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Starting with the density field equation of a self-gravity fluid in a static Universe, using the Schwinger
functional differentiation technique, we derive the field equation of the 4-point correlation function (4PCF)
of galaxies in the Gaussian approximation, which contains hierarchically 2PCF and 3PCF. By use of the
known solutions of 2PCF and 3PCF, the equation of 4PCF becomes an inhomogeneous, Helmholtz
equation, and contains only two physical parameters: the mass m of galaxy and the Jeans wave number kJ,
like the equations of the 2PCF and 3PCF. We obtain the analytical solution of 4PCF that consists of four
portions, η ¼ η0odd þ η0even þ ηFP þ ηI , and has a very rich structure. η0odd and η0even form the homogeneous
solution and depend on boundary conditions. The parity-odd η0odd is more interesting and qualitatively
explains the observed parity-odd data of BOSS CMASS, the parity-even η0even contains the disconnected
4PCF ηdisc (arising from a Gaussian random process), and both η0odd and η0even are prominent at large scales
r ≳ 10 Mpc, and exhibit radial oscillations determined by the Jeans wave number. ηFP and ηI are parity
even, and form the inhomogeneous solution. ηFP is the same as the Fry-Peebles ansatz for 4PCF, and
dominates at small scales r ≲ 10 Mpc. ηI is an integration of the inhomogeneous term, subdominant.
We also compare the parity-even 4PCF with the observation data.

DOI: 10.1103/PhysRevD.109.123519

I. INTRODUCTION

The n-point correlation functions (nPCF) are important
physical quantities in study of the distribution of galaxies
[1–10], and contain not only the statistical information of
galaxies, but also the physics of a system of self-gravity
density field. Pure statistical models will not be sufficient
to understand the underlying gravitational dynamics of
the galaxy correlation. The field equations of nPCF are
fundamental to analytically predict the physical properties
of the system of galaxies. Davis and Peebles [11] treated
the system of galaxies as a many-body system, adopted the
Bogoliubov-Born-Green-Kirkwood-Yvon kinetic method,
worked with the Liouville’s equation of probability func-
tion in the phase space, and derived a set of five equations
of 2PCF and velocity dispersions of galaxies. But the initial
conditions for the five unknowns are hard to specify in
practice, and moreover, the equation of 2PCF was not
closed. Similar studies were made on the 3PCF without a
closed equation [8–10]. In our previous studies, we treated
the system of galaxies by a self-gravity density field,
worked directly with the field equation of density fluc-
tuation, and employed the Schwinger external source

method [12–15], which has been commonly used in field
theory to derive the equation of Green’s functions. We
obtained the static equations of the 2PCF in the Gaussian
approximation [16], the static nonlinear equation of 2PCF
[17–19], the evolutional nonlinear equation of 2PCF in the
expanding Universe [20], the static equation of 3PCF in
the Gaussian approximation [19], and the static nonlinear
equation of 3PCF [21,22]. These equations are closed and
containm and kJ as two physical parameters. The equations
in the Gaussian approximation have been solved analyti-
cally, the nonlinear equations have been solved numeri-
cally, and the solutions coherently explain several
seemingly unrelated prominent features of the observed
2PCF and 3PCF of the system of galaxies.
Fry and Peebles introduced the 4PCF of galaxies and

assumed its form as a sum of products of 2PCF [2,7], in
analogy to the Groth-Peebles ansatz for 3PCF [5,6].
Extensions to nPCF [7,23,24], and generalizations to clusters
[25,26] were made. In lack of the closed equations of nPCF,
these works searched for possible phenomenological rela-
tions within the hierarchical clustering picture. An important
property of the 4PCF is that it is parity sensitive. The recent
observation of BOSS CMASS [27–29] indicates that the
4PCF of galaxies contains the parity-odd signals, which will
be a cosmological evidence of parity violation that was first
found in particle physics [30,31].
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In this paper we shall derive the equation of the 4PCF
in the Gaussian approximation, give the analytical solu-
tion, and compare with the observed 4PCF from BOSS
CMASS [27–29]. In Sec. II we give the derivation of the
equation of 4PCF, and list also the equations and solutions
of 2PCF and 3PCF in Gaussian approximation that will
occur hierarchically in the equation of 4PCF. Section III
we present the 4PCF solution and analyze the structure
of its four portions. In Sec. IV we use the parity-odd
4PCF solution to explain the parity-odd data from BOSS
CMASS, and also compare the connected parity-even
4PCF solution with the corresponding data. Section V
demonstrates the behaviors of three pieces of the parity-
even solution in two simple configurations. Section VI
gives conclusion and discussions.

II. THE FIELD EQUATION OF 4PCF
IN GAUSSIAN APPROXIMATION

A self-gravity fluid is described by a set of equations,
including the continuity equation, the Euler equation, and
the Poisson equation [3,20,32]:

∂ρ

∂t
þ∇ · ðρvÞ ¼ 0;

∂v
∂t

þ ðv ·∇Þv ¼ −
1

ρ
∇pþ∇Φ;

∇2Φ ¼ −4πGρ:

For the hydrostatical case, ρ̇ ¼ 0 and v ¼ 0, this set of
equations leads to the equation of the density field [16–19]

∇2ψ −
ð∇ψÞ2
ψ

þ k2Jψ
2 þ Jψ2 ¼ 0; ð1Þ

where ψðrÞ≡ ρðrÞ=ρ0 is the rescaled dimensionless
mass density with ρ0 being the mean mass density, and
kJ ≡ ð4πGρ0=c2sÞ1=2 is the Jeans wave-number, cs is the
sound speed, and the external source J is introduced
for facilitating the functional differentiations [12,13].
Equation (1) without J can be also written as the known
equation [33–37]

∇2ϕþ k2Je
ϕ ¼ 0; ð2Þ

where ϕ≡ lnψ is the gravitational potential. In study of
the correlation functions of galaxies, it is convenient to
work with the density field ψ , instead of the potential ϕ.
In cosmology, the density field ψ in Eq. (1) is actually a
statistical field, which can be described by a grand partition
function

Z½J� ¼
Z

Dϕ exp

�
−α

Z
d3rHðψ ; JÞ

�
; ð3Þ

where α ¼ c2s
4πGm, and the effective Hamiltonian is

Hðψ ; JÞ ¼ 1
2
ð∇ψψ Þ2 − k2Jψ − Jψ . In field theory, Z½J� is also

called the generating functional for the correlation func-
tions of the field ψ . The connected nPCF of δψ is defined
by [12–15]

GðnÞðr1;…; rnÞ ¼ hδψðr1Þ � � � δψðrnÞi;

¼ 1

αn
δn logZ½J�

δJðr1Þ � � � δJðrnÞ
����
J¼0

¼ 1

αn−1
δn−1hψðr1Þi

δJðr2Þ � � � δJðrnÞ
����
J¼0

; ð4Þ

where δψðrÞ ¼ ψðrÞ − hψðrÞi is the fluctuation of ψ
around the mean value hψðrÞi. The collection of GðnÞ for
n ¼ 2; 3; 4;…, provides systematic measures of the dis-
tribution of galaxies and clusters. Since self-gravity enters
the field equation (1) and the partition function (3), GðnÞ is
not only a statistical tool, but also is influenced by the
physics of the self-gravity density field. So GðnÞ is a
statistical and dynamical quantity. Let us examine the
generic, geometrical features of nPCF. By definition (4),
GðnÞ has the symmetry under permutations ri ↔ rj for
i; j ¼ 1; 2;…; n. In applications, it is generally assumed
that GðnÞ is statistically homogeneous and isotropic (invari-
ant under simultaneous rotations of r1;…; rn). These
assumptions are also consistent with the isotropy and
homogeneity of the Universe on large scales. From geo-
metric perspective, the configuration of 2PCF is a line
formed by the two points, the parity operation P∶ri → −ri
for i ¼ 1, 2 on the line can be effectively replaced by a
rotation. The configuration of 3PCF is a triangle, the parity
operation on the triangle can be also replaced by a rotation
in three-dimensional space. The configuration of 4PCF
is a tetrahedron, the parity operation on the tetrahedron,
however, cannot be replaced by rotations and translations
in three-dimensional space. So the 4PCF can record the
parity [38] and serve as a probe to the possible parity-odd
information encoded the distribution of galaxies in the
Universe. Recent surveys indicate that the observed
4PCF contains the parity-odd signals [27–29]. As we
shall demonstrate, the solution of the equation of Gð4Þ
contains a parity-odd part that naturally corresponds to the
observed one.
To derive the field equations of GðnÞ, we adopt the

Schwinger external source method and start with the
ensemble average of Eq. (1) in the presence of an external
source J [12,13,16]

�
∇2ψ −

ð∇ψÞ2
ψ

þ k2Jψ
2 þ Jψ2

�
J
¼ 0; ð5Þ

with h…i denoting the ensemble average. Taking func-
tional derivative (n − 1) times of Eq. (5) with respect to the
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source J and setting J ¼ 0 will lead to the equation of GðnÞ.
We shall derive, respectively, the equations of Gð2Þ, Gð3Þ,
Gð4Þ in the following.
First, consider Gð2Þ. Taking functional differentiation

on (5) with respect to J once

1

α

δ

δJðr0Þ
�
∇2ψ −

ð∇ψÞ2
ψ

þ k2Jψ
2 þ Jψ2

�
J
¼ 0; ð6Þ

and setting J ¼ 0, using the definition of the 2PCF

1

α

δ

δJðr0Þ hψðrÞijJ¼0 ¼ Gð2Þðr; r0Þ; ð7Þ

carrying out functional differentiation on each term, we
obtain the equation of the 2PCF (also called the Green’s
function in field theory) in the Gaussian approximation [16]

∇2Gð2Þðr; r0Þ þ 2k2JG
ð2Þðr; r0Þ ¼ −

1

α
δð3Þðr − r0Þ; ð8Þ

with ∇2 ¼ ∇2
r . This is an inhomogeneous Helmholtz

equation with a delta source, and contains kJ and the mass
m as the two independent physical parameters of the fluid.
The solution is (also denoted by ξ in literature)

Gð2Þðr; r0Þ ¼ ξðjr − r0jÞ

¼ Am

�
d0

cosðk0jr − r0jÞ
jr − r0j

þ ð1 − d0Þ
sinðk0jr − r0jÞ

jr − r0j
�
; ð9Þ

where

Am ¼ 1

4πα
¼ Gm

c2s
ð10Þ

is the amplitude, k0 ¼
ffiffiffi
2

p
kJ is the reduced Jeans wave

number, d0 is a constant to be determined by the boundary
condition. Fitting with the observed 2PCF indicates d0 ¼
1; k0 ≃ 0.05h Mpc−1 and Am ≃ 3h−1 Mpc for galaxies
[16–19]. As is seen, m influences the clustering amplitude,
and kJ determines the scale of the correlation. The solution
(9) predicts that more massive galaxies have a higher
amplitude of correlation, as long been observed and
thought as a puzzling feature of clustering [39–43]. The
phenomenological scaling of the correlation length with
the intergalaxy separation [44,45] is actually implied by the
solution (9). More prominently, the solution (9) also
predicts that the 2PCF is periodic oscillatory with a
wavelength 2π=ð ffiffiffi

2
p

kJÞ ∼ 100h−1 Mpc. As pointed out
in Ref. [20], this 100 Mpc feature is not an imprint of
the so-called sound horizon [46,47], which is in fact not an
observable statistically and has a value much larger than

100 Mpc. These salient features have been confirmed
by early observations in galaxies [48–50] and in clusters,
[51–53], and by more recent observations with increasingly
cumulative data of galaxies [54–58] and of quasars [59–63].
Higher order density fluctuations beyond the Gaussian
approximation will enhance ξ at small scales and yield a
better description of observational data [17–19]. The evolu-
tionary equation of 2PCF in the expandingUniverse has been
given by Ref. [20]. The solution (9) is divergent as
jr − r0j → 0, like the Green functions of quantum fields
[64–67], and we shall not discuss the issue here.
Besides the solution (9), Eq. (8) is generally allowed to

have a homogeneous solution

Gð2Þ
0 ðr; r0Þ ¼

X∞
l¼1

Xl

m¼−l
clmYm

l ðθ;ϕÞ½dlnlðk0jr − r0jÞ

þ cljlðk0jr − r0jÞ�; ð11Þ

which satisfies the homogeneous Helmhotz equation

ð∇2
r þ 2k2JÞGð2Þ

0 ðr; r0Þ ¼ 0, where Ym
l ðθ;ϕÞ are the spheri-

cal harmonic functions for the direction of r − r0, and jl and
nl are the spherical Bessel’s functions. The coefficients
should satisfy clm ¼ 0 for l ¼ odd, as required by the
symmetry under permutation. Since the observed 2PCF
from various surveys is direction independent, the homo-

geneous solution (11) is set to zero Gð2Þ
0 ¼ 0 as the

boundary condition.
Next, consider Gð3Þ. Taking functional derivative of (5)

with respect to J twice

1

α2
δ2

δJðr0ÞδJðr00Þ
�
∇2ψ −

ð∇ψÞ2
ψ

þ k2Jψ
2 þ Jψ2

�
J
¼ 0;

ð12Þ

and setting J ¼ 0, using the definition of the 3PCF

1

α2
δ2

δJðr2ÞδJðr3Þ
hψðr1ÞijJ¼0 ¼ Gð3Þðr1; r2; r3Þ; ð13Þ

performing functional differentiation on each term, we
obtain the field equation of the 3PCF in the Gaussian
approximation [19,21,22]

∇2Gð3Þðr1; r2; r3Þ þ 2k2JG
ð3Þðr1; r2; r3Þ

¼ 2∇Gð2Þðr12Þ ·∇Gð2Þðr13Þ − 2k2JG
ð2Þðr12ÞGð2Þðr13Þ

−
2

α
δð3Þðr1 − r2ÞGð2Þðr13Þ −

2

α
δð3Þðr1 − r3ÞGð2Þðr12Þ;

ð14Þ

where ∇2 ≡∇2
r1 , rij ≡ jri − rjj, and Gð2ÞðrijÞ satisfies (8)

and is given by (9). The Eq. (14) is also a Helmholtz
equation with the inhomogeneous terms consisting of Gð2Þ
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and the delta source. The 3PCF solution (also denoted by ζ)
is [19]

Gð3Þðr1; r2; r3Þ ¼ ζ123 ¼ Gð2Þðr12ÞGð2Þðr23Þ
þGð2Þðr23ÞGð2Þðr31Þ
þGð2Þðr31ÞGð2Þðr12Þ: ð15Þ

Amazingly, this 3PCF solution in the Gaussian approxi-
mation is just the same as the Groth-Peebles ansatz (with
Q ¼ 1) for 3PCF [5,6]. As a function of three independent
variables r12, r13, r23, the 3PCF solution (15) is symmetric
under permutations ri ↔ rj with i, j ¼ 1, 2, 3, invariant
under the parity operation P∶ri → −ri, as well as the
spatial translations and rotations. [If Eq. (14) did not
contain the delta source, then (15) would not be the
solution.] Since the equation of 3PCF contains new
information beyond that of 2PCF, the boundary condition
of 3PCF should be determined from the observed 3PCF,
and the coefficient d0 in (15) viaGð2Þ generally differs from
what inferred from the observed 2PCF.
Equation (14) also has a general, homogeneous solution

Gð3Þ
0 ðr1; r2; r3Þ ¼ yðr1Þyðr2Þyðr3Þ; ð16Þ

where y satisfies the equation ð∇2
r þ 2k2JÞyðrÞ ¼ 0 and is

given by

yðrÞ ¼
X
l;m

CmlYm
l ðr̂Þ½cljlðk0jrjÞ þ dlnlðk0jrjÞ�: ð17Þ

The homogeneous solution (16) has formally less sym-
metry than the inhomogeneous solution (15). Various
galaxy surveys so far indicate that the observed 3PCF

are independent of directions, so we shall set Gð3Þ
0 ¼ 0 as

the boundary condition in this paper. If the observational
data in future are processed for a general direction-
dependent 3PCF, the form of the solution (16) can be
employed for that purpose. One might try another possible

homogeneous solution of 3PCF as a function of ðri − rjÞ as
the following:

Gð3Þ
0 ðr1; r2; r3Þ ¼ yðr1; r2Þyðr2; r3Þ þ yðr2; r3Þyðr3; r1Þ

þ yðr3; r1Þyðr1; r2Þ;

where yðr1; r2Þ is the same as (11), satisfying
ð∇2

r1 þ 2k2JÞyðr1; r2Þ ¼ 0. But, as can be checked, this is
not a homogeneous solution of (14).
As is known, the 3PCF of a Gaussian random process is

zero, according to the Isserlis-Wick theorem [68–70]. As
such, the existence of a nonzero Gð3Þ given by (15)
indicates that the self-gravity density fluctuation described
by the Gaussian approximation is not a Gaussian random
process in statistics. This is due to the presence of long-
range gravity in the fluid. The Gaussian approximation is
the lowest order of approximation to adequately account for
the fluctuations of the self-gravity fluid. (See more dis-
cussions in Sec. VI.) Beyond the Gaussian approximation,
the equation of Gð3Þ will contain more higher-order terms
than Eq. (14), and the solution will be much more
complicated than (15) (see Refs. [21,22] for details).
Consider Gð4Þ. Similarly, taking functional derivative

with respect to J thrice

1

α3
δ3

δJðr2ÞδJðr3ÞδJðr4Þ
�
∇2ψ −

ð∇ψÞ2
ψ

þ k2Jψ
2 þ Jψ2

�
J

¼ 0; ð18Þ

and setting J ¼ 0, using the definition of the 4PCF,

1

α3
δ3

δJðr2ÞδJðr3ÞδJðr4Þ
hψðr1ÞijJ¼0 ¼ Gð4Þðr1; r2; r3; r4Þ;

ð19Þ

we obtain the field equation of the 4PCF in Gaussian
approximation (see the Appendix for detailed derivation)

∇2Gð4Þðr1; r2; r3; r4Þ þ 2k2JG
ð4Þðr1; r2; r3; r4Þ þ 2Gð2Þðr12Þ∇Gð2Þðr13Þ ·∇Gð2Þðr14Þ þ 2Gð2Þðr13Þ∇Gð2Þðr14Þ ·∇Gð2Þðr12Þ

þ 2Gð2Þðr14Þ∇Gð2Þðr12Þ ·∇Gð2Þðr13Þ − 2∇Gð2Þðr12Þ ·∇Gð3Þðr1; r3; r4Þ − 2∇Gð2Þðr13Þ ·∇Gð3Þðr1; r2; r4Þ
− 2∇Gð2Þðr14Þ ·∇Gð3Þðr1; r2; r3Þ þ 2k2JðGð3Þðr1; r2; r4ÞGð2Þðr13Þ þGð3Þðr1; r3; r4ÞGð2Þðr12Þ þGð3Þðr1; r2; r3ÞGð2Þðr14ÞÞ

¼ −
2

α
δð3Þðr1 − r2ÞðGð2Þðr13ÞGð2Þðr14Þ þ Gð3Þðr1; r3; r4ÞÞ −

2

α
δð3Þðr1 − r3ÞðGð2Þðr12ÞGð2Þðr14Þ þ Gð3Þðr1; r2; r4ÞÞ

−
2

α
δð3Þðr1 − r4ÞðGð2Þðr12ÞGð2Þðr13Þ þGð3Þðr1; r2; r3ÞÞ; ð20Þ

which containsGð3Þ andGð2Þ hierarchically. UsingGð3Þ in the Gaussian approximation given by (15), the field equation (20)
becomes
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∇2Gð4Þðr1; r2; r3; r4Þ þ 2k2JG
ð4Þðr1; r2; r3; r4Þ

¼ 2Gð2Þðr12Þ∇Gð2Þðr13Þ · ∇Gð2Þðr14Þ þ 2Gð2Þðr13Þ∇Gð2Þðr12Þ · ∇Gð2Þðr14Þ
þ 2Gð2Þðr14Þ∇Gð2Þðr12Þ ·∇Gð2Þðr13Þ þ 2Gð2Þðr34Þð∇Gð2Þðr12Þ ·∇Gð2Þðr13Þ þ∇Gð2Þðr12Þ ·∇Gð2Þðr41ÞÞ
þ 2Gð2Þðr24Þð∇Gð2Þðr13Þ · ∇Gð2Þðr12Þ þ∇Gð2Þðr13Þ · ∇Gð2Þðr41ÞÞ
þ 2Gð2Þðr23Þð∇Gð2Þðr14Þ · ∇Gð2Þðr12Þ þ∇Gð2Þðr14Þ · ∇Gð2Þðr31ÞÞ
− 2k2JG

ð2Þðr13ÞðGð2Þðr12ÞGð2Þðr24Þ þ Gð2Þðr24ÞGð2Þðr41Þ þGð2Þðr41ÞGð2Þðr12ÞÞ
− 2k2JG

ð2Þðr12ÞðGð2Þðr13ÞGð2Þðr34Þ þ Gð2Þðr34ÞGð2Þðr41Þ þGð2Þðr41ÞGð2Þðr13ÞÞ
− 2k2JG

ð2Þðr14ÞðGð2Þðr12ÞGð2Þðr23Þ þ Gð2Þðr23ÞGð2Þðr31Þ þGð2Þðr31ÞGð2Þðr12ÞÞ

−
2

α
δð3Þðr − r2Þð2Gð2Þðr13ÞGð2Þðr14Þ þ Gð2Þðr13ÞGð2Þðr34Þ þGð2Þðr34ÞGð2Þðr41ÞÞ

−
2

α
δð3Þðr − r3Þð2Gð2Þðr12ÞGð2Þðr14Þ þ Gð2Þðr12ÞGð2Þðr24Þ þGð2Þðr24ÞGð2Þðr41ÞÞ

−
2

α
δð3Þðr − r4Þð2Gð2Þðr12ÞGð2Þðr13Þ þ Gð2Þðr12ÞGð2Þðr23Þ þGð2Þðr23ÞGð2Þðr31ÞÞ; ð21Þ

with the inhomogeneous terms being composed of the known Gð2Þ and the delta sources. The structure of Eq. (21) is of the
Helmholtz type, and resembles the equations of 2PCF and 3PCF [16–19,21,22]. All these equations have two physical
parameters: m and kJ.

III. THE ANALYTICAL SOLUTION OF THE 4PCF IN GAUSSIAN APPROXIMATION

We shall give the analytical solution Gð4Þ of Eq. (21). First we shall use the following formulas

2∇u ·∇v ¼ ∇2ðuvÞ − v∇2u − u∇2v; ð22Þ

and

2v∇u ·∇wþ 2u∇v · ∇wþ 2w∇u ·∇v ¼ ∇2ðuvwÞ − vw∇2u − uw∇2v − uv∇2w; ð23Þ

where u, v, and w are arbitrary functions. We apply the formula (23) to the first three terms 2Gð2Þ∇Gð2Þ ·∇Gð2Þ on the rhs of
(21), and apply the formula (22) to other six terms 2∇G ·∇G on the rhs of (21), and make use of Eq. (8) of Gð2Þ. Then, by
regrouping and simplifications, Eq. (21) is written in the following simple form:

ð∇2 þ 2k2JÞ½Gð4Þðr1; r2; r3; r4Þ − ηFPðr1; r2; r3; r4Þ� ¼ −2k2JGð2Þðr12ÞGð2Þðr13ÞGð2Þðr14Þ; ð24Þ

where

ηFPðr1; r2; r3; r4Þ≡ ½Gð2Þðr14ÞGð2Þðr42ÞGð2Þðr23Þ þGð2Þðr13ÞGð2Þðr32ÞGð2Þðr24Þ
þGð2Þðr12ÞGð2Þðr23ÞGð2Þðr34Þ þ Gð2Þðr23ÞGð2Þðr34ÞGð2Þðr41Þ
þGð2Þðr34ÞGð2Þðr42ÞGð2Þðr21Þ þ Gð2Þðr24ÞGð2Þðr43ÞGð2Þðr31Þ
þGð2Þðr23ÞGð2Þðr31ÞGð2Þðr14Þ þ Gð2Þðr24ÞGð2Þðr41ÞGð2Þðr13Þ
þGð2Þðr21ÞGð2Þðr14ÞGð2Þðr43Þ þ Gð2Þðr32ÞGð2Þðr21ÞGð2Þðr14Þ
þGð2Þðr31ÞGð2Þðr12ÞGð2Þðr24Þ þ Gð2Þðr21ÞGð2Þðr13ÞGð2Þðr34Þ�
þ ½Gð2Þðr12ÞGð2Þðr13ÞGð2Þðr14Þ þGð2Þðr23ÞGð2Þðr24ÞGð2Þðr21Þ
þGð2Þðr32ÞGð2Þðr34ÞGð2Þðr31Þ þ Gð2Þðr42ÞGð2Þðr43ÞGð2Þðr41Þ� ð25Þ

consisting of 16 terms of products Gð2ÞGð2ÞGð2Þ and each Gð2Þ being given by (9). Interestingly, the expression (25) of ηFP

has the same form of the Fry-Peebles ansatz [2] for 4PCF
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Ra½Gð2Þðr12ÞGð2Þðr23ÞGð2Þðr34Þ þ symð12 termsÞ�
þRb½Gð2Þðr12ÞGð2Þðr13ÞGð2Þðr14Þ þ symð4 termsÞ� ð26Þ

with the constants Ra ¼ Rb ¼ 1. ηFP in (25) is symmetric
under permutations ri ↔ rj for i, j ¼ 1, 2, 3, 4, and
invariant under the spatial translation and rotation, and is
parity-even. Denoting

ηIðr1; r2; r3; r4Þ≡Gð4Þðr1; r2; r3; r4Þ − ηFPðr1; r2; r3; r4Þ;

Equation (24) is rewritten as

ð∇2 þ 2k2JÞηIðr1; r2; r3; r4Þ
¼ −2k2JGð2Þðr12ÞGð2Þðr13ÞGð2Þðr14Þ: ð27Þ

This is also a Helmholtz equation with an inhomogeneous
term. The solution of (27) consists of a special solution ηI and
a general homogeneous solution η0. Thus, the full 4PCF
solution (denoted also by η) will be a sum of three portions

Gð4Þ ¼ η ¼ η0 þ ηI þ ηFP: ð28Þ

The special solution ηI of (27) is due to the inhomo-
geneous term, and can be derived as the following.
Introduce a Green’s function gðx; rÞ satisfying the follow-
ing equation

ð∇2
x þ 2k2JÞgðx; rÞ ¼ −δð3Þðx − rÞ; ð29Þ

and its solution resembles Gð2Þ of (9) up to the constant α,

gðx; rÞ ¼ αGð2Þðx; rÞ: ð30Þ

Then the special solution ηI is given by an integration of the
product of the Green’s function with the inhomogeneous
term (see for instance Ref. [71])

ηIðr1; r2; r3; r4Þ ¼
Z
V
gðx; r1Þ½2k2JGð2Þðx; r2ÞGð2Þðx; r3Þ

×Gð2Þðx; r4Þ�d3x; ð31Þ
where V is an integration volume. ηI is parity-even. We
shall show that ηI has a small amplitude. Write

ηIðzÞ ¼
Z

∞

0

fðz;xÞx2dx; ð32Þ

where the integrand

fðz;xÞ ¼ k2J
2πAm

Z
2π

0

dϕ
Z

π

0

Gð2Þðx; r1ÞGð2Þðx; r2Þ

×Gð2Þðx; r3ÞGð2Þðx; r4Þ sin θdθ; ð33Þ

and z denotes ðr1; r2; r3; r4Þ. For a special case of the
square configuration, we plot the integrand fðs;xÞ in Fig. 1
where the variable s is the side length of the square. One
sees that fðs;xÞ is low in amplitude except within a small
neighborhood around the origin. Integration confirms that
ηI is small (see Sec. V).
The homogeneous equation corresponding to Eq. (27) is

ð∇2
r þ 2k2JÞη0ðr1; r2; r3; r4Þ ¼ 0; ð34Þ

and a general, homogeneous solution is

η0ðr1; r2; r3; r4Þ ¼ yðr1Þyðr2Þyðr3Þyðr4Þ; ð35Þ

where each factor function yðrÞ is similar to (17), in which
we can set the coefficient dl ¼ −1 without loss of general-
ity. The homogeneous solution (35) holds in a general
spherical coordinate system and is symmetric under per-
mutations. To compare with the observation [27–29], we
can choose the origin of the coordinate system at r4 ¼ 0.
(This choice is allowed by the assumption of statistical
homogeneity and also adopted in the observational data.)
So yðr4Þ becomes a constant and the homogeneous solution
(35) is written as

η0ðr1; r2; r3; 0Þ ¼ yðr1Þyðr2Þyðr3Þ
¼

X
l1;l2;l3

X
m1;m2;m3

Cl1m1
Cl2m2

Cl3m3
Ym1

l1
ðr̂1ÞYm2

l2
ðr̂2ÞYm3

l3
ðr̂3Þ½cl1jl1ðk0jr1jÞ − nl1ðk0jr1jÞ�

× ½cl2jl2ðk0jr2jÞ − nl2ðk0jr2jÞ�½cl3jl3ðk0jr3jÞ − nl3ðk0jr3jÞ�; ð36Þ

FIG. 1. The function fðs; xÞ for the square configuration, with
the variable s being the side length of the square. (See Fig. 8 in
Sec. V.) Here the cos mode in Gð2Þ is used for illustration.
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where the coefficients Climj
, cli are arbitrary constants, and the summations are over li ¼ 0; 1;…, and mi ¼ −li;…; li for

i ¼ 1, 2, 3. The solution (36) is not yet explicitly isotropic, i.e., invariant under simultaneous rotations of the vectors
r̂1; r̂2; r̂3. To be concordant with the observation data [27–29], we adopt the isotropic basis functions [72] for the angular
sector,

Pl1l2l3ðr̂1; r̂2; r̂3Þ ¼ ð−1Þl1þl2þl3
X

m1;m2;m3

�
l1 l2 l3
m1 m2 m3

�
Ym1

l1
ðr̂1ÞYm2

l2
ðr̂2ÞYm3

l3
ðr̂3Þ; ð37Þ

where the 3 × 2 matrix is a Wigner 3 − j symbol, satisfies the triangle condition jl1 − l2j ≤ l3 ≤ l1 þ l2, and
m1 ¼ −l1;…; l1, etc. The set of Pl1l2l3 form a complete orthonormal basis for any isotropic function of ðr̂1; r̂2; r̂3Þ.
Under the parity operation P, ri → −ri, ðθ;ϕÞ → ðπ − θ;ϕþ πÞ, the basis function transforms as

P½Pl1l2l3ðr̂1; r̂2; r̂3Þ� ¼ Pl1l2l3ð−r̂1;−r̂2;−r̂3Þ;
¼ ð−1Þl1þl2þl3Pl1l2l3ðr̂1; r̂2; r̂3Þ; ð38Þ

and is parity-odd and imaginary for l1 þ l2 þ l3 ¼ odd, and parity-even and real for l1 þ l2 þ l3 ¼ even. The homogeneous
solution (36) can be written in terms of the basis functions as the following

η0ðr1; r2; r3; 0Þ ¼
X
l1;l2;l3

Cl1l2l3Pl1l2l3ðr̂1; r̂2; r̂3Þ½cl1jl1ðk0jr1jÞ − nl1ðk0jr1jÞ�

× ½cl2jl2ðk0jr2jÞ − nl2ðk0jr2jÞ�½cl3jl3ðk0jr3jÞ − nl3ðk0jr3jÞ�; ð39Þ

with

Cl1l2l3 ≡ ð−1Þl1þl2þl3
X

m1;m2;m3

Cl1m1
Cl2m2

Cl3m3

�
l1 l2 l3
m1 m2 m3

�−1
; ð40Þ

where

�
l1 l2 l3
m1 m2 m3

�−1

is the reciprocal of theWigner 3 − j symbol. Now the solution (39) is explicitly isotropic. The amplitude of the solution (39)
is largely specified by the coefficients Cl1l2l3 , which will be determined by the boundary conditions. Radially, the
homogenous solution (39) is a combination of two types of modes, nl and jl, and generally exhibits an oscillatory
characteristic, which is determined by the reduced Jeans wave-number k0. To compare with the observation data, the
homogeneous solution (39) can be split into the parity-even and parity-odd parts,

η0evenðr1; r2; r3; 0Þ ¼
X

l1þl2þl3¼even

Cl1l2l3Pl1l2l3ðr̂1; r̂2; r̂3Þ½cl1jl1ðk0jr1jÞ − nl1ðk0jr1jÞ�

× ½cl2jl2ðk0jr2jÞ − nl2ðk0jr2jÞ�½cl3jl3ðk0jr3jÞ − nl3ðk0jr3jÞ�; ð41Þ

η0oddðr1; r2; r3; 0Þ ¼
X

l1þl2þl3¼odd

Cl1l2l3Pl1l2l3ðr̂1; r̂2; r̂3Þ½cl1jl1ðk0jr1jÞ − nl1ðk0jr1jÞ�

× ½cl2jl2ðk0jr2jÞ − nl2ðk0jr2jÞ�½cl3jl3ðk0jr3jÞ − nl3ðk0jr3jÞ�: ð42Þ

The 4PCF is real by definition, whereas Pl1l2l3 is imaginary
for l1 þ l2 þ l3 ¼ odd, so we can take the imaginary part
Im(η0odd) to represent η0odd.
Although convenient for observation, the homogeneous

solution (39) does not explicitly display the disconnected

4PCF of a Gaussian random process that is formed from
products of two 2PCFs and subtracted from the presenta-
tion of the observational data [27,28]. For that, we shall
give the following construction. A parity-even 4PCF
solution of Eq. (34) can be also constructed as a function
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of ri − rj for i, j ¼ 1, 2, 3, 4. This will have explicitly the
symmetry under spatial translation that is not explicit in
the solution (35). Consider a function yðr; r0Þ satisfies the
following homogeneous equation

ð∇2 þ 2k2JÞyðr; r0Þ ¼ 0; ð43Þ

and has a general solution depending on the vector ðr − r0Þ

yðr; r0Þ ¼
X∞
l¼0

Xl

m¼−l
CmlYm

l ðθ;ϕÞ½dlnlðk0jr − r0jÞ

þ cljlðk0jr − r0jÞ�; ð44Þ
which is decomposed into y ¼ yeven þ yodd with the parity-
odd and parity-even parts

yevenðr; r0Þ ¼
X∞
l¼even

Xl

m¼−l
CmlYm

l ðθ;ϕÞ½dlnlðk0jr − r0jÞ

þ cljlðk0jr − r0jÞ�; ð45Þ

yoddðr; r0Þ ¼
X∞
l¼odd

Xl

m¼−l
CmlYm

l ðθ;ϕÞ½dlnlðk0jr − r0jÞ

þ cljlðk0jr − r0jÞ�: ð46Þ

Using yeven, we construct a parity-even 4PCF homogeneous
solution as the following

ηevenðr1; r2; r3; r4Þ≡ yevenðr1; r2Þyevenðr3; r4Þ
þ yevenðr1; r3Þyevenðr2; r4Þ
þ yevenðr1; r4Þyevenðr2; r3Þ; ð47Þ

which satisfies the homogeneous Eq. (34). [The parity-even
(47) can be also constructed out of the general solution (35)
by use of the addition theorem of spherical waves [73,74].]
Equation (47) is symmetric under permutations, as each
yeven is even. In particular, we are interested in the l ¼ 0
term in the even solution (47), which is the following:

ηdiscðr1; r2; r3; r4Þ≡ ½Gð2Þðr12ÞGð2Þðr34Þ
þ Gð2Þðr13ÞGð2Þðr24Þ
þ Gð2Þðr14ÞGð2Þðr23Þ�; ð48Þ

where Gð2Þðr12Þ is the 2PCF given by (9). ηdisc given by
(48) is only a piece of ηeven, referred to as the disconnected
4PCF in Refs. [27,28], and is equal to the 4PCF of a
Gaussian random process, according to the Isserlis-Wick
theorem [68–70]. All the parts of the 4PCF other than ηdisc

are beyond the Gaussian random process. Again, we see
that the self-gravity density fluctuation in the Gaussian
approximation is not a Gaussian random process, a prop-
erty also revealed by the nonvanishing 3PCF in Sec. III.

Later we shall display the behavior of the disconnected ηdisc

in graphs in Sec. V.
Note that the parity-odd part of η0 can not be constructed

in a form analogous to (47) as a sum of products of two ys.
In trying this kind of construction, the function yoddðri; rjÞ
will be needed, which nevertheless violates the permutation
symmetry.
In summary, the analytical solution of 4PCF in the

Gaussian approximation is given by

η≡ η0odd þ η0even þ ηI þ ηFP; ð49Þ
where η0odd þ η0even is the homogeneous solution and
ηI þ ηFP is the inhomogeneous solution of (21). Only
η0odd is parity odd, η0even is parity even, which contains
the disconnected piece ηdisc. Both ηFP and ηI are parity even
and are constructed from Gð2Þ.

IV. THE 4PCF SOLUTION COMPARED
WITH OBSERVATIONS

Given the 4PCF solution (49), we shall compare it with
the observations in this section. First consider the parity-
odd part η0odd. The observed parity-odd 4PCF from BOSS
CMASS has been given in Fig. 2 of Ref. [27] for the four
multiplets ðl1; l2; l3Þ ¼ ð1;1;1Þ; ð1;2;2Þ;ð2;3;4Þ; ð4;4;3Þ,
each being a function of r1, r2, r3. The theoretical η0odd
of (42) is already in the basisPl1l2l3 and we just focus on the
radial sector. For each multiplet, we simply set the
theoretical = the data,

C111½c1j1ðk0jr1jÞ − n1ðk0jr1jÞ�½c1j1ðk0jr2jÞ − n1ðk0jr2jÞ�
× ½c1j1ðk0jr3jÞ − n1ðk0jr3jÞ�r1r2r3 ¼ data111ðr1; r2; r3Þ;

ð50Þ

C122½c1j1ðk0jr1jÞ − n1ðk0jr1jÞ�½c2j2ðk0jr2jÞ − n2ðk0jr2jÞ�
× ½c2j2ðk0jr3jÞ − n2ðk0jr3jÞ�r1r2r3 ¼ data122ðr1; r2; r3Þ;

ð51Þ

C234½c2j2ðk0jr1jÞ − n2ðk0jr1jÞ�½c3j3ðk0jr2jÞ − n3ðk0jr2jÞ�
× ½c4j4ðk0jr3jÞ − n4ðk0jr3jÞ�r1r2r3 ¼ data234ðr1; r2; r3Þ;

ð52Þ
C443½c4j4ðk0jr1jÞ − n4ðk0jr1jÞ�½c4j4ðk0jr2jÞ − n4ðk0jr2jÞ�

× ½c3j3ðk0jr3jÞ − n3ðk0jr3jÞ�r1r2r3 ¼ data443ðr1; r2; r3Þ:
ð53Þ

and tune the coefficients Cl1l2l3 and cl. The same set of
parity-odd coefficients Cl1l2l3 and the radial coefficients cl
have been applied to both NGC (northern galactic cap) and
SGC (southern galactic cap). The resulting η0odd and the
data are shown in Fig. 2 for NGC, and in Fig. 3 for SGC.
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FIG. 2. η0odd (red line) and the 4PCF data (dots) of NGC BOSS CMASS from Ref. [27]. With k0 ¼ 0.0537h Mpc−1,
C111 ¼ 0.026; C122 ¼ 0.024; C234 ¼ −0.00031; C443 ¼ 0.00003, c1 ¼ −1.3; c2 ¼ −0.9; c3 ¼ −5.7; c4 ¼ 9.9.
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FIG. 3. η0odd (red line) and the 4PCF data (dots) of SGC BOSS CMASS from Ref. [27]. The parameters and the coefficients are the
same as in Fig. 2.
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The theoretical η0odd qualitatively explains the observed
parity-odd data.
We explain how to understand Fig. 2. The top plot gives

the radial coordinates r1, r2, r3 of the 4-point correlation η
(with r4 set to 0), in which the curve bin 1 stands for r1, bin
2 for r2, and bin 3 for r3. Draw a vertical line on the plot.
This vertical line will intersect with the three bin curves in
the top plot, yielding a triple values ðr1; r2; r3Þ of the
coordinates, simultaneously, this same vertical line will also
intersect with the curve ηl1;l2;l3 in the lower panels, yielding
a value of ηl1;l2;l3ðr1; r2; r3Þ. This is an economic way to
express the function ηl1;l2;l3 with three variables ðr1; r2; r3Þ.
As a limitation, the top plot, as a two-dimensional plane,
does not cover the full range of ðr1; r2; r3Þ in three-
dimensional space but only covers some slices in it. The
way is the same for Figs. 3–5.
The observational data in Ref. [27] shows that the first

two multiplets have higher amplitudes C111 ∼ C122 ∼ 10−2,
and other have lower amplitudes C234 ∼ 10−3, C344 ∼ 10−4.
The radially oscillatory feature in the observed 4PCF can
be explained by the radial modes nl and jl in the solution
η0odd, and is largely controlled by the Jeans wave-number kJ
of the systems of galaxies.
Next, consider the parity-even part η0even þ ηFP þ ηI ,

which is more sophisticated than the parity-odd case.

The observed parity-even 4PCF from BOSS CMASS in
Fig. 3 of Ref. [28] excludes the disconnected ηdisc of the
Gaussian random process. To compare with the data, we
subtract off the disconnected ηdisc to give the reduced
parity-even 4PCF as the following

ηReven ≡ η0even − ηdisc þ ηI þ ηFP; ð54Þ

where the superscript “R” denotes the reduced. We remark
that ηI and ηFP are connected, nevertheless, η0even, by its
construction (41) or (47), is not connected, as the lines
joining the vertices ðr1; r2; r3; r4Þ are obviously discon-
nected. Therefore, ðη0even − ηdiscÞ in (54) is not connected.
For this reason we refer to (54) as the “reduced” even-parity
4PCF, instead of the “connected” even-parity 4PCF in
Ref. [27]. Moreover, η0even is angle dependent and contains
important information of the system of galaxies beyond
ηdisc of a Gaussian random process. Since ηI is compara-
tively small, we can neglect it in a preliminary computing,

ηReven ≃ η0even − ηdisc þ ηFP; ð55Þ

where η0even is given by (41). Since the data are in the basis
Pl1l2l3 , we need to express ηdisc of (48) and ηFP of (25) in
terms of Pl1l2l3 , too. As before, taking r4 ¼ 0 leads to

ηdiscðr1; r2; r3; 0Þ ¼ ½Gð2Þðr12ÞGð2Þðr3Þ þ Gð2Þðr13ÞGð2Þðr2Þ þGð2Þðr23ÞGð2Þðr1Þ�; ð56Þ

ηFPðr1; r2; r3; 0Þ ¼ ½Gð2Þðr12ÞGð2Þðr23Þ þ Gð2Þðr23ÞGð2Þðr31Þ þGð2Þðr31ÞGð2Þðr12Þ�
× ½Gð2Þðr1Þ þ Gð2Þðr2Þ þGð2Þðr3Þ� þ Gð2Þðr23Þ½Gð2Þðr1ÞGð2Þðr2Þ þGð2Þðr3ÞGð2Þðr1Þ�
þ Gð2Þðr21Þ½Gð2Þðr3ÞGð2Þðr2Þ þGð2Þðr1ÞGð2Þðr3Þ�
þ Gð2Þðr13Þ½Gð2Þðr2ÞGð2Þðr1Þ þGð2Þðr2ÞGð2Þðr3Þ� þGð2Þðr2ÞGð2Þðr3ÞGð2Þðr1Þ; ð57Þ

both being functions of six variables r1, r2, r3, r12, r13, r23. By statistical isotropy, we can take the vector r3 along the z axis,
the vector r2 on the x − z plane, so that r2 ¼ ðr2; θ2;ϕ2 ¼ 0Þ, r1 ¼ ðr1; θ1;ϕ1Þ. Then

r12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 − 2r1 · r2

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 − 2r1r2ðsin θ1 cosϕ1 sin θ2 cosϕ2 þ sin θ1 sinϕ1 sin θ2 sinϕ2 þ cos θ1 cos θ2Þ

q
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 − 2r1r2ðsin θ1 cosϕ1 sin θ2 þ cos θ1 cos θ2Þ

q
;

r13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r23 − 2r1 · r3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r23 − 2r1r3 cos θ1

q
;

r23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ r23 − 2r2 · r3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ r23 − 2r2r3 cos θ2

q
; ð58Þ

which are expressed in terms the three angular variables ϕ1; θ1; θ2. Now we project (56) and (57), respectively, into the
basis Pl1l2l3 ,

ηdiscðr1; r2; r3; 0Þ ¼
X
l1;l2;l3

ηdiscl1l2l3
ðr1; r2; r3ÞPl1l2l3ðr̂1; r̂2; r̂3Þ; ð59Þ
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ηFPðr1; r2; r3; 0Þ ¼
X
l1;l2;l3

ηFPl1l2l3ðr1; r2; r3ÞPl1l2l3ðr̂1; r̂2; r̂3Þ; ð60Þ

where the multiplets are given by the inner product with the basis

ηdiscl1l2l3
ðr1; r2; r3Þ ¼

Z
dr̂1dr̂2dr̂3ηdiscðr1; r2; r3ÞP�

l1l2l3
ðr̂1; r̂2; r̂3Þ; ð61Þ

ηFPl1l2l3ðr1; r2; r3Þ ¼
Z

dr̂1dr̂2dr̂3ηFPðr1; r2; r3ÞP�
l1l2l3

ðr̂1; r̂2; r̂3Þ: ð62Þ

By the prescribed orientation, we set Ym
l ðr̂3Þ ¼ 1 and ϕ2 ¼ 0 in the basis function P�

l1l2l3
ðr̂1; r̂2; r̂3Þ, and

R
dr̂3 ¼ 4π,R

dϕ2 ¼ 2π. Four parity-even multiplets, (0, 0, 0), (2, 0, 2), (2, 4, 2), (3, 1, 4), have been given in the data [28], so we shall
compute the following threefold angular integrations

ηdisc000ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηdiscðr1; r2; jr3jÞP�
000; ð63Þ

ηdisc202ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηdiscðr1; r2; r3ÞP�
202ðr̂1; r̂2; ẑÞ; ð64Þ

ηdisc242ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηdiscðr1; r2; r3ÞP�
242ðr̂1; r̂2; ẑÞ; ð65Þ

ηdisc314ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηdiscðr1; r2; r3ÞP�
314ðr̂1; r̂2; ẑÞ; ð66Þ

ηFP000ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηFPðr1; r2; jr3jÞP�
000; ð67Þ

ηFP202ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηFPðr1; r2; r3ÞP�
202ðr̂1; r̂2; ẑÞ; ð68Þ

ηFP242ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηFPðr1; r2; r3ÞP�
242ðr̂1; r̂2; ẑÞ; ð69Þ

ηFP314ðr1; r2; r3Þ ¼ 8π2
Z

sin θ1dθ1dϕ1 sin θ2dθ2ηFPðr1; r2; r3ÞP�
314ðr̂1; r̂2; ẑÞ: ð70Þ

These integrations can be done numerically. We set the theoretical = the data,

C000½c0j0ðk0jr1jÞ − n0ðk0jr1jÞ�½c0j0ðk0jr2jÞ − n0ðk0jr2jÞ�
× ½c0j0ðk0jr3jÞ − n0ðk0jr3jÞ�r1r2r3 þ ½−ηdisc000ðr1; r2; r3Þ þ ηFP000ðr1; r2; r3Þ�r1r2r3

¼ data000ðr1; r2; r3Þ;
C202½c2j2ðk0jr1jÞ − n2ðk0jr1jÞ�½c0j0ðk0jr2jÞ − n0ðk0jr2jÞ�

× ½c2j2ðk0jr3jÞ − n2ðk0jr3jÞ�r1r2r3 þ ½−ηdisc202ðr1; r2; r3Þ þ ηFP202ðr1; r2; r3Þ�r1r2r3
¼ data202ðr1; r2; r3Þ;
C242½c2j2ðk0jr1jÞ − n2ðk0jr1jÞ�½c4j4ðk0jr2jÞ − n4ðk0jr2jÞ�;

× ½c2j2ðk0jr3jÞ − n2ðk0jr3jÞ�r1r2r3 þ ½−ηdisc242ðr1; r2; r3Þ þ ηFP242ðr1; r2; r3Þ�r1r2r3
¼ data242ðr1; r2; r3Þ; ð71Þ
C314½c3j3ðk0jr1jÞ − n3ðk0jr1jÞ�½c1j1ðk0jr2jÞ − n1ðk0jr2jÞ�

× ½c4j4ðk0jr3jÞ − n4ðk0jr3jÞ�r1r2r3 þ ½−ηdisc314ðr1; r2; r3Þ þ ηFP314ðr1; r2; r3Þ�r1r2r3
¼ data314ðr1; r2; r3Þ; ð72Þ
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FIG. 4. ηReven (red line) and the 4PCF data (dots) of NGC BOSS CMASS from Ref. [28]. With Am ¼ 1.28h−1 Mpc, d0 ¼ 0.65,
C000 ¼ 0.01; C202 ¼ 0.04; C242 ¼ −0.0045; C314 ¼ 0.0008, c0 ¼ −0.53. Other parameters and radial coefficients cl are the same as in
Fig. 2 for the parity odd.
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FIG. 5. ηReven (red line) and the 4PCF data (dots) of SGC BOSS CMASS from Ref. [28]. The parameters and the coefficients are the
same as Fig. 4 for NGC.
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and tune the parity-even coefficients Cl1l2l3 . The radial
coefficients c1, c2, c3, c4 are shared by the parity even and
the parity odd. The resulting ηReven and the data are shown in
Fig. 4 for NGC and, respectively, in Fig. 5 for SGC. The
observed parity-even 4PCF has a higher amplitude than the
observed parity-odd 4PCF by several times.
Comparatively, the fitting for the parity odd in Figs. 2

and 3 seems better than that for the parity even in Figs. 4
and 5. This may be due to our simple numerical computing
of the integrations of ηdisc and ηFP, or due to the absence of
the nonlinear terms in the Gaussian approximation. Overall,
the fitting in this paper is still preliminary, and could be
improved by the parameter estimation which would involve
more than 15 parameters.

V. THE BEHAVIOR OF SOME PARTS
OF THE PARITY-EVEN 4PCF

The parity-even 4PCF is composed of three pieces
η0even þ ηFP þ ηI , and we like to compare their respective
contribution. The piece η0even has the angular sector and is
not simple to plot. For simplicity, we shall demonstrate the
behaviors of ηdisc, ηFP, and ηI , respectively. In the following
we consider two special configurations: a conformal line
and a square that are adopted in Ref. [2].
In the conformal line case, the four galaxies with posi-

tion ðr; r0; r00; r000Þ are put on a line, and the separation
between two neighboring galaxies is s. In the spherical
coordinate ðr; θ;ϕÞ, we consider the line along the z axis,
so that r00 ¼ ð0; 0; 0Þ, r000 ¼ ðs; π; 0Þ, r0 ¼ ðs; 0; 0Þ, and
r ¼ ð2s; 0; 0Þ, as shown in Fig. 6. Given the conformal
line, one has

ηdiscðsÞ ¼ ξðsÞ2 þ ξð2sÞ2 þ ξðsÞξð3sÞ; ð73Þ

ηFPðsÞ ¼ 4ξðsÞξð2sÞξð3sÞ þ 4ξðsÞ2ξð2sÞ þ 3ξðsÞξð2sÞ2
þ 3ξðsÞ2ξð3sÞ þ ξð2sÞ2ξð3sÞ þ ξðsÞ3; ð74Þ

and ηI is the integration (31). With the integration variable
x ¼ ðx; θ;ϕÞ in the spherical coordinate, it is

ηIðsÞ ¼ k20
4πAm

Z
V
ξ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 4s2 − 4sx cos θ
p �

× ξ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ s2 − 2sx cos θ
p �

× ξ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ s2 þ 2sx cos θ
p �

× ξðxÞx2 sin θdxdθdϕ: ð75Þ

FIG. 7. The conformal line configuration. (a) ηFP (green) is
dominant at small scales and decreases with separation. (b) ηdisc

(blue) starts to dominate at middle scales. (c) ηdisc is oscillatory at
large scales. ηI (red) is small. For illustration, the radial mode cos x

x
in ξ is used.

FIG. 6. Four galaxies are located along the z axis with an
equal separation s between neighboring galaxies. The origin is
at r00 ¼ 0.
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The results are shown in Fig. 7 for the conformal line
configuration. At small scales r≲ 10 Mpc the Fry-Pebbles
part ηFP ∝ ξ3 ∝ r−3.2 (by an actual fit) is dominant since
ξ ∝ r−1 in the Gaussian approximation. At large scales
r≳ 10 Mpc the disconnected part ηdisc ∝ ξ2 ∝ r−2 is dom-
inant and oscillates with a period π=k0 ∼ 60 Mpc. ηI is
comparable, or subdominant to ηFP at large scales. The
detailed of the curves are subject to varying with the
parameters k0 and Am.
In the square case, the four galaxies with position

ðr; r0; r00; r000Þ form a square. In the spherical coordinate
ðr; θ;ϕÞ, we put r000 ¼ ð0; 0; 0Þ, r00 ¼ ðs; 0; 0Þ, r0 ¼
ðs; π=2; 0Þ, i.e., r0 is on the x axis, and r¼ð ffiffiffi

2
p

s;π=4;0Þ.
The configuration is showed in Fig. 8. Given the square,
one has

ηdiscðsÞ ¼ 2ξðsÞ2 þ ξð
ffiffiffi
2

p
sÞ2; ð76Þ

ηFPðsÞ ¼ 8ξðsÞ2ξð
ffiffiffi
2

p
sÞ þ 4ξðsÞ3 þ 4ξð

ffiffiffi
2

p
sÞ2ξðsÞ; ð77Þ

ηIðsÞ ¼ k2J
2πAm

ZZZ
ξ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ 2s2− 2sxðsinθ cosϕþ cosθÞ
q �

× ξ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ s2− 2sxsinθ cosϕ
q �

× ξ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ s2− 2sxcosθ
p �

ξðxÞx2 sinθdxdθdϕ:
ð78Þ

The resulting ηdisc, ηFP, and ηI are plotted in Fig. 9 for the
square configuration. At small scales r≲ 12 Mpc the Fry-
Pebbles part ηFP ∝ ξ3 ∝ r−3 is dominant. At large scales
r≳ 12 Mpc the disconnected part ηdisc is dominant and
oscillates with a period π=k0 ∼ 60 Mpc, and the peaks
occur at s ∼ 60; 120; 180h−1 Mpc. These patterns are
analogous to the conformal line case in Fig. 7. For other

parts to show up, ηdisc can be subtracted off from the
observational data [27,28].

VI. CONCLUSION AND DISCUSSION

We have presented the equation and solution of the 4PCF
of galaxies in the Gaussian approximation, as part of a
serial analytical study of the nPCF of galaxies. The starting
point is the Eq. (1) of density fluctuation of a self-gravity
fluid in a static Universe. The Schwinger functional differ-
entiation technique that we apply is a powerful tool in field
theory to derive the equation of Green’s functions when the
field equation is given. The derivation is simpler than
working with the Liouville’s equation of the probability
distribution functions in the phase space. The resulting
Eq. (20) of 4PCF η contains hierarchically 2PCF ξ and
3PCF ζ, as expected. Given ξ in (9) and ζ in (15), the final

FIG. 8. Four galaxies are located on a square. The origin is at
r000 ¼ 0, ðr0 − r000Þ is along the x axis, and ðr00 − r000Þ along the z
axis, respectively.

FIG. 9. The square configuration. (a) ηFP (green) is dominant at
small scales and decreases with separation. (b) ηdisc (blue) starts
to dominate at middle scales. (c) ηdisc is oscillatory at large scales.
ηI (red) is small. The behaviors are analogous to those in the
conformal line configuration.
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equation (21) of η is a closed, Helmholtz equation
with inhomogeneous term formed from products of ξ.
Interestingly, in the Gaussian approximation, all the partial
differential equations of 2PCF, 3PCF, and 4PCF possess a
similar structure of the Helmholtz type, and have two
physical parameters: the mass of galaxy and the Jeans wave
number. A great advantage of the Gaussian approximation
is that the equation of n-point correlation function is linear
in the correlation function itself, and the analytical solution
can be found to explain the observational data in a trans-
parent manner.
We obtain the 4PCF solution (28) consisting of four

parts: η ¼ η0odd þ η0even þ ηFP þ ηI . The first two terms
η0odd þ η0even form the general, homogeneous solution η0

(39). The most interesting is the parity-odd η0odd (42), which
can explain qualitatively the observed parity-odd 4PCF
from BOSS galaxies [27–29]. The parity-even η0even (41)
contains the disconnected 4PCF ηdisc (48) that corresponds
to the 4PCF of a Gaussian random process. ηFP (25) has the
same form as the Fry-Peebles ansatz for 4PCF, ηI (31) is the
integration of an inhomogeneous term, and both ηFP and ηI

are parity even. We also compare the reduced parity-even
4PCF with the observation data, and find that ηFP is
dominant at small scales, ηI is subdominant, and η0odd þ
η0even is dominant at large scales, i.e., the signals of parity-
odd are more prominent at large scales.
While ηFP and ηI are fully determined by the 2PCF, η0odd

and η0even are not. The amplitudes (via the coefficients
Cl1l2l3) of η

0
odd and η

0
even will be determined by the boundary

condition, and the radial behaviors of η0odd and η0even are
quasiperiodic oscillatory, determined by the Jeans wave
number. The theory of self-gravity density perturbation
itself does not predict the boundary condition, and we take
the observational data as the boundary condition.
Statistically, the configurations of a tetrahedron for 4PCF
in space and its mirror image (spatial-reflected) might have
an equal probability to exist. But this is not the case, as
indicated by the observational data. The observed non-
vanishing parity-odd 4PCF is presumably an imprint of
parity-violation processes during some early stages of the
expanding Universe, or generated by some mechanism
beyond the self-gravity fluid model in this paper. This is an
issue needing further investigations.
In earlier literature, in lack of the closed equations of

nPCF, the hierarchical clustering picture was based on the
assumption that the nPCF should be constructed from
products of (n − 1) 2PCFs. Our 4PCF solution shows that
the assumption is inadequate to account for ηI, η0odd, and
η0even (except for ηFP), and particularly misses the parity-odd
information on large scales. Therefore, without the field
equation, purely statistical modelings are not sufficient to
describe the 4PCF of the system of galaxies.
The Gaussian approximation is valid at large scales

≳1h−1 Mpc, as shown for the 2PCF and 3PCF in our

previous work. For the BOSS CMASS sample [27], the
galaxy separations are ≫1h−1 Mpc, the comparison of the
4PCF solution with the observational data shows the
validity of Gaussian approximation. Improvements can
be made beyond the Gaussian approximation by including
higher order terms of fluctuation in the expansions (A3),
(A7), and (A10), and we shall come up with the nonlinear
equation of correlation. It is expected that the amplitude of
4PCF will be enhanced at small scales, while the large-
scale behavior will not be substantially altered, and, in
particular, the parity-odd 4PCF will remain at large scales.
The Gaussian approximation in our work is conceptually

different from the Gaussian random process in statistics.
The terminology “the Gaussian approximation” we use in
this paper is actually adopted from the condensed matter
physics, and is parallel to the Landau-Ginzburg approxi-
mation in the phase transition theory [13–15]. Technically,
in our context, the Gaussian approximation is through
the expansions (A3), (A7), and (A10) in terms of fluctua-
tions. As a working tool, it represents the next order of
approximation beyond the mean field approximation, and
handles adequately the large-scale fluctuations of the self-
gravity fluid.
The solution (15) of 3PCF in the Gaussian approxima-

tion is nonvanishing for the self-gravity fluid. Moreover,
the solution (49) of 4PCF is beyond a Gaussian random
process, (except for ηdisc). So, both 3PCF and 4PCF
demonstrate an important property that the fluctuations
of the self-gravity fluid in the Gaussian approximation
cannot be described statistically by a Gaussian random
process. As we understand, this property is due to the long-
range gravity present in the fluid at the fundamental level,
thereby the modes of fluctuations are not independent and
the Gaussian statistics is not appropriate to apply. Only in
the mean field approximation, the density fluctuations are
set to zero, and consequently all the correlation functions
are vanishing. In this regard, for any consistent treatment of
the fluctuations of the self-gravity fluid, there is no
Gaussian statistical limit in which the two-point correlation
function is nonzero while the three-point and higher
correlation functions vanish. The above analysis on the
structure of the n-point correlation functions shows how
the system of galaxies differs from the fluctuations of the
cosmic microwave background radiation [75–79]. In theo-
retical perspective, the Maxwell field is a linear, massless
field, so that it has neither coupling between the fluctuation
modes [66] nor Newtonian limit with self-gravity. Thus, the
fluctuations of cosmic microwave background radiation are
statistically independent, and well described by a Gaussian
random process, so is the relic gravitational wave by the
same reason [80–84].
The static model can apply to the system of the galaxies

distributed in a small redshift range [27]. The evolution
effect is small within a small redshift range, as shown by the
evolutionary 2PCF solution in the expanding Universe [20].
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When observational data are available in future, one can
proceed further to derive the evolutionary equation of 4PCF,
and compare with the data.
Finally, the Newtonian self-gravity fluid as the basic

model is simple enough to work with, and Eq. (1) contains
the density field as the only dynamical variable. Other
possible improvements of the model are to include the
shear tensor and the anisotropic stress in the fluid, and these
will need additional treatments.
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APPENDIX: DERIVATION OF THE EQUATION
OF 4PCF IN GAUSSIAN APPROXIMATION

In this appendix we apply the Schwinger functional
differentiation on the ensemble average of the Eq. (18) of
the density field, and derive the Eq. (20) of 4PCF, in
analogy to the derivation of the equations of 2PCF and
3PCF [16–22].
The first term in Eq. (18) is a functional differentiation

with respect to the external source J three times. By use of
the definition (19), it gives

1

α3
δ3

δJðr0ÞδJðr00ÞδJðr000Þ∇
2hψðrÞijJ¼0¼∇2Gð4Þðr;r0;r00;r000Þ;

ðA1Þ

where the ordering of δ
δJ and ∇2 ¼ ∇2

r can be exchanged.

The second term of Eq. (18) contains h− ð∇ψÞ2
ψ i, which is

highly nonlinear due to the factor 1
ψ. We write the density

field ψ into an averaged density and a fluctuation

ψ ¼ hψiJ þ δψ ; ðA2Þ

in the presence of J, and make an expansion as the
following

1

ψ
¼ 1

hψiJ þ δψ
≃

1

hψiJ

�
1 −

δψ

hψJi
þOððδψÞ2Þ

�
:

Taking its ensemble average, using hδψi ¼ 0, and dropping
the higher ðδψÞ2 term, we have

�
1

ψ

�
J
≃

1

hψiJ
: ðA3Þ

This is the Gaussian approximation of the density field that
we have adopted in this paper and in our previous works
[16,20]. Then the second term of Eq. (18) is written as

�
−
ð∇ψÞ2
ψ

�
J
≃ −

ð∇hψiJÞ2
hψiJ

: ðA4Þ

In the following we shall omit the subscript J whenever no
confusions arise. Taking functional differentiation of (A4)
with respect to J once gives

1

α

δ

δJðr0Þ
�
−
ð∇hψiÞ2
hψi

�
¼ −

�
−

1

hψi2
1

α

δhψi
δJðr0Þ ð∇hψiÞ

2 þ 2

hψi∇hψi ·∇
�
1

α

δhψi
δJðr0Þ

��
:

Taking the functional differentiation twice gives

1

α2
δ2

δJðr0ÞδJðr00Þ
�
−
ð∇hψiÞ2
hψi

�
¼ −

2

hψi3
1

α

δhψi
δJðr00Þ ð∇hψiÞ

2
1

α

δhψi
δJðr0Þ þ 2∇hψi ·∇

�
1

α

δhψi
δJðr00Þ

�
1

hψi2
1

α

δhψi
δJðr0Þ

þ ð∇hψiÞ2
hψi2

1

α2
δ2hψi

δJðr0ÞδJðr00Þ þ
2

hψi2
1

α

δhψi
δJðr00Þ∇hψi ·∇

�
1

α

δhψi
δJðr0Þ

�

−
2

hψi∇
�
1

α

δhψi
δJðr00Þ

�
·∇

�
1

α

δhψi
δJðr0Þ

�
−

2

hψi∇hψi ·∇
�
1

α2
δ2hψi

δJðr0ÞδJðr00Þ
�
:

Taking the functional differentiation thrice gives
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1

α3
δ3

δJðr0ÞδJðr00ÞδJðr000Þ
�
−
ð∇hψiÞ2
hψi

�

¼ −
4

hψi3
1

α

δhψi
δJðr000Þ∇hψi ·∇

�
1

α

δhψi
δJðr00Þ

�
1

α

δhψi
δJðr0Þ þ

2

hψi2∇
�
1

α

δhψi
δJðr000Þ

�
· ∇

�
1

α

δhψi
δJðr00Þ

�
1

α

δhψi
δJðr0Þ

þ 2

hψi2∇hψi · ∇
�
1

α2
δ2hψi

δJðr00ÞδJðr000Þ
�
1

α

δhψi
δJðr0Þ þ

2

hψi2∇hψi · ∇
�
1

α

δhψi
δJðr00Þ

�
1

α2
δ2hψi

δJðr0ÞδJðr000Þ

þ 6

hψi4 ð∇hψiÞ2 1
α

δhψi
δJðr000Þ

1

α

δhψi
δJðr00Þ

1

α

δhψi
δJðr0Þ −

4

hψi3∇hψi ·∇
�
1

α

δhψi
δJðr000Þ

�
1

α

δhψi
δJðr00Þ

1

α

δhψi
δJðr0Þ

−
2

hψi3 ð∇hψiÞ2 1

α2
δ2hψi

δJðr00ÞδJðr000Þ
1

α

δhψi
δJðr0Þ −

2

hψi3 ð∇hψiÞ
2
1

α

δhψi
δJðr00Þ

1

α2
δ2hψi

δJðr0ÞδJðr000Þ

þ 1

hψi4
�
2hψi2∇hψi ·∇

�
1

α

δhψi
δJðr000Þ

�
− 2hψið∇hψiÞ2 1

α

δhψi
δJðr000Þ

�
1

α2
δ2hψi

δJðr0ÞδJðr00Þ

þ ð∇hψiÞ2
hψi2

1

α3
δ3hψi

δJðr0ÞδJðr00ÞδJðr000Þ −
4

hψi3
1

α

δhψi
δJðr000Þ

1

α

δhψi
δJðr00Þ∇hψi · ∇

�
1

α

δhψi
δJðr0Þ

�

þ 2

hψi2
1

α2
δ2hψi

δJðr00ÞδJðr000Þ∇hψi ·∇
�
1

α

δhψi
δJðr0Þ

�
þ 2

hψi2
1

α

δhψi
δJðr00Þ∇

�
1

α

δhψi
δJðr000Þ

�
· ∇

�
1

α

δhψi
δJðr0Þ

�

þ 2

hψi2
1

α

δhψi
δJðr00Þ∇hψi · ∇

�
1

α2
δ2hψi

δJðr0ÞδJðr000Þ
�
þ 2

hψi2
1

α

δhψi
δJðr000Þ∇

�
1

α

δhψi
δJðr00Þ

�
· ∇

�
1

α

δhψi
δJðr0Þ

�

−
2

hψi∇
�
1

α2
δ2hψi

δJðr00ÞδJðr000Þ
�
· ∇

�
1

α

δhψi
δJðr0Þ

�
−

2

hψi∇
�
1

α

δhψi
δJðr00Þ

�
·∇

�
1

α2
δ2hψi

δJðr0ÞδJðr000Þ
�

þ 2

hψi2
1

α

δhψi
δJðr000Þ∇hψi · ∇

�
1

α2
δ2hψi

δJðr0ÞδJðr00Þ
�
−

2

hψi∇
�
1

α

δhψi
δJðr000Þ

�
·∇

�
1

α2
δ2hψi

δJðr0ÞδJðr00Þ
�

−
2

hψi∇hψi ·∇
�
1

α3
δ3hψi

δJðr0ÞδJðr00ÞδJðr000Þ
�
: ðA5Þ

Setting J ¼ 0 in (A5), we get the contribution of the second term of Eq. (18) as the following:

1

α3
δ3

δJðr0ÞδJðr00ÞδJðr000Þ
�
−
ð∇ψÞ2
ψ

�����
J¼0

¼
�

2

hψi2 ∇
�
1

α

δhψi
δJðr000Þ

�
·∇

�
1

α

δhψi
δJðr00Þ

�
1

α

δhψi
δJðr0Þ þ

2

hψi2
1

α

δhψi
δJðr00Þ∇

�
1

α

δhψi
δJðr000Þ

�
·∇

�
1

α

δhψi
δJðr0Þ

�

þ 2

hψi2
1

α

δhψi
δJðr000Þ∇

�
1

α

δhψi
δJðr00Þ

�
· ∇

�
1

α

δhψi
δJðr0Þ

�
−

2

hψi∇
�
1

α2
δ2hψi

δJðr00ÞδJðr000Þ
�
·∇

�
1

α

δhψi
δJðr0Þ

�

−
2

hψi∇
�
1

α

δhψi
δJðr00Þ

�
·∇

�
1

α2
δ2hψi

δJðr0ÞδJðr000Þ
�
−

2

hψi∇
�
1

α

δhψi
δJðr000Þ

�
·∇

�
1

α2
δ2hψi

δJðr0ÞδJðr00Þ
������

J¼0

¼ 2Gð2Þðr; r0Þ∇Gð2Þðr; r00Þ · ∇Gð2Þðr; r000Þ þ 2Gð2Þðr; r00Þ∇Gð2Þðr; r000Þ ·∇Gð2Þðr; r0Þ
þ 2Gð2Þðr; r000Þ∇Gð2Þðr; r0Þ ·∇Gð2Þðr; r00Þ − 2∇Gð2Þðr; r0Þ ·∇Gð3Þðr; r00; r000Þ
− 2∇Gð2Þðr; r00Þ ·∇Gð3Þðr; r0; r000Þ − 2∇Gð2Þðr; r000Þ ·∇Gð3Þðr; r0; r00Þ; ðA6Þ

where we have used hψiJ¼0 ¼ ψ0 ¼ 1, ∇hψiJ¼0 ¼ 0, and Eqs. (7) and (13).
The third term of Eq. (18) is due to the Jeans term k2Jhψ2i. Expanding ψ2 gives

k2Jhψ2i¼k2JhðhψiþδψÞ2i¼k2Jhψi2þk2Jhδψδψi≃k2Jhψi2; ðA7Þ

where hδψi≡ 0 has been used, and ðδψÞ2 has been dropped in the Gaussian approximation. Taking the functional
differentiation three times gives
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1

α3
δ3ðk2Jhψi2Þ

δJðr0ÞδJðr00ÞδJðr000Þ ¼ 2k2J

�
1

α2
δ2hψi

δJðr0ÞδJðr000Þ
1

α

δhψi
δJðr00Þ þ

1

α

δhψi
δJðr0Þ

1

α2
δ2hψi

δJðr00ÞδJðr000Þ

þ 1

α

δhψi
δJðr000Þ

1

α2
δ2hψi

δJðr0ÞδJðr00Þ þ hψi 1

α3
δ3hψi

δJðr0ÞδJðr00ÞδJðr000Þ
�
: ðA8Þ

Setting J ¼ 0 in the above gives the contribution of the third term

1

α3
δ3ðk2Jhψ2iÞ

δJðr0ÞδJðr00ÞδJðr000Þ
����
J¼0

¼ 2k2JðGð3Þðr; r0; r000ÞGð2Þðr; r00Þ þ Gð3Þðr; r00; r000ÞGð2Þðr; r0Þ

þ Gð3Þðr; r0; r00ÞGð2Þðr; r000Þ þ Gð4Þðr; r0; r00; r000ÞÞ: ðA9Þ

The fourth term of Eq. (18) is the external source term Jhψ2iJ, which, in the Gaussian approximation, is written as

Jhψ2iJ ≃ Jhψi2J: ðA10Þ

Taking the functional differentiation three times and using δJðrÞ
δJðr0Þ ¼ δð3Þðr − r0Þ, we get

1

α3
δ3ðJhψi2Þ

δJðr0ÞδJðr00ÞδJðr000Þ ¼ 2

�
1

α

δhψi
δJðr000Þ

1

α
δð3Þðr− r0Þ 1

α

δhψi
δJðr00Þ þ hψi 1

α
δð3Þðr− r0Þ 1

α2
δ2hψi

δJðr00ÞδJðr000Þ

þ 1

α
δð3Þðr− r00Þ 1

α

δhψi
δJðr000Þ

1

α

δhψi
δJðr0Þ þ

1

α
δð3Þðr− r00Þhψi 1

α2
δ2hψi

δJðr0ÞδJðr000Þ

þ 1

α
δð3Þðr− r000Þ 1

α

δhψi
δJðr00Þ

1

α

δhψi
δJðr0Þ þ J

1

α2
δ2hψi

δJðr00ÞδJðr000Þ
1

α

δhψi
δJðr0Þ þ J

1

α

δhψi
δJðr00Þ

1

α2
δ2hψi

δJðr0ÞδJðr000Þ

þ 1

α
δð3Þðr− r000Þhψi 1

α2
δ2hψi

δJðr0ÞδJðr00Þ þ J
1

α

δhψi
δJðr000Þ

1

α2
δ2hψi

δJðr0ÞδJðr00Þ þ Jhψi 1
α3

δ3hψi
δJðr0ÞδJðr00ÞδJðr000Þ

�
:

ðA11Þ

Taking J ¼ 0 in the above gives the contribution of the fourth term as the following

1

α3
δ3hJψ2i

δJðr0ÞδJðr00ÞδJðr000Þ
����
J¼0

¼ 2

α
δð3Þðr − r0ÞðGð2Þðr; r00ÞGð2Þðr; r000Þ þGð3Þðr; r00; r000ÞÞ

þ 2

α
δð3Þðr − r00ÞðGð2Þðr; r0ÞGð2Þðr; r000Þ þ Gð3Þðr; r0; r000ÞÞ

þ 2

α
δð3Þðr − r000ÞðGð2Þðr; r0ÞGð2Þðr; r00Þ þ Gð3Þðr; r0; r00ÞÞ: ðA12Þ

Putting the four terms (A1), (A6), (A9), and (A12) into Eq. (18), we arrive at Eq. (20) of Gð4Þ.
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