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We provide a formulation of stochastic inflation in full general relativity that goes beyond the slow-roll
and separate universe approximations. We show how gauge-invariant Langevin source terms can be
obtained for the complete set of Einstein equations in their Arnowitt-Deser-Misner formulation by
providing a recipe for coarse-graining the spacetime in any small gauge. These stochastic source terms are
defined in terms of the only dynamical scalar degree of freedom in single-field inflation and all depend
simply on the first two time derivatives of the coarse-graining window function, on the gauge-invariant
mode functions that satisfy the Mukhanov-Sasaki evolution equation, and on the slow-roll parameters. It is
shown that this reasoning can also be applied to include gravitons as stochastic sources, thus enabling the
study of all relevant degrees of freedom of general relativity for inflation. We validate the efficacy of these
Langevin dynamics directly using an example in uniform field gauge, obtaining the stochastic e-fold
number in the long wavelength limit without the need for a first-passage-time analysis. As well as
investigating the most commonly used gauges in cosmological perturbation theory, we also derive
stochastic source terms for the coarse-grained Baumgarte-Shapiro-Shibata-Nakamura formulation of
Einstein’s equations, which enables a well-posed implementation for 3þ 1 numerical relativity simu-
lations.
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I. INTRODUCTION

Inflation theory was postulated more than 40 years ago
as an explanation for the apparently fine-tuned initial
conditions of the hot big bang [1–3]. The proposal gained
traction as it also offers a natural mechanism for generating
the initial density inhomogeneities [4–9] which in later
stages of cosmic history led to the formation of cosmic
structure via gravitational instability. These density fluc-
tuations are directly observable in the cosmic microwave
background (CMB) and their two-point statistics have been
measured to very high precision [10].
Inflation also predicts the existence of a cosmological

gravitational wave background [11], yet to be detected, as
well as the possible existence of nonzero higher-order
spatial correlation functions in the cosmological fluid [12].

The latter’s amplitude, and the amount of non-Gaussianity
more generally, depend more heavily on the specifics of the
inflationarymodel. They could be detectable in theCMBand
cosmological structures and even lead to the formation of
primordial black holes. If detected, any such features would
open up remarkable windows into the early Universe.
Central to the inflationary origin scenario is the

assumption that our universe originated from quantum
processes. This underscores the necessity to combine quan-
tum mechanics and gravity to make precise predictions for
inflationary models of the early Universe. Although a theory
of quantum gravity is lacking, despite decades of efforts
[13–18], there are regimes where predictions can still be
made by using techniques from quantum field theory on
curved spacetime (QFTCS) [15] or by constructing effective
field theories (EFTs), which havemade continuous advance-
ments in cosmology, inspired by the latter’s success in flat
space [19]. Abandoning pretenses of completeness, an EFT
establishes a region of validity, normally bounded by UV
and/or IR cutoffs, and the narrative of theoretical physics is
implicitly about pushing these cutoffs to their limits.
Not long after the original concept of inflation was

introduced, stochastic inflation (SI) was formulated in [20],
was used as a nonperturbative methodology for light scalars
in de Sitter in [21], and was later adopted as a special kind
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of EFT for inflationary physics, as part of a semiclassical
stochastic gravity approach [22]. Stochastic inflation there-
fore, can be thought of as an EFT for light scalar fields in
quasi-de Sitter spacetimes that sets its UV cutoff at the point
where quantum operators governing the field perturbations
can be described as classical stochastic variables and super-
Hubble correlators can automatically exhibit decoherence, a
distinctive feature of such systems. In most inflation models,
this transition occurs when Fourier modes cross the Hubble
radius and their transition into the EFT’s range of validity is
modeled by the action of a small stochastic noise perturbing
the long wavelength fields described by general relativity; in
a sense, stochastic inflation is a combination of deterministic
evolution with a continuous reset of initial conditions by
small stochastic amounts coming from the influx of new
modes which cross the UV threshold. The stochastic equa-
tions can then be used to derive nonperturbative results such
as resummations of classical loops which are IR divergent in
QFTCS [23–25].
In thiswork, as inmost others on the topic, the sub-Hubble

scales will be described by linear cosmological perturbation
theory (CPT); although higher-order perturbation theory can
in principle be used for these sub-Hubble scales [26], wewill
not undertake such an endeavor here. Stochastic inflation
therefore, in its current formulation, sacrifices nonlinearities
arising in the sub-Hubble regime in favor of a fully non-
perturbative theory in the super-Hubble regime, where
QFTCS might fail as it has already been reported [24]. It
is therefore particularly suited for circumstances where
nonlinear evolution on super-Hubble scales, and possibly
nonperturbative correlators or even full probability density
functions (PDFs), are the relevant quantities to compute.
Although able to provide nonperturbative quantities,

stochastic inflation as usually formulated comes with several
approximations that simplify the complex dynamics of
general relativity, most notably relying on the separate
universe approximation (SUA) [27–29] and therefore alto-
gether dropping the dynamics of some degrees of freedom of
the gravitational field. To find the spectrum of the stochastic
perturbations, it has also been claimed to require a specific
choice for the time slicing to ensure consistency with
QFTCS, namely using a uniform e-fold time slicing [30–
33]. However, there are formulations where such restrictions
are not required [34,35], which appears to be linked to an
ongoing discussion about the appropriate inclusion of the
momentum constraint [35,36]. Furthermore, obtaining the
observationally relevant curvature perturbation then requires
a “first passage time” analysis (FPTA) to determine a
stochastic number of e-folds for a specified point of the
scalar potential to be reached [37].
In this article, we endeavor to demonstrate that it is

possible to generalize the stochastic inflation equations by
making the linear treatment on sub-Hubble scales the
sole assumption, thereby removing the need for all the
aforementioned approximations. More specifically, we
formulate equations for Stochastic Inflation within full

General Relativity in its Arnowitt-Deser-Misner (ADM)
formulation, retaining all the variables describing the
gravitational field and the freedom to choose the time
slicing and the spatial coordinates within the 3D time slices.
To achieve this, we will proceed as follows: After

recalling the ADM formulation and its linearized version
in Sec. II, we survey a range of commonly used gauges and
gauge invariant variables in Sec. III, where we also provide
explicit expressions for determining the spacetime foliation
and the dynamical variables from knowledge of the gauge
invariant comoving curvature perturbation R. Our pro-
cedure for coarse-graining and obtaining stochastic source
terms for the full set of ADM equations is explained in
Sec. IV. These stochastic sources are expressed in terms of
R and are found to be identical in all the small gauges we
examine. We therefore postulate that they represent the
complete small gauge invariant stochastic continuation of
the Einstein equations with linearized source terms, noting
that they satisfy linear perturbation theory by construction
in any choice of gauge/foliation. Section IV E extends the
result to include tensorial modes sources. As a short
application, we present and solve stochastic equations
for ΔN in Sec. V in a toy model exhibiting a short phase
of ultra slow-roll, directly obtaining the PDF of the
curvature perturbation without the need for a first-pas-
sage-time analysis.
Notations. Units are such that ℏ ¼ c ¼ 1. The Planck

mass is written MPl ¼ ð8πGÞ−1
2. Quantum operators will

carry ð̂Þ while random variables will be bold symbols. We
adopt the following Fourier transform convention:

F−1f·g ¼ R d3k⃗ffiffiffiffi
2π

p
3 ð·Þe−ik⃗·x⃗. When it is needed, a background

field with respect to cosmological perturbation theory will
carry a ’b’ subscript. ð̇Þ will be time coordinate partial
derivatives if not explicitly total.

II. ADM EQUATIONS AND SCALAR LINEAR
PERTURBATIONS

In this section, we review the ADM formulation of the
equations of general relativity and their linearized pertur-
bations around a homogeneous and isotropic background.
For further purposes that will become clear further ahead,
all equations are written as left-hand sided.

A. ADM formulation of Einstein’s equations

For an unknown four-dimensional metric tensor with
components gμν describing a spacetime with Ricci scalar R
and ‘matter’ Lagrangian density Lm, the Einstein-Hilbert
action with vanishing Gibbons-Hawking-York boundary
terms [38,39] is

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4xLm: ð1Þ
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When varied with respect to the metric gμν it gives
Einstein’s equations,

Gμν −M−2
Pl Tμν ¼ 0; ð2Þ

where Tμν ¼ − 2ffiffiffiffi−gp δLm
δgμν

such that ∇μTμν ¼ 0 by construc-

tion. In this work, we will study a single ϕ scalar field fluid
described by

Lm ¼ −
ffiffiffiffiffiffi
−g

p �
1

2
gμν∇μϕ∇νϕþ VðϕÞ

�
: ð3Þ

In what follows wewill use the common notations for the
3þ 1 splitting of ADM formalism [40], letting n and P be
the projectors along the normal of the 3-space submanifold
and the submanifold itself, respectively. The associated
covariant derivative component on the 3-space submanifold
will be denoted by a vertical bar ðÞji.
We start from the ADM parametrization of the metric,

assuming the existence of a foliation of spacetime

ds2 ¼ −α2dt2 þ γijðdxi − βidtÞðdxj − βjdtÞ: ð4Þ

The Einstein-Hilbert action can be re-expressed to reflect
this 3þ 1 splitting

S ¼ M2
Pl

2

Z
dtd3xα

ffiffiffi
γ

p ½3R − K2 þ KijKij�

þ
Z

dtd3xα
ffiffiffi
γ

p �
1

2
Π2 −

1

2
∂iϕ∂

iϕ − VðϕÞ
�
; ð5Þ

where 3R the Ricci scalar of the spatial metric γij, and Π is
the conjugate momentum

Π ¼ nμ∂μϕ ¼ 1

α
ðϕ̇þ βi∂iϕÞ; ð6Þ

and K is the extrinsic curvature

Kij ≡ nijj ¼ −
1

2α
ðγij;0 þ βijj þ βjjiÞ; ð7Þ

which is usually split into its trace and traceless compo-
nents K and K̃ij, respectively.
Variation of (5) with respect to ϕ yields the field

evolution equation,

1

α
ðΠ̇þ βiΠjiÞ − KΠ −

αji

α
ϕji − ϕji

ji þ
dV
dϕ

¼ 0; ð8Þ

while variation with respect to γij yields the gravitational
field’s evolution equations

8>>>>>>>><
>>>>>>>>:

K̇ þ βiK;i þ αjiji − αð3Rþ K2Þ
−M−2

Pl α
�
1
2
S − 3

2
ρ
�
¼ 0;

˙̃Kij þ 2αK̃ilK̃l
j þ βkK̃ijjk − 2βi

jkK̃jk þ αjijj

− 1
3
αjkjkδij − α

�
3R̃ij þ 1

3
KK̃ij

�
þM−2

Pl αS̃ij ¼ 0;

ð9Þ

where the 3þ 1 components of the energy-momentum
tensor are the energy and momentum densities

�
ρ¼ nμnμTμv ¼ α2T00 ¼ 1

2
Π2 þ 1

2
∂iϕ∂

iϕþVðϕÞ;
J i ¼ −nμPνiTμν ¼ αT0

i ¼ −Π∂iϕ;
ð10Þ

and the stress tensor Sij ¼ PμiPνjTμν ¼ Tij, decomposed as

� S≡ 3gijSij ¼ 3
2
Π2 − 1

2
∂kϕ∂

kϕ − 3VðϕÞ;
S̃ij ≡ Sij − 1

3
3gijS ¼ 1

2
ð∂iϕ∂jϕ − 1

3
∂kϕ∂

kϕδijÞ:
ð11Þ

Finally, variation with respect to α and βi leads to two
constraints

� 3Rþ 2
3
K2 − K̃ijK̃ij − 2M−2

Pl ρ ¼ 0;

K̃j
ijj − 2

3
Kji −M−2

Pl J i ¼ 0;
ð12Þ

usually referred to as the Hamiltonian and momentum
constraints, respectively.

B. Scalar linear equations

This section reviews the linearized version of the ADM
formalism of scalar perturbation theory without making any
gauge choice [41]. The linear equations presented below
match exactly the nonlinear left-hand sides (lhs) of the
previous subsection. Since the standard Einstein and ADM
systems of equations are equivalent up to substitutions and
factors, the equations below are also equivalent to the more
commonly adopted formulations of cosmological pertur-
bation theory.
We can incorporate general scalar perturbations through

the line element,

ds2 ¼ −α2bð1þ 2ΨÞdt2 þ 2a2B;idtdxi

þ a2½ð1 − 2ΦÞδij þ 2E;ij�dxidxj; ð13Þ

where the four scalar functions Φ, Ψ, B and E define the
3þ 1 perturbations of the full ADM metric and a the usual
background scale factor. The full dictionary from ADM to
the first-order scalar decomposition follows from the
identification of the metrics,
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8>><
>>:

α ¼ αbð1þ ΨÞ;
βi ¼ −a2B;i;

γij ¼ a2½ð1 − 2ΦÞδij þ 2E;ij�;
ð14Þ

which leads to the linear extrinsic curvature,

8>>><
>>>:

Ki
j ¼ −Hδij þ 1

3
κδij −

�
∂
i
∂j − 1

3
Δδij
�
χ;

χ ≡ − a2
αb
ðB − ĖÞ;

κ ≡ 3
�
Φ̇
αb
þHΨ

�
− Δχ;

ð15Þ

where Δ ¼ ∂i∂
i ¼ ∇2=a2 and the energy-momentum den-

sities,

8>>><
>>>:

ρ ¼ ρb þ ϕ̇b
αb

δϕ̇
αb
þ dV

dϕ ðϕbÞδϕ − ϕ̇b
2

α2b
Ψ;

J i ¼ − ϕ̇b
αb
∂iδϕ;

Sij ¼ ðPb þ δPÞδij þ
�
∂i∂j − 1

3
δij∇2

�
σ;

ð16Þ

where σ ¼ 0 (no anisotropic shear in this work, which is
gauge-invariant to say), which means that S̃ij ¼ 0 at first
order. Note that the 3-Ricci tensor is also very simple and is
given by

3Ri
j ¼ ΔΦδij þΦ;i

;j; ð17Þ

at first order.
Substituting these expressions into the full ADM equa-

tions yields a set of zeroth- and first-order perturbation
equations which do not yet incorporate a choice of gauge.
Setting H ≡ − 1

3
Kb ¼ 1

αb
ȧ
a, the background terms yield,

8>>>>><
>>>>>:

6H2 − 2M−2
Pl

�
VðϕbÞ þ 1

2
ϕ̇b

2

α2b

	
¼ 0;

3M−2
Pl VðϕbÞ − 9H2 − 3 Ḣ

αb
¼ 0;

ϕ̈b
α2b
þ
�
3H − α̇b

α2b

	
ϕ̇b
αb
þ dV

dϕ ðϕbÞ ¼ 0;

ð18Þ

from the Hamiltonian constraint, the extrinsic curvature,
and the field evolution equations respectively, while other
equations are vanishing. These are of course the equations
of homogeneous and isotropic Friedmann-Lemaître-
Robertson-Walker cosmology. At first order, the gravita-
tional evolution equations become,

8>><
>>:

κ̇
αb
þ 2Hκ þ

�
Δþ 3 Ḣ

αb

	
Ψ − 1

2
M−2

Pl ðδρþ 3δPÞ ¼ 0;�
1
3
δij∇2 − ∂i∂j

	�
χ̇
αb
þHχ −ΨþΦ −M−2

Pl σ

	
¼ 0;

ð19Þ
while for the field equation

δϕ̈

α2b
þ
�
3H −

α̇b
α2b

	
δϕ̇

αb
− Δδϕþ d2V

dϕ2
ðϕbÞδϕ

−
ϕ̇b

αb

�
κ þ Ψ̇

αb
− 3HΨ

	
þ 2Ψ

dV
dϕ

ðϕbÞ ¼ 0: ð20Þ

Finally, the first-order constraint equations are

(
4ΔΦ − 4Hκ − 2M−2

Pl δρ ¼ 0;

−2∂i½Δχ þ κ þ − 3
2
M−2

Pl
ϕ̇b
αb
δϕ� ¼ 0:

ð21Þ

Hence we have five equations for the five unknowns
δϕ;Ψ;Φ; E, and B. In general, we can use the gauge
freedom to fix two of these variables. The two constraints
then further reduce the dynamical scalar degrees of freedom
down to one, usually encapsulated in a variable that is also
gauge invariant.

III. SPACETIME FOLIATIONS AND SCALAR
FIELDS FROM THE COMOVING CURVATURE

PERTURBATION

In this section, we will explicitly show how a choice of
gauge combined with knowledge of the gauge invariant
variable R determine, to first order, the 3D spacetime
hypersurfaces corresponding to the ADM foliation and all
perturbation variables. We will use the relations of this
section later when we derive our stochastic equations. We
start by recalling a set of well-known gauge invariant
variables used in the literature.
In the following and unless stated differently, αb ¼ 1,

which implies that ð̇Þ is a cosmological time derivative and
H is the common Hubble rate.

A. Scalar perturbations, all-in-one

Gauge-invariant quantities present many advantages
beyond their invariance under coordinates transformations:
they naturally reduce the dynamics to the single dynamical
scalar degree of freedom and their dynamical equations
guarantee that the constraints of general relativity are
automatically satisfied. Many linear combinations of
δϕ;Ψ; E; B, and Φ are known to be gauge invariant at
first order, in particular, Bardeen potentials ΦB and ΨB
[42], the gauge-invariant field perturbation δϕgi, the cur-
vature perturbation on uniform density hypersurfaces ζgi or
the curvature perturbation on comoving hypersurfaces R.
They are given by
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8>>>>>>>><
>>>>>>>>:

ΦB ¼ ΦþHχ;

ΨB ¼ Ψ − χ̇;

δϕgi ¼ δϕ − ϕ̇bχ;

ζgi ¼ −Φþ δρ
3ðρbþPbÞ ;

R ¼ Φþ H
ϕ̇b
δϕ:

ð22Þ

Those are convenient for the community as they appear to
have simple gauge-invariant evolution equations. For
example, for a single field ½PðX;ϕÞ ¼ X − VðϕÞ�-theory,
the Fourier modes of R satisfy [4,43]

R̈k þHð3 − ε2ÞṘk þ
k2

a2
Rk ¼ 0; ð23Þ

where ε2 ¼ −ε̇1=Hε1 and ε1 ¼ −Ḣ=H2 are the slow-roll
parameters. A remarkable feature of the above equation is
the perfect cancellation of R’s effective mass term. As we
mentioned above, by knowing the background and a
universal description of the perturbations such as R, one
can then write all fields in any gauge, including ones
employed in numerical relativity. Examples are given in the
next subsections.
In this work, we will useR as our master gauge-invariant

variable. It is possible to express all other gauge-invariant
variables in terms of R as8>>>>><

>>>>>:

ΦB ¼ −ε1Ha2k−2Ṙ;

ΨB ¼ ε1Rþ ε1a2k−2½R̈þHð2 − ε2ÞṘ�;
δϕgi ¼

ffiffiffiffiffiffiffi
2ε1

p
MPl½Rþ ε1a2Hk−2Ṙ�;

ζgi ¼ −Rþ 1
3
H−1Ṙ:

ð24Þ

These relations are most easily obtained in the comoving
gauge (see below) but since they are relations between
gauge invariant variables they hold in all gauges.
Equation (24) will be more than useful in some of the
gauges we will examine below when the constraint equa-
tions will not be directly solvable. Note also that by using
Eq. (23) one easily shows that ΦB ¼ ΨB which is known to
hold for a scalar field as there is no anisotropic stress at
linear order. We will however keep these two variables
distinct as they will differ by a stochastic term when we
consider coarse-graining [see Eq. (52)].

B. Spacetime foliations in different gauges

1. Pure gravity-comoving gauge

A gauge will be called pure gravity if it sets δϕ and E to
small arbitrary spacetime functions δϕ� and E�, their
smallness being of the order of other perturbative quantities
such as R. The null case δϕ� ¼ E� ¼ 0 is commonly used
in cosmology and is referred to as the comoving gauge.
Such a pure gravity gauge is probably among the simplest

ones to deduce the whole 3D hypersurface. Indeed, Φ is
given directly via the definition of R together with the
chosen δϕ�. Substituting it in the linearized energy and
momentum constraints [Eq. (21)] yields the following
result for Ψ and B∶8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

E ¼ E�;

δϕ ¼ δϕ�;

Φ ¼ R − ð2ε1M2
PlÞ−1=2δϕ�;

Ψ ¼ ð2ε1M2
PlÞ−1=2

�
ε1 þ 1

2
ε2

	
δϕ�

−H−1Ṙþ ð2ε1M2
PlH

2Þ−1=2 ˙δϕ�;

B ¼ Ė� þ k−2ε1Ṙ

þða2HÞ−1½R − ð2ε1M2
PlÞ−1=2δϕ��:

ð25Þ

Alternatively, we could have used Eq. (24) directly to
obtain the same relations. Either way, all quantities have
been expressed in terms of R, and the constraints are
satisfied by construction.
For the comoving gauge we have, in particular

8>>>>>><
>>>>>>:

E ¼ 0;

δϕ ¼ 0;

Φ ¼ R;

Ψ ¼ −H−1Ṙ;

B ¼ k−2ε1Ṙþ ða2HÞ−1R;

ð26Þ

and both the foliation and the spatial geometry are
expressed in terms of R.

2. Fixed spatial curvature: Spatially flat gauge

A gauge will have fixed spatial curvature if it sets Φ and
E to small arbitrary spacetime functions Φ� and E�. The
null case Φ� ¼ E� ¼ 0 corresponds to the well-known
spatially flat gauge of cosmological perturbation theory.
This family of gauges is as easy to handle as the pure

gravity family above. Noting that R is proportional to one
of the perturbation quantities, here δϕ, the momentum
constraint can be used to obtain Ψ while the Hamiltonian
constraint gives B

8>>>>>><
>>>>>>:

E ¼ E�;

Φ ¼ Φ�;

δϕ ¼ ffiffiffiffiffiffiffi
2ε1

p
MPlðR −Φ�Þ;

Ψ ¼ ε1ðR −Φ�Þ −H−1Φ̇�;

B ¼ Ė� þ ε1k−2Ṙþ ðHa2Þ−1Φ�:

ð27Þ

Again, we could have used Eq. (24) directly to obtain the
same relations. We have therefore obtained the foliation
and the field perturbation in terms of the only degree of
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freedom for the evolution of the perturbations. The hyper-
surface geometry is of course explicitly given by the gauge
choice here.

3. Newtonian gauge

A gauge will be called Newtonian if it sets B and E to
small arbitrary spacetime functions B� and E�. Unlike the
two previous gauge families, in this type of gauge using the
constraints alone is not enough to express all quantities in
terms of R. We can however resort to Eq. (24). Starting
from χ� ¼ −a2ðB� − Ė�Þ, one gets Φ from ΦB and then Ψ
is obtained from either the momentum constraint or ΨB,

8>>>>>>>>>>><
>>>>>>>>>>>:

E ¼ E�;

B ¼ B�;

Φ ¼ ΦB −Hχ� ¼ −ε1Ha2k−2Ṙ −Hχ�;

δϕ ¼ ffiffiffiffiffiffiffi
2ε1

p
MPl

�
Rþ ε1Ha2

k2 Ṙ − a2ðB� − Ė�Þ
�
;

Ψ ¼ −ε1a2Hk−2Ṙ;

−2a2HðB� − Ė�Þ − a2ðḂ� − Ë�Þ:

ð28Þ

The standard case in cosmology is of course obtained
for B� ¼ E� ¼ 0.

4. Uniform N

If one defines N to be the number of e-folds elapsed
from an arbitrary time t0 via

�
∂0N ≡ − 1

3
αK ¼ 1

6
∂0 ln ð3Þg;

N ðt0; x⃗Þ ¼ 0;
ð29Þ

then a gauge will be of uniform (or fixed) N if δN is fixed
to a small arbitrary spacetime function δN � while B ¼ 0.
As explained in Sec. IV B, this type of gauge with δN � ¼ 0
is the one mainly used in the formulations of stochastic
inflation in the current literature.
As N ≡ − 1

3

R
t0
Kαdt, one gets N b ¼

R
t0
Hdt at zeroth

order and δN ¼ Φþ 1
3
k2E at first order [32]. To calculate

the whole hypersurface, one first needs to solve for E by
using ΦB to obtain,

Ė −
1

3
a−2H−1k2E ¼ −a−2H−1δN � − ε1k−2Ṙ; ð30Þ

the solution of which provides E as

E ¼ e
R

t

t0

k2

3a2H

�
E0ðx⃗Þ −

Z
t

t0

e
−
R

s

t0

k2

3a2H
dt0
�
δN �

a2H
þ ε1Ṙ

k2

	
ds
�
;

ð31Þ

with Eðt0; x⃗Þ≡ E0ðx⃗Þ. Note that there is still some gauge
freedom left in the choice of the initial value of E in space.
Once E is known, one gets

8>>><
>>>:

Φ¼ − 1
3
k2Eþ δN �;

δϕ¼ ffiffiffiffiffiffiffi
2ε1

p
MPl

�
Rþ 1

3
k2E− δN �

�
;

Ψ¼ ε1ðRþ 1
3
k2E− δN �Þ þH−1

�
1
3
k2Ė− ˙δN �

�
:

ð32Þ

5. Generalized synchronous gauges

A gauge will be called generalized synchronous if it sets
Ψ and B to small arbitrary spacetime functionsΨ� and B� to
stay within perturbation theory. The null case corresponds
to the synchronous gauge in cosmology. Similarly to the
Newtonian case, in this gauge family constraints are not
enough to solve in terms of R, which is why we use
Eq. (24) on top of it. This inconvenience is an indication of
the gap between numerical relativity and cosmology
gauges.
Using the definitions of the gauge-invariant ΨB and ΦB

and the latter’s relation to R, see (24), we can obtain the
following cascade:

8>>><
>>>:

χ ¼ R tðΨ� −ΨBÞdt0 þ χ0;

E ¼ R t½B� þ a−2χ�dt0 þ E0;

Φ ¼ ΦB −Hχ;

δϕ ¼ ffiffiffiffiffiffiffi
2ε1

p
MPl½R −Φ�;

ð33Þ

which are all functions of R and its first- and second-order
time derivatives and their integrals.
In this gauge both χ and E need to be initialized at a

given time by space-only functions χ0ðx⃗Þ and E0ðx⃗Þ. It is
indeed a well-known problem that the synchronous gauge
(and so more generally any small extended synchronous
gauge) does not fix all gauge degrees of freedom and that
there is still spatial dependence [44], even though this can
sometimes be confused with physical choices in the
literature, see Appendix B for proof. In this work, we will
choose gauges such that χ0 ¼ E0 ¼ 0 at an arbitrary time,
hidden in an implicit boundary of the time integrals.

IV. STOCHASTIC EQUATIONS FOR
GENERAL RELATIVITY

A. Schematic formulation of effective
stochastic IR dynamics

As mentioned in the introduction, stochastic nflation can
be thought of as an EFT [45] of QFTCS, valid on scales
where quantum correlation functions can be well approxi-
mated by classical, stochastic ones. Its utility lies in treating
fluctuations beyond perturbation theory and associated
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truncations in orders of nonlinearity on super-Hubble
scales, compared to QFTCS [46].
By definition, the EFT refers to variables that are coarse-

grained beyond a certain length scale, normally commen-
surate with the Hubble radius, but there is no general
method for this coarse-graining in inflationary spacetimes.
The greatest difficulty of applying known EFT techniques
with SI is probably the nature of its IR-UV split; the cutoff
is spacetime dependent. While building an EFT from a path
integral [47,48] is a possible approach in simple cases of
test fields in de Sitter (dS), no such approach that also
includes the fluctuations of the metric in inflationary
spacetimes has been achieved.
In this work, we use a coarse-graining of the equations of

motion (EOM), which is probably the most common
approach for reasons that will become clearer later.
Given the complexity of the complete set of equations,
we first schematically review its philosophy. Let us assume
that we possess an IR classical theory giving access to some
second-order tensorial partial differential equations and
their linearization at first order in CPT of the form

�
Λiab∇a∇bXi þ Ωi ¼ 0;

λiab∂a∂bδXi þ δΩi ¼ 0;
ð34Þ

where Xi,ΩiðXÞ, are tensors of identical rank withΩi being
functions of the Xi. δXi and δΩi are their linearized
perturbations, δΩi being a linear combination of δXi and
their partial derivatives. Those equations could be the
previous section’s or approximated versions of them or
any others. No assumption is made on Λ, Ω, λ, and δΩ
except their smoothness and that they depend on
fXj;∇Xjgj, and spacetime coordinates. No straightforward
link between λ and Λ or δΩ and Ω can be written down,
although one has to bear in mind that δΩi can carry
perturbations of the fXjgj and of g along with their first
partial derivatives. Note that the background equation has
been kept implicit but answers the relation Xi ¼ Xi

b þ δXi.
The background is most of the time assumed homo-
geneous, which will be the case in this work.
The next step is to find a solution of the first-order

equations in Fourier space for fδXj

k⃗
gj, in at least one gauge.

In the case of Inflation, the spatially flat gauge is the most
common one to use where the dynamical field is equal to
the curvature perturbation on comoving hypersurfaces
following the Mukhanov-Sasaki equation, Eq. (23). After
that, a gauge transform can bring the calculated spectrum to
the desired gauge, although those extra terms are usually
neglected under the right assumptions [32]. The fδXjgj are
assumed to remain dynamical quantities in this new gauge,
i.e., with a nonzero conjugate momentum in the sense of
field theory (FT). This assumption is necessary to make
sure the equations are dynamical but also to make sure
that canonical quantization is possible. At this stage,

quantization is usually written down explicitly as an
expansion in the modes,

δX̂i ¼ F−1fδXi
k⃗
âk⃗g þ H:c:; ð35Þ

where ½âk⃗; â†k⃗0 � ¼ δð3Þðk⃗ − k⃗0Þ and any other commutator

being 0. This thus gives us a Gaussian spectrum.
With the solutions of the linearized equations at hand, the

principle of the literature is simple and is called IR-UV
splitting [20]. The quantized perturbations are indeed split
as δX̂i ¼ δX̂i> þ δX̂i<, i.e., into long and short wavelength
parts respectively,1 for instance with a spacetime-dependent
window function in Fourier space,

δX̂i> ¼ F−1fWi
k⃗
δXi

k⃗
âk⃗g þ H:c:; ð36Þ

For SI, the window function would typically let short
modes become long ones when their wavelength equals or
exceeds the Hubble horizon, namely k≲ aH, to ensure
classicalization.
The UV-IR splitting via some window function implies

that the linearized equation for the long wavelength δXi>,
simplified by the use of Xi

b ’s and δX
i’s equations, will have

a nonzero rhs term [compare with Eq. (34)]

λiab∂a∂bδX̂
i> þ δΩ̂i> ¼ Σ̂i; ð37Þ

where the rhs Σ̂i is a Fourier expansion of functions of δX̂i>

and its first derivatives, but also of the window function
derivatives.2 Equation (37) is a quantum Langevin equation
[49] obtained after coarse-graining and quantization. To get
a classical equation, i.e., to get rid of the operators, we need
the Stochastic approximation to write,

δX̂i> ≃
1ffiffiffi
2

p ½F−1fδXi>
k⃗
αk⃗g þ c:c�; ð38Þ

where αk⃗ are now random variables such that

� hαk⃗αk⃗0 iP ¼ 0;

hαk⃗αk⃗0
�iP ¼ δð3Þðk⃗ − k⃗0Þ: ð39Þ

To match the Gaussian spectrum of the linearized quantum
operators, one should take αk⃗ ∼ CN ð0; 1Þ, which is equiv-
alent to Real½αk⃗�; Im½αk⃗� ∼N ð0; 1=2Þ independently or

jαk⃗j ∼ Rayleighð1= ffiffiffi
2

p Þ and Arg½αk⃗� ∼ Uð0; 2πÞ. The val-
idity of this classicalization can be tested by showing that

1Note that many authors use < and > for long and short
wavenumbers instead.

2Some authors [34] will prefer to calculate the lhs of Eq. (37)
given a windowed δXi> while others [20,32] would equivalently
calculate Σ̂ ¼ −λiab∂a∂bδX̂i

< − δΩ̂i
< given a windowed δXi

<.
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correlators of δX̂> and associated conjugate momenta
receive negligible contributions from noncommutative
terms on long wavelengths. For SI, the validity has already
been studied and the following analysis will be restricted to
the applicable cases [20,50–52].
Finally, under the assumption that linear theory is

enough at horizon crossing for computing the stochastic
Σi, the lhs of (37) can be promoted to the full nonlinear
equation in (34) with the understanding that it refers to the
coarse-grained quantity Xi>:

Λiab∇a∇bXi> þ Ωi> ¼ Σi: ð40Þ

The above equation constitutes the long wavelength,
stochastic version of the original and is postulated to
furnish an adequate approximation to the long wavelength
fluctuation dynamics. The line of reasoning leading to (40),
applied to a truncated subset of the Einstein equations,
underlies most existing expositions of stochastic inflation
equations in the literature.
This linear source approximation, together with its

assumed Gaussianity, is a common feature of the stochastic
inflation literature [20,47,53], but its justification is rarely
made explicit. The validity domain of this approximation
lies in scenarios where, before horizon-crossing, UV scales
have suppressed higher-order statistics compared to the UV
tree level or compared to their IR counterparts generated
from the UV tree level, after horizon-crossing. A quasi-dS
universe is probably the safest case in this regard, which is
convenient for its believed physical relevance. Some
previous work [26] has even managed to account for
suppressed next-order statistics in the noise. More gener-
ally, this stochastic evolution should be reliable for study-
ing any nonlinearity and non-Gaussianity generated by the
evolution that is larger than the first order in CPT.
However, if no nonperturbative effect is obtained from
SI, then one should stick to QFTCS, valid on IR scales and
beyond tree level before horizon-crossing, which is more
precise than SI, as the disagreement between the two shows
in perturbative regimes [35].
In this section and following the literature, the stochastic

backreaction (different from the classical Einstein back-
reaction) has also been neglected because we have linear-
ized the theory around the homogeneous background and
not around the IR quantities by invoking the Starobinsky
approximation Xi> ¼ Xi

b þOðδXiÞ [20]. This includes the
calculus of the spectrum of fδXj

k⃗
gj. This assumption is

crucial to get closer to a Markovian system and at least an
additive noise, thus facilitating analytical solutions.
However, different heuristics have been used in the past

for the stochastic update of those rhs and of the background
quantities on which the modes evolve. Usually, background
quantities Xi

b in the rhs of Eq. (40) and in the equation of
fδXj

k⃗
gj are taken as their local IR versions Xi>ðt; x⃗Þ. In this

case, solving the equations requires a numerical approach
[35,54,55]. These studies have all reported a very small
impact so far. In this work, we will keep it arbitrary and
keep any rhs amplitude factor such as H or εi undefined in
this respect, until further comment. In the linear limit, one
always retrieves Eq. (37).
To summarize, stochastic inflation is about reducing

QFTCS approximations to UV scales only, allowing for the
possibility to study fully nonlinear and nonperturbative
phenomena on IR scales, i.e., above Hubble scales in our
case. The Langevin-type EOM of stochastic inflation can
also be mapped to an associated Fokker-Planck (FP)
equation and both can be solved either analytically in
some simple cases or numerically. From these solutions,
one can then derive nonperturbative correlators or even the
full probability functional of the fields. It is in this ability to
provide results beyond perturbation theory or even fixed
n-point correlators where stochastic inflation’s appeal lies.

B. Current approaches to stochastic
inflationary dynamics

So far we presented a schematic picture of how one
might obtain equations describing the dynamics of sto-
chastic Inflation from coarse-graining the equations of
motion. However, applying the above scheme to the full
equations of General Relativity has not been implemented
due to the latter’s relative complexity, the a priori large
number of variables, which can be both dynamical and
constrained, and the necessity of making coordinate/gauge
choices. As a result, various approximations have been
made, mostly taking the long wavelength limit and reduc-
ing the number of dynamical variables.
Early work focused on the coarse-graining of the Klein-

Gordon field equation only, assuming an unperturbed
(initially dS) background and coarse-graining the field
and sometimes its conjugate momentum [20,49,56–58].
It was only in [27,28] that the first stochastic equations
were formulated fully including metric perturbations and so
backreaction. This approach is still widely used. It consists
in decreasing the interdependence of GR equations by
using the long wavelength approximation and judicious
gauge choices. In the full ADM formalism, even before
linearization and coarse-graining, the lowest-order gradient
expansion of Eqs. (9) and (12) in the convenient βi ¼ 0
slicing becomes [27,36,59]

8>>><
>>>:

K̇ − αK2 −M−2
Pl α

�
1
2
S − 3

2
ρ

	
¼ 0;

˙̃Ki
j − αKK̃i

j þM−2
Pl αS̃

i
j ¼ 0;

1
α Π̇ − KΠþ dV

dϕ ¼ 0;

ð41Þ

together with the constraints

LAUNAY, RIGOPOULOS, and SHELLARD PHYS. REV. D 109, 123523 (2024)

123523-8



� 2
3
K2 − K̃ijK̃ij − 2M−2

Pl ρ ¼ 0;

K̃j
ijj − 2

3
Kji −M−2

Pl J i ¼ 0:
ð42Þ

Furthermore, S̃ij is usually set to zero in the absence of
anisotropic fluid sources, or because any possible contri-
butions to it are considered higher order in the gradient
expansion, leading to an exponential decay of K̃i

j. This
results in one equation less with only K and Π dynamics
remaining, that is

8>>>>>><
>>>>>>:

K̇ − αK2 −M−2
Pl α

�
1
2
S − 3

2
ρ

	
¼ 0;

1
α Π̇ − KΠþ dV

dϕ ¼ 0;

2
3
K2 − 2M−2

Pl ρ ¼ 0;

− 2
3
Kji −M−2

Pl J i ¼ 0:

ð43Þ

These equations form what is called the separate universe
approach (SUA), widely used as a basis for the formulation
of stochastic inflation.
In many later works stemming largely from e.g., [29,60],

the momentum constraint is not considered part of the long
wavelength approximation, an approach recently referred
to as (k ¼ 0)-SUA in [61]. The relevant literature then
interprets literally the similarity of the Π, K, and the
Hamiltonian constraint in Eq. (43) with Friedman’s back-
ground equations of cosmology Eq. (18). The local quantity
1
3
KðxÞ replaces the homogeneous Hubble parameter H, so

that the whole inhomogeneous universe is described as
made up of patches, each of which evolves independently.
The EOM coarse-graining has largely been applied to those
two equations only; linearizing provides the windowed rhs
terms which can then be evaluated using UV modes
solutions.
Unlike scalars on a fixed background, the inclusion of

metric perturbations brings about the issue of the appro-
priate slicing to be used for both the linearization and the
noise calculation, especially beyond slow-roll scenarios. In
this respect, the uniform-N gauge slicing (see Sec. III B 4)
has emerged as the most natural, with [30,31] arguing early
on that in this slicing one recovers CPT equations and thus
the long wavelength QFTCS limit when linearizing the
overdamped field equations. In general, the uniform-N
gauge has emerged as the more commonly used because it
allows direct access to the statistics of the fields in terms
of N b slicing, a necessary step for the FPTA and the
associated stochastic ΔN formalism which provides infor-
mation about the nonlinear curvature perturbation on uni-
form field hypersurfaces [37].
When performing the EOM coarse-graining in this

gauge, one gets the SI equations [32], which we will refer
to as the (k ¼ 0)-SUA, adopting the term from [61], or the
‘usual’ equations

8>>><
>>>:

∂ϕ>

∂N b
− π> ¼ Σϕ;

∂π>

∂N b
þ ð3 − ε>1 Þπ> þ 1

ðH>Þ2
dV
dϕ ðϕ>Þ ¼ Σπ;

H>2 ¼ Vðϕ>Þ
1− 1

6M2
Pl

ðπ>Þ2 ;

ð44Þ

where N b is the background number of e-folds, ε>1 ¼
−∂N b

lnH> the first slow-roll IR parameter, and

8>><
>>:

Σϕ ¼ þ 1ffiffi
2

p
�
F−1

�
∂W
∂N b

δϕk⃗αk⃗



þ c:c

�
;

Σπ ¼ þ 1ffiffi
2

p
�
F−1

�
∂W
∂N b

δπk⃗αk⃗



þ c:c

�
:

ð45Þ

In particular, this means that the coarse-graining has been
assumed to apply as δϕ> ¼ Wδϕ and δπ> ¼ Wδπ in
Fourier space [32].3 By defining π> with a stochastic
source, the literature does not use the canonical momentum
of ϕ>. One can also rewrite the previous equations as a
unique equation in the ADM Π>,

(
∂ϕ>

∂N b
¼ Π>

H> ;

∂Π>

∂N b
þ 3Π> þ 1

H>
dV
dϕ ðϕ>Þ ¼ Σ;

ð46Þ

with Σ ¼ HðΣπ þ ∂N b
Σϕ þ ð3 − ε1ÞΣϕÞ, where H is the

background quantity or not depending on the scheme used,
see Sec. IVA. In that sense, it is perfectly equivalent to
coarse-grain the momentum and its definition (phase-space
coarse-graining), and to coarse-grain the momentum via the
field only, which will be our approach, following the
coarse-graining in Wilsonian EFTs [23]. It is common to
keep the phase-space equations to apply the common
overdamping assumption jδΠj2 ≪ jδϕj2 and thus reduce
the problem to a first-order equation of the field only [20].
This assumption will not be made in the following.
The role of the momentum constraint has been noted

(refer e.g., to [27,35,36,59,61,62]) as being the only
remaining link between the separate universes in the
SUA. Neglecting it by invoking the long-wavelength
approximation could lead to inconsistencies in CPT
[35,62,63]. This issue has been addressed in recent years
by tackling the regime of validity of the (k ¼ 0)-SUA by
comparing to CPT [32,33]; it seems that working far
enough from the horizon-crossing scale with the uniform-
N gauge is a safe choice to match CPT. Nevertheless, the
notable results achieved by this approach [37,64,65] require
transformations between gauges (flat gauge for the noise,
uniform-N for the Langevin equations, and effectively
uniform-ϕ in the FTPA) when giving up approximations
such as slow-roll [32].

3Note that the authors write an opposite sign for the noise
contributions when using δX< ¼ WδX instead.
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Other SI approaches have emerged in parallel with some-
what different assumptions. Starting from the Hamilton-
Jacobi formalism developed in [27] from Eq. (43), SI was
formulated with the inclusion of themomentum constraint in
[28], and the FPT approach of [37] was applied to this
formalism in [36,66]. Starting from the full set of (43), a set of
stochastic equations for nonlinear variables like those given
in (67) were developed in [34] which by construction reduce
to coarse-grained, gauge invariant CPT in all time slicings
with βi ¼ 0. As shown in [67,68], these equations produce
the same perturbative results for the bispectrum as the ΔN .
Themore recent study [35] alsowrites stochastic equations in
a gauge other than uniformN , the uniformHubble gauge, by
rehabilitating the momentum constraint in the gradient
expansion.
The brief review discussed above attempts to provide a

flavor of the current state of play regarding the status of SI
formalism and the approximations that have been deemed
necessary to develop it. In the next section, we demonstrate
how one can do away with the long wavelength approxi-
mation and the SUA, providing a set of SI equations that
retain both the scalar field and all the variables of the
gravitational field, the only approximation being scalar
linear CPT for the computation of the noise terms by
coarse-graining.

C. Stochastic equations for ADM

We now incorporate the continuous influx of modes that
cross a smoothing scale commensurate with the Hubble
scale, i.e., we apply the schematic procedure leading up to
Eq. (40) to the full set of Einstein equations. This section
contains the key results of this work, namely a computation
of the stochastic sources associated with the ADM formu-
lation of general relativity. These stochastic equations are
presented in (56). We perform this computation in all the
gauges discussed above, always finding the same result for
the stochastic source terms, presented in Eqs. (47) and (57);
as can be seen there, the source terms are always given by
the same functional of the gauge invariantR and the chosen
window function. The stochastic source terms appear on
the rhs of the dynamical equations but not the constraint
equations. We stress that we do not impose any gradient or
slow-roll expansion.

1. Coarse-graining linear theory

To coarse-grain GR we will apply the principle behind
formula (40) to determine the stochastic source terms from
linear theory. As explained above, the major problem is
choosing a gauge, its associated dynamical quantities, and
the window. As we will see, in this section and the next one
we perform a gauge-invariant coarse-graining, i.e., we
coarse-grain the gauge-invariant linear theory encoded in
the usual gauge invariant quantities of Eq. (22). In
particular, the coarse-graining is made by using a time-
dependent window function in Fourier space WkðtÞ on a

gauge-invariant quantity, here R. For the case of infla-
tionary evolution, WkðtÞ would be activated after Hubble
radius crossing when quantum modes can be assumed to
behave classically. However, we stress that the coarse-
graining method remains valid beyond this choice if one
accepts operator-valued source terms that cannot be inter-
preted fully as classical random variables.
In practice, and as explained schematically through

Eq. (37), coarse-graining means that we first search for
the equations of the long-wavelength variableR>

k ¼ WkRk
where R obeys (23). R> is still gauge invariant of course
but follows a slightly different equation of motion which
can be obtained from Eq. (23),

R̈>
k þHð3 − ε2ÞṘ>

k þ k2

a2
R>

k ¼ SR; ð47Þ

where the source term is

SR ¼ RkẄkþ ½2Ṙk þ ð3 − ε2ÞHRk�Ẇk: ð48Þ

We emphasize that in (47) the > operator has priority over
time derivatives in all equations, i.e., for any function
ḟ> ≡ dðWfÞ=dt. Note also that the source term SR
vanishes when the window is constant, i.e., usually when
it is super-Hubble or sub-Hubble enough, the latter yielding
R> ≃ 0. This also shows that the existence of the source
term is solely attributed to the time-dependent nature of the
UV-IR split.
Next, we derive the coarse-grained version of all the

metric variables and the scalar field as given in Sec. III B by
using the replacement,

Rk ⟶ WkRk; ð49Þ

before taking any time derivative. This is done for any of
the gauge families discussed in that section. We stress that
this prescription ensures that the constraint equations will
stay perfectly satisfied at first order, which we have verified
for all the gauges we examined.

2. Coarse-graining general relativity

The expressions obtained after making the replacement
(49) in the formulas of Sec. III B can be substituted into the
linearized evolution and constraint equations of Sec. II B
for any of the aforementioned gauges. As explained above,
this procedure will provide the source terms for each of the
ADM equations. Although, as we will see below, the final
result is very simple and identical in all gauges, the full
computation involves rather long expressions. We will
therefore provide here a summary of the full derivation
of the coarse-grained field equation in a small generalized
synchronous for illustration. All the other stochastic ADM
equations are obtained similarly.
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We need to calculate the rhs term of the following
linearized equation for the field perturbation,

̈δϕ> þ 3H ˙δϕ> þ
�
k2

a2
þ d2V

dϕ2
ðϕbÞ

	
δϕ> þ 2Ψ� dV

dϕ
ðϕbÞ

− ϕ̇b

�
3Φ̇> þ Ψ̇� þ k2

a2
χ>
	

¼ RHSðR;W;Ψ�; B�Þ;

ð50Þ
which is just the rewriting of Eq. (20), using the dictionary
of Eqs. (14) and (15) in Fourier space. In this gauge, all
relevant coarse-grained perturbation quantities are given in
terms of R> as

8>>><
>>>:

χ> ¼ R t½Ψ� −ΨBðR>Þ�dt0;
E> ¼ R t½B� þ a−2χ>�dt0;
Φ> ¼ ΦBðR>Þ −Hχ>;

δϕ> ¼ ffiffiffiffiffiffiffi
2ε1

p
MPl½R> −Φ>�;

ð51Þ

together with the coarse-grained Bardeen potentials

�
ΦBðR>Þ ¼ −ε1a2k−2HṘ>;

ΨBðR>Þ ¼ −ε1a2k−2ðHṘ> − SRÞ:
ð52Þ

where the operator> has priority over time derivatives. This
nonzero difference of the long wavelengthΦ>

B andΨ>
B is not

due to anisotropic stress but simply due to the appearance of a
time derivative in the definition of ΨB in (22); when coarse-
grained ΨB acquires an extra stochastic source term com-
pared to ΦB. It is a transient horizon-crossing effect. This
comes back to the usual equality for each mode if super-
Hubble or deep sub-Hubble because the correction is
negligible when the window function is constant.
Using the previous decomposition, further derivatives

are needed,

8>>>>>><
>>>>>>:

˙δϕ> ¼ ffiffiffiffiffiffiffi
2ε1

p
MðHΨ� þ Ṙ>Þ−Hðε1þ ε2=2Þδϕ>;

Φ̇> ¼−HΨ� þHε1R>−Hε1Φ>;
̈δϕ> ¼ ffiffiffiffiffiffiffi

2ε1
p

M½SR− ðε1þ ε2=2ÞHΨ�−k2a−2R>þHΨ̇�

þHðε2=2−3ÞṘ>�þHð3− ε1− ε2=2Þ ˙δϕ>

þH2½H−2V;ϕϕþ ε1ðε1þ ε2=2Þþ ε2ðε1þ ε3=2Þ�δϕ>;

ð53Þ

where V;ϕϕ is the background quantity, function of ε1, ε2
and ε3, see Appendix A. We now have all the coarse-
grained variables needed to plug into the lhs of the coarse-
grained field equation (50). After a lengthy computation, a
perfect cancellation occurs and only the SR term of ̈δϕ>

survives, giving

RHSðR;W;Ψ�; B�Þ ¼
ffiffiffiffiffiffiffi
2ε1

p
MPlSR; ð54Þ

which is completely independent of Ψ� and B�, i.e., of the
specific functions corresponding to the choice of small
gauge in which the computation was performed. Following
the EOM approach we described in Sec. IVA, we can now
assume that stochastic source terms derived for the linear
spectrum amplitude equations remain valid for their non-
linear parent equation so that the final, nonlinear super-
Hubble Langevin equation in this gauge is

1

α
ðΠ̇þ βiΠjiÞ − KΠ −

αji

α
ϕji

− ϕji
ji þ

dV
dϕ

¼
ffiffiffiffiffiffiffi
2ε1

p
MPlF−1fSRg; ð55Þ

and where any lhs variable is implicitly understood as long
wavelength, i.e., we have suppressed the notation >.
This whole procedure can now be performed to compute

the new rhs for any dynamical quantity in the ADM
formulation and in any of the gauges discussed. Note that
the computations are cumbersome and have been checked
withMathematica [69] which was also used to confirm that
our previous R-decompositions were perfectly satisfying
the original first-order equation Eqs. (19), (20), and (21)
before applying the window function Wk.
Applying the procedure outlined above to all the rest of

the ADM equations, we find that they get augmented by
Brownian terms as shown below,

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

K̇ þ βiK;i þ αjiji − αð3Rþ K2Þ
−M−2

Pl α
�
1
2
S − 3

2
ρ
�
¼ F−1fSKg;

˙̃Kij þ 2αK̃ilK̃l
j þ βkK̃ijjk − 2βi

jkK̃jk

þαjijj − 1
3
αjkjkδij − α

�
3R̃ij þ 1

3
KK̃ij

�
þM−2

Pl αS̃ij ¼ F−1fSK̃ij
g;

1
α ðΠ̇þ βiΠjiÞ − KΠ − αji

α ϕji

−ϕji
ji þ dV

dϕ ¼ F−1fSΠg;
3Rþ 2

3
K2 − K̃ijK̃ij − 2M−2

Pl ρ ¼ F−1fSHg;
K̃j

ijj − 2
3
Kji −M−2

Pl J i ¼ F−1fSMj
g;

ð56Þ

where the rhs > superscripts are implicit, the source terms
given by

8>>><
>>>:

SK ¼ −ε1SR þ c:c:;

SK̃ij
¼ a2ε1

�
1
3
δij − k−2kikj

	
SR þ c:c:;

SΠ ¼ ffiffiffiffiffiffiffi
2ε1

p
MPlSR þ c:c::

ð57Þ

STOCHASTIC INFLATION IN GENERAL RELATIVITY PHYS. REV. D 109, 123523 (2024)

123523-11



and with SR from Eq. (48). Importantly, any terms that
might contribute to the source terms on the rhs of the
constraints cancel completely and hence,

�
SH ¼ 0;

SMj
¼ 0:

ð58Þ

This a physically appealing result and a consequence of our
coarse-graining philosophy; the stochastic noise terms can
be thought of as a continuous readjustment of the “initial
value data” at each time step of the dynamical evolution.
When setting up initial conditions in the ADM formalism,
all relevant fields (determined by the choice of gauge) must
be specified such that the constraints are satisfied [here up
to OðS2

RÞ]. The above equations therefore ensure that this
also remains true for each such stochastic readjustment per
time step.
We have performed the computation in all families of

gauges previously defined, always finding the same result;
the Fourier transforms of the rhs coincide for all gauges. We
therefore postulate that the above equationsmust hold for any
arbitrary gauge choice even beyond those discussed here.
Finally, following the above approach we have also coarse-
grained both the more common formulation of Einstein’s
equations as well as their Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) incarnation [44] (see Appendix C).
The results are consistent with Eq. (56). Writing down the
BSSN equations is a necessary step to study well-posed GR
in numerical relativity.

3. Discussion

Let’s first recall that those equations’ rhs are only valid
for perturbations around a homogeneous background. In
particular, without a separate universe approach, we do not
provide here any heuristic to account for stochastic
backreaction.
The most striking observation is probably the simplicity

and similarity of the rhs terms, which contrasts with the NL
lhs. This is completely due to the linear framework in the
UV and the fact that all dynamics are encoded in one
variable. This is also supported by the numerous null rhs in
equations that encode either field definitions or constraints.
In particular, the perfect satisfaction of the constraints after
coarse-graining is a good sign that our spacetime is
physical, i.e., here the horizon crossing is done coherently
on the whole time hypersurface but also that we have
addressed the insertion of the window. When setting Ψ>

B ¼
Φ>

B one gets a violation of the constraints and a strong
gauge-dependence of the rhs, which supports the choice of
Eq. (52) for an appropriate coarse-graining.
Another interesting term is that of the anisotropic

evolution equation; first-order scalar perturbations source
tensorial quantities at higher orders. This is in agreement
with previous work [70,71] and is discussed further in
Sec. IV E.

Furthermore, the previous equations are valid for four
major families of small gauges and any background time
slicing [the latter being only a matter of variable change for
straight time derivatives to get to α0bðt0Þ ≠ 1]. This suggests
that those equations could be true for any small gauge. At a
linear level first, taking, for instance, Eq. (50); a first-order
gauge transformation would leave the lhs unchanged and
similarly for the rhs as it is written in terms of a gauge-
invariant quantity and background time derivatives. This
works even if the transformation is a function of the
window or R. The gauge-invariance of the fully nonlinear
equations is less obvious. In particular, a gauge trans-
formation will leave any nonlinear lhs unchanged but the
associated rhs will be consistent only if both the initial and
the final gauges are close enough to the homogeneous
background one so that we stay within perturbation theory
when linearizing the rhs. This is why there is evidence of
small-gauge invariance of our equations at first order.
One needs to emphasize that the long-wavelength approxi-

mation has been removed from the equations. This is what
allowed us to formulate equations in any gauge by bypassing
the gauge-mapping issue in this regime [33]. Note that the
long wavelength approximation could still be applied to the
choice of the window function if one wants to ensure the
complete classicalization of the crossing modes [52].
However, it seems plausible that the window function can
now be turned onmuch closer to theHubble radius than in the
(k ¼ 0)-SUA, the latter being restricted by the quasi-isotropy
assumption [33]. In particular, one can now study safely
regime transitions in SI where gradients are critical, as
opposed to themain approach [72]. Switching on thewindow
closer to Hubble crossing also gives less interaction time (and
so less higher-order effects) to the UV modes and so
strengthens the linear and Gaussian source approximation.
Of course, more study is needed before verifying this
assertion, something we leave for future work.
Related to this matter, we finally want to discourage any

attempt to go too far away from a dS spacetime. Although it
is true that our derivations do not make any slow-roll
assumption, using Gaussian sources, linear CPT, and no
stochastic backreaction (i.e., full accountancy of UV-IR
interactions) might not encode all necessary contributions
from UV modes and thus questions the whole story of SI.
To go in other regimes, one could study the UV within
QFTCS and show the presence of a hierarchy in the
correlation functions, order-by-order.

D. Usual stochastic inflation limit

In this section, we compare our results with Eq. (46) of
SI [32]. To achieve this, we need to change the lhs of the Π
equation to its SUA limit Eq. (41) and specify our gauge.
By fixing ∂tN ¼ 1, i.e., choosing t as the background e-

folding N b, and βi ¼ 0, we can write H> ≡ − 1
3
K> ¼ 1

α>,
and hence α> is given by the Hamiltonian constraint in the
long wavelength limit. Substituting this in the Π equation’s
lhs yields,
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8>><
>>:

∂tΠ> ¼ −3Π> − 1
H>

dV
dϕ ðϕ>Þ þ 1

HF−1fSΠg;
Π> ¼ H>

∂tϕ
>;

H>2 ¼ Vðϕ>Þ
1− 1

6M2
Pl

ð∂tϕ>Þ2 ;
ð59Þ

which is equivalent to the usual Eq. (46) but with our own
noise termF−1fSΠg at first order. Note that since theSR has
no apparent Laplacian, we chose to leave it unchanged under
the long-wavelength approximation.
Our formalism is now comparable to the literature’s SI

by looking at Σ and SR only. On the one hand, SR can be
rewritten in terms of background e-folds slicing (αb ¼ H−1

and H∂t ¼ ∂N b) as

SR ¼ H2

�
Rk

∂
2Wk

∂N 2
b

þ
�
2
∂Rk

∂N b
þ ð3 − ε1 − ε2ÞRk

�
∂Wk

∂N b

	
:

ð60Þ

On the other hand, we can make Σ explicit by calculating
δϕ and ∂N b

δϕ from the long wavelength limit of our
calculus in Sec. III B 4 where δN � ¼ 0. By using the long-
wavelength limit4

(δϕ ≃
ffiffiffiffiffiffiffi
2ε1

p
MPlR;

δπ ≃
ffiffiffiffiffiffiffi
2ε1

p
MPl

�
− 1

2
ε2Rþ ∂R

∂N b

	
;

ð61Þ

which confirms to be the same as the spatially flat gauge
decomposition. Finally, by substituting this in Σϕ and Σπ of
Eq. (45), one exactly gets Σ ¼ F−1f ffiffiffiffiffiffiffi

2ε1
p

MPlSRg ¼
F−1fSΠg.
We just confirmed that our equations give Eq. (46) when

using the same assumptions.

E. Stochastic gravitons

As already pointed out, the scalar perturbations have an
influence on the nonscalar degrees of freedom through the
K̃ij evolution equation of Eq. (56). At second order and
later nonperturbative orders, one thus expects scalar-
induced and scalar-coupled gravitational waves [70,71].
In that sense, Eq. (56) is the first of its kind to provide a
stochastic framework including both scalar and tensorial
evolutions. This is not surprising as previous studies
worked in the long-wavelength limit to drop tensorial
dynamics.
In previous stochastic inflation work [73], it is suggested

that we should also include the decohered first-order grav-
itons in the stochastic sources. This can be simply added ifwe

stay at linear order for the sources. Indeed,we only need to do
the same work as for the scalar but for gravitonic perturba-
tions. This can be done independently and just added to the
final scalar result thanks to the scalar-decoupled limit. In
practice, this appears to be straightforward as we can build a
linear gauge-invariant quantity h by writing the linear
tensorial part of the metric in cosmic time as

ds2 ¼ −dt2 þ aðtÞ2ðδij þ hijÞdxidxj; ð62Þ

with hii ¼ ∂ihij ¼ 0 (traceless and transverse). At linear
order,K, K̃ij, 3R, and 3R̃ij are the only quantities in the EOM
inheriting contributions from h. This leads to the only
equation in (56) having h terms at linear order, the linearized
K̃ij equation,

−
1

2
a2
�
∂
2
t hij þ 3H∂thij −

∇2

a2
hij

�
¼ 0; ð63Þ

which in Fourier space appear to be the known Mukhanov-
Sasaki equations for the two linear spin-2 components of the
gravitons

�
hijðk⃗; tÞ ¼ ϵþijðk⃗Þhþk ðtÞ þ ϵ×ijðk⃗Þh×k ðtÞ
ḧsk þ 3Hḣsk þ k2hsk ¼ 0; ∀ s ¼ þ;×;

ð64Þ

which can also be initialized by a Bunch-Davies vacuum.
We now have everything we need to coarse-grain at

linear order with the previous window method using

h>ijðk⃗; tÞ ¼ Wh
kðtÞhijðk⃗; tÞ;

assuming we want the same window for both polarizations.
By coarse-graining Eq. (64) to get the spectrum of sources
for Eq. (63), and promoting the sources to those of the K̃ij

equation, we get to update SK̃ij
as

8>>>>><
>>>>>:

SK̃ij
¼ SðϕÞ

K̃ij
þ SðhÞ

K̃ij
;

SðϕÞ
K̃ij

¼ a2ε1

�
1
3
δij − k−2kikj

	
SR þ c:c:;

SðhÞ
K̃ij

¼ − 1
2
a2
� P

s¼þ;×
ϵsijðk⃗ÞSs

h

	
þ c:c:;

ð65Þ

where

8>>><
>>>:

Ss
h;k⃗

¼ 1ffiffi
2

p ShðkÞαs
k⃗
þ c:c;

ShðkÞ ¼ hskẄ
h
k þ ½2ḣsk þ 3Hhsk�Ẇh

k;

hαk⃗1
s1αk⃗2

s2�iP ¼ δð3Þðk⃗1 − k⃗2Þδs1s2 :
ð66Þ4Note that in [32], neglecting the k2E terms is justified only in

SR, USR, and Starobinsky models (and it requires fixing the
initial value of E, i.e., the remaining degrees of freedom of the
gauge).
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The coarse-graining is now complete and appeared to be
much easier because of the gauge invariance of the
perturbation and the trivial satisfaction of the constraints
at linear order. This extension is not without utility because
Eq. (65) shows a competition between scalar and tensor
sources, which seems to be in favor of the latter in slow-roll
regimes. Tensorial degrees of freedom can now be studied
in a nonperturbative framework, most likely numerically in
the future.

V. LANGEVIN EQUATIONS IN THE UNIFORM
FIELD GAUGE

The stochastic equations of the previous section can be
applied in a variety of gauges. It is now time to extract
useful (gauge invariant) quantities such as curvature scalars
on certain matter hypersurfaces. In the linear theory, it
refers to ζgi and R defined earlier, curvature perturbations
on spatial hypersurfaces of uniform density and uniform
field, respectively. Beyond the first order in CPT, it is
possible to construct such nonlinear gauge invariant quan-
tities although the literature provides different levels of
assumptions [29,59,74]. One can in particular define the
following ones [59,74]:

(
1
6
ζNL
i ¼ ∂iN − ∂0N

∂0ρ
∂iρ;

1
6
RNL

i ¼ ∂iN − ∂0N
∂0ϕ

∂iϕ;
ð67Þ

where N was defined above in Sec. III B 4. It is a gauge-
dependent quantity as the determinant is a density-2 tensor.
According to [74], the usefulness of (67) holds even
beyond the long wavelength approximation.
From these variables, it is clear that knowing N in

uniform-density or uniform-field gauges provides a direct
gauge-invariant extraction and this is why the FPTA is
required in usual studies where the e-folds are not stochas-
tic [37]. In this context and since a gauge-invariant
formulation is being proposed in this paper, we propose
to apply the uniform field gauge directly to our equations
and avoid the FPTA. Note that this has been attempted
recently but starting from the literature’s usual equations
and assumptions [75].
We start from our equations (56) and set the coordinates

such that the field evolves uniformly according to the
background dynamics, ϕðt; x⃗Þ ¼ ϕbðtÞ, where ϕbðtÞ fol-
lows Eq. (18) with αb ¼ 1. Hence ϕ can act as a clock
labeling the 3D spatial hypersurfaces. The spatial coor-
dinates on these spatial slices are fixed such that βi ¼ 0.
Obviously, this gauge choice can only be valid if the
background field is non-static. In addition, ϕ does not now
receive stochastic impulses and the stochastic dynamical
variables areN and α for which Langevin equations can be
derived.
Leaving a more complete numerical study for future

work, we make in this section the long-wavelength

approximation for the Hamiltonian constraint, rewriting
Eq. (43) as

6

α2
ð∂tN Þ2 ¼ 2

M2
Pl

�
ϕ̇b

2

2α2
þ VðϕbÞ

	
; ð68Þ

by inserting the definition ofN . From this we immediately
obtain

∂N
∂N b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα2 − 1Þ

�
1 −

1

3
ε1

	s
; ð69Þ

by making use of the background Friedman equation. No
slow-roll approximation has been made so far. The second
equation we need is given by the field equation which
becomes in this gauge an equation for the lapse,

∂t

�
ϕ̇b

α

	
¼ −3

ϕ̇b

α
∂tN − αV;ϕðϕbÞ þ αSΠ; ð70Þ

where SΠ is the Langevin noise found previously in
Sec. IV C 2. Note again that any multiplier of SΠ is left
undecided concerning the stochastic backreaction. To get to

∂tα ¼ ∂tf where fðZt; tÞ ¼ ϕ̇b
Zt

for Zt ¼ ϕ̇b
α , the Ito lemma

[76–78] is used to get

∂tα ¼ ϕ̈b

ϕ̇b
αþ α3

ϕ̇b
2
hSΠðN bÞ2i

−
α2

ϕ̇b

�
−3

ϕ̇b

α
∂tN − α

dV
dϕ

ðϕbÞ þ αSΠ

	
: ð71Þ

We have included the Ito correction to the derivative of a
function of a random variable as the second term in the
above equation. Note however that the effect of this term is
minimal (higher order) and the results of the simulations we
describe below are practically unaffected by it. Substituting
the field background equation in and the e-folds evolution
from Eq. (69), changing the time variable by dividing by H
and consequently updating the variance of the Wiener
process yields,

∂α

∂N b
¼ 3α

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα2 − 1Þ

�
1−

1

3
ε1

	s
− 1

!
þ α3hSðN bÞ2i

þ
�
−3þ ε1 þ

1

2
ε2

	
αðα2 − 1Þ þ α3SðN bÞ; ð72Þ

where S ¼ SΠ=Hϕ̇b is the final stochastic source. In the
following, we will keep the coefficient α3 multiplying S as
a nonbackground, stochastic quantity, and will not set it to
1. Note that when linearized, these equations still match
CPT at first order. Equations (69) and (72) together form a
coupled system of stochastic PDEs.
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In the SUA philosophy, it is common to restrain our case
to one patch of the universe for the treatment of the noise,
i.e., using the previous equation at one given point x⃗0 and
using only SðN b; x⃗0Þ. This is completely justified because
the window function derivatives yield suppressed correla-
tions beyond the Hubble scale (e.g., a Heaviside window in
Fourier space would lead to a cardinal sinus in real space)
[20]. In this framework, it is easier to solve this system of
two coupled Langevin equations or stochastic ODEs.
An analytical solution would require specifying the

background dynamics and writing the Fokker-Planck
equation to get the PDF. To our knowledge, there is no
known way to do that analytically without further approx-
imations such as overdamping, model-dependent simplifi-
cations, or higher-order correlations neglection. As a proof
of concept, we decided to provide numerical results instead.
The simulations were realized with the Stratonovich

evolver of Mathematica [69]. The following amplitude for
S, computed in Appendix D, is valid for both slow-roll and
ultra slow-roll regimes (USR)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hSðN bÞ2i
q

≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ε1ðN bÞ
p 3

2π

HðN bÞ
MPl

: ð73Þ

The main difference with usual amplitudes is the
ffiffiffiffiffi
ε1

p
in the

denominator. This comes from the fact that the lapse

equation depends on the amplitude of R and not the usual
Mukhanov-Sasaki variable (a

ffiffiffiffiffiffiffi
2ε1

p
MPl ×R) to which field

equations are sensitive to. Of course, the ε1 → 0 limit is
problematic but this is purely a gauge artifact as already
noted earlier when defining our gauge and as explained in
[79]. For the simulation, we choose to evaluate this quantity
with the background evolution and so to neglect the
stochastic backreaction for simplicity, as opposed to the
α3 factor acting on S.
Figures 1 and 2 show 50.000 paths starting from uniform

lapse and e-folds. 0.01e-folds steps were used in the
numerical scheme. Without worrying about the realism
of our model of Inflation concerning observational

FIG. 1. A scalar field undergoing ultra slow-roll dynamics in uniform field gauge, see Eqs. (72) and (69). The noise is active between
two and six e-folds. 100 of 50,000 stochastic paths are shown for the lapse (top) and e-fold (bottom) differences to background. Red
curves provide the mean difference over the 100 paths. The field has been initialized at ϕ�

b ¼ 10 with an e-folds velocity π�b ¼
dϕb=dN �

b ¼ −2.0001 in a potential such that VðϕÞ ¼ V0 until ϕc ¼ 9.056, where after that VðϕÞ ¼ V0½3ðϕ=ϕcÞ2 − 2ðϕ=ϕcÞ3�, which
stops the exponential slowing of the field. Note that V0 is set to satisfy the Friedman constraint equation assuming H� ¼ 10−5 initially.
Quantities are expressed in MPl ¼ c ¼ 1 units.

FIG. 2. Skewness and kurtosis excess in time for 50,000
stochastic paths of the lapse and e-fold differences to background
respectively. See Fig. 1 for the parameters of the simulation.
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constraints, we considered a plateau inflation followed
continuously by a third-order polynomial slope of the form
VðϕÞ∝ ½3ðϕ=ϕcÞ2−2ðϕ=ϕcÞ3�. Initial position and momen-
tum together with the start of the slope are fine-tuned5 for
two reasons; we want a decent amount of dispersion and
non-Gaussianity by having the field almost stopped on the
plateau, but not too much as the gauge definition makes the
simulation crash if the velocity is too low. Constraints also
need to be satisfied. It appears that USR is reached from
two e-folds onwards (ε1 ≪ 1, ε2 ≃ 6) which is why the
noise is only turned on at this time. When the slope is
reached at ≃3.04 e-folds, the velocity starts to increase
extremely slowly, still within the USR regime.
It is well known that a flat potential or a transition can

leave strong non-Gaussian imprints on perturbations such
as exponential tails [65]. This is actually what we confirm
here in Figs. 3 and 4; both the lapse and the e-folds get an
exponential tail on the plateau between three (end of

plateau) and four e-folds, which can be confirmed by
diverse fittings. This non-Gaussianity can also be tracked in
time by looking at the skewness and the kurtosis in Fig. 2.
When it comes to the second phase (and any analytical

attempts would probably fail to describe it fully) things
eventually stabilize along the slope. From these figures, it
becomes clearer that the lapse acts as an extremely non-
Gaussian e-folds’momentum. This implies that very strong
non-Gaussian changes are given to the e-folds until stop-
ping and eventually the e-folds distribution’s non-
Gaussianity stabilizes later to a lower remnant level6 when
all realizations are in the same regime. We have checked
that switching the noise terms off at six e-folds makes the
lapse come back to its attractor αb ¼ 1 and that the e-folds,
which are meant to describe RNL, are indeed conserved. If
the noise was frozen later on this potential, one would see
that leaving the USR phase makes the lapse and the e-folds

FIG. 3. PDFs (blue) of a scalar field undergoing USR dynamics in uniform field gauge, see Fig. 1 for parameters of the simulation.
50,000 paths were used for kernel density estimation to probe the PDFs at five background e-fold times (N b ¼ 3, 4, 5, 6 from top to
bottom) for both the lapse (left) and the e-fold (right) differences to the background, against normal PDFs with the same first two
moments (black dashed). 95% confidence intervals (red) of these pdf estimators were calculated using bootstrapping.

5Note that this precise tuning depends on our time resolution
(0.01e-folds).

6A study of the PDF’s small tail would be possible using
the constrained stochastic formalism [80] or importance
sampling [81].
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back closer to Gaussianity. This is because the PDF in real
space is not a good estimator; adding many Gaussian
contributions lowers the relative non-Gaussianity. However
the non-Gaussianity we produced is still imprinted by the
end of our simulation, in particular on the statistics of the
scales which crossed the horizon before six e-folds. This
advocates for the necessity to look at quantities such has n-
spectra or coarse-grained PDFs when looking at data.
It is important to mention that the simulation has also

been run by setting α3 to α3b ¼ 1. Unusual left-skewed
PDFs have been generated and highlight the importance of
stochastic backreaction in certain cases. Here it is critical
because of the nonperturbative behavior of the lapse and the
e-folds. In particular, this term is a good barrier to reaching
an unphysical α ¼ 0 with stochastic kicks, without adding
a prior when solving the Fokker-Planck equation.
What is to be remembered from these equations and

simulation is their potential; having coarse-grained but
satisfied constraints and an idea of what the stochastic
amplitude is, can help us skip the tedious and approximate
stochasticΔN and FPT formalisms by writing it all directly
in the right gauge.
However, sticking to the literature, the SUAwas used and

so the validity is far from the crossing scale. This allows us to

reduce to a simple GR framework where we don’t need
a full numerical relativity codewhich probably does not exist
in such a gauge. Furthermore, the validity of the long-
wavelength approximation is questionable when perturba-
tions become smaller inmagnitude than gradient corrections.
This could be the case here for the lapse. For these reasons,
tracelessmodes andother terms should be fully accounted for
and could stop those perturbations from vanishing com-
pletely. We thus emphasize here that it is necessary to run a
fullNRcode even if it takes to use anNRgauge. In that sense,
this section mainly aims at illustrating how this new
framework might compete with the FPT formalism using
the same assumptions for the evolution.

VI. CONCLUSIONS AND DISCUSSION

In this work we have examined the formulation of SI in
full general relativity, dropping most of the approximations
made historically such as the long wavelength approxima-
tion and the corresponding reduction of gravitational field
variables, such as anisotropic degrees of freedom or the
momentum constraint, that have been integral to existing
versions of the SUA. We have also addressed the issue of
time-slicing choice; the choice of lapse and shift in the

FIG. 4. Log PDFs of a scalar field undergoing USR dynamics in uniform field gauge, see Fig. 3.
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language of ADM. The only essential approximation kept
here is the requirement that CPT is enough to compute the
noise source terms, a requirement that could be possibly
lifted by retaining higher orders in CPT. Although we have
been invariably discussing ‘stochastic’ noise terms, the
coarse-graining behind our derivations could have been
made at any scale, provided one was content with operator-
valued source terms. Of course, the classicalization of
cosmological perturbations is highly convenient, and it is
this requirement that sets the IR scale to be placed at some
slightly above the Hubble radius.
Returning to the core of 3þ 1 general relativity, which is

essentially the evolution of one temporal 3D-hypersurface
to the next, we have proposed a method to coarse-grain the
linear theory in a gauge-invariant way using its only degree
of freedom, here chosen to be R the comoving curvature
perturbation. We have validated our procedure for several
of the most common gauges used in cosmology or
numerical relativity, finding that the choice of any of them
always results in the same source terms, at least at the linear
level. Linking the resulting Langevin terms to their
counterpart nonlinear equations and adding the treatment
of stochastic gravitonic sources, we have provided the first
complete set of GR equations for stochastic inflation.
Looking at their form and exploring alternative gauges
has offered strong evidence for our postulate that they are
indeed gauge invariant in that any gauge choice would
provide identical results.
From our equations, we were able to recover the limits

where existing SI equations apply. We were also able to go
beyond the usual approaches to demonstrate broader
applications; our example showed that our formalism could
obtain results for the stochastic dynamics of the e-folds N
directly in the uniform field gauge, without shifting 3D-
hypersurfaces as required in the stochastic ΔN formalism,
for the same SUA assumptions normally made in the
existing literature.
We want to highlight the potential of such results. The

possible applications are numerous and most notably a key
focus of our future work will be numerical. The present
article provides all the tools needed for sourcing a full 3þ 1
numerical relativity code (most of which are running with
BSSN equations) with stochastic perturbations. Note that
this includes the Langevin terms but also the initial
conditions (see Sec. III B 4) which constitute the main
challenge of numerical relativity. The present systematic
treatment gives the opportunity to quantitatively study the
nonlinear evolution of inhomogeneities, taking forward
previous work which considered inflationary initial con-
ditions in a variety of contexts [82–86]. Full GR simu-
lations of super-Hubble dynamics during inflation should
provide insights about the nonlinear generation of higher-
order correlators. This is important because currently there
is no alternative to QFTCS methods except stochastic
inflation, which has to date traded greater scope on

super-Hubble scales in exchange for numerous other
approximations.
Finally, we note that there remain many further exten-

sions to be considered for stochastic inflation. For instance,
our methods should be compatible with a greater range of
inflationary scenarios such as multiple fields [34], account-
ing for anisotropic sources from these, or modified and
higher energy theories of gravity in the context of the EFT
of inflation [87]. Note that these would require extra work
to find well-posed formulations, enabling numerical solv-
ing. It would also be interesting to investigate nonquasi-dS
spacetimes, though this would either require rigorous
justifications or higher-order perturbations and statistics.
With or without quasi-dS scenarios, the incorporation of
higher-order effects also lacks a full GR framework. As
stated in [23,24,58,88] in fixed dS spacetimes, we believe
that the most rigorous approach would begin from a path
integral approach rather than the EOM, however, efforts
should be made towards a full GR framework [48]. In
particular, the coarse-graining approximations would be
under control and this could enable the incorporation of
quantum loops, clarifying the validity of Starobinsky’s
approximation with all gravitational degrees of freedom.
This is left for future work.
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APPENDIX A: BACKGROUND QUANTITIES

Useful background quantities can be expressed as

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ϕ̇b
2 ¼ 2ε1M2

PlH
2;

Ḣ ¼ −ε1H2;

Ḧ ¼ 2ε1ð1 − ε2=2ÞH3;

ä ¼ ð1 − ε1ÞaH2;

ε̈1 ¼ ε1ε2ðε1 þ ε2 þ ε3ÞH2;

V;ϕðϕbÞ ¼
ffiffiffiffiffiffiffi
2ε1

p ð−3þ ε1 þ ε2=2ÞMPlH2;

V;ϕϕðϕbÞ ¼ − 1
4
½8ε21 þ 2ε1ð−12þ 5ε2Þ

þ ε2ð−6þ ε2 þ 2ε3Þ�H2;

ðA1Þ

where εiþ1 ¼ −H−1dt ln εi and ε0 is H. The sign of ϕ̇b is
implicitly positive by convention.
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APPENDIX B: DEGREES OF FREEDOM IN
SMALL GENERALIZED SYNCHRONOUS

GAUGES

To understand this freedom, let us take a look at the
effect of the following gauge transformation,�

x̃i ⟶ xi þ ∂
iλ;

t̃ ⟶ tþ ζ;
ðB1Þ

where λðt;x⃗Þ¼fðx⃗Þ−gðx⃗Þðt−t�Þ=aðtÞ2 and ζðx⃗Þ ¼ −gðx⃗Þ.
Under this transformation the lapse and the shift pertur-

bations are unchanged

8<
:

Ψ ⟶ Ψ − ζ̇ ¼ Ψ;
B ⟶ Bþ ζ=a2 − λ̇

¼ B − g=a2 þ g=a2 ¼ B:

ðB2Þ

The conclusion is different for E and χ,8>><
>>:

Eðt; x⃗Þ ⟶ Eðt; x⃗Þ − λðt; x⃗Þ
¼ Eðt; x⃗Þ − fðx⃗Þ þ gðx⃗Þðt − t�Þ=aðtÞ2;
χðt; x⃗Þ ⟶ χðt; x⃗Þ − ζðt; x⃗Þ ¼ χðt; x⃗Þ þ gðx⃗Þ;

ðB3Þ

which evaluated at t� shows that fðx⃗Þ and gðx⃗Þ can be
chosen to set the gauge with any desired value of χðt�; x⃗Þ
and Eðt�; x⃗Þ. Thus, a small 3þ 1 slicing still has some
gauge freedom.

APPENDIX C: OTHER GR-LANGEVIN
EQUATIONS

1. Einstein-Langevin equations

Similarly, the coarse-graining of Einstein’s equation was
also successful. The Einstein-Langevin equation for SI are

8<
:

G00 −M−2
Pl T00 ¼ 0;

G0i −M−2
Pl T0i ¼ 0;

Gij −M−2
Pl Tij ¼ F−1fSijg;

ðC1Þ

where

Sij ¼ −a2ε1ðδij − k−2kikjÞSR þ c:c:: ðC2Þ

2. BSSN-Langevin equations

When it comes to numerical simulations, it is usually
convenient to reformulate any system of PDEs into a well-
posed one with first-order equations only. BSSN equations
are now the common equations for these purposes [89,90].
In this formalism, the metric writes

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ðC3Þ

where α and βi are the lapse and shift, gauge parameters,
which is the same as our ADM metric but with βi → −βi.
The induced metric is decomposed thanks to a conformal
factor X as

γij ¼
1

X
γ̃ij; det γ̃ij ¼ 1; X ¼ ðdet γijÞ−1

3; ðC4Þ

The extrinsic curvature is decomposed into its trace
K ¼ γijKij, and its conformally rescaled traceless part
γ̃ijÃij ¼ 0 as

Kij ¼
1

X

�
Ãij þ

1

3
Kγ̃ij

	
: ðC5Þ

Finally, an intermediary quantity is defined to break the
equations into first-order ones; the conformal connections
defined as Γ̃i ¼ γ̃jkΓ̃i

jk where Γ̃i
jk are the Christoffel

symbols associated with the conformal metric γ̃ij. As a
summary, NR consists of evolving the 7 quantities X, γ̃ij,
K, Ãij, Γ̃i, and ϕ, Π.
As it is just a rewriting of ADM, the same reasoning as

performed in Sec. IV C 2 can be used withMathematica for
both the linearization and the coarse-graining. The asso-
ciated Langevin BSSN equations for SI are

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

∂tX − 2
3
XαK þ 2

3
X∂kβk − βk∂kX ¼ F−1fSBSSN

X g;
∂tγ̃ij þ 2αÃij − γ̃ik∂jβ

k − γ̃jk∂iβ
k

þ 2
3
γ̃ij∂kβ

k − βk∂kγ̃ij ¼ F−1fSBSSN
γ̃ij

g;

∂tK þ γijDiDjα − α

�
ÃijÃ

ij þ 1
3
K2

	
−βi∂iK − 4παðρþ SÞ ¼ F−1fSBSSN

K g;
∂tÃij − X½−DiDjαþ αðRij −M−2

Pl αSijÞ�TF
−αðKÃij − 2ÃilÃ

l
jÞ − Ãik∂jβ

k − Ãjk∂iβ
k

þ 2
3
Ãij∂kβ

k − βk∂kÃij ¼ F−1fSBSSN
Ãij

g;

∂tΓ̃i − 2α

�
Γ̃i
jkÃ

jk − 2
3
γ̃ij∂jK − 3

2
Ãij ∂jX

X

	
þ2Ãij

∂jα − βk∂kΓ̃i − γ̃jk∂j∂kβ
i − 1

3
γ̃ij∂j∂kβ

k

− 2
3
Γ̃i
∂kβ

k þ Γ̃k
∂kβ

i þ 2M−2
Pl αγ̃

ijSj ¼ F−1fSBSSN
Γ̃ g;

∂tϕ − αΠ − βi∂iϕ ¼ 0;

∂tΠ − βi∂iΠ − α∂i∂
iϕ − ∂iϕ∂

iα

−α
�
KΠ − γijΓk

ij∂kϕ − dV
dϕ

	
¼ F−1fSBSSN

Π g;

H ¼ Rþ K2 − KijKij − 2M−2
Pl ρ ¼ F−1fSBSSN

H g;
Mi ¼ DjðγijK − KijÞ −M−2

Pl Si ¼ F−1fSBSSN
M g;

ðC6Þ
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where the rhs Fourier transforms are similar to ADM’s after
explicit calculus,8>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

SBSSN
X ¼ 0;

SBSSN
γ̃ij

¼ 0;

SBSSN
K ¼ SK þ c:c:;

SBSSN
Aij

¼ a−2SK̃ij
þ c:c:;

SBSSN
Π ¼ SΠ þ c:c:;

SBSSN
Γ̃i

¼ 0;

SBSSN
H ¼ 0;

SBSSN
Mj

¼ 0:

ðC7Þ

APPENDIX D: (U)SR NOISE AMPLITUDE

The Fourier amplitude of S is exactly the same as for
SR=H2 in e-folding time [see Eq. (60)],

Sk ¼ Rk
∂
2Wk

∂N 2
b

þ
�
2
∂Rk

∂N b
þ ð3 − ε1 − ε2ÞRk

�
∂Wk

∂N b
: ðD1Þ

We choose to work with a Heaviside window

Wk ¼ ΘðσaH − kÞ; ðD2Þ

far enough from Hubble crossing thanks to σ ≪ 1 and the
derivative of which is the Dirac distribution

∂N b
Wk ¼ ∂N b

ðσaHÞδðσaH − kÞ: ðD3Þ

The second derivative needs to be treated within distribu-
tion theory, which is why we choose to write

F−1fRk∂
2
N b

Wkg ¼ −F−1f∂N b
Rk∂N b

Wkg: ðD4Þ

It is then allowed to take Eq. (D1) as

Sk ¼ ½∂N b
Rk þ ð3 − ε1 − ε2ÞRk�∂N b

Wk: ðD5Þ

The solution of Rk can be found by solving Eq. (23) in the
case of slow-roll and ultra slow-roll. It turns out that the
solution is identical despite different equations [79] and
written in conformal time τ as

RkðτÞ ¼
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ε1M2
Plk

3
p ð1þ ikτÞe−ikτ: ðD6Þ

It is now convenient to verify that

∂N b
RkδðσaH−kÞ¼

�
1

aH
∂τRk

	
−kτ¼σ

¼−
σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ε1M2
Plk

3
p eiσ;

ðD7Þ

which is negligible compared to theRk term in Eq. (D5) in
the σ ≪ 1 limit.
The amplitude of the Gaussian noise is found by

performing the inverse Fourier transform of the spectrum
[20] with spherical invariance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSðN bÞ2i

q
¼
�jð3 − ε1 − ε2ÞRσaHj2

6π2
d

dN b
ðσaHÞ3

	1
2

≃
1ffiffiffiffiffiffiffi
2ε1

p 3

2π

HðN bÞ
MPl

; ðD8Þ

using jRσaHj ≃ Hffiffiffiffiffiffiffiffiffiffiffiffiffi
4ε1M2

Plk
3

p and in the limit where ε1 ≃ 0 and

ε2 ≃ 0 (SR) or ε2 ≃ 6 (USR).
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