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We investigate entanglement generation between the sub- and super-Hubble modes of inflaton
fluctuations, in the context of particle production from perturbations during inflation. We consider a
large-field inflationary scenario where inflation is driven by a vacuum energy symmetry breaking potential
and the scalar inflaton field is nonminimally coupled to spacetime curvature. In particular, we focus on the
slow-roll phase, adopting a quasi–de Sitter scale factor to properly account for the presence of perturbations
and computing the pair production probability associated with the coupling between the inflaton and
spacetime inhomogeneities. The interaction Lagrangian at first order is constructed from inhomogeneities
induced by the inflaton dynamics, and the initial Bunch-Davies vacuum state of the field evolves under the
action of such Lagrangian. In this framework, we quantify the total amount of entanglement via the von
Neumann entropy of the reduced density operator for superhorizon modes, tracing out sub-Hubble degrees
of freedom. We then compare these outcomes with entanglement production for quadratic chaotic inflation
and for a small-field quadratic hilltop scenario, preserving field-curvature coupling in both cases and
pointing out the main differences between large- and small-field approaches. We show that the amount of
entanglement entropy arising from such geometric production grows rapidly in the slow-roll regime and
that it is typically higher in large-field scenarios. We also discuss our outcomes in light of recent findings
for the squeezing entropy of cosmological perturbations and cubic nonlinearities in de Sitter space.
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I. INTRODUCTION

In recent years, quantum entanglement has been widely
recognized as a relevant tool in the context of quantum
field theory and gravitation, with important applications
spanning from black hole physics [1] and anti–de Sitter/
conformal field theory correspondence [2–4], up to de
Sitter space dynamics [5–13]. In particular, de Sitter space
plays a key role in modeling the very early Universe
evolution, since a primordial phase of strong acceleration
known as “inflation” [14–16] has been proposed to solve
the main issues related to the standard big bang para-
digm [17,18].
All successful inflationary models should properly deal

with the quantum fluctuations of all fields involved, which
are thought to be the fundamental seeds for structure
formation in our Universe [19,20]. Such fluctuations are
typically studied in Fourier space: to leading order, each

Fourier mode evolves independently, obeying a harmonic
oscillator equation with time-dependent mass. The Hubble
horizon then emerges as a natural scale to describe the
dynamics of inflaton fluctuations, which typically oscillate
in time on sub-Hubble scales, while becoming frozen on
super-Hubble ones [21].
The corresponding “quantum-to-classical transition” of

inflaton fluctuations, i.e., how short-wavelength quantum
fluctuations are stretched by cosmic expansion and lose
their quantum nature, is not yet fully understood, although
some headway has been made in the last decades by
investigating the effects of squeezing and decoherence
[22–34], also resorting in some cases to open quantum
system techniques.1 Recently, the decoherence mechanism
for scalar inflaton fluctuations has been revised by taking
into account the role of cubic non-Gaussianities [42].
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1One can, for example, assume that long-wavelength fluctua-
tions decohere in the presence of an environment of short-
wavelength modes [35,36]. Alternatively, a master equation
can be derived by considering local interactions involving a pair
of comoving detectors and a given quantum field, usually in its
ground state [37–41].
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Specifically, due to the nonlinear nature of Einstein
equations, it was argued that a certain amount of mode
mixing for cosmological perturbations is always present.
This implies a mixing between the sub- and super-Hubble
modes, which leads to decoherence of the reduced density
matrix of each subsystem. Interestingly, such nonlinearities
seem to produce the most relevant contribution to the
entropy of cosmological perturbations, surpassing the
entropy associated with the squeezed vacuum (see also
[43–46]). In other words, the entanglement entropy due to
cubic interactions dominates over the one due to the
(quadratic) squeezing Hamiltonian, provided inflation lasts
for a sufficiently long period of time, in agreement with
observations [47].
Cubic interactions of density perturbations provide us

with a lower bound on the amount of entanglement entropy
for scalar perturbations. Indeed, such gravitational non-
linearities are inevitably present in most inflationary
models. The corresponding entanglement is usually quan-
tified by means of the von Neumann entropy for the
reduced density operator corresponding to super-Hubble
modes. However, in recent years it was argued that infla-
tionary particle production may work as a noise and affect
entanglement generation across the Hubble scales [41].
Motivated by the above picture, we here investigate

the dynamics of superhorizon entanglement associated
with geometric particle production [48,49] in a single-
field inflationary scenario. Geometric production during
inflation is typically studied resorting to a perturbative
approach,2 where the presence of spacetime inhomogene-
ities is traced back to the quantum fluctuations of the
inflaton field and the interacting Lagrangian is constructed
by coupling metric perturbations to the energy-momentum
tensor of a given quantum field. In particular, the energy-
momentum tensor for the inflationary fluctuations of a
scalar field has been considered in [60], with the aim of
quantifying correlations among fluctuation modes due to
perturbative particle production. It was recently argued that
the particle contribution derived from these fluctuations
could be reinterpreted through “geometric quasiparticles,”
arising from the nonminimal coupling between the geom-
etry and the inflaton field [61]. Consequently, one cannot
see these particles as genuine inflaton quanta, but rather as
new excitations “dressed” by the interaction exhibiting, as
stated, quasiparticle properties. In this respect, as a specu-
lation mechanism, it has been thought those particles
played a central role in dark matter production during

the very early Universe,3 despite the fact that their stability
after inflation is still under investigation, in light of possible
backreaction mechanisms and decay processes.
During the slow-roll regime, classical backreaction is

typically negligible [60] and geometric production may
lead to a significant amount of entanglement for particle
pairs on super-Hubble scales. Here we extend this approach
by studying entanglement entropy generation across the
horizon, still focusing on a quasi–de Sitter background
evolution to properly describe the slow-roll phase. We
adopt the usual momentum-space entanglement techniques
proposed in [65–67] and then generalized to de Sitter space
in [64,68], quantifying the pair production probability
arising from scalar spacetime perturbations.4 In so doing,
we start from a large-field model of inflation driven by a
symmetry breaking potential transporting vacuum energy,
also including a nonminimal coupling term between the
inflaton field and the scalar spacetime curvature. We
compute the von Neumann entropy associated with the
reduced density operator for super-Hubble modes and we
then compare these outcomes with the widely studied
chaotic quadratic potential [70–72] and the small-field
quadratic hilltop one [73], preserving in both cases the
nonminimal coupling term with the scalar curvature.
Entanglement among fluctuation modes can potentially
carry information corresponding to measurable quantities
in the cosmic microwave background. The possibility to
directly extract entanglement from quantum fields has been
discussed in entanglement harvesting scenarios [74–76],
where localized quantum probes are coupled to a quantum
field in distinct spacetime regions. Experimental imple-
mentations of harvesting protocols have been recently
proposed [77–79], despite the fact that the entanglement
present in spacelike separated regions of spacetime is
generally very small and, as of today, harvesting has not
yet been experimentally observed [80]. At the same time, it
was recently argued that primordial entanglement due to
non-Gaussianities should result in non-negligible correc-
tions to the power spectrum associated with inflationary
fluctuations [35]. These effects are, in principle, detectable
from future observations, thus representing a smoking gun
for the quantum origin of inflation.

2This mechanism is conceptually different from the so-called
gravitational particle production (GPP) from vacuum [50–53],
associated with cosmological expansion in unperturbed space-
times and widely studied in different cosmological settings, see,
e.g., [54–59]. However, we will see that geometric production is
also affected by GPP, via the Bogoliubov transformations that
connect in and out asymptotic states.

3Specifically, in Ref. [61] dark matter abundance from fluc-
tuations is computed at the end of reheating, modeled as a matter-
dominated phase. See also [62], where geometric production is
studied for a nonminimally coupled quartic potential in a quasi–
de Sitter phase. In Ref. [63], such perturbative approach is
generalized to the case of an ultralight spectator scalar field,
assuming an instantaneous transition from inflation to the
radiation era. The entropy growth for spectator fields may also
mimic entanglement generation for inflationary tensor modes,
see, e.g., [64].

4A real-space analysis of time-dependent background pertur-
bations has been recently proposed in [69], with possible
applications to quantum systems with entangled spatial degrees
of freedom.
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For large-field models, we will show that the total
amount of entanglement at the end of the slow-roll phase
is typically non-negligible. This implies that particle
production during the inflationary regime may significantly
alter the process of entanglement generation for inflaton
fluctuations. Last but not least, we discuss the scale
dependence of entanglement entropy, which represents a
peculiar issue of momentum-space calculations. In particu-
lar, an ultraviolet (UV) cutoff scale associated with the
Planck massMpl is required, and we also debate limitations
on the infrared (IR) scales.
This work is organized as follows. In Sec. II, we

introduce the nonminimally coupled scalar inflaton field
and its quantum fluctuations. In Sec. III, we review the
mechanism of particle production from inhomogeneities. In
Sec. IV, we quantify the superhorizon entanglement gen-
erated in this process, obtaining the von Neumann entropy
associated with super-Hubble modes and comparing these
outcomes with a quadratic chaotic model and a small-field
quadratic hilltop scenario. We also discuss our main
findings and compare our approach with previous studies.
Finally, Sec. V is devoted to conclusions and perspectives.
We use natural units c ¼ ℏ ¼ 1 throughout the paper.

II. INFLATIONARY WARM-UP

We consider a scalar inflaton field ϕ, nonminimally
coupled to the scalar curvature of spacetime R. The
corresponding Lagrangian density is written as

L ¼ 1

2

�
gμνϕ;μϕ;ν − ξRϕ2

�
− VðϕÞ; ð1Þ

where ξ is the field-curvature coupling constant and the
potential VðϕÞ is left unspecified for the moment. The
Universe expansion during inflation can be modeled
by a spatially flat Friedmann-Robertson-Walker back-
ground, whose line element in cosmic time t reads
ds2 ¼ dt2 − a2ðtÞdx2.
As usual, we introduce conformal time τ ¼ R dt=aðtÞ in

order to simplify the dynamics of the inflaton field during
slow roll [21,42]. In particular, we can write the unper-
turbed metric tensor as gμν ¼ a2ðτÞημν, where ημν is the
Minkowski tensor.
In conformal time, introducing the “effective potential,”

Veffðϕ; RÞ≡ VðϕÞ þ 1

2
ξRϕ2; ð2Þ

the zero-order equation of motion for the inflaton field
takes the form

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂νϕ

�þ Veff
;ϕ ¼ 0; ð3Þ

with Veff
;ϕ ≡ ∂VðϕÞ=∂ϕ and g is the determinant of the

metric tensor.

A. Inflaton quantum fluctuations

We now introduce quantum fluctuations in the above
framework. We start by considering the usual ansatz for the
inflaton field [21,60]

ϕðx; τÞ ¼ ϕ0ðτÞ þ δϕðx; τÞ; ð4Þ

where the background homogeneous contribution ϕ0 has
been isolated from the perturbing quantum fluctuations δϕ.
The most general metric tensor describing scalar perturba-
tions to linear order can be expressed in the form

gμν ¼ a2ðτÞ
 
ð1þ 2ΦÞ ∂iB

∂iB −ðð1 − 2ΨÞδij þDijEÞ

!
; ð5Þ

where Φ, Ψ, B, and E are scalar quantities and
Dij ≡ ∂i∂j − 1

3
δij∇2.

Hereafter, we adopt the longitudinal, or conformal,
Newtonian gauge5 equivalent to set E ¼ B ¼ 0. More-
over, when the fluctuation matter source has no anisotropic
stress, as for the scalar inflaton, we can further set Φ ¼ Ψ.
In Fourier space, we write perturbation modes as [19]

Ψðx; τÞ ¼ ΨkðτÞeik·x; ð6Þ

and, similarly, we can expand quantum fluctuations as

δ̂ϕðx; τÞ ¼ 1

ð2πÞ3=2
Z

d3k
�
âkδϕkeik·x þ â†kδϕ

�
ke

−ik·x
�
; ð7Þ

satisfying the usual canonical commutation relations,
½âk; â†k0 � ¼ δð3Þðk − k0Þ.
Following Refs. [21,60] and dropping the subscript 0 for

clearness, the first-order perturbed equations become

δϕ00
k þ 2Hδϕ0

k þ k2δϕk − 4Ψ0
kϕ

0

¼ −ξ
�
−2k2Ψk − 6Ψ00

k − 24HΨ0
k − 12

a00

a
Ψk

�
ϕ

−
�
Veff
;ϕϕδϕk þ 2ΨkVeff

;ϕ

�
a2; ð8Þ

where the prime denotes derivatives with respect to
conformal time and H≡ a0=a. If jξj ≪ 1, we can exploit
the slow-roll condition and the ð0; iÞ component of per-
turbed Einstein’s equations

5Another common choice is the so-called “comoving
gauge,” which is employed in [42] to study momentum-space
entanglement. See, for example, [16] for an introduction to the
most popular gauge choices associated with cosmological per-
turbations.
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Ψ0
k þHΨk ¼ ϵH2

δϕk

ϕ0 ; ð9Þ

where ϵ is a slow-roll parameter specified later on, to
simplify Eq. (8) as

δϕ00
k þ 2Hδϕ0

k þ
h
k2 þ Veff

;ϕϕa
2 þ 6ϵH2

i
δϕk ¼ 0: ð10Þ

B. Inflaton modes in a quasi–de Sitter background

As mentioned in Sec. I, inflation leads to a de Sitter
phase during which the Universe experiences a period of
intense acceleration. However, the inflationary epoch
cannot precisely manifest an exact de Sitter phase, since
small deviations are inevitably present as consequence of
the inflaton dynamics. To accomplish these slight devia-
tions, we here adopt a “quasi–de Sitter” background
evolution [21]

aðτÞ ¼ −
1

HIτ
ð1þϵÞ ; ϵ ≪ 1; ð11Þ

where τ < 0 and HI is the Hubble parameter during
inflation, while ϵ can be identified as a small and constant
“slow-roll parameter.”
Inserting Eq. (11) into Eq. (10) and rescaling the field by

δχk ¼ δϕka, we obtain

δχ00k þ
"
k2 −

1

τ2

 
ð1 − 6ξÞð2þ 3ϵÞ þ 6ϵ −

Veff
ϕϕ

H2
I

!#
δχk ¼ 0;

ð12Þ

where we also computed the scalar curvature in conformal
time, R ¼ 6a00=a3, and noted that a00=a ≃ ð2þ 3ϵÞ=τ2.
Equation (12) admits solutions

δχkðτÞ ¼
ffiffiffiffiffiffi
−τ

p h
c1ðkÞHð1Þ

ν ð−kτÞ þ c2ðkÞHð2Þ
ν ð−kτÞ

i
; ð13Þ

where Hð1Þ
ν and Hð2Þ

ν are Hankel functions and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ð1 − 6ξÞð2þ 3ϵÞ þ 6ϵ − Veff

;ϕϕ=H
2
I

r
: ð14Þ

The integration constants c1ðkÞ and c2ðkÞ can be deter-
mined by choosing the state of the field when inflation
starts. A common ansatz consists of employing the “Bunch-
Davies vacuum state” [81–83], which corresponds to
impose the boundary condition

δχk⟶
τ→−∞

e−ikτffiffiffiffiffi
2k

p : ð15Þ

This choice implies c1ðkÞ ¼
ffiffiffi
π

p
eiðνþ1

2
Þπ
2=2 and c2ðkÞ ¼ 0,

so the original fluctuation modes take the form

δϕkðτÞ ¼
ffiffiffiffiffiffiffiffi
−πτ

p
2

eiðνþ1
2
Þπ
2Hð1Þ

ν ð−kτÞ=aðτÞ: ð16Þ

Our primary focus will be to compute entanglement
between sub- and super-Hubble modes. Thus, we exploit
the asymptotic behavior of Hankel functions

Hð1Þ
ν ðx ≫ 1Þ ≃

ffiffiffiffiffi
2

πx

r
eiðx−π

2
ν−π

4
Þ; ð17Þ

Hð1Þ
ν ðx ≪ 1Þ ≃

ffiffiffi
2

π

r
e−i

π
22ðν−3

2
Þ ΓðνÞ
Γð3

2
Þ x

−ν ð18Þ

to derive the expressions for fluctuations inside and outside
the comoving Hubble radius rHðτÞ ¼ 1=ðaðτÞHIÞ. We then
introduce

sub-Hubble scales∶

δϕsub
k ≃

1ffiffiffiffiffi
2k

p eiðνþ1
2
Þπ
2eið−kτ−π

2
ν−π

4
Þ

aðτÞ ; ð19Þ

super-Hubble scales∶

δϕsuper
k ≃ eiðν−1

2
Þπ
22ðν−3

2
Þ ΓðνÞ
Γð3

2
Þ

HIffiffiffiffiffiffiffi
2k3

p
�

k
aHI

�3
2
−ν
: ð20Þ

Remarkably, we notice that fluctuations oscillate on sub-
Hubble scales, k ≫ aHI, while being nearly frozen after
crossing the horizon. Later on, we will specify these
calculations to some relevant inflationary potentials, in
order to derive the dynamics of the corresponding inflaton
fluctuations and quantify entanglement generation during
the slow-roll phase. First, we briefly recall the mecha-
nism of particle production from inhomogeneities during
inflation.

III. GEOMETRIC PARTICLE PRODUCTION

Particle production from spacetime inhomogeneities has
been proposed some time ago [48,49] as an alternative
mechanism to the widely studied GPP scenario. More
precisely,

(i) the presence of space-dependent perturbations in an
expanding background is expected to enhance the
total amount of particles produced,

(ii) such perturbations break the space translation sym-
metry [84] and, accordingly, “geometric” production
is not limited to pair production with opposite
momenta.

Assuming a perturbed background, with

gμν ¼ a2ðτÞðημν þ hμνÞ; jhμνj ≪ 1; ð21Þ
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we can write the first-order interaction Lagrangian density
describing the coupling between perturbations and a given
quantum field in the form

LI ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
HμνTð0Þ

μν ; ð22Þ

where Tð0Þ
μν is the zero-order energy-momentum tensor for

the field, gð0Þ is the determinant of the background
unperturbed metric tensor, and Hμν ¼ a2ðτÞhμν. In the
longitudinal gauge, scalar perturbations associated with
ϕ take the simple form

hμν ¼

0
BBB@

2Ψ 0 0 0

0 2Ψ 0 0

0 0 2Ψ 0

0 0 0 2Ψ

1
CCCA: ð23Þ

The perturbation potential Ψ is derived from Eq. (9), which
can be recast in the form

Ψ00
k þ 2

�
H−

ϕ00

ϕ0

�
Ψ0

k þ 2

�
H0 −H

ϕ00

ϕ0

�
þ k2Ψk ¼ 0; ð24Þ

where we also exploited the mode decomposition of
Eq. (6). Moreover, since we focus on the dynamics of
inflaton fluctuations,6 we assume

Tð0Þ
μν ¼ ∂μδϕ∂νδϕ −

1

2
gð0Þμν
�
gρσð0Þ∂ρδϕ∂σδϕ − VðδϕÞ�

− ξ

	
∇μ∂ν − gð0Þμν ∇ρ∇ρ þ Rð0Þ

μν −
1

2
Rð0Þgð0Þμν



ðδϕÞ2:

ð25Þ

Introducing now the interaction Hamiltonian density asHI ,
it can be shown that LI ¼ −HI holds for a Lagrangian
density of the form (22). This implies that we can write the
S matrix at first-order in Dyson’s expansion7 as

Ŝ ≃ 1þ iT̂
Z

d4xLI: ð26Þ

We will focus on particle pair production for inflationary
potentials of the form V ∝ ϕ2n (n ¼ 1; 2). The correspond-
ing probability amplitude for pair creation reads

Cp1;p2
≡ hp1;p2jŜj0i

¼ −
i

2ð2πÞ3
Z

d4x2a2
�
A0ðx; τÞ þ A1ðx; τÞ

þ A2ðx; τÞ þ A3ðx; τÞ
�
; ð27Þ

where

A0ðx; τÞ ¼ 2Ψ
	
∂0δϕ

�
p1
∂0δϕ

�
p2

−
1

2

�
ηρσ∂ρδϕ

�
p1
∂σδϕ

�
p2

− a2VðδϕÞ�
− ξ

�
∂0∂0 −

a0

a
∂0 − ηρσ∂ρ∂σ

− 3

�
a0

a

�
2
�
δϕ�

p1
δϕ�

p2



e−iðp1þp2Þ·x ð28Þ

and

Aiðx; τÞ ¼ 2Ψ
	
∂iδϕ

�
p1
∂iδϕ

�
p2

þ 1

2

�
ηρσ∂ρδϕ

�
p1
∂σδϕ

�
p2

− a2VðδϕÞ�
− ξ

�
∂i∂i þ

3a0

a
∂0 þ

2a00

a
þ ηρσ∂ρ∂σ

−
�
a0

a

�
2
�
δϕ�

p1
δϕ�

p2



e−iðp1þp2Þ·x; ð29Þ

for i ¼ 1; 2; 3. For each particle pair, the final state can be
written in the form

jΨi ¼ Ŝj0p1
; 0p2

i ¼ N
�
j0p1

; 0p2
i þ 1

2
Cp1;p2

j1p1
; 1p2

i
�
;

ð30Þ
where the normalization factor N is derived as usual by
imposing hΨjΨi ¼ 1. The total number density of particles
arising from the interacting Lagrangian, Eq. (22), at second
perturbative order is then

Nð2ÞðτÞ ¼ a−3ðτÞ
ð2πÞ3

Z
d3p1d3p2jCp1;p2

j2

× ð1þ jβp1
j2 þ jβp2

j2Þ: ð31Þ

In Eq. (31), we introduced the Bogoliubov coefficients βp1

and βp2
, which can be derived from the dynamics of the

6An alternative approach involves the introduction of “spec-
tator fields.” See, for example, Refs. [64,85] for some studies on
entanglement generation associated with spectator fields during
inflation. Geometric production for ultralight spectator fields has
been recently discussed in [63]. Such fields may mimic the
dynamics of tensor modes in inflation and may also represent
plausible dark matter candidates.

7A proper definition of the S matrix in curved spacetime is not
always straightforward, since it requires the existence of asymp-
totically flat regions (or, at least, asymptotic adiabatic regimes
[51]) to properly define vacuum and particle states. See, for
example, Ref. [60] for a discussion on these issues in the context
of inflationary particle production from inhomogeneities. At the
same time, the fast growth of the inflationary scale factor may
break the perturbative approach at some point. Wewill come back
to this further issue in Sec. IV B.
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field modes δϕk in the asymptotic regions τ → �∞. It can
be shown that Bogoliubov coefficients are zero in a purely
de Sitter spacetime [51], while in the context of GPP they
can be computed assuming a rapid transition from inflation
to the radiation-dominated era [59,85]. In these models,
the quasi–de Sitter scale factor of Eq. (11) should be
modified in order to guarantee a continuous transition
between the two epochs, thus avoiding divergences. The
process of gravitational production is more effective during
the nonadiabatic inflationary expansion of the Universe,
while adiabaticity is gradually recovered before matter
radiation equality, so that a proper definition of particle
states is again possible at sufficiently large τ. Bogoliubov
coefficients can also describe the squeezing of cosmo-
logical perturbations during inflation [42–46], even if this
approach has been recently criticized due to possible
ambiguities that may arise in defining squeezed states
for quantum fields in expanding backgrounds [27]. We will
return to this issue in Sec. IV B.

A. Geometric particle stability and the role
of backreaction

Before moving to the computation of superhorizon
entanglement arising from geometric particle production,
we briefly discuss the stability of such geometric quasi-
particles throughout the Universe’s evolution.
As mentioned in the Introduction, the presence of

backreaction associated with spacetime dynamics [86]
may, in principle, reduce the total amount of particles
produced. Classical backreaction effects, which can be
described by an effective energy-momentum tensor for
cosmological perturbations [87,88], typically results in
negligible contributions to particle production during the
slow-roll regime [60]. However, we expect these effects
to gradually take over at the end of inflation, thus
significantly reducing geometric particle production rates
in the subsequent phases of Universe evolution. This will
motivate our choice to neglect probability amplitudes for
pair production at the end of slow roll, despite the fact
that a rigorous treatment of backreaction is essential for a
more refined computation of particle densities and, thus,
entanglement.
At the same time, we observe that the interaction

Lagrangian modeled by Eq. (22) necessarily excludes
further couplings of inflaton fluctuations to Standard
Model fields. While this choice seems natural during slow
roll, the situation may change at the end of inflation, thus
leading to decay processes and decoherence of quantum
correlations for fluctuations. However, under the interpre-
tation of geometric quasiparticles as dark matter candidates,
small decay rates are typically expected. Observations
indeed provide severe constraints in the case of scalar dark
matter, with lifetimes higher than 1024 s for field masses in
the range 10 GeV–10 TeV [89] and up to 1030 s for super-
heavy candidates (1011–1014 GeV) [90]. Similar lifetimes

are predicted if we restrict to the case of dark matter
annihilation to neutrinos [91]. Alternative late-decaying
models have been also proposed, where the parent dark
matter particle decays to an almost degenerate daughter,
plus a relativistic final state [92]. Within this approach,
sufficiently high lifetimes are found for field masses in the
range 50–800 GeV.
A precise estimate of decay rates then significantly relies

on the mass of our geometric quasiparticle, which also
affects the total number density of such excitations and,
thus, the dark matter abundance obtained in our framework.
We plan to further investigate the issue of geometric
quasiparticle stability in upcoming studies.8

IV. SUPERHORIZON ENTANGLEMENT
ENTROPY

The degrees of freedom of any interacting quantum field
theory are entangled in momentum space [65]. In particu-
lar, inflationary perturbations are mostly studied in momen-
tum space, as the properties of momentum modes are
typically probed in experimental contexts [47].
Specifically, during inflation, the (comoving) Hubble

radius rH naturally divides the total Hilbert space of states
into sub- and super-Hubble subspaces, respectively [42].
This implies that the entanglement entropy of inflaton
fluctuations can be identified as the von Neumann entropy
associated with the reduced density matrix of one of these
two subsystems.
Given the generic probability amplitude for particle

production up to the first order in h,

Cn;N ¼ hn;Nj
�
−i
Z

τ

τ0

dτ0HIðτ0Þ
�
j0; 0i þOðh2Þ; ð32Þ

where n is the number of particles in the subsystem traced
out and N is the number of particles in the main system, we
can write the von Neumann entropy of the reduced state as

Sent ¼ −
X
n;N≠0

jCn;N j2ðln jCn;N j2 − 1Þ þOðh3Þ: ð33Þ

This result can be reexpressed in momentum space by
the substitution

P
n;N≠0 →

P
fpig≷μ, where μ stands for a

8For the sake of completeness, we notice that dark component
stability is actually a standard assumption when dealing with the
study of entropy in cosmological perturbations. This means that
one considers certain modes (sub-Hubble in the case of inflation)
as the environment, which are then traced out for the calculation
of entanglement. However, couplings with other quantum fields
are not taken into account. However, since we have proposed this
interpretation in terms of dark matter, we have mentioned some
possible decay channels, and therefore possible interaction terms
that would slightly modify our scenario, emphasizing that the
various windows open up based on the hypothesized mass of the
dark matter particle.
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generic momentum cutoff scale, obtaining the following
entropy per unitary volume:

Sent ¼ −
Z
fpig≷μ

Yd
i

d3pi

�jCfpig≷μj2ðln jCfpig≷μj2 − 1Þ�
þOðh3Þ: ð34Þ

In the case of entanglement associated with inflationary
fluctuations, the Hubble radius is the natural separation
scale for field modes. Hence, we can set μ≡ rHðτÞ in order
to compute entanglement across the Hubble horizon. More-
over, one usually assumes the space of super-Hubble modes
to be the system under analysis, while the sub-Hubble
space is treated as the “bath” we integrate over.
Focusing now on perturbative particle production from

inhomogeneities, we are interested in amplitudes of the
form

Cfpig ¼ hp1p2j
�
i
Z

τ

τ0

dτ0LIðτ0Þ
�
j0; 0i þOðh2Þ; ð35Þ

where LI is given by Eq. (22) and we are focusing on
quadratic terms only.
In our treatment, the total amount of superhorizon

entanglement is thus obtained by picking one mode on
super-Hubble scales and the other on sub-Hubble ones,
namely,

fpig ¼
�
aðτiÞHI < jp1j < aðτÞHI;

aðτÞHI < jp2j < aðτÞMpl:
ð36Þ

In Eq. (36), we introduced the usual UV cutoff for
comoving momenta in terms of the Planck mass, Mpl.
At the same time, our IR cutoff consists of neglecting all
modes whose wavelength exceeds the Hubble radius at the
beginning of inflation. Consequently, with this choice, all
super-Hubble modes are created during the quasi–de Sitter
expansion, thus allowing a causal generation mechanism
for cosmological perturbations [42].
In the following, we specify the here-presented approach

to some relevant inflationary potentials.

A. Choosing the inflationary potentials

Recent results from the Planck satellite have imposed
stringent constraints on the potentials that can be feasibly
adopted to drive the inflationary epoch [47]. Power-law
potentials, in particular, seem to be disfavored by obser-
vations, albeit the curvature coupling seems to resort their
use in inflationary stages. Analogously, chaotic and hilltop
potentials still appear to be plausible options to describe
inflation. Motivated by these results, in order to quantify
superhorizon entanglement arising from geometric particle
production, we focus on three specific potentials, as
discussed below.

(i) We start from a quartic self-coupling interaction,
selecting the potential

VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2; ð37Þ

where v is the vacuum expectation value of the
inflaton field. Inflationary predictions associated with
a nonminimal quartic potential have been studied in
detail, see, e.g., [71,72,93]. Moreover, this potential
has been recently proposed in the context of vacuum
energy cancellation during inflation [62].

In a large-field scenario, we can safely set VðϕÞ ≃
λϕ4=4 during slow roll. Accordingly, the slow-roll
background equation for the inflaton field can be
expressed in conformal time as

3Hϕ0 ¼ −ðλϕ3 þ ξRϕÞa2; ð38Þ

which, for a quasi–de Sitter evolution, gives

ϕ0 −
3ξð2þ 3ϵÞ
ð1þ ϵÞτ ϕ ¼ λ

2ð1þ ϵÞH2
I τ
ϕ3: ð39Þ

Equation (39) is solved resorting to the usual tech-
niques for “Bernoulli differential equations.”

Once the background dynamics are derived, we
can obtain the fluctuation modes for the inflaton field.
For simplicity, during slow roll we make the sub-
stitution

ϕ2 →

R τf
τi ϕ

2dτ
τf − τi

≡ hϕ2i; ð40Þ

thus identifyingϕ2 with its mean value. The final time
τf is usually determined by imposing a number Ntot

of e-foldings which is sufficient to solve the horizon
and flatness problems, e.g.,

Ntot ¼
Z

dtHðtÞ ≃ −
Z

τf

τi

dτ=τ ¼ 60: ð41Þ

Exploiting now Eqs. (39) and (40), the solution for
inflaton fluctuations is in the form (16), with

ν ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ð1 − 6ξÞð2þ 3ϵÞ þ 6ϵ − 3λhϕ2i=H2

I

r
:

ð42Þ

When dealing with quartic terms, we are interested in
probability amplitudes of the form

Cp1;p2
∝ hp1;p2jT̂½ðδϕÞ4�j0i
¼ 12δϕ�

p1
ðx; τÞδϕ�

p2
ðx; τÞGFh0j0i; ð43Þ
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where T̂ is the time-ordering operator and j0i denotes
the Bunch-Davies initial vacuum state.9 Such ampli-
tudes clearly diverge, due to the presence of the
Feynman propagator GF, and so the need for re-
normalizing self-interacting scalar field theories in
curved spacetime is crucial.
Hence, canceling poles in the amplitudes requires

appropriate rescaling of the coupling constants. For
example, by setting

ξR ¼ ξ − δξ; ð44aÞ

λR ¼ λ − δλ; ð44bÞ

where ξR and λR are renormalized constants, we
obtain

hp1;p2jT̂½ðδϕÞ4�j0iren
∝ δϕ�

p1
ðx; τÞδϕ�

p2
ðx; τÞ

×

�
Gfin

F þ i
8π2

�
ξR −

1

6

�
R ln μ

�
: ð45Þ

In Eq. (45), the propagator Gfin
F is finite in four

dimensions [51], while μ is an arbitrary mass scale.
Rescaling of μ simply readjusts the relations between
bare and renormalized constants, thus implying that
measurements are required to fix the λR and ξR
magnitudes.
In the case of inflationary particle production, we

expect that the amount of particles arising from
quartic self-coupling is approximately equal to the
total number of pairs obtained from curvature, since
the energy scales of the two terms are comparable
during slow roll. Accordingly, from now on we will
focus on the field-curvature coupling term, because in
this latter case the corresponding probability ampli-
tudes are computed without the need for renormal-
ization techniques.
Even neglecting the quartic contribution in VðδϕÞ,

the probability amplitude Cp1;p2
of Eq. (27) is not

straightforward to compute, due to the presence of
derivative terms in our interaction Lagrangian. As a
simplifying assumption, we first average in time the
perturbation potential Ψ during the slow-roll phase,
assuming

Ψk →

R τf
τi ψkdτ
τf − τi

≡ hΨki; ð46Þ

which now behaves as a momentum-dependent coup-
ling term in the interaction Lagrangian. Moreover, we

select a time τ� > τi and focus on particle production
in the interval ½τ�; τf�: by virtue of this choice, we can
exploit the simplified solution of Eq. (20) for super-
Hubble modes in the range aðτiÞHI < k < aðτ�ÞHI .
This last assumption inevitably leads one to under-
estimate the total entanglement generated in the slow-
roll phase, since we are neglecting all modes that
cross the horizon after τ�. However, these contribu-
tions are typically small, as we now discuss.

In Fig. 1, we show the superhorizon entanglement
entropy arising from geometric particle production at
the end of the slow-roll phase, as function of sub- and
super-Hubble momentum modes. We specify to the
case of particle production along the x direction10 and
observe that a significant amount of entanglement can
be produced in such processes. We also notice that
the entropy is larger at small momenta: in the case of
super-Hubble modes, this implies that entanglement
increases when approaching the IR cutoff and reflects
the bosonic nature of the field under investigation.
The same result is obtained when studying entangle-
ment due to cubic nonlinearities [42] or spectator
scalar fields during inflation [64]. Finally, from
Eqs. (28) and (29) we notice that the dominant term
in the probability amplitude (27) is proportional to
the scalar curvature and, assuming particle produc-
tion across the horizon, it satisfies Cp1;p2

ðRÞ ∝ a3.

FIG. 1. Superhorizon entanglement entropy Sent at time τf from
geometric particle production, assuming a quartic self-coupling
inflationary potential. The entropy is plotted as function of the
super-Hubble mode p1x and the sub-Hubble mode p2x. The
other momentum components are set to zero, for simplicity.
We assume ϕðτiÞ ¼ 5 Mpl, λ ¼ 10−15, ϵ ¼ 10−3, ξ ¼ 10−4, and
τ� ¼ τ0=1000 ¼ −10−3 GeV−1.

9Here we are working with un-normalized states, following the
conventions of [51].

10The result is independent of this choice, due to the spherical
symmetry of the perturbation.
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Accordingly, entanglement production due to inho-
mogeneities typically exhibits a fast growth during
slow roll, as a consequence of the rapid expansion of
the Universe.

(ii) We nowmove to the widely studied chaotic potential

VðϕÞ ¼ 1

2
m2ϕ2; ð47Þ

where m is the mass of the inflaton field. For this
model, entanglement production due to inhomoge-
neities has been recently investigated in [60], focus-
ing on super-Hubble degrees of freedom. In this
case, Eq. (12) for the field fluctuations can be solved
exactly, with

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ð1 − 6ξÞð2þ 3ϵÞ þ 6ϵ −m2=H2

I

r
: ð48Þ

In Fig. 2, we plot the corresponding superhorizon
entanglement, i.e., the von Neumann entropy for the
reduced state of super-Hubble modes, as function
of the momenta p1x (super-Hubble) and p2x (sub-
Hubble). We notice that the amount of entanglement
produced in this model is smaller but still compa-
rable to the previously studied self-coupling case.
This is expected, since the energy of the inflaton
field is similar in the two scenarios, due to the choice
of initial conditions for the background field ϕ. For a
quadratic chaotic model with nonminimal coupling,

the dominant terms for particle production are
associated with the mass and the scalar curvature:
both give again Cp1;p2

∝ a3, which certifies the fast
growth of entanglement entropy during slow roll.
Moreover, the entropy is still dominated by mo-
menta close to the IR cutoff, thus confirming that in
the case of scalar fields the entanglement is higher
for low-momentum modes.

(iii) Finally, we investigate a small-field scenario by
selecting the quadratic hilltop potential [73]

VðϕÞ ¼ Λ4

�
1 −

ϕ2

μ22

�
; ð49Þ

where Λ4 represents the vacuum energy density
during inflation and the parameter μ2 is experimen-
tally constrained by

0.3 < log10 ðμ2=MplÞ < 4.85 ð50Þ

in the minimally coupled scenario [47]. Geometric
particle production in a nonminimally coupled hill-
top model was studied in [61], suggesting that this
process may help in alleviating the cosmological
constant problem [94,95]. The corresponding geo-
metric particles represent possible dark matter can-
didates, under certain conditions. For a quadratic
hilltop potential, inflaton fluctuations admit again
solutions in the form of Eq. (16), with

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ð1 − 6ξÞð2þ 3ϵÞ þ 6ϵþ 2Λ4=ðμ22H2

I Þ
r

:

ð51Þ

However, in this case, the energy associated with the
inflaton field is typically small during the slow-roll
phase, thus implying that entanglement generation
due to inflaton fluctuations is necessarily less effi-
cient with respect to large-field approaches. In fact,
setting, for example, ϕðτiÞ ¼ 1 GeV and μ2 ¼ 1
Mpl, one finds that the corresponding superhorizon
entanglement is around 60 orders of magnitude
smaller than the previously studied quartic and
quadratic models. This suggests that in small-field
models we expect no significant amount of entan-
glement to be preserved after horizon crossing.

B. Theoretical consequences

As we have seen, the calculation of entanglement
entropy for cosmological perturbations is most easily
performed in momentum space. This helps to avoid some
technical problems that arise when dealing with position-
space entanglement, especially for interacting fields [64].
Moreover, momentum-space entanglement may carry

FIG. 2. Superhorizon entanglement entropy Sent at time τf from
geometric particle production, assuming a quadratic chaotic
potential. The entropy is plotted as function of the super-Hubble
mode p1x and the sub-Hubble mode p2x. The other momentum
components are set to zero, for simplicity. We assume ϕðτiÞ ¼ 5

Mpl, ϵ ¼ 10−3, ξ ¼ 10−4, and τ� ¼ τ0=1000 ¼ −10−3 GeV−1.
Moreover, the mass of the field ism ¼ 1.34 × 1012 GeV, in order
to obtain the same expansion law of the quartic case.

SUPERHORIZON ENTANGLEMENT FROM INFLATIONARY … PHYS. REV. D 109, 123520 (2024)

123520-9



information corresponding to measurable observables in
the cosmic microwave background, since the properties of
momentum modes are those generally probed by experi-
ments [47]. In particular, the presence of nonzero entan-
glement among superhorizon modes is expected to affect
the primordial power spectrum produced by fluctuations,
and the eventual detection of such effects may give further
evidence of the quantum origin of our Universe [35].
We have shown that the process of geometric particle

production during inflation leads to a non-negligible
amount of entanglement entropy in large-field models.
Moreover, such entropy rapidly grows during the slow-roll
phase and, more generally, for a fast-expanding back-
ground. This implies that perturbative particle production
mechanisms can significantly affect the quantum properties
of inflationary perturbations. At the same time, the
Universe expansion during inflation is expected to squeeze
cosmological perturbations after horizon crossing. It was
recently shown in Ref. [42] that the squeezing entropy of
perturbations can be derived by considering cubic inter-
action terms for fluctuations, which are responsible for
reducing the pure density matrix to a mixed one, by
suppressing off-diagonal terms. Looking at Eq. (31), we
notice that the nonperturbative expansion of the back-
ground, quantified by the Bogoliubov coefficients βk and
βp, is able to enhance the geometric mechanism of
production that we investigated. This necessarily implies
that the squeezing of cosmological perturbations may affect
perturbative particle production and thus entanglement
creation across the horizon. However, an important caveat
to keep in mind is that a proper definition of particle states
in an expanding background is not possible, in general.
For slowly expanding spacetimes, a solution to this issue

is usually found by introducing the notion of “adiabatic
vacuum” [51]. Unfortunately, this technique is no longer
reliable in the case of a rapidly expanding quasi–de Sitter
background. As discussed in Sec. II, a reasonable in-
vacuum state for inflationary fluctuations is represented
by the Bunch-Davies vacuum, which is a local attractor in
the space of initial states for an expanding background.
However, a proper definition of out states is usually
problematic without assuming a transition to reheating
period [96–98] or to a radiation-dominated phase at the end
of inflation. Accordingly, the notion of squeezed states
during inflation is subject to ambiguities, as recently
pointed out [27]. We also remark that the here-depicted
perturbative approach fails when the interaction term in
Eq. (26) becomes sufficiently large and thus comparable
with the zero-order term of Dyson’s expansion.
As we can see from Figs. 1 and 2, this is not the case of

our model, since probability amplitudes of superhorizon
pair production from perturbations are typically small in
the slow-roll phase, provided some IR cutoff is properly
applied. Such cutoff scale is ultimately related to fixing the
initial value of the quasi–de Sitter scale factor, which we

assumed as aðτiÞ ¼ 1=HI. A different choice, namely,
aðτiÞ ¼ 1, is performed in Refs. [42,64], yielding a larger
amount of entanglement entropy, despite leading to a high
cutoff for super-Hubble modes.
Finally, we expect that some backreaction and/or

decoherence mechanisms should take over at the end of
inflation, thus modifying the overall scenario [86]. In
Ref. [60], it was shown that classical backreaction mech-
anisms are not expected to affect entanglement from
inhomogeneities during slow roll, but semiclassical effects
and possible couplings of the inflaton to other quantum
fields during reheating would presumably alter this picture.
Incorporating these effects into the calculations of

entropy for cosmological perturbations would undoubtedly
aid in comprehending whether certain quantum “signa-
tures” of primordial perturbations managed to persist until
the cosmic microwave background radiation era.

V. CONCLUSION

In this work, we investigated entanglement between sub-
and super-Hubble modes in the context of inflationary
particle production from spacetime perturbations. We
employed momentum-space entanglement techniques to
show that a significant amount of entanglement entropy can
be generated for fluctuation modes across the Hubble
horizon, during the slow-roll phase. Moreover, we noticed
that such entropy is expected to grow rapidly for a quasi–de
Sitter background evolution. The presence of nonzero
entanglement among inflaton modes may have relevant
observational consequences, affecting, for example, the
power spectrum produced by inflationary fluctuations.
Inspired by the results of the Planck satellite, we first

considered a large-field inflationary scenario, invoking a
quartic self-coupling potential and including a nonminimal
coupling term with the scalar curvature of spacetime.
Afterward, we compared these outcomes with the well-
known quadratic chaotic model of inflation and a small-
field quadratic hilltop scenario, preserving field-curvature
coupling in both cases. We showed that the amount of
superhorizon entanglement from inhomogeneities is typi-
cally negligible in small-field scenarios, different from
large-field cases.
Further, we discussed our findings in light of recent

results for the squeezing entropy of cosmological pertur-
bations, cubic nonlinearities, and spectator scalar fields in
inflation. In our analysis, we focused on the pure geometric
contribution, neglecting the role of expansion, and thus
the squeezing of perturbations, which, in principle, can
enhance the total geometric production and, consequently,
the entanglement entropy.
Accordingly, the natural next step for our work would

include this contribution into the probability amplitude
for geometric production, despite the fact that the concept
of inflationary squeezing is still under debate, due to
the difficulties in defining particle states for a rapidly
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expanding background. Moreover, generalizations of our
study to the case of spectator fields are also possible. In
particular, we expect that entanglement production for
Dirac fields may lead to a different mode dependence of
entanglement, due to the different statistics involved.
Finally, the stability of such “geometric” particles should
be further investigated, especially in light of backreaction
effects and decoherence mechanisms, which are expected
to be relevant at the end of inflation. The inclusion of such

effects within the inflationary picture may shed further light
on the quantum properties of fluctuations and the corre-
sponding quantum-to-classical transition of inflationary
perturbations.
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