian
gravity, i.e.

ḧ ¼ −
∂Φ
∂h

; ðA2Þ

where the gravitational potential Φ is determined by the
Poisson equation

∇2Φ ¼ 4πGðρbg þ ρstringÞ; ðA3Þ

where ρstring ¼ MloopδðxÞ is the energy density due to the
string loop (taken to be at the origin of the coordinate
system). These two equations can be combined to yield the
following equation of motion for ψ :

ψ̈ þ 4

3
t−1ψ̇ −

2

3
t−2ψ ¼ GMloop

q2

�
t0
t

�
2

; ðA4Þ

whereMloop ¼ βμR is the total mass of the string loop with
radius R. With initial conditions ψðtiÞ ¼ ψ̇ðtiÞ ¼ 0 the
solution is

ψðq; tÞ ¼ 3

2

GMloopt20
q2

�
−1þ 3

5

�
t
ti

�
2=3

þ 2

5

�
ti
t

��
; ðA5Þ

Here, ti is the time that the loop begins to accrete, which is
teq for loops formed in the radiation phase, while for loop
formed in the matter phase we have ti ¼ αR=β, which is the
formation time of this loop. The comoving velocity of the
test particles is

ψ̇ðtÞ ¼ 3

5

GMloopt20
q2ti

��
ti
t

�
1=3

−
�
ti
t

�
2
�
: ðA6Þ

We can calculate the radius of the turnaround shell by
solving the equation

ḣðqnlðtÞ; tÞ ¼ 0; ðA7Þ

which yields

qnl ≃
�
9

5
GMt20

�
1=3

�
t
ti

�
2=9

: ðA8Þ

For particles with distance q > qnlðtÞ (where t is taken to
be the initial time of the N-body simulation) from a loop,
we model the effect of the string loop by adding

displacements and velocities toward the loop given by
(A5) and (A6) to their original coordinates and velocities.
For particles with distance q < qnlðtÞ from one of the

loops, we assume that the particle has virialized in the halo
created by the loop. This implies that the physical distance
of the particle from the loop will be half of the physical
turnaround radius.
The physical distance of the particle at the time tta of

turnaround is

hðttaÞ ¼ aðttaÞðq − ψðttaÞÞ ¼
1

2
aðttaÞq: ðA9Þ

Thus, the physical and comoving distances of the particles
from the loop will be given by

hvirðqÞ ¼
1

2
hðtta; qÞ ¼

1

4
aðttaÞq; ðA10Þ

rcvirðq; zÞ ¼
1

aðtÞ hvirðqÞ ¼
1

4

aðttaÞ
aðtÞ q ¼ 1

4

z
zta

q; ðA11Þ

where zta is the redshift corresponding to the turnaround
time tta. This redshift can be determined by solving
ḣðq; ttaðqÞÞ ¼ 0 and yields

�
zi
zta

�
≃

5q3

9GMloopt20
: ðA12Þ

Thus, we obtain

rcvirðzÞ≡ q − ψðzÞ ≃ 5

36

q4

GMloopt20

z
zi

ðA13Þ

The velocity of test particles can be computed by
requiring the physical height of the particle to be constant.
This leads to a comoving velocity of a virialized particle
toward the string loop of magnitude

ḣvir ¼ ȧrcvir þ aṙcvir ¼ 0 ðA14Þ

which implies

ψ̇ ¼ ṙcvir ¼ Hrcvir ¼
2

3t
rcvir: ðA15Þ

Note that for dark matter particles which are within the
virialized radius of a particular loop, no effects from other
loops are taken into account.
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