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Lensing reconstruction maps from the cosmic microwave background (CMB) provide direct observations
of the matter distribution of the universe without the use of a biased tracer. Such maps, however, constitute
projected observables along the line of sight that are dominated by their low-redshift contributions.
To cleanly access high-redshift information, Maniyar et al., [Phys. Rev. D 105, 083509 (2022)] showed that
a linear combination of lensing maps from both CMB and line intensity mapping (LIM) observations can
exactly null the low-redshift contribution to CMB lensing convergence. In this paper we explore the
scientific returns of this nulling technique. We show that LIM-nulling estimators can place constraints on
standard ΛCDM plus neutrino mass parameters that are competitive with traditional CMB lensing.
Additionally, we demonstrate that as a clean probe of the high-redshift universe, LIM nulling can be used
for model-independent tests of cosmology beyond ΛCDM and as a probe of the high-redshift matter
power spectrum.
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I. INTRODUCTION

In recent decades, there has been a sustained effort to
make precision measurements of the large scale universe
over a vast portion of its history. Line intensity mapping
(LIM) is an emergent technique for studying large scale
structure. Here, one observes the integrated intensity of a
single spectral line emanating from galaxies and the
intergalactic medium (IGM). By virtue of observing lines
with known rest frequencies, line intensity mapping allows
one to obtain precise redshift information. Mapping line
emission over a large bandwidth can therefore yield
unprecedentedly large maps of the universe in three
dimensions, allowing us to observe cosmic evolution in
action. A number of lines are being targeted by current and
upcoming experiments including Lyman-α, H-α, the 21 cm
line of neutral hydrogen (HI), the 3727 Å, 3729 Å lines of
singly ionized oxygen ([OII]), the forbidden 88.4 and
51.8 μm transitions of doubly ionized oxygen ([OIII]), a
host of rotational line transitions of carbon monoxide
(CO), and the forbidden 158 μm line of ionized carbon
([CII]). Each line traces a biased matter density field as

well as regions of the IGM and of the galaxy related to
their specific emission or absorption mechanisms. This
makes line intensity mapping a powerful probe of both
cosmology and astrophysics.
Along with LIMs, gravitational lensing is a promising

probe of the matter density field. Weak gravitation lensing
of the cosmic microwave background (CMB) arises when
CMB photons from the surface of last scattering get
deflected by the gravitational potentials that they encoun-
ter on their journey to the observer. Using CMB temper-
ature and polarization maps to reconstruct the lensing
potential, ϕ, gives us direct observation of the total matter
distribution of the universe, both baryonic and dark,
without the use of a biased tracer [1]. Measuring the
power spectrum of the lensing potential, either in auto-
correlation or in cross-correlation with large scale struc-
ture surveys, has the ability to probe the growth of matter
fluctuations, place limits on primordial non-Gaussianity,
constrain the sum of the neutrino masses, and even test
theories of modified gravity [2–4]. This information,
however, is collapsed onto a single observable, the
convergence, and the high-redshift contribution to the
convergence is dwarfed by that of the low-redshift uni-
verse (z≲ 2). Since the CMB lensing convergence con-
tains information about how matter is distributed along the*hannah.fronenberg@mail.mcgill.ca
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entire line of sight, it has the potential to help us trace out
the matter distribution of the early universe.
There are several proposed techniques to disentangle

the redshift integrated lensing signal and to extract infor-
mation from particular redshift intervals. For instance,
cross-correlating the CMB convergence field with another
tracer, such as a galaxy survey or line intensity map, allows
one to pick out common matter density correlations at their
common redshift. This method, however, has its drawbacks.
The redshifts available for study are limited to those of the
nonlensing probe and by virtue of cross-correlating with a
biased tracer, the resulting cross-correlation is likewise
biased, losing out on the unbiased nature of the lensing
convergence. One can make progress on the latter by
considering not a correlation with the tracer itself but rather,
for example, with the LIM lensing convergence. Just like the
CMB, LIMs also experience weak lensing by large scale
structure as the photons pass through the cosmos on their
way to our instruments. These lines, however, are only
lensed by a portion of large scale structure that lenses the
CMB, namely the low redshift universe. Cross-correlating
LIM lensing and CMB lensing allows one to study the
common low redshift matter density field that lenses both
the LIM and the CMB. While the resulting correlation is
unbiased it again is limited to the redshifts between the
observer and the source plane of the LIM.
In order to access the high redshift information, Ref. [5]

proposes using the lensing information of two LIMs, to not
just suppress, but exactly null out the low redshift con-
tribution to the CMB convergence. This “nulling” method
has been explored in the context of galaxy lensing [6–8] as
well as CMB lensing [9–11]. For instance, Ref. [9] shows
that one can “null” out the imprint of uncertain baryonic
effects from CMB lensing maps using cosmic shear
surveys at z < 1. Similarly, Ref. [10] showed that one
can also use cosmic shear surveys to subtract off the
imprint of uncertain dark energy physics from CMB
lensing maps. Reference [11] explores the potential of
subtracting the imprint of gravitational nonlinearity at low
redshift to help measure primordial bispectra. While never
implemented with real data, these nulling techniques could
be an important new tool for studying the high redshift
universe.
What is more, Ref. [5] shows that the CMB × LIM-

nulling convergence spectrum, hκ̂κ̂nulli, does not contain so-
called line interloper bias when the LIM convergence maps
are estimated with “LIM-pair” estimators of Sec. II B. Line
interlopers are one of the chief systematic contaminants in
LIMs, and consist of low-redshift spectral lines that redshift
into the same observed frequency channel as the high
redshift target line. In addition to estimators such as the
LIM-pair estimators that mitigate interloper bias by con-
struction, other strategies such as line identification, analysis
of redshift space distortions, spectral deconfusion, and
cross-correlations have all been shown to help reduce line

interloper contamination [12–17]. Provided that some
combination of these strategies is able to bring line
interlopers (and other potential systematics) under control,
the CMB × LIM-nulling convergence spectrum has the
potential to reveal exclusive information about the early
universe. Exactly what information is revealed is the subject
of this paper.
In this work, we explore the parameter space of LIM-

nulling measurements. In Sec. II we derive, for the first
time, the CMB × LIM-nulling variance as well as discuss
the potential use for this probe in constraining cosmology.
In a companion Letter, Ref. [18], we forecast using the
CMB × LIM-nulling convergence spectrum to detect
baryon acoustic oscillations in the early universe, which
may serve as a standard ruler over a vast portion of cosmic
history. In Secs. III and IV, we calculate the signal-to-
noise ratio of this cross-spectrum statistic as a function of
various observing parameters. After exploring this vast
parameter space, we converge on three possible observing
scenarios, some of which would allow one to constrain
cosmology at high redshift in Sec. IV. Using these
scenarios, we present several forecasts. Section V consists
of a series of forecasts on ΛCDMþMν cosmology. First
is a Fisher forecast to test the sensitivity of the CMB ×
LIM nulling to the concordance model of cosmology and
to compare it with traditional CMB lensing forecasts. In
this section, we also explore how this LIM-nulling
estimator behaves, in comparison to the regular CMB
lensing convergence, in universes with time-evolving
cosmologies. In addition, we forecast the sensitivity of
this probe to the matter power spectrum at high-z in
Sec. VI. Unless otherwise explicitly stated, our fiducial
cosmology is that of Planck 2015.

II. LIM LENSING AND LIM NULLING

In this section, we outline the key lensing estimators and
observables used throughout the text which follow Ref. [5].
In the first subsection, we provide a brief overview of weak
lensing by large scale structure in the context of the CMB
and extend the discussion to include LIMs. In Sec. II B, we
quickly review LIM lensing estimator and LIM-pair
estimators. Finally, in Sec. II C, we build upon the existing
LIM-nulling estimator formalism to provide a derivation of
the CMB × LIM-nulling variance.

A. Weak lensing by large-scale structure

The CMB acts as a source image which is lensed by the
intervening matter density field. The deflection angle, α, is
proportional to the gradient of the lensing potential, ϕ,
which is the total gravitational potential of the projected
mass distribution along the line of sight. This gradient of
the potential is related to the convergence, κ ¼ −1=2∇ϕ,
which is the line-of-sight-integrated matter density field,
given by
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κðn̂Þ ¼
Z

zs

0

Wðz0; zsÞδmðχðz0Þn̂; z0Þ
cdz0

Hðz0Þ ; ð1Þ

where zs is the redshift of the source,Wðz; zsÞ is the lensing
kernel,HðzÞ is the Hubble parameter, c is the speed of light,
χ denotes the comoving distance, and δmðr; zÞ is the matter
density field at position r and redshift z. The lensing kernel
for a source at a single comoving slice is given by

Wðz; zsÞ ¼
3

2

�
H0

c

�
2 Ωm;0

a
χðzÞ

�
1 −

χðzÞ
χðzsÞ

�
; ð2Þ

whereH0 is the Hubble constant,Ωm;0 is the matter fraction
today, a is the scale factor, and χðzsÞ is the comoving
distance to the source.
The deflections induced on CMB photons are small, on

the order of arcminutes. However, the structures respon-
sible for the deflection are large, on the order of degrees.
Therefore, somewhat counter-intuitively, to study the large
scale structure of the universe one actually has to study the
small scale anisotropies of the CMB. Lensing induces
correlations between the otherwise uncorrelated CMB
spherical harmonic coefficients, alm. With the use of
quadratic estimators like those derived in Refs. [19,20],
an estimate of κ can be obtained which we denote by κ̂.
One can then compute the angular power spectrum of the

convergence which is given by

Cκ̂ κ̂
L ¼

Z
zs

0

Wðz0; zsÞ2
χðz0Þ2 Pm

�
k ¼ Lþ 1=2

χðz0Þ ; z0
�

cdz0

Hðz0Þ ; ð3Þ

where Pm is the matter power spectrum. In this expression,
we assume the Limber approximation.
Obtaining lensing measurements is challenging yet has

seen tremendous progress in recent years. To date, a
number of lensing detections have been made, the first
of which was by the Wilkinson Microwave Anisotropy
Probe (WMAP) in 2007 using the Hu and Okamoto
estimator on temperature maps and cross-correlating the
resultant κ map with radio galaxy counts [21]. Subsequent
measurements have been made of the lensing signal in
temperature as well as polarization maps by ACT [22–24],
the South Pole Telescope (SPT) [25–30], Planck [31,32],
Background Imaging of Cosmic Extragalactic Polarization
(BICEP) [33], and the Polarization of the Background
Radiation experiment (POLARBEAR) [34,35]. Excitingly,
current and next generation wide-field CMB experiments
like SPT-3G, SPT-3G+, AdvACT, the Simons Observatory
(SO), and CMB-stage 4 (CMBS4) will provide high signal-
to-noise lensing measurement with unprecedented angular
resolution [36–40]. These upcoming detections will enable
further analyses such as the LIM-nulling measurement we
propose in Sec. II C and forecast in Sec. V.

B. LIM lensing estimators

Just like the CMB, lower redshift LIMs also incur
correlations between Fourier coefficients as a result of
lensing. In the same spirit as CMB lensing reconstruction,
the LIM lensing convergence can be estimated with LIM
lensing estimators which are extensions of those developed
for the CMB. LIMs, however, suffer from significant
foreground bias, be it from diffuse extended sources or
from line interlopers. This has been shown to cause signi-
ficant foreground bias to the LIM lenisng convergence [5].
Luckily, Ref. [5] showed that, by using a LIM-pair
estimator, one can perform LIM lensing reconstruction free
of interloper bias (to first order). This LIM-pair estimator
makes use of the fact that two LIMs from the same redshift
slice and the same patch of the sky will contain the same
correlations due to lensing. However, since each line is
observed at a different frequency, they will suffer from
different sources of foreground contamination which will be
uncorrelated. The LIM-pair lensing estimator, using LIMs X
and Y, is given by

κ̂XYðLÞ ¼
Z

d2l1
ð2πÞ2

d2l2
ð2πÞ2 FXYðl1; l2ÞXl1Y l2 ; ð4Þ

where l are the two-dimensional Fourier wave numbers for
the LIM in the flat sky approximation, and L ¼ l1 þ l2 are
the wave numbers for the lensing potential. The quantities
XðlÞ and YðlÞ are the observed LIM fields in Fourier space.
The function FXY is uniquely determined to ensure that κ̂XY
is unbiased to first order and to ensure that κ̂XY is the
minimum variance estimate of κXY . This solution to FXY is
given by

FXYðl1; l2Þ ¼ λXYðLÞ

×
CYY
l1
CXX
l2

fXYðl1; l2Þ − CXY
l1
CXY
l2
fXYðl2; l1Þ

CXX
l1

CYY
l2
CYY
l1
CXX
l2

− ðCXY
l1
CXY
l2
Þ2 ;

ð5Þ
whereCXX

l andCYY
l are the total autospectra for LIMs X and

Y including noise, while CXY
l is their cross spectrum. The

Lagrange multiplier λXYðLÞ is given by

λXYðLÞ≡
�Z

l1þl2¼L

fXYðl1; l2Þ

×
CYY
l1
CXX
l2

fXYðl1; l2Þ − CXY
l1
CXY
l2
fXYðl2; l1Þ

CXX
l1

CYY
l2
CYY
l1
CXX
l2

− ðCXY
l1
CXY
l2
Þ2

�
−1
;

ð6Þ

where for brevity, we introduce the notation

Z
l1þl2¼L

…≡
ZZ

d2l1d2l2
ð2πÞ2 δðl1 þ l2 − LÞ…: ð7Þ
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The factor fXYðl; l0Þ is the coupling coefficient

fXYðl; l0Þ ¼ −
2

L2

�
C̃XY
l1
ðL · l1Þ þ C̃XY

l2
ðL · l2Þ

�
; ð8Þ

where C̃XY
l is the unlensed cross-power spectrum. The

reconstruction noise, NXYðLÞ, of the LIM-pair estimator
is given by

NXYðLÞ ¼
Z

l1þl2¼L

FXYðl1; l2Þ
�
FXYðl1; l2ÞCXX

l1
CYY
l2

þ FXYðl2; l1ÞCXY
l1
CXY
l2

	
: ð9Þ

For the interested reader, a detailed derivation of this
estimator can be found in Appendix B of Ref. [5].

C. CMB ×LIM nulling

In the last two subsections, we outlined how one could
make use of both the CMB and of LIMs to extract
information about the intervening matter density field.
In the case of the CMB, the resulting field is the matter
density field over cosmic history since the surface of last
scattering projected onto a single plane. It is important to
note that LIMs are lensed by the same low-z gravitational
potentials that lens the CMB and therefore these probes
share common low-redshift induced correlations. This can
be exploited in order to make use of the LIM lensing
information to “clean” the CMB convergence of its low
redshift contribution.

From Eq. (1), it should be clear that it is possible to
construct some kernel that vanishes over the low redshift
interval ½0; znull�. Since W is quadratic in χ, a linear
combination of three such kernels suffices to find a non-
trivial null solution for the coefficients of this polynomial.
As shown in Ref. [5], using two convergence maps each
estimated from two LIMs at redshifts z1 and z2 (z1 < z2),
and one CMB convergence map sourced at the surface of
last scattering, zCMB, the LIM-nulling kernel is given by

Wnull ¼ Wðz; zCMBÞ þ αWðz; z2Þ − ð1þ αÞWðz; z1Þ; ð10Þ

where

α≡ 1=χðzCMBÞ − 1=χðz1Þ
1=χðz1Þ − 1=χðz2Þ

: ð11Þ

In Fig. 1, the LIM lensing kernels, the CMB lensing
kernel, and the LIM-nulling kernel are plotted. The LIM-
nulling kernel is exactly null between 0 < z < 4.5, meaning
that when integrating over the whole redshift range in
Eq. (1), κnull ¼ κCMB þ ακz2 − ð1þ αÞκz1 provides a map of

FIG. 1. The rescaled nulling kernel, defined as Wðz; zsÞ ¼
Wðz; zsÞ c

HðzÞ for three sources. The CMB kernel is shown in black

and the two LIM kernels at redshifts 4.5 and 5.5 are shown in blue
and magenta, respectively. Finally, the LIM-nullling kernel is
shown here in red and is null from 0 < z < 4.5 which corre-
sponds to a complete insensitivity to the matter density field over
that redshift range.

FIG. 2. Top: the CMB convergence spectrum, Cκ̂ κ̂
L , in black and

the CMB × LIM-nulling convergence spectrum, Cκ̂κ̂null
L , in red.

The dot-dashed black curve shows the CMB × LIM-nulling
convergence spectrum computed with the no-wiggle Einstein
and Hu fitting function. Bottom: the integrand of Eq. (3)
evaluated at increasing redshifts from top to bottom starting at
z ¼ 1. Since the BAO scale is a fixed comoving scale, its angular
projection changes as a function of z. The BAO features evolve
gradually to lower L as z decreases which, when integrated over
redshift, result in the washing out of BAO wiggles in Cκ̂ κ̂

L . It is for
this reason that the CMB convergence spectrum Cκ̂ κ̂

L is smooth
with no discernible BAO features in the top panel. In contrast, the
LIM-nulled convergence Cκ̂κ̂null

L sees the reemergence of acoustic
peaks (especially apparent when viewed against the reference no-
wiggle nulled spectrum). These acoustic features are the result of
the much slower angular evolution of BAOwiggles at early times.
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the line-of-sight-integrated matter density field between
4.5 < z < 1100, providing a pristine view of early times.
LIM nulling can be thought of as a type of foreground

cleaning where the LIM-lensing information is used to
clean the low redshift contribution to the CMB lensing. The
data product that results from LIM nulling does not itself
contain any LIM information, whether from the original
map or from its lensing reconstruction. Of course, LIMs
cannot partake in tracing out the matter density field at a
time before the line emission was emitted. It is composed of
CMB lensing information from z > znull.
This high-redshift information can be captured

statistically by computing the CMB × LIM-nulling con-
vergence spectrum,

Cκ̂κ̂null
L ¼

Z
zs

0

Wðz0; zsÞWnullðz0; z1; z2; zCMBÞ
χðz0Þ2

× Pm

�
k ¼ Lþ 1=2

χðz0Þ ; z0
�

cdz0

Hðz0Þ : ð12Þ

The motivation for always computing the cross-correlation
of the LIM-nulling convergence with the CMB conver-
gence and not simply in autocorrelation, it is that the cross
spectrum is free of all interloper bias, as shown in Ref. [5].
In addition, the variance of the cross spectrum contains
fewer cross terms than the variance of the LIM-nulling
autospectrum. This cross spectrum, however, effectively
contains the same cosmological information as the

LIM-nulling autospectrum whenΔz is small. One therefore
gains in signal to noise.
In Fig. 2, both the CMB convergence spectrum and the

CMB × LIM-nulling convergence spectrum are plotted in
black and red solid lines, respectively. Upon first glance it
is immediately evident that the CMB convergence has an
order of magnitude more power than the CMB × LIM-
nulling convergence spectrum. This is expected since a
significant portion of the power has been nulled in the
CMB × LIM-nulling spectrum. Perhaps more subtle is the
reemergence of acoustic peaks in the nulling spectrum. In
order to help elucidate this feature, we also show the
CMB × LIM-nulling spectrum using the no-wiggle
Eisentein and Hu fitting function in place of the typical
matter power spectrum. This fitting function is essentially
the matter power spectrum without the baryon acoustic
oscillations (BAOs). One can see the solid red line
oscillating about the no-wiggle spectrum which is plotted
in dashed black. We have refrained from forecasting the
potential to constrain the BAO scale in this work as we
believe it merits a dedicated discussion. In our companion
Letter, Ref. [18], we perform an Alcock-Paczynski test on
mock CMB × LIM-nulling datasets in order to forecast
whether it is possible to measure BAO features with such
a probe.
In the next two sections, we explore how the choice of

various observing parameters affects the signal-to-noise
ratio (SNR) of this probe. In order to do so, we require the
variance of the CMB × LIM-nulling cross spectrum. It is
given by

varðCκ̂CMB κ̂null
L Þ ¼

�
1

fskyð2Lþ 1Þ
�
½2½ðCκ̂CMB

L þ N κ̂CMB
L Þ2 þ 2αðCκ̂CMB

L þ N κ̂CMB
L ÞCκ̂CMB κ̂2

L − 2ð1þ αÞðCκ̂CMB
L þ N κ̂CMB

L ÞCκ̂CMBκ̂1
L �

þ α2½ðCκ̂CMBκ̂2
L Þ2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞðCκ̂2

L þ N κ̂2
L Þ� − 2αð1þ αÞ½Cκ̂CMBκ̂1

L Cκ̂CMBκ̂2
L þ ðCκ̂CMB

L þ N κ̂CMB
L Cκ̂1 κ̂2

L Þ�
þ ð1þ αÞ2½ðCκ̂CMB κ̂1

L Þ2 þ ðCκ̂CMB
L þ N κ̂CMB

L ÞðCκ̂1
L þ N κ̂1

L Þ��; ð13Þ

where we use “var” to denote the variance. The quantityN κ̂i
L

denotes the lensing reconstruction noise corresponding to
the estimated convergence κ̂i. To be explicit, the CMB
reconstruction noise denoted by N κ̂CMB

L and N κ̂1
L is shorthand

for the LIM-pair lensing reconstruction noise, NXYðLÞ,
using lines X and Yat z1. Finally, fsky is the fraction of the
sky area observed. A complete derivation can be found in
the Appendix.

III. COSMIC VARIANCE LIMITED SNR

Before considering the effects of instrument noise on the
CMB × LIM-nulling SNR, we first wish to illustrate the
importance of the choice of line redshifts and of the redshift
separation between LIMs used for nulling. To do this, we
work in harmonic space and compute the LIM-pair

reconstruction noise at different redshifts as well as the
CMB lensing reconstruction noise, both of which enter into
Eq. (13). For various cases, we compute both the SNR per
mode, as well as the cumulative SNR assuming uncorre-
lated errors which is given by

Cumulative SNR ¼
�X

L

�
CLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðCLÞ
p �

2
�
1=2

: ð14Þ

We compute CL using the matter power spectrum from
the publicly available code CAMB.1 The line autospectra and
cross spectra, which enter into the LIM-pair lensing
reconstruction noise through Eqs. (5) and (6), are obtained

1https://github.com/cmbant/CAMB.
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from the publicly available code HALOGEN.2 As the name
suggests, HALOGEN uses a halo model formalism based on
conditional luminosity functions [41,42]. For more infor-
mation on how we model these lines here, we refer the
interested reader to Appendix A of Ref. [5]. We take the
spherically averaged power spectra of each line and convert
them into the corresponding angular spectra. Working in
the thin shell approximation, this conversion is written as

Cl ¼ V−1Pðk ¼ l=χðzÞ; zÞ; ð15Þ

where V ¼ χ2ðzÞΔχ is the comoving volume per steradian
of a shell centered at z. We set the width of the shell to the
comoving distance corresponding to a redshift width
of 0.05.
We consider CO, [CII], and Ly-α as possible lines with

which nulling could be performed. Their angular power
spectra as a function of redshift are plotted in Fig. 3. While
the amplitude of the power spectra vary greatly between
lines, devoid of noise and systematics, any pair of lines will
yield the same SNR in the cosmic-variance-limited case; in
this idealized case, the LIM-pair lensing reconstruction
noise, NXYðLÞ, is the same for any line pair, therefore the
LIM-lensing SNR is fixed. Somewhat more intuitively,
without the effects of noise and systematics, no line traces
the line-of-sight gravitational potentials it encounters better
or worse than any other since gravitational lensing is
achromatic. This propagates through to nulling. Referring
the reader back to Eq. (12), nowhere do the individual line
spectra enter into Cκ̂κ̂null

L .
The quantities of paramount importance, then, which do

enter into both the CMB × LIM-nulling convergence as

well as its variance, are the line redshifts. The redshifts, or
comoving distance to the source plane, of the lines enters
into the nulling kernel in twoways: through the LIM lensing
kernels themselves and through the parameter α. Referring
back to Figs. 1 and 2, it might seem, by construction, that
nulling at lower z would increase the amplitude Cκ̂κ̂null

L ,
bringing it closer to Cκ̂ κ̂

L , thus resulting in higher SNR.
However, the line redshifts also enter into the nulling

variance through the cross spectrum terms C
κ̂iκ̂j
L . This

nulling variance decreases as a redshift increases. We find
that these effects combined, the increase in both the nulling
spectrum amplitude and the LIM-nulling variance as z
decreases, lead to a preference for high-z nulling. Plotted in
Fig. 4 is the CMB × LIM-nulling SNR as a function of z
and L, where the redshift separation of the lines is fixed at
Δz ¼ 0.5. As redshift increases the cumulative SNRs like-
wise increase.
The next choice to consider is the redshift separation of

the lines. It would seem, looking at Fig. 1, that an ideal
nulling scenario would have the two lines be as close as
possible in redshift in order to get a sharp cutoff. In Fig. 5,
the SNR as a function of redshift separation, Δz, is plotted.
It is immediately obvious that both very small and very large
separations of the lines are suboptimal. The cumulative
SNR peaks at Δz ¼ 0.7 when nulling performed with the
higher redshift LIM at z ¼ 5.5.
It is important to note that Δz ¼ 0.7 is not the optimal

solution in general, since what must be optimized in the
nulling equation is the interplay between the comoving
distance separation of the three probes being used. While
throughout this work we consider nulling performed on the
CMB lensing convergence by LIMs, any three convergence
maps may be used for nulling. For instance, galaxy lensing
convergence maps from z ∼ 2 can be used to null a LIM

FIG. 3. Angular power spectra of CO 4-3 (left, red), [CII] (middle, purple), and Ly-α (right, blue) as functions of angular multipole l.
We plot these spectra at redshifts ranging from z ¼ 2.5 to 5.5. Darker line color denotes low z while paler line color denoted high z. To
produce these spectra, spherically averaged line power spectra are obtained from HALOGEN and then converted to angular power spectra
using Eq. (15). Although the achromaticity of lensing (to first order) means that the amplitudes of the line power spectra cancel out in the
noiseless cosmic variance-limited regime considered in Sec. III, this changes in the realistic noisy scenarios that we examine in Sec. IV.

2https://github.com/EmmanuelSchaan/HaloGen/tree/LIM.
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convergence map at z ¼ 10. The redshift optimization must
be performed on a case-by-case basis since what is at work
here is the interplay between the comoving distances of the
three probes used in the nulling estimator. What is more, the
addition of interlopers, diffuse foreground contaminants,
and instrument systematics, which have nontrivial fre-
quency evolution, complicate the problem. Care must be
taken to optimize for the observing scenario at hand.
In this section, we provide the reader with intuition

about how the LIM-nulling estimator depends on LIM
parameters. We show that in the idealized case where noise
and systematics are not included, the SNR depends only on
the choice of line redshift and the redshift separation of
the lines. Illustrating this with a concrete example, we
presented the optimal redshift solutions for CMB nulling

taking place at z ¼ 4.8 in the cosmic variance limited case.
We found that the LIM redshifts which maximize the
cumulative SNR are z1 ¼ 4.8 and z2 ¼ 5.5. In the presence
of the frequency dependent noise of LIM experiments, this
breaks down. In the following section, we explore how the
CMB × LIM-nulling SNR scales with the sensitivity and
the area of mm, sub-mm, and IR surveys. We choose three
fiducial observing scenarios to use in the subsequent
forecasts. These include instrument noise and line inter-
lopers, and we therefore reoptimize the LIM redshifts
given these contaminants.

IV. SURVEY AREA AND SENSITIVITY

In this section we explore the dependence of survey
specifications on the CMB × LIM-nulling SNR. As pre-
viously mentioned, when devoid of instrument noise and

FIG. 4. Top: signal-to-noise ratio of the nulling estimator per
lensing multipole L. Each line denotes a different nulling redshift
going from high redshift in dark red to low redshift in pale red.
Bottom: the cumulative SNR as a function of nulling redshift. In
all cases, the line separation is fixed at Δz ¼ 0.5. Even aside
from the science applications at high redshifts, one sees that there
is preference for high-redshift nulling in order to maximize
sensitivity.

FIG. 5. Same as Fig. 4, but optimizing for the redshift
separation Δz between LIMs rather than the nulling redshift.
In all cases, the higher redshift line is fixed at z ¼ 5.5. In the
noiseless cosmic variance-limited case, the optimal SNR is
achieved at Δz ¼ 0.7, but this changes when instrumental noise
is introduced in Sec. IV.
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systematics, all lines yield the same lensing reconstruction
noise and therefore the same nulling SNR. Once such
effects are added, this is no longer the case since the map-
level SNR enters into N κ̂

L. In Sec. IVA, we present the
models used for computing the noise power of CO, [CII],
and Ly-α-type experiments. In Sec. IV B we study how our
nulling statistic depends on the intensity mapping survey
sensitivities, while in Sec. IV C, we explore how the SNR
depends on their survey areas. Subsequently, we optimize
the survey area for a given survey sensitivity to maximize
the nulling SNR.
While the final forecasts in Secs. V and VI make use of

the LIM-pair estimator, this exploratory section assumes
each LIM lensing convergence map is estimated using
a single line at a time. This is done to isolate the effects
of a particular instrument in order to explore how the
CMB × LIM-nulling SNR varies as a function of survey
area and sensitivity for a single instrument. For example,
we use [CII] observations from two channels of a given
[CII] survey to perform nulling.

A. Instrument noise power

1. CO experiments

In the case of CO experiments, we typically write the
noise power as

PCO
N ¼ σ2voxVCO

vox; ð16Þ

where σvox is the noise in a single voxel and is given by

σvox ¼
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NdettCOpixδν
q : ð17Þ

Here, Tsys is the system temperature, Ndet is the number
of detector feeds, and tCOpix is the observing time of a single
pixel [43]. The time per pixel is related to the total observing
time tobs of the survey via tCOpix ¼ tobsðΩCO

pix=ΩsurvÞ, where
Ωsurv is the total survey area. A “pixel” here is defined to
cover a solid angleΩCO

pix ¼ σ2beam, where σ
2
beam is the variance

of the instrument’s Gaussian beam.We compute σbeam using
the relation σbeam ¼ θFWHM=

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
, where θFWHM is the

beam full width at half maximum. The comoving volume
VCO
vox of a single voxel is the volume subtended by a pixel

with angular size ΩCO
pix and frequency resolution δν. Since

the number of detectors, Ndet, constitutes a measure of the
instantaneous sensitivity of the instrument, we parametrize
the total survey sensitivity in terms of spectrometer-
hours, Ndettobs.
In the following subsection, we demonstrate how the

SNR of the CMB × LIM-nulling convergence spectrum
scales with survey area (or equivalently, fsky, the fractional
sky coverage) and sensitivity, Ndettobs. To that end, we

compute the CO noise power using Eq. (16) and include it
in our computation of the LIM lensing reconstruction noise,
the single line analog to the LIM-par lensing estimator in
Eq. (4). When varying the sensitivity and survey area, we
anchor the remaining instrument specifications to the CO
Mapping Array Project phase 2 (COMAP2) [44]. The
specifications of this instrument as well as its current
generation phase 1 counterpart (COMAP1) can be found
in Table I. COMAP aims to detect spectral lines from
various rotational line transitions of CO, including the CO
(1-0) during the peak of star formation around z ∼ 3 when
the CO luminosity function peaks, and will have some
sensitivity of other CO transition lines out to z ∼ 8 [45–47].

2. [CII] experiments

In the case of [CII] surveys, we follow Ref. [48] and
write

PCII
N ¼ σ2pix

tCIIpix

VCII
vox: ð18Þ

Here, tCIIpix and VCII
vox are defined (by convention) slightly

differently than the corresponding CO quantities. A pixel is
defined to cover a solid angle ΩCII

pix ¼ 2πσ2beam. This new
definition of the pixel size is then used, along with the
frequency channel width, to compute VCII

vox. Here,

tCIIpix ¼
Ndettobs

Ωsurv=ΩCII
pix

: ð19Þ

Analogously to the previous section on CO, when
varying the sensitivity and survey area we fix the rest of
the instrument parameters to those of the carbon CII line in
post-reionization and reionization epoch (CONCERTO), a
current generation high-z [CII] mapping experiment [49].
CONCERTO will detect the [CII] line from 6≲ z≲ 11

over 1.4 deg2 on the sky. The instrument specification used
for simulating CONCERTO noise are summarized in
Table II. We also compute the SNR for a handful of other
[CII] mapping experiments whose specifications are also
summarized in Table II.

TABLE I. Instrument parameters for COMAP1 and COMAP2
experiments. These values are taken from Ref. [44].

Parameter COMAP1 COMAP2

Tsys (K) 40 40
Ndet 19 95
θFWHM (arcsec) 4 4
Δν (MHz) 15.6 15.6
tobs (h) 6000 9000
Ωsurv (deg2) 2.5 2.5
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3. Ly-α experiments

For the noise power associated with infrared (IR)
intensity mapping experiments targeting the high-z Ly-α
line, we write the noise power spectrum PLy-α

N as

PLy-α
N ¼ σ2voxV

Ly-α
vox ; ð20Þ

where VLy-α
vox is the single-voxel volume (defined in an

identical way to analogous quantities as the [CII] and
CO cases) and σvox is defined as

σvox ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πfsky
tobsΩpix

s
: ð21Þ

Here the instantaneous pixel sensitivity is given by s. Since
the IR experiments we consider scan the sky one pixel at a
time, the number of detectors is simply unity and we thus
parametrize our total survey sensitivity by the total observ-
ing time, tobs, instead of spectrometer-hours. We set the
other instrument specifications in Eqs. (20) and (21) to that
of the cosmic dawn intensity mapper (CDIM) [51]. CDIM
is a next generation optical and IR instrument aimed at
detecting high redshift galaxies and quasars as well as
spectral lines during cosmic dawn and reionization. We also
compute the SNR for Spectrophotometer for the History of
the Universe, Epoch of Reionization and Ices Explorer
(SPHEREx), an upcoming intensity mapping mission with
Ly-α mapping capabilities [52]. The specification for both
CDIM and SPHEREx are summarized in Table III.

B. Dependence on sensitivity

We compute the CMB × LIM-nulling convergence spec-
trum and its variance when nulling is performed with LIMs
from z ¼ 5.5 and z ¼ 3.5. The LIM lensing reconstruction
noise is computed using the single line analog of Eq. (9).
We take lmin;LIM ¼ 30 and lmax;LIM ¼ 5000, where lmin is

driven by the area of the survey and lmax is driven by the
angular resolution of the instrument. For the CMB lensing
reconstruction noise, we assume that of SO and use N κ̂

L
from the SO noise calculator.3 It may be noted that some of
the instruments we consider in this section do not probe
modes as large as l ¼ 30. For the purposes of singling out
the effect of increasing sensitivity, we fix lmin;LIM ¼ 30

when varying the sensitivity. When computing the LIM-
nulling SNR of particular experiments in following sec-
tions, we adjust lmin;LIM accordingly.
In Fig. 6, we plot the SNR per L mode as a function

of L and spectrometer-hours Ndettobs. Summing over
all L, the cumulative SNR as a function of the number
of spectrometer-hours is plotted in Fig. 7. As expected,
cumulative SNR increases as Ndettobs increases until it
saturates to a plateau. For COMAP2-type instruments, this
plateau occurs at Ndettobs ∼ 104 h, while for CONCERTO-
and CDIM-type experiments this occurs at Ndettobs ∼ 106 h
and Ndettobs ∼ 102 h, respectively.
Using the nominal survey specifications listed in

Table I, COMAP1 yields a cumulative SNR of 1.11 while
COMAP2 has a cumulative SNR of 1.30. As for how
current and upcoming [CII] experiments fare, stage II has
a cumulative SNR of 8.33 while all other experiments
yield a cumulative SNR < 1. Nulling with SPHEREx
results in a noise dominated measurement, however,
CDIM achieves a cumulative SNR of 7.05. For CDIM,
COMAP2, and CONCERTO, the nominal survey con-
figurations are denoted with the diamond, circle, and
square in Fig. 7, respectively. It is clear that perhaps with
the exception of CONCERTO, these configurations are in
the regime where the cumulative SNR has plateaued as a
function of spectrometer-hours. Therefore, in order to
increase the SNR further, other experimental parameters
must be altered.

TABLE II. Instrument parameters for [CII] mapping experi-
ments, including the Fred Young Submillimeter Telescope
(FYST), CONCERTO, Tomographic Ionized Carbon Intensity
Mapping Experiment (TIME), and a next-generation “stage II”
concept. The stage II parameters are based on Ref. [50], while the
rest are from Ref. [48].

Parameter FYST CONCERTO TIME Stage II

σpix (MJy=sr s1=2) 0.86 11.0 11.0 0.21
Ndet 20 3000 32 16000
θFWHM (arcsec) 46.0 22.5 22.5 30.1
δν (GHz) 2.5 1.5 1.9 0.4
tobs (hr) 4000 1200 1000 2000
Ωsurv (deg2) 16 1.4 0.6 100

TABLE III. Instrument parameters for Ly-α experiments. In-
strument specification for SPHEREx and CDIM are obtained
from Refs. [51,52], respectively. We compute the sensitivity, s,
for a nominal 2000 hour survey given the quoted noise powers for
both instruments. For SPHEREx, the spectral resolving power
(R≡ λ=Δλ, where λ is the observing wavelength and Δλ is the
wavelength resolution) is computed at λ ≃ 4.5 μm. CDIM
achieves R ≥ 300 over its whole bandwidth.

Parameter SPHEREx CDIM

s (Jy=sr s1=2) 231.46 38.58
θFWHM (arcsec) 6 2
tobs (h) 2000 2000
Ωsurv (deg2) 100 100
R≡ λ=Δλ 150 300

3https://github.com/simonsobs/so_noise_models/tree/master/
LAT_lensing_noise.
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C. Dependence on survey area

Next we consider how the CMB × LIM-nulling SNR
varies as a function of the survey area, parametrized by the
fractional sky area fsky ≡Ωsurv=4π. For any cosmological
measurement there is always a trade-off when increasing
fsky. Keeping the sensitivity and observing time fixed,
increasing the sky coverage of a survey means that less time
is spent integrating on each pixel. This results in a shallower

survey. This can be seen by examining Eqs. (16) and (17),
which show that the noise power is proportional to fsky.
However, increasing the sky coverage also increases the
number of Fourier modes sampled and results in decreased
sample variance per mode. This is reflected in Eq. (13),
where the nulling variance sees a factor of 1=fsky out front.
It is the optimization of these two effects that determines the
optimal survey coverage for an instrument of a given
sensitivity [53].
In Fig. 8 we plot the SNR as a function of L and ffsky

while in Fig. 9, we simply plot the cumulative SNR as a
function of fsky. We compute L up to 2000. This somewhat
arbitrary cutoff was informed by our reconstruction noise
curves which increase at high L. In addition, the small
angular scales at the map level used in the reconstruction
contain nonlinear baryonic effects which are difficult to
model accurately. For all three types of instruments, the
cumulative SNR curves follow the same shape. The slope
increases until it reaches a maximum, and subsequently
decreases. This maximum survey area balances the two
competing effects: the survey depth and the sample variance
per mode. If the survey area is too small for a fixed survey
duration, not enough modes are sampled and the SNR
decreases. The region of the cumulative SNR curves to the
left of the maximum value constitute this regime. If the
survey area is too big for a fixed survey duration, many
modes are sampled, but the survey is shallow, thus decreas-
ing the cumulative SNR. This constitutes the region to the
right of the maximum value.
CONCERTO is an excellent example of a survey whose

area yields the maximum CMB × LIM-nulling SNR given
its sensitivity. This is not by chance. The 1.4 deg2 survey
area for CONCERTO optimizes the SNR of its line power
spectrum and we find that, as an approximate rule of thumb,
optimizing the line power spectrum SNR with respect to
fsky also maximizes the nulling SNR.

FIG. 6. SNR as a function of lensing multipole, L, and sensitivity in terms of spectrometer-hours, Ndettobs, for CO-type experiments
(left), [CII]-type experiments (middle), and Ly-α-type experiments (right). For Ly-α, since Ndet ¼ 1, the sensitivity is simply
parametrized by tobs. The black horizontal line in each panel denotes the sensitivity of each line’s nominal survey.

FIG. 7. Cumulative SNR as a function of Ndettobs for Ly-α-type
experiments (blue dot-dashed), CO-type experiments (pink
dashed), and [CII]-type experiments (solid purple). The dotted
black line denotes SNR ¼ 1. It should be noted that for Ly-α
experiments, Ndet ¼ 1 and so the horizontal axis can simply be
interpreted as tobs. The cumulative SNR for the nominal CDIM
(blue diamond), COMAP2 (pink circle), and CONCERTO
(purple square) surveys are also shown here. With the (mild)
exception of CONCERTO, all three experiments roughly sit on
the plateau where further increases in the number of spectrom-
eter-hours do not increase SNR.
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In contrast, we see from Fig. 9 that for COMAP2 and
CDIM, the survey areas are not optimal. At present, the sky
coverage of these surveys places them in the sample
variance limited regime where the instantaneous sensitivity
is relatively high, but simply not enough modes are sampled
to truly maximize the capabilities of the instrument.

D. Forecast scenarios

Given the exploration into the observational parameter
space of the previous few sections, we now present the

three observing scenarios that are used in our cosmological
parameter estimation forecasts. Here we return to comput-
ing the full CMB × LIM-nulling convergence using the
LIM-pair estimator, where the convergence maps at each
redshift are constructed with two different lines via Eq. (4).
We denote the scenarios as current generation, next gen-
eration, and futuristic. We choose to perform LIM-nulling
with LIM observations from [CII] and Ly-α mapping
experiments given that these lines yielded higher SNRs
in the near term. These scenarios are summarized in
Table IV.
For our current generation scenario, we take [CII] to be

observed by CONCERTO at z ¼ 5.5 and Ly-α to be
observed by SPHEREx at z ¼ 3.5. In Sec. III, we optimized
the line separation in the noiseless case to be Δz ¼ 0.7.
In the presence of frequency-dependent noise, that is no
longer the optimal line separation. Given the noise power of
CONCERTO and SPHEREx, the line redshifts which
maximize the SNR are z ¼ 5.5 and z ¼ 3.5. Of course,
aside from pure sensitivity concerns, one must also account
for systematics such as interloper lines. At high redshifts,
Ly-α is contaminated by low-redshift H-α emission while
the high-redshift [CII] line is contaminated by low-redshift
CO emission. Using HALOGEN, we generate H-α and CO
spectra at the appropriate redshifts and include these when
computing the LIM-pair lensing reconstruction noise. We
assume the observations have undergone foreground
removal, leaving behind a 10% interloper residual power
for each line. To simulate this, we simply multiply the
generated interloper spectra by an overall factor of 0.1.
Although SPHEREx has two large 100 deg2 deep fields

at the poles, CONCERTO has a much smaller field of view,
at 1.4 deg2. Therefore, κnull can only be computed over the
small overlapping field of 1.4 deg2. As a result, we compute
LIM-lensing reconstruction noise with the largest angular
scale lmin;LIM ¼ 153 (∼1 deg). We take the finest angular
scale to be lmax;LIM ¼ 5000 (∼0.04 deg), which is much

FIG. 8. SNR as a function of lensing multipole, L, and survey area, fsky, for CO-type experiments (left), [CII]-type experiments
(middle), and Ly-α-type experiments (right). The black horizontal line in each panel denotes the survey area of each line’s nominal
survey.

FIG. 9. Cumulative SNR as a function of fsky for Ly-α-type
experiments (blue dot-dashed), CO-type experiments (pink
dashed), and [CII]-type experiments (solid purple). The dotted
black line denotes SNR ¼ 1. The cumulative SNR for the nominal
CDIM (blue diamond), COMAP2 (pink circle), and CONCERTO
(purple square) surveys are also shown here. While CONCERTO
is reasonably optimized to balance instrumental noise and cosmic
variance, CDIM and COMAP2 would benefit from additional sky
coverage as far as a nulling measurement is concerned.
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coarser than the angular resolution of both instruments. For
the CMB instrument we choose SO where lensing
reconstruction is performed with minimum and maximum
spherical harmonic l of lmin;CMB ¼ 30 and lmax;CMB ¼ 5000,
respectively. The total SNR in this scenario is 0.1, sug-
gesting that nulling estimation will likely be a future
endeavor.
For the next generation scenario, we take [CII] to be

observed by a stage II instrument at z ¼ 5.5 and Ly-α to be
observed by CDIM at z ¼ 4.5. Again, these redshifts are
obtained by optimizing the nulling SNR for a given noise
level. We assume the observations contain 5% interloper
residual power for each line. Here, both instruments are
expected to survey a 100 deg2 field and we assume that
they overlap entirely. We compute the LIM-lensing
reconstruction noise with lmin;LIM ¼ 30 (∼6 deg) and
lmax;LIM ¼ 10000 (∼0.02 deg), again, using scales coarser
than to angular resolution of both instruments. For the CMB
instrument we simulate the noise power of CMBS4 where
lensing reconstruction is performed with lmin;CMB ¼ 30 and
lmax;CMB ¼ 5000. The CMBS4 lensing reconstruction noise
used here can be found in Ref. [54]. The total SNR for the
next generation scenario is 9.5, representing a firm detection
that will be an important proof of concept for the nulling
technique. However, it will perhaps still not quite be the
high-precision measurement that unlocks high-precision
science.
Finally, we construct a futuristic scenario that guaran-

tees a high SNR measurement. We consider [CII] observed
by a stage II-like instrument at z ¼ 5.5 and Ly-α to be
observed by a CDIM-like instrument at z ¼ 4.5, over a
quarter of the sky. By this we mean that the [CII] maps are
the same depth as those expected from stage II but over a
larger area of the sky. Likewise, the CDIM-like instrument
is one that produces maps at the same depth as the nominal
CDIM survey but again over a larger portion of the sky.
This can be achieved by using an instrument with the same
instantaneous sensitivity and increasing the total observing
time of the survey until the instantaneous integration time
reaches that of the nominal surveys. This can also be
achieved by increasing the scanning rate of the instrument
such as to observe a larger portion of the sky in the same
total observing time, but correspondingly increasing the
instantaneous sensitivity in order to obtain the same depth.

Of course, a combination of these two strategies will also
suffice. We assume the observations contain 1% interloper
residual power for each line. Like the last scenario, we
compute the LIM-lensing reconstruction noise with
lmin;LIM ¼ 30 and lmax;LIM ¼ 10000. For the CMB instru-
ment we again choose the CMBS4 where lensing
reconstruction is performed with lmin;CMB ¼ 30 and
lmax;CMB ¼ 5000. The futuristic scenario has a total SNR
of 110. As we will demonstrate in Sec. V, in this regime
one is able to obtain competitive parameter constraints.
In Table IV, we also quote the total SNR for a cosmic

variance limited case to showcase the upper bound of what
is achievable in an idealized case. Here we include no
instrument noise nor interloper contaminants. Like the
futuristic scenario, we assume lmin;LIM ¼ 30 and lmax;LIM ¼
10000 and lmin;CMB ¼ 30 and lmax;CMB ¼ 5000, but we set
fsky ¼ 1. In this case, the CMB × LIM-nulling cumulative
SNR is 408.

V. FISHER FORECAST: ΛCDM+Mν COSMOLOGY

In this section we present a Fisher forecast on potential
parameter constraints from CMB × LIM nulling when
0 < z≲ 5 has been nulled. We take our parameter set to
be the standard ΛCDM parameters plus the sum of the
neutrino masses Mν. We begin by providing a brief over-
view of the Fisher formalism to establish notation, and
follow by presenting the parameter covariances for our
fiducial cosmology. DespiteCκ̂κ̂null

l having worse constraints
than regular CMB lensing measurements by construction,
we discuss how Cκ̂κ̂null

l uniquely probes high-redshift
physics. We show how such a probe could serve as a
model-independent test of nonstandard time evolution,
illustrating such a test by constructing an ad hoc cosmology
with deviations on the scale of the current Hubble tension
and the σ8 tension [55–57].

A. General Fisher formalism

The Fisher information matrix captures how much
information an observable, O, measured to some preci-
sion, carries about a set of model parameters that are
grouped into a vector θ. The elements of the Fisher matrix
are given by

TABLE IV. Observational scenarios used for our forecasts, in addition to the cosmic variance limited case as a high-SNR reference.
While current instruments will not make nulling detections, their successors will be capable of not just detections but also high-SNR
characterizations that will be scientifically interesting.

Scenario Ly-α [CII] CMB Survey area lmin;LIM lmax;LIM Interloper residual
P

SNR

Current generation SPHEREx CONCERTO SO 1.4 deg2 153 5,000 10% 0.1
Next generation CDIM Stage II CMBS4 100 deg2 30 10,000 5% 9.5
Futuristic CDIM Stage II CMBS4 fsky ¼ 0.25 30 20,000 1% 110
CV limited � � � � � � � � � fsky ¼ 1 30 20,000 � � � 408
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Fij ¼
X
l

1

σ2l

∂Ol

∂θi

∂Ol

∂θj
; ð22Þ

where i and j index the parameters in the model, l indexes
each measured mode of the observable, and σl is the error on
the measurement of that mode. The Fisher matrix is the
inverse of the covariance matrix, F−1 ¼ C, for the set of
model parameters. In our case, we perform two independent
forecasts, one with O ¼ fCκ̂κ̂null

l g (the forecast of interest)
and one with O ¼ fCκ̂ κ̂

l g (which serves as a reference). We
compute these spectra using Eqs. (3) and (12) and take their
numerical derivatives using finite differences. The Fisher
matrix encodes Gaussian parameter uncertainties; by the
Cramer-Rao bound, this provides an optimistic approxima-
tion of the true posterior distributions. In reality, the true
uncertainties may be larger than those modeled due to other
systematics and may be non-Gaussian.
In addition to the parameter covariance matrix, one can

compute the bias on each parameter in the presence of a
systematic. Given some observable Cobs

l that contains the
signal of interest, Cl, and also some systematic contami-
nant, Ccont

l , the total observed quantity is given by

Cobs
l ¼ Cl þ Ccont

l : ð23Þ
Following Ref. [58], the ith component of the parameter
bias vector b is given by

bi ¼ hθ̂ii − hθtruei i ¼
X
j

ðF−1ÞijBj; ð24Þ

where θ̂ contains the best fit parameter values, θtrue is a
vector containing the true underlying values, and Bj is

Bj ¼
X
l

Ccont
l

σ2l

∂Cl

∂θj
: ð25Þ

In the following section, we present the results of a Fisher
forecast for the next generation and futuristic nulling
scenarios and compare it to constraints from regular
CMB lensing measurements. Following this, in Secs. V C
and VD we compute the parameter bias vector in a slightly
unusual application of the formalism: we consider the case
where an incorrect cosmological model results in a “theory
systematic” that perturbs the inferred parameter values.

B. Concordance cosmology

Here we present the results of the Fisher forecast with
respect to a concordance model of cosmology whose
parameters and fiducial values are summarized in
Table V. In addition to the independent model parameters
used to define the fiducial cosmology, we also compute
four derived quantities: Ωm, σ8, S8 ≡ σ8ðΩm=0.3Þ0.5,
and SCMBL

8 ≡ σ8ðΩm=0.3Þ0.25. The quantity σ8 is the
root-mean-squared variance of density perturbations on
8h−1 Mpc scales, and is given by

σ28 ¼
Z

∞

0

k2dk
2π2

Plin
m ðkÞ

�
3j1ðkRÞ

kR

�
2

; ð26Þ

where Plin
m ðkÞ is the matter power spectrum at z ¼ 0

assuming linear theory, R≡ 8h−1 Mpc, and j1 is the
first-order spherical Bessel function of the first kind.
In Fig. 10, the posterior distributions are shown. In

orange, the constraints from regular CMB lensing mea-
surements forecast for SO are plotted. The green contours
show the constraints from the next generation nulling
scenario and the futuristic nulling scenario is in blue.
Planck 2015 priors excluding Planck lensing have been
applied to all cases [59]. The black dashed lines mark the
fiducial values of the model.
When comparing the CMB lensing contours to the

nulling ones, it is immediately obvious that the LIM-nulling
probes contain less information than that of regular CMB
lensing. This is entirely expected, since nulling by con-
struction removes the low redshift information from the
CMB convergence. This low-redshift information does of
course have constraining power. Even with this being
the case, both LIM-nulling measurements do add non-
negligible information to the Planck prior and still provide
comparable constraints to CMB lensing. For both CMB and
CMB × LIM-nulling cases, As and τ are not well con-
strained; they trace the prior. The parameters to which they
are most sensitive are Ωch2, H0, and Mν, in that order. As
for the derived quantities (Ωm, σ8, S8, and SCMBL

8 ), one does
see some hints that select combinations of Ωm and σ8 are
better constrained by our nulling estimator—as is usually
the case for lensing. However, we caution that the Fisher
formalism is not equipped to fully capture the shapes of
degenerate joint posteriors between parameters. In order to
make more definitive claims about these parameters, a full
sampling of the posterior (e.g., via Markov chain
Monte Carlo techniques) would be more appropriate, and
so we omit these parameters from the analyses in sub-
sequent sections.
It may seem on the face of it that LIM nulling is not

worth the effort, given that it requires one to make high
significance detections of not just one, but three cosmo-
logical probes—just to obtain constraints on ΛCDM

TABLE V. Model parameters and their fiducial values.

Parameter Definition Fiducial value

H0 Hubble constant [km=s=Mpc] 67.5
Ωbh2 Fractional baryon density 0.022
Ωch2 Fractional dark matter density 0.120
Mν Sum of the neutrino masses [eV=c2] 0.06
As Primordial fluctuation amplitude 2 × 10−9

ns Spectral index 0.965
τ CMB optical depth 0.06
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parameters that are less competitive (albeit comparable) to
those of CMB lensing. Yet, it is important to appreciate that
CMB lensing and LIM-nulling lensing are not measuring
the same thing. The power of LIM nulling is that it is a
clean probe of the high-redshift universe exclusively. To
illustrate this, we forecast how the constraints of these
probes differ in a universe in which we have an unexpected
time evolution of parameters.

C. Early- and late-time parameter consistency:
The Hubble parameter

Here we construct mock lensing data in a universe that
obeys a cosmology which deviates from standard ΛCDM.
Our toy model is inspired by the Hubble tension. When
computing the lensing convergence spectrum [i.e., Eq. (3)],
for the integration steps where z > znull, the value ofH0 that

FIG. 10. Forecasted posterior distributions for the concordance cosmology scenario of Sec. V B from SO lensing (orange), LIM
nulling in the futuristic scenario (blue), and LIM nulling in the next generation scenario (green). The dark inner region of the contours
indicates the 68% confidence region while the light colored outer contours denote the 95% confidence region. The dashed black lines
denote the fiducial parameter values. All contours share the same Planck prior on ΛCDM þMν.
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enters into HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p
and into the

initialization of CAMB to obtain the matter power spectrum
is 67.7 km=s=Mpc. This means that for z > znull the matter
power spectrum evolves as usual in a ΛCDM cosmology
and if evolved all the way to z ¼ 0 would reach the value
67.7 km=s=Mpc. When evaluating integration steps where

z < znull, the same procedure is followed, but the value of
H0 that enters into HðzÞ and into the initialization of CAMB

to obtain the matter power spectrum is 72 km=s=Mpc. This
model can also be described as a scenario where the growth
factor,DðzÞ, and therefore the amplitude of PðkÞ undergoes
a sudden change at z ¼ znull.

FIG. 11. Forecasted posterior constraints from the abruptly evolving HðzÞ cosmology of Sec. V C. Constraints are from CMBS4
lensing (orange) and LIM nulling in the futuristic scenario (blue). The dark inner region of the contours indicates the 68% confidence
region while the light colored outer contours denote the 95% confidence region. The dashed black lines denote the fiducial parameter
values. These contours showcase a tension between the CMB lensing measurements and the CMB × LIM-nulling measurements. Both
contours share the same Planck prior on ΛCDM þMν. Since LIM nulling is sensitive only to the high-redshift universe, a comparison
between the contours allows for model-independent tests of unexpected differences between high and low redshifts.
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The two values of H0 that were considered, 67.7 and
72 km=s=Mpc, constitute the discrepancy between low- and
high-redshift measurements of the Hubble constant [55].
This Hubble tension remains one of the outstanding
problems of the past decade. Some argue that a time
evolving cosmology may be to blame [60,61]. If this were
the case, LIM nulling may be able to help elucidate this
mystery as it contains no information about the late-time
evolution of the matter density field, allowing a clean
measurement of what happens at high redshifts. To be
clear, we do not argue that the model proposed here is a
genuine solution to the Hubble tension, nor that the LIM-
nulling technique is destined to detect the tension. We are
simply using this commonly known open cosmological
problem as inspiration for how one might look for parameter
consistency between early- and late-time measurements.
We fit CMB lensing measurements, which are sensitive to

both values ofH0, and CMB × LIM-nulling measurements,
which are only sensitive to the high redshift value of H0, to
the same fiducial model in which the Hubble parameter has
not undergone an abrupt shift and therefore has one H0

parameter. After all, one’s initial null hypothesis in a real
data analysis pipeline will likely not assume any abrupt
shifts in cosmological parameters. Performing parameter
fits using this incorrect cosmological model, we expect
the CMB lensing measurements to be biased. We quantify
the parameter biases using Eqs. (24) and (25), treating the
systematic contaminant to be the difference between the true
lensing contribution from 0 < z < znull and the incorrect
contribution assuming a single value of H0.
In Fig. 11, we show the constraints on CMB lensing from

CMBS4 and on LIM-nulling measurements from our
futuristic scenario. By construction, the constraints from
the Cκ̂κ̂null

l fit contain no bias with respect to the fiducial
model parameters. This is not the case for the constraints
from CMB lensing. It is immediately clear that there is a
discrepancy between the constraints from CMB lensing and
those from LIM nulling. Such measurements would con-
stitute a tension that provides evidence that the behavior
underlying the CMB lensing data is better described by
another model. Indeed, the CMB lensing data contains
information about the universe before and after the abrupt
change to HðzÞ, while the model does not.
The parameter for which the tension is the strongest is

Ωch2 at just over 2σ. Recall that this parameter sees the
most improvement when lensing data is added to the
Planck prior. It is also worth commenting on the role
the prior plays in this analysis. If one had some credence
that the universe did not follow ΛCDM, one may choose to
relax the Planck prior as has been done for a number of
weak lensing analyses. We found that the prior covariance
can be inflated by an overall factor of 10 and still yield a
∼2σ tension in the inferred value of Ωch2 while inflating
the prior by an overall factor of 20 results in a ∼1σ tension
ofΩch2. When the prior is relaxed any further the tension is

no longer significant. We acknowledge that in practice,
more rigorous analysis would be required to claim a tension
between measurements [62–65].
An advantage of this type of measurement is that making

a higher significance detection of the bias between CMB
lensing and LIM nulling can result from either improving
the CMB lensing measurement or the LIM-nulling meas-
urement or both. Finally, it is important to note that nowhere
in the analysis did we need to make any assumption about
exactly what new cosmological model did in fact fit both
datasets to detect a deviation from the standard cosmology.
This constitutes a model independent test of cosmology
beyond ΛCDM.
The reader may have noticed that in order to null the low-

redshift contribution to CMB lensing, one needs to com-
pute the nulling coefficients, α, given by Eq. (11), which
depend on the comoving distance, χðzÞ, and therefore the
cosmology. This may seem to negate the claim of model
independence if an assumption about the fiducial cosmol-
ogy is needed to null in the first place. In practice, nulling
can be performed through minimizing the amplitude of the
LIM-nulling convergence spectrum which preserves the
model independence. What nulling does is makes use of
LIM lensing information by removing it from CMB lensing
maps. In doing so, the CMB × LIM-nulling convergence
spectrum will have a smaller amplitude than the total CMB
convergence spectrum as seen in Fig. 2. However, there is a
limit to how low that spectrum can go; one can only remove
as much information as is present in the LIM lensing maps.
Therefore, an equivalent nulling estimator is one that
minimizes the amplitude of the CMB × LIM-nulling con-
vergence spectrum. We have explicitly verified that this
minimization scheme is equivalent to the one presented in
Sec. II C. In practice, one can solve for the cosmology
which yields the values of α that actually minimize the
nulling convergence spectrum. Not only does this scheme
ensure true model independence, but solving for the nulling
coefficients, α, is itself a test of cosmology and can also
serve as a test for residual systematics.

D. Early- and late-time parameter consistency:
Matter fluctuation amplitude

Here we present a similar example to that of the previous
section. We construct a scenario in which there is an abrupt
change to the growth factor at znull as a result of varying the
value of As for integration steps before and after z ¼ znull.
If one were to compute σ8 with and without taking into
account the changing value of As one would obtain
different values of σ8 which correspond roughly to the
current σ8 tension. Once again, if the value of As used to
initialize the matter power spectrum for integration steps at
high-z is evolved to today (i.e., the standard ΛCDM
scenario), one would infer σ8 ¼ 0.79. If one were to take
into account the abrupt evolution of the matter power
spectrum at z ¼ znull (i.e., our exotic cosmology) the
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inferred value of σ8 ¼ 0.72 [66]. Similar to the previous
section, LIM nulling would not know about the shift since
it is only sensitive to the high-redshift value of As while
CMB lensing is sensitive to both values as it probes the
matter density field before and after this sudden evolution.
We therefore use the same parameter bias formalism to
perform our forecasts.
In Fig. 12, we show the constraints on CMB lensing from

CMBS4 and on LIM-nulling measurements from our

futuristic scenario. The constraints from Cκ̂κ̂null
l are not

biased with respect to the fiducial model parameters and,
while not as extreme as the results from the previous
section, there remains a slight bias to the CMB lensing
constraints. There is a ∼1σ tension between CMB lensing
and LIM-nulling measurements for Ωch2, perhaps provid-
ing a slight hint that the CMB lensing data and the LIM-
nulling data are not adequately described by the same
model. If one were to relax the prior by a factor of a few

FIG. 12. Same as Fig. 11, except for the As-evolving cosmology of Sec. V D. While a slight tension is still evident, the results are less
statistically significant than for the abruptly evolving HðzÞ cosmology.

CONSTRAINING COSMOLOGY WITH THE CMB × LINE… PHYS. REV. D 109, 123518 (2024)

123518-17



(≲5), the slight tension is preserved but, since the tension is
not as large as it was in the last section, the tension is no
longer significant if relaxed any further.

VI. SENSITIVITY TO THE MATTER
POWER SPECTRUM

Ultimately, the CMB × LIM-nulling convergence is a
kernel weighted map of the high redshift matter density
field. While lensing measurements from galaxy shear and
convergence and the CMB have provided the first unbiased
measurements of the matter density field out to z ∼ 3, the
majority of our knowledge of the matter density field comes
from the use of biased luminous tracers. LIM nulling has the
potential to reveal the unbiased high-redshift matter density
field over large cosmological volumes. This leads to the
additional advantage that the high-redshift matter perturba-
tions are mode linear, making the power spectrum easier to
model. We forecast the sensitivity of Cκ̂κ̂null

L to the matter
power spectrum at various length scales and redshifts. Using
the same Fisher formalism from the previous section, we
define a set of parameters which are the amplitude of the
matter power spectrum in various ðk; zÞ bins. In other words,
we take θ ¼ ½Pmðk1; z1Þ; Pmðk2; z1Þ;…; Pmðkmax; zmaxÞ�,
where kmax and zmax are the maximum k and z values,
respectively. We define 2000 ðk; zÞ bins, ranging from
0 < z < 1100 and 10−2h Mpc−1 < k < 1h Mpc−1.
Once again, for the sake of comparison we forecast the

sensitivity of both Cκ̂ κ̂
L and Cκ̂κ̂null

L to the parameter vector θ.
While CMB lensing probes length scales across the whole
redshift range, the LIM-nulling spectrum is insensitive to
z < znull leaving a large portion of its Fisher information
matrix null. Unable to invert such a matrices, we perform
principal component analysis on the Fisher matrices. We
diagonalize each of the Fisher matrices and plot the six
principal eigenmodes (i.e., the eigenvectors which have the
largest eigenvalues).
In Figs. 13 and 14, we present the principal components

for CMB lensing observed with CMBS4 and for LIM
nulling in the futuristic scenario, respectively. As expected,
CMB lensing is sensitive to low redshift modes as its
lensing kernel peaks at z ∼ 2. The principal components are
all sensitive to roughly the same range in L, as one can see
from the lines of constant L superimposed on the figures.
Roughly speaking, each successive principal component
probes finer and finer oscillatory modes as a function of L.
For this CMB lensing case, the first ∼500 eigenmodes can
be detected with SNR > 1.
Because the principal components follow contours of

constant L, they contain information about many modes
of wave number k from various redshifts. This mixing of
matter power spectrum modes into a single L is the reason
why the CMB convergence spectrum is smooth despite it
being made up of the matter power spectrum which does
contain acoustic peaks. This mode-mixing effect can be
seen in the bottom panel of Fig. 2.

In the LIM-nulling case, things are appreciably different.
As expected, the LIM-nulling eigenmodes peak at z ∼ znull
since this is precisely where the nulling kernel peaks. The
principal components therefore contain information about
the high redshift modes of the matter power spectrum. Like
in the CMB lensing case, the LIM-nulling eigenmodes
trace lines of constant L; however, as redshift increases the
relationship between k and L tends to one to one. This is
driven by the fact that the relationship between angular
scales and transverse comoving distances evolves slowly at
high z. Therefore, measuring a single L in the LIM-nulling
spectrum contains information about a much narrower
range of power spectrum modes, which allow for one to
more cleanly trace matter fluctuations. Again, this is why
BAO peaks emerge in the LIM-nulling convergence spec-
trum as seen in Fig. 2. It should also be noted the LIM-
nulling eigenmodes are not simply the CMB lensing ones
but with the low-z portion removed. Because of the
differences in the shapes of their SNR curves, these spectra
probe slightly different L. However, in a conceptually
similar situation to the CMB lensing case, in LIM nulling
each successive eigenmode roughly corresponds to probing
finer and finer features in the matter power spectrum. For
the nulling case, the first ∼60 eigenmodes can be detected
with SNR > 1 although with lower cumulative SNR than
with CMB lensing alone, but again, the value of the nulling
estimator is its clean sensitivity to the high-z matter power
spectrum. It is encouraging that one is able to attain a high-
significance detection of principal modes of the unbiased
matter power spectrum at z≳ 5.
The choice to constrain power spectrum modes in the

range 10−2h Mpc−1 < k < 1h Mpc−1 was no accident.
Indeed this is the range of k where the BAO live and
where the power spectrum peaks. While we do not discuss
the feasibility of measuring BAOs at high redshift with
LIM-nulling here, we direct the reader to Ref. [18]. In that
work we find that it is indeed possible to constrain the BAO
scale with a level of confidence comparable to other high-z
probes. In addition, tomographic LIM nulling can be used
as a tool to constrain other features in the matter power
spectrum (not just BAOs), to place upper limits on the
amplitude of the matter power spectrum as a function of
redshift, and to constrain the matter transfer function.

VII. CONCLUSION

In this paper we have shown how the CMB × LIM-
nulling convergence cross spectrum (proposed in Ref. [5])
can be used to constrain cosmology. This probe combines
convergence maps of the CMB and of LIMs to exactly null
out the low-redshift contribution to the CMB lensing
convergence, leaving behind a direct and unbiased probe
of the matter density field at high redshift. This probe may
serve to complement other high-redshift probes such as
LIMs themselves, or high-redshift galaxy surveys, both of
which are biased tracers of the matter density field.
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FIG. 13. First six principal eigenmodes of the matter power spectrum Pmðk; zÞ for regular CMB lensing measurements from CMBS4.
Lines of constant L are shown in black to guide the eye, and reveal that one is essentially sensitive to an approximately fixed range of
angular scales. As one goes to higher eigenmodes, one probes finer and finer features as a function of k. Since CMB lensing is sensitive
to the integrated matter density from z ¼ 0 to the surface of last scattering, there is broad support as a function of redshift.

FIG. 14. Same as Fig. 13, but for the CMB × LIM-nulling lensing measurements in the futuristic scenario. By construction there is no
sensitivity to redshifts below znull. The range of angular scales is also shifted slightly because of different SNR characteristics of nulling
versus regular lensing measurements. The slower evolution of the mapping between L and k at high redshifts hints at a potential BAO
measurement with nulling estimators.
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Building upon the work in Ref. [5], we have computed
the variance of the CMB × LIM-nulling convergence cross
spectrum. This enabled the SNR parameter-space studies of
Secs. III and IV, which provided useful intuition for the
expected sensitivity of nulling estimator measurements.
Optimizing a set of experiments with some rough rules of
thumb, we found that next-generation experiments may be
able to make a detection.
Moving onto a set of futuristic and aspirational—but still

potentially realizable—experiments, we explored the
potential of nulling estimators to place constraints on
standard ΛCDM parameters plus Mν. These experiments
can place constraints that are comparable to those from
regular CMB lensing. However, parameters derived from
nulling estimators will always be slightly worse by con-
struction, since the low-redshift information captured by
regular CMB lensing does have sensitivity to cosmological
parameters.
The true benefit of nulling estimators, then, is not in raw

statistical sensitivity. Instead, it is in one’s ability to probe
high redshifts cleanly. We showed that nulling estimators
can be compared to traditional CMB lensing constraints,
and that such comparisons can serve as model-independent
tests of cosmology beyond ΛCDM. While we do not claim
that these tests can solve outstanding problems in cosmol-
ogy such as the Hubble tension and the σ8 tension, we use
these examples to illustrate how nulling estimators can
probe cosmology at early times.
Additionally, we explicitly show that the CMB × LIM-

nulling convergence probes high-redshift modes of the
matter power spectrum, which can in turn be used to place
limits on the matter power amplitude, the matter transfer
function, and measure important features of the matter
power spectrum such as BAOs. In our companion Letter,
Ref. [18], we forecast a BAO measurement with the
CMB × LIM-nulling convergence and find it to be encour-
aging. Moreover, in all of our forecasts, we assume that
one uses just one pair of LIM frequency channels to
perform nulling. In future work, one can imagine taking
advantage of the large bandwidth of LIM experiments,
leveraging all frequency channels to perform LIM-nulling
tomography. This would enable the direct study of the
growth of structure.
While the prospects of using LIM lensing are promis-

ing, they do not come without serious challenges. Because
of the complex astrophysical processes associated with the
line emission and absorption mechanisms, LIMs are
highly non-Gaussian and therefore using existing quad-
ratic lensing estimators designed for the Gaussian CMB is
suboptimal [67]. It has been shown that attempting to use
such estimators results in biases in the LIM lensing
convergence [68,69]. These biases can be mitigated

through various means, for instance, using filters that
Gaussianize the field, or through bias hardening, a method
which makes use of our knowledge about the non-
Gaussianity of LIMs in the estimation [67,68].
In addition, LIMs suffer from foreground contamination

beyond the line interloper foregrounds included in this
paper. For example, continuum foregrounds (such as the
cosmic infrared background or galactic synchrotron emis-
sion) are expected to be present (although at a level that is
generally considered to be less of a concern than line
interlopers). One possible strategy for removing continuum
foregrounds is to use their spectrally smooth nature to be
removed. For example, Ref. [70] show that the spectrally
smooth far infrared (FIR) continuum foregrounds of [CII]
can be removed with a negligible residual via spectral
decomposition [70]. However, a fuller treatment ought to
explicitly model these residuals in the context of nulling
estimators.
In summary, the early epochs of the universe remain a

treasure trove of cosmological information. LIM nulling, in
principle, has the potential to provide us with a clean
window into the epoch of reioniziation, cosmic dawn, and
even into the cosmic dark ages, allowing for unbiased
measurements of the matter density field before the time of
galaxy formation. While this endeavor presents a serious
challenge, we have shown that the result offers a unique
way to constrain cosmology beyond what is offered by
existing probes, providing yet another pathway to the
ultimate goal of understanding our Universe on all scales
and at all redshifts.

ACKNOWLEDGMENTS

The authors would like to thank Eiichiro Komatsu,
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APPENDIX: CMB ×LIM-NULLING VARIANCE

In Ref. [5], it has been shown that the cross-correlation,Cκ̂CMBκ̂null
L , is an unbiased estimator. Here, we compute the variance

of this estimator in the presence of uncorrelated Gaussian noise at the convergence map level. We also assume, as in
Ref. [5], that the estimated convergence maps, κ̂CMB and κ̂null, are Gaussian.
We begin with the standard formula for the variance, i.e.,

varðCκ̂CMB κ̂null
L Þ ¼ hðκ̂CMBκ̂

�
nullÞ2i − hκ̂CMBκ̂

�
nulli2: ðA1Þ

The first term can be written as

hðκ̂CMBκ̂
�
nullÞ2i ¼ hκ̂CMBκ̂

�
nullκ̂CMBκ̂

�
nulli

¼ hκ̂CMBðκ̂�CMB þ ακ̂�2 − ð1þ αÞκ̂�1Þκ̂CMBðκ̂�CMB þ ακ̂�2 − ð1þ αÞκ̂�1Þi
¼ hκ̂CMBκ̂

�
CMBκ̂CMBκ̂

�
CMBi þ 2αhκ̂CMBκ̂

�
CMBκ̂CMBκ̂

�
2i − 2ð1þ αÞhκ̂CMBκ̂

�
CMBκ̂CMBκ̂

�
1i

þ α2hκ̂CMBκ̂
�
2κ̂CMBκ̂

�
2i − 2αð1þ αÞhκ̂CMBκ̂

�
2κ̂CMBκ̂

�
1i þ ð1þ αÞ2hκ̂CMBκ̂

�
1κ̂CMBκ̂

�
1i; ðA2Þ

where here κ̂1 and κ̂2 are the Fourier transform of the estimated convergence maps from LIMs at comoving distances χ1 and
χ2, where χ1 < χ2 and the asterisks denote the complex conjugate. Each term in this expression can be evaluated using the
fourth-order moment relation,

hx1x2x3x4i ¼ hx1x3ihx2x4i þ hx1x2ihx3x4i þ hx1x4ihx2x3i; ðA3Þ

where x1, x2, x3, x4 are Gaussian random variables with mean zero. Keeping in mind that the ith convergence map contains
a cosmological signal, si, and is contaminated with uncorrelated Gaussian random noise with mean zero, ni, we have
κi ¼ si þ ni. Equation (A2) then simplifies to

hðκ̂CMBκ̂
�
nullÞ2i ¼ 3½Cκ̂CMB

L þ N κ̂CMB
L �2 þ 3½2αðCκ̂CMB

L þ N κ̂CMB
L ÞCκ̂CMB κ̂2

L � − 3½2ð1þ αÞðCκ̂CMB
L þ N κ̂CMB

L ÞCκ̂CMB κ̂1
L �

þ α2½2ðCκ̂CMB κ̂2
L Þ2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞðCκ̂2

L þ N κ̂2
L Þ� − 2αð1þ αÞ½2Cκ̂CMB κ̂1Cκ̂CMBκ̂2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞCκ̂1κ̂2 �

þ ð1þ αÞ2½2ðCκ̂CMB κ̂1
L Þ2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞðCκ̂1

L þ N κ̂1
L Þ�; ðA4Þ

where Cκ̂i
L ≡ hsis�i i, Cκ̂iκ̂j

L ≡ hsis�ji, and N κ̂i
L ≡ hnin�i i. Similarly, using Eq. (A3), the second term of Eq. (A1) is

hκ̂CMBκ̂
�
nulli2 ¼ ðCκ̂CMB

L þ N κ̂CMB
L Þ2 þ 2αðCκ̂CMB

L þ N κ̂CMB
L ÞCκ̂CMB κ̂2

L − 2ð1þ αÞðCκ̂CMB
L þ N κ̂CMB

L ÞCκ̂CMB κ̂1
L þ α2ðCκ̂CMB κ̂2

L Þ2
− 2αð1þ αÞCκ̂CMBκ̂1Cκ̂CMB κ̂2 þ ð1þ αÞ2ðCκ̂CMBκ̂1

L Þ2: ðA5Þ

Plugging Eqs. (A4) and (A5) back into (A1), and accounting for cosmic variance we obtain

varðCκ̂CMB κ̂null
L Þ ¼

�
1

fskyð2Lþ 1Þ
�
2½ðCκ̂CMB

L þ N κ̂CMB
L Þ2 þ 2αðCκ̂CMB

L þ N κ̂CMB
L ÞCκ̂CMB κ̂2

L − 2ð1þ αÞðCκ̂CMB
L þ N κ̂CMB

L ÞCκ̂CMB κ̂1
L �

þ α2½ðCκ̂CMBκ̂2
L Þ2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞðCκ̂2

L þ N κ̂2
L Þ� − 2αð1þ αÞ½Cκ̂CMBκ̂1Cκ̂CMBκ̂2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞCκ̂1 κ̂2 �

þ ð1þ αÞ2½ðCκ̂CMB κ̂1
L Þ2 þ ðCκ̂CMB

L þ N κ̂CMB
L ÞðCκ̂1

L þ N κ̂1
L Þ�; ðA6Þ

which is precisely Eq. (13).
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