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This paper simplifies the induced four-dimensional gravitational equations originating from a five-
dimensional bulk within the framework of Nash’s embeddings, incorporating them into a well-known
μ − Σ modified gravity parametrization. By leveraging data from Planck Public Release 4, BICEP/Keck
Array 2018, Planck cosmic microwave background lensing, and baryon acoustic oscillation observations,
we establish a stringent lower limit for the tensor-to-scalar ratio parameter: r < 0.0303 at a confidence level
(CL) of 95%. This finding suggests the presence of extrinsic dynamics influencing standard four-
dimensional cosmology. Notably, this limit surpasses those typically obtained through Bayesian analysis
using Markov chain Monte Carlo techniques, which yield r < 0.038, or through the frequentist profile
likelihood method, which yields r < 0.037 at 95% CL.

DOI: 10.1103/PhysRevD.109.123517

I. INTRODUCTION

Inflation has become one of the cornerstones of modern
cosmology. It not only solves the flatness and horizon
problems, but also describes the quantum seeds of cosmo-
logical fluctuations that eventually drove the Universe to
evolve [1–9] throughout a brief and rapid period of
exponential expansion right after the big bang. This infla-
tionary period is thought to have smoothed out the early
Universe’s irregularities and laid the foundation for the large-
scale structure we observe today. It is reinforced by the
anisotropy seen in cosmic microwave background (CMB)
observations [10]. While the precise mechanisms fueling
inflation remain elusive, numerous competing theoretical
models have emerged [11–21], each vying to explain this
fundamental cosmic process. However, despite the ongoing
debate, the overarching framework consistently yields

predictions that align remarkably well with cosmological
observations (see [22,23] for a review).
A significant portion of scientific inquiry into the origins

of the Universe revolves around scrutinizing and character-
izing the statistical properties of primordial density per-
turbations, particularly through the analysis of the statistical
two-point function. Empirical evidence suggests that these
fluctuations adhere closely to a Gaussian distribution and
exhibit near scale invariance. Consequently, we can effec-
tively capture their statistical behavior using a power-law
power spectrum governed by two crucial parameters. These
parameters, integral to the ΛCDM standard cosmological
model, are the scalar amplitude As, representing the pertur-
bation amplitude, and the spectral tilt ns, governing the scale
dependency of the density perturbation power spectrum.
Remarkably, even with just these two parameters, we can
glean insights into certain facets of inflationary dynamics
today, shedding light on the energy scales pivotal during the
early epochs of the Universe’s evolution. Statistical analyses
from canonical inflationarymodels constrainns ¼ 0.9649�
0.0042 and lnð1010AsÞ ¼ 3.044� 0.014 at the 68% confi-
dence level (CL) using Planck-CMB data [24]. Conversely,
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analysis from ACT-CMB indicates agreement with a
Harrison-Zel’dovich primordial spectrum, where ns ¼
1.009� 0.015 [25]. This introduces tension with Planck-
CMB measurements. For further discussions on this topic,
see also [26–28].
Another pivotal parameter arising from inflationary

theories is the tensor-to-scalar ratio r, indicative of pri-
mordial gravitational waves. Multiple CMB experiments
have already imposed stringent upper bounds on the
amplitude of the tensor spectrum. Notably, the BICEP/
Keck Collaboration has established the most stringent
constraint to date, setting r < 0.036 at a 95% CL [29],
effectively challenging certain classes of single-field mono-
mial models. A frequentist profile likelihood method [30]
was also used to investigate the discrepancy with Bayesian
analysis using Markov chain Monte Carlo methods, iden-
tified by the SPIDER Collaboration [31]. As a result, they
found an upper limit of r < 0.037 at 95% CL.
In this paper, we propose the possibility that the extrinsic

curvature, which is thought of as the orthogonal component
of the gravitational field besides the metric gμν, works as an
inflaton field. Differently from traditional extra-dimen-
sional braneworld models [32–35], the dynamics of extrin-
sic curvature is considered. We focus on how a dynamic
embedding should affect the physical Universe and may
provide new insights on the current problems in cosmology.
As a main character in this framework, the extrinsic
curvature should not be restricted to the analysis of the
background geometry but should also include its perturba-
tive dynamics [36–38]. To do so, we start from the
perturbations of the geometry adopting Nash-Greene theo-
rem [39,40] which provides a general structure for embed-
ding between non-Riemannian geometries [41–50]. This is
rather different from common approaches of braneworld
perturbative models in which the perturbations are trig-
gered from confined sources. Then, the dynamics of the
extrinsic curvature itself is replaced. A common practice in
these models is to rely on junction conditions such as the
Israel-Darmois-Lanczos (IDL) condition [51]. Commonly
used in Randall-Sundrum models [33,34], the IDL con-
dition replaces the extrinsic curvature by an algebraic
relation with the energy-momentum tensor. It was shown
that it belongs to a very special case [38,42] and, in general,
can be completely removed or replaced [52].
The paper is organized as follows. Section II describes

the essentials of embeddings as a mathematical background
and summarizes our cosmological model with both back-
ground and perturbed cosmological equations. Moreover,
the effective fluid approach is presented to develop a more
realistic model to compare with observations. In Sec. III we
present a simpler version of the model in the form of a
modified gravity (MG) framework. Section IV is devoted to
the analysis of extrinsic curvature as an inflaton field, in
which we investigate the slow-roll conditions for the
extrinsic potential. In Secs. V and IV we examine the

model in contrast with cosmological data from the latest
NPIPE Planck DR4 likelihoods [53,54], the BICEP2/Keck
Collaboration [55], and a junction of the large-scale structure
(LSS) catalog with the 6dF Galaxy Survey [56], the Seventh
Data Release of the SDSSMain Galaxy Sample (SDSSDR7
MGS) [57], and clustering measurements of the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS) associ-
ated with the SDSS’s Sixteenth Data Release [58]. The
related joint likelihood analysis is computed with an
MGCAMB-II [59] patch by means of a Cobaya [60] sampler.
In Sec. VI we conclude with our remarks and prospects.

II. EMBEDDINGS AS A THEORETICAL
BACKGROUND

We present the main results from previous works
[41–44,49]. Once a general arbitrary D-dimensional case
is possible [41,42], for comparison purposes with the recent
literature, we define our model in five dimensions with a
five-dimensional bulk V5 and an embedded four-dimen-
sional geometry V4.
A gravitational action S is defined as

S ¼ −
1

2κ25

Z ffiffiffiffiffiffi
jGj

p
5Rd5x −

Z ffiffiffiffiffiffi
jGj

p
L�
md5x; ð1Þ

where κ25 is a fundamental energy scale on the embedded
space, the curly 5R curvature means the five-dimensional
Ricci scalar, and the matter Lagrangian L�

m denotes the
confined matter fields on a four-dimensional embedded
space-time.
The nonperturbed extrinsic curvature k̄μν is defined as [61]

k̄μν ¼ −XA
;μη̄

B
;νGAB; ð2Þ

where Eq. (2) shows the projection of the variation of the set
of normal unitary vectors η̄B onto the tangent plane orthogo-
nal to the embedded spaceV4. In otherwords, thevariation of
η̄B leads to the bending of V4 and its tangent components
have coefficients k̄μν. The embedding coordinateX defines a
regular local map X∶V4 → V5 and must satisfy the embed-
ding equations

XA
;μXB

;νGAB ¼ gμν; XA
;μη̄

BGAB ¼ 0; η̄Aη̄BGAB ¼ 1; ð3Þ

where GAB denotes the metric components of the bulk V5 in
arbitrary coordinates. The embedding frame is defined by the
set of coordinates fXA; η̄Ag that composes a Gaussian
reference frame. Throughout the paper, except when explic-
itly stated otherwise, the overbar indicates a background
(nonperturbed) quantity.
The bulk metric GAB is defined as

GAB ¼
�
gμν 0

0 1

�
: ð4Þ
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Concerning notation, uppercase Latin indices run from 1 to
5. Lowercase Latin indices refer to the one extra dimension
considered. All greek indices refer to the embedded space-
time counting from 1 to 4.
In this paper, we use the Nash theorem of 1956 [39]. The

seminal result of this theorem shows how to produce
orthogonal perturbations from the background metric ḡμν
given by

k̄μν ¼ −
1

2

∂ḡμν
∂y

; ð5Þ

where y is an arbitrary spatial coordinate along the
orthogonal direction to the tangent plane. This mechanism
avoids false perturbations due to the possibility of inducing
coordinate gauges. Therefore, the physical effects of the
extrinsic curvature associated with Eq. (5) represent an
acceleration tangent to the four-dimensional space-time
that always points to the concave side of the curve. As a
result, it induces a Riemann stretching on the space-time
geometry, which may be related to the accelerated expan-
sion of the Universe [42,44].
As a consequence of Eq. (5), we have new geometries gμν

generated from small perturbations on the background
metric increments δgμν as

gμν ¼ ḡμν þ δgμν: ð6Þ

Moreover, one obtains the perturbed extrinsic curvature
kμν as

kμν ¼ k̄μν þ δkμν; ð7Þ

where δkμν ¼ −2δy gσρkμσkνρ. In principle, this is a con-
tinuous process to any arbitrary perturbation increments of
superior orders of δgμν and δkμν. For our purposes, we keep
the perturbations at linear order, as shown in Eqs. (6)
and (7).
The increments δgμν and δkμν are the Nash fluctuations,

which were later applied to non-Riemannian metrics by
Greene [40]. The deformation formula in Eq. (5) is also a
pivot element to obtain solutions of the Gauss and Codazzi
equations

5RABCDZA
;αZB

;βZ
C
;γZD

;δ ¼ R̄αβγδ þ ðk̄αγ k̄βδ − k̄αδk̄βγÞ; ð8Þ

5RABCDZA
;αZB

;βZ
C
;γη

D ¼ k̄α½β;γ�; ð9Þ

where 5RABCD is the five-dimensional Riemann tensor and
R̄αβγδ is the background four-dimensional Riemann tensor.
The perturbed embedding coordinate ZA

;μ is defined as
ZA

;μ ¼ XA
;μ þ δyηA;μ. The normal vector ηA is invariant under

perturbations, i.e., ηA ¼ η̄A. The semicolon in Eq. (9)
denotes a covariant derivative with respect to the metric

and the brackets apply the covariant derivatives to the
adjoining indices. In Eq. (8), the Gauss equation entwines
the bulk Riemann curvature as a reference point for the
Riemann curvature of the embedded space-time. This
relation is complemented by the Codazzi equation in
Eq. (9), which shows the projection of the Riemann tensor
of the bulk space along the orthogonal direction, resulting
in the variation of the extrinsic curvature.
In order to guarantee the possibility to generate new

geometries, in five dimensions, the set of coordinates ZA

also needs to satisfy embedding equations similar to
Eq. (3),

ZA
;μZB

;νGAB ¼ gμν; ZA
;μη

BGAB ¼ 0; ηAηBGAB ¼ 1:

ð10Þ

Then, Eqs. (6) and (7) are valid.
Like Kaluza-Klein and braneworld models, we consider

that the dynamics of the bulk V5 is governed by the higher-
dimensional Einstein equations,

5RAB −
1

2
5RGAB ¼ G�T�

AB; ð11Þ

whereG� is the new gravitational constant and T�
AB denotes

the components of the energy-momentum tensor of the
material sources. Those sources are confined to four
dimensions, which is a consequence of the isomorphism
between the three-form (from the derivative of the Yang-
Mills curvature) and one-form current. This is valid only in
four dimensions. Thus, all known observable sources of
gravitation composing the generic energy-momentum ten-
sor T�

AB are also confined. This outcome is independent of
the variation of the extra coordinate y. In other words, the
four-dimensionality of space-time is a consequence of the
invariance of the Maxwell equations under the Poincaré
group. It is well known that any gauge theory can be
mathematically constructed or extended in a higher-dimen-
sional space, but in the present framework, the four-
dimensionality of the embedded space-time will suffice
based on what high-energy tests suggest [62–64].
Moreover, in the Gaussian frame fZA; ηAg of any perturbed
space-time, we can write the confinement condition of the
energy-momentum tensor source T�

AB of the bulk Einstein
equation in Eq. (11) with the projections

8πGTμν¼G�ZA
;μZB

;νT�
AB; ZA

;μη
BT�

AB¼0; ηAηBT�
AB¼0:

ð12Þ

In this framework, the matter content is localized in the
V4 embedded space due to the fact that the Nash deforma-
tion formula in Eq. (5) imposes a geometric constraint on
the confined sources. Any deformation is not arbitrary and
can be generated by smooth perturbations along the
direction δy orthogonal to the embedded space V4. In five
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dimensions, this process is simplified and just one defor-
mation parameter suffices to locally deform the embedded
background. In general, the curvature radii la of the
embedded background correspond to the direction in which
the embedded space-time deviates more sharply from the
tangent plane and are the solutions of the homogeneous
equation

detðgμν − lakμνaÞ ¼ 0: ð13Þ

This is a local invariant property of the embedded space-
time and does not depend on the chosen Gaussian system.
The smallest solution l provides

1

l
¼ ðgμνGABlμAl

ν
BÞ−1=2: ð14Þ

In other words, l constrains a local limit for the region in
which the bulk is accessed by the gravitons. Then, one can
find the typical length d [41] of the n-extra-dimensional
space accessed by gravitons as

d ¼ M2=n
Pl

M1þð2=nÞ
�

1�
1þ M2

Pl
M2

e

�
1=n ; ð15Þ

whereM� andMPl are the fundamental and effective Planck
scales, respectively. The extrinsic scale Me is given by

1

Me
¼

Z
ðK2 þ h2Þ ffiffiffi

g
p

d4x; ð16Þ

where K2 is the Gaussian curvature and h2 is the mean
curvature. Hence, for smooth oscillations of the embedded
background, the limit imposed by Eq. (15) with the Me
scale prevents the leak of energy of the confined sources to
higher-dimensional space, but it allows the graviton oscil-
lations. This eliminates the necessity of introducing a
radion field, which is commonly adopted in most popular
braneworld models [32–35].

A. Background cosmology

The background cosmology is defined as usual by means
of the line element of the Friedmann-Lemaître-Robertson-
Walker (FLRW) four-dimensional metric as

ds2 ¼ −dt2 þ a2ðdr2 þ r2dθ2 þ r2 sin2 θdϕ2Þ; ð17Þ

where the scale factor is denoted by a≡ aðtÞ and t is the
physical time. Once the embedding is properly set, we
impose that the bulk geometry is a solution of the Einstein
equations given by Eq. (11). Thus, from Eqs. (8) and (9)
and the confinement condition in Eq. (12), one obtains the
tangent components of the nonperturbed field equations as

Ḡμν − Q̄μν ¼ −8πGT̄μν; ð18Þ

k̄μ½ν;ρ� ¼ 0; ð19Þ

where T̄μν is the nonperturbed energy-momentum tensor of
the confined perfect fluid and G is the gravitational
Newtonian constant. The background tensors Ḡμν and
Q̄μν represent the four-dimensional Einstein tensor and
the extrinsic deformation tensor, respectively. For an
arbitrary D-dimensional case, see the detailed derivation
of Eqs. (18) and (19) in Ref. [42].
In addition, the nonperturbed Q̄μν in Eq. (18) is

defined as

Q̄μν ¼ k̄ρμk̄ρν − k̄μνh −
1

2
ðK2 − h2Þḡμν; ð20Þ

where h2 ¼ h · h denotes the mean curvature with
h ¼ ḡμνk̄μν. The Gaussian curvature is denoted by
K2 ¼ k̄μνk̄μν. A direct consequence of the previous defi-
nition in Eq. (20) is that the deformation tensor Q̄μν is a
conserved quantity, such as

Q̄μν;μ ¼ 0: ð21Þ

Solving the trace of the Codazzi equation in Eqs. (19) and
(20), the following components are found [42]:

k̄ij ¼
b
a2

ḡij; i; j ¼ 1; 2; 3; ð22Þ

k̄44 ¼
−1
ȧ

d
dt

b
a
; ð23Þ

k̄44 ¼ −
b
a2

�
B
H

− 1

�
; ð24Þ

K2 ¼ b2

a4

�
B2

H2
− 2

B
H

þ 4

�
; h ¼ b

a2

�
B
H

þ 2

�
; ð25Þ

Q̄ij ¼
b2

a4

�
2
B
H

− 1

�
ḡij; Q̄44 ¼ −

3b2

a4
; ð26Þ

Q̄ ¼ −ðK2 − h2Þ ¼ 6b2

a4
B
H
; ð27Þ

where Q̄ denotes the deformation scalar defined in a
standard way, i.e., by the contraction ḡμνQ̄μν ¼ Q̄. One
important definition is the evolution of the bending
function bðtÞ≡ b ¼ k11 ¼ k22 ¼ k33 driven by extrinsic
geometry. Thus, we define B ¼ BðtÞ≡ ḃ

b ¼ ðdb=dtÞ=b as a
copy of the Hubble parameterH ≡HðtÞ ¼ ȧ

a ¼ ðda=dtÞ=a.
As a consequence, the BðtÞ function uses the same units
as H.
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An important aspect is that in five dimensions the trace
of the Codazzi equation in Eq. (19) is homogeneous, which
makes the solution for the bending function bðtÞ arbitrary.
To remove such arbitrariness, we need to state the dynamics
of the extrinsic curvature, since the metric and the extrinsic
curvature are independent variables that must satisfy the
Gauss [Eq. (8)] and Codazzi [Eq. (9)] equations. Thus,
there are a total of 20 unknowns gμν and kμν, against only 15
dynamical equations. This requires considering kμν as a
source for the missing equations. A well-known theorem
due to Gupta [65] states that any symmetric rank-2 tensor
satisfies an Einstein-like system of equations, having the
Pauli-Fierz equation as its linear approximation. In the
context of strong gravity Isham et al. [66] proposed an f-
meson spin-2 field that would act as an intermediate field
between gravitation and hadron particles. In a previous
publication [44], an Einstein-like dynamical equation for
the extrinsic curvature was adapted from the original
equation of Gupta. Using Gupta’s theorem, as shown in
[44,49], one simply obtains

bðtÞ ¼ b0aðtÞβ0 ; ð28Þ
where the term b0 is the current value of the bending
function and β0 is an integration constant. As we are going
to show, it is associated with the fluid parameter w.
Accordingly, the Friedmann equation in terms of redshift
can be written in the form�

H
H0

�
2

¼ Ωmð0Þð1þ zÞ3 þ Ωradð0Þð1þ zÞ4

þ Ωextð0Þð1þ zÞ4−2β0 ; ð29Þ

where Ωmð0Þ denotes the current cosmological parameter
for the matter density content. The radiation content is
denoted by Ωradð0Þ ¼ Ωm0zeq, wherein the equivalence
number for the expansion factor aeq is

aeq ¼
1

1þ zeq
¼ 1

ð1þ 2.5 × 104Ωmð0Þh2ðTCMB=2.7Þ−4Þ
;

ð30Þ
where zeq is the equivalence redshift. The adopted value for
the CMB temperature is TCMB ¼ 2.7255 K and the Hubble
factor h ¼ 0.67 [10]. The termΩextð0Þ stands for the density
parameter associated with the extrinsic curvature. For a flat
universe, Ωextð0Þ ¼ 1 − Ωmð0Þ − Ωradð0Þ. Moreover, the cur-
rent extrinsic cosmological parameter Ωextð0Þ is defined as

Ωextð0Þ ¼
8πG
3H2

0

ρextð0Þ ≡ b20
H2

0a
β0
0

; ð31Þ

where a0 sets the current value of the scale factor and
ρextð0Þ ≡ 3

8πG b
2
0 denotes the current extrinsic density.

B. Perturbations in conformal Newtonian gauge

The perturbed equations are necessary for the right
estimation of cosmological parameters. In this framework,
the relevant modifications of field equations under cosmo-
logical perturbations are applied to the lhs of Eq. (18) with
the presence of Q̄μν and the Ḡμν and T̄μν tensors, which are
treated in a very standard fashion, as shown in Ref. [44].
Thus, for a fluid with pressure P and density ρ̄, the
perturbed components of the stress-tensor energy δTμν

are given as

δTi
j ¼ δpδij þ Σi

j; ð32Þ

δT4
4 ¼ −δρ; ð33Þ

δT4
i ¼

1

a
ðρ̄þ PÞδuki; ð34Þ

where δuki is the tangent velocity potential of the fluid. The
anisotropic stress tensor is defined as Σi

j ¼ Ti
j − δijT

k
k=3.

Moreover, the only relevant field equations that propagate
cosmological perturbations are given by

δGμ
ν − δQμ

ν ¼ −8πGδTμ
ν : ð35Þ

In addition, we have to determine the perturbed extrinsic
terms given by δQμν. Using the Nash relation of Eqs. (5)
and (7), one obtains

δkμν ¼ ḡσρk̄μσδgνρ: ð36Þ

This is a pivot result since it shows how the effects of the
extrinsic quantities are projected onto the embedded four
dimensional space-time and how the Nash flow of Eq. (5) is
connected to cosmological perturbations. Hence, the per-
turbations of the deformation tensor Q̄μν are given in the
form

δQμν ¼ −
3

2
ðK2 − h2Þδgμν: ð37Þ

Alternatively, we construct a relation of the equations in
a fluid approach by writing the gravitensor equation
[Eq. (18)] in a general form as

Gμν ¼ −8πGT total
μν ; ð38Þ

where the tensors are written using the composition of their
background and perturbed components. The related Einstein
tensor is written as Gμν ¼ Ḡμν þ δGμν, T total

μν ¼ Tμν þ Tex
μν,

where Tμν ¼ T̄μν þ δTμν and Tex
μν ¼ T̄ex

μν þ δTex
μν.

In the conformal Newtonian gauge, the FLRW metric is
given by
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ds2 ¼ a2½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞdxidxi�; ð39Þ

where Ψ ¼ Ψðx⃗; τÞ and Φ ¼ Φðx⃗; τÞ denote the Newtonian
potential and the Newtonian curvature in conformal time τ
that is defined as dτ ¼ dt=aðtÞ. Hence, we determine the
confined matter fields represented by the nonperturbed
stress-energy tensor T̄μν in a comoving fluid such as

T̄μν ¼ ðρ̄þ PÞUμUν þ Pḡμν; Uμ ¼ δ4μ; ð40Þ

where Uμ denotes the comoving velocity. The related
conservation equation is given by

ρ̄þ 3Hðρ̄þ PÞ ¼ 0: ð41Þ

From the perturbed conservation equation δTμν;ν ¼ 0, the
evolution equations can be obtained for the “contrast”
matter density δm and fluid velocity θ, such as

δ̇m ¼ −ð1þ wÞðθ − 3Φ̇Þ − 3Hðc2s − wÞδm; ð42Þ

θ̇ ¼ −Hð1 − 3wÞθ − ẇ
1þ w

θ þ c2s
1þ w

k2δm

− k2σ þ k2Ψ; ð43Þ

where θ ¼ ikjuj, w is the fluid parameter w ¼ P
ρ̄, c

2
s is the

sound velocity defined as c2s ¼ δP
δρ, and σ is the anisotropic

stress. The dot symbol denotes the ordinary derivative with
respect to conformal time τ.
To avoid divergences when the equation of state crosses

w ¼ −1, eventually, the scalar velocity V ¼ ð1þ wÞθ
should be defined [67,68]. Hence, we have the equations

δ0m ¼ 3ð1þ wÞΦ0 −
V

a2H
−
3

a

�
δP
ρ̄

− wδm

�
; ð44Þ

V 0 ¼ −ð1 − 3wÞV
a
þ k2

a2H
δP
ρ̄

þ ð1þ wÞ k2

a2H
Ψ

−
k2

a2H
ð1þ wÞσ; ð45Þ

where the prime symbol 0 denotes the ordinary derivative
with respect to the scale factor as 0 ¼ d

da.
For the induced extrinsic part, the term 8πGT̄ext

μν ≐ Q̄μν is
written as copy of a perfect fluid as

−8πGT̄ext
μν ¼ ðp̄ext þ ρ̄extÞUμUν þ p̄extḡμν; Uμ ¼ δ4μ;

ð46Þ

where Uμ is the comoving four-velocity. Since Tμν;ν ¼ 0

and Text
μν;ν ¼ 0 [as a consequence of Eq. (21)], T total

μν is
conserved. Hence, the conservation equation for extrinsic
quantities is given by

dρ̄ext
dt

þ 3Hðρ̄ext þ p̄extÞ ¼ 0; ð47Þ

where ρ̄ext and p̄ext denote the nonperturbed extrinsic
density and extrinsic pressure, respectively. The time-time
and space-time components of Text

μν can be set as

−8πGText
44 ¼ T̄ext

44 þ δText
44 ¼ Q̄44 þ δQ44; ð48Þ

−8πGText
i4 ¼ T̄ext

i4 þ δText
i4 ¼ Q̄i4 þ δQi4 ¼ 0: ð49Þ

The modified Friedman equation is written as

H2 ¼ 8

3
πGðρ̄m þ ρ̄rad þ ρ̄extÞ; ð50Þ

where ρ̄extðaÞ is given by

ρ̄extðaÞ ¼ ρ̄extð0Þa2β0−4; ð51Þ

with ρ̄extð0Þ ¼ 3
8πG b

2
0. Once ρ̄extðaÞ is already determined,

the “extrinsic” pressure can be calculated using Eqs. (47)
and (51) to obtain

p̄extðaÞ ¼
1

3
ð1 − 2β0Þρ̄exð0Þa2β0−4: ð52Þ

For positive values of β0, the null energy conditions (NECs)
is satisfied. If β0 ¼ 2, the extra term in the modified
Friedmann equation in Eq. (29) mimics a cosmological
constant. If β0 > 2, the effective behavior becomes phan-
tom-like. However, the condition β0 > 1 is required if the
Universe must accelerate (apart from being consistent with
the NECs). Thus, we define an effective equation of state
with an “extrinsic fluid” parameter wext using the definition
wext ¼ p̄ext

ρ̄ext
to obtain

wext ¼ −1þ 1

3
ð4 − 2β0Þ: ð53Þ

Thus, when

β0 ¼ 2 −
3

2
ð1þ wÞ; ð54Þ

one has the fluid correspondence wext ¼ w. This allows us
to express all of the relevant quantities in a fluid approach.

For instance, the dimensionless Hubble parameter EðzÞ ¼
HðzÞ
H0

is written as

E2ðzÞ ¼ Ωmð0Þð1þ zÞ3 þΩradð0Þð1þ zÞ4
þ Ωextð0Þð1þ zÞ3ð1þwÞ: ð55Þ

For reference, we name this model the β model.
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From Eq. (37), we calculate the set of nonzero compo-
nents of δQμν using the background relations in Eqs. (22)
and (25)–(27). Then, one obtains

δQ4
4 ¼ γ0a−ð1þ3wÞΨδ44; ð56Þ

δQi
j ¼ γ0a−ð1þ3wÞΦδij; ð57Þ

δQi
i ¼ 3γ0a−3ð1þwÞΦ; ð58Þ

δQ ¼ γ0ð3Ψ −ΦÞa−3ð1þwÞ: ð59Þ

For the sake of notation and using Eq. (31) in the previous
set of equations, γ0 denotes

γ0 ¼ 18b20β0 ¼ 9H2
0Ωextð0Þγs; ð60Þ

where β0 was simplified by introducing the γs parameter,
which is regarded as a relic from extrinsic geometry to
maintain the characteristic of the parameter γ0. Moreover, it
makes γ0 in Eq. (60) independent of the nature of the fluid
characterized by the w parameter, as expected. This is also
necessary to maintain the GR correspondence that is
reached when the extrinsic curvature vanishes, i.e., γs → 0.
From Eq. (38) one writes the gauge-invariant perturbed

field equations in the Fourier k-space wave modes as

k2Φk þ 3HðΦ0
k þΨkHÞ ¼ −4πGa2δρk þ χðaÞΨk; ð61Þ

Φ0
k þHΨk ¼ −4πGa2ðρ̄þ PÞ θ

k2
; ð62Þ

Dk þ
k2

3
ðΦk −ΨkÞ ¼ −

4

3
πGa2δP̄ −

1

2
a2δQi

i; ð63Þ

k2ðΦk −ΨkÞ ¼ 12πGa2ðρ̄þ PÞσ; ð64Þ

where θ ¼ ikjδukj denotes the divergence of the fluid
velocity in k-space and Dk denotes Dk ¼ Φ00

kþ
Hð2Φk þ ΨkÞ0 þ ðH2 þ 2H0ÞΨk. The function χðaÞ is
expressed in terms of the cosmological parameters and reads

χðaÞ ¼ 9

2
γs

H2
0

ΩradðaÞ
Ωradð0ÞΩextðaÞ: ð65Þ

III. EMBEDDING AS A MODIFIED
GRAVITY MODEL

After some algebra, the set of perturbed equations in
Eqs. (61)–(64) is simplified to the following set of
equations:

k2Ψk ¼ −4πGa2μða; kÞρΔ; ð66Þ

k2ðΦk þ ΨkÞ ¼ −8πGa2Σða; kÞρΔ; ð67Þ

where ρΔ ¼ ρ̄δþ 3H
k ðρ̄þ PÞθ. The set of equations (66)

and (67) is valid for all times. When anisotropic stress is
neglected, μða; kÞ and Σða; kÞ can be written as

μða; kÞ ¼ 1

1 − χðaÞ
k2

; ð68Þ

Σða; kÞ ¼ 1

2

�
1þ μða; kÞ

�
1þ χðaÞ

k2

��
: ð69Þ

Using the definition of the slip function γða; kÞ ¼ Φ
Ψ,

from Eqs. (68) and (69), one easily obtains

Σða; kÞ ¼ 1

2
μða; kÞð1þ γða; kÞÞ: ð70Þ

When the extrinsic term γs → 0 in order to recover general
relativity (GR) correspondence, one obtains the standard
GR limit as Σða; kÞ ¼ μða; kÞ and γða; kÞ ¼ 1. Thus, the set
of basic equations is complete with the matter perturbation
equations in Eqs. (44) and (45) and the evolution equation
of Φ. To obey Solar constraints, γs in μða; kÞ must comply
with the condition

γs <
0.222k2p
H2

0Ωextð0Þ
; ð71Þ

at the pivot scale wave number kp. For instance, adopting
baseline mean values of 68% intervals of the base ΛCDM
model from Planck TT;TE;EEþ lowEþ lensing [10], we
obtain γs < 3.219 × 10−8, which means that the deviation
of MG should be pronounced below that cutoff.

IV. EXTRINSIC CURVATURE AS AN
EFFECTIVE INFLATON FIELD

In previous publications [44,48,49], we explored some
of the consequences of the Nash embedding in the context
of the dark energy problem. The appearance of the extrinsic
energy density ρ̄ext drives the Universe to the late accel-
erated expansion and the Friedmann equation is written in a
shorter form as

H2 ¼ κ2

3
ðρ̄þ ρ̄extÞ; ð72Þ

with κ ¼ 8πG and ρ̄ ¼ ρ̄m þ ρ̄rad. In terms of inflationary
cosmology, such an energy density ρ̄ext should provide a
response in the form of a scalar field potential VðϕÞ
generated by a spatially homogeneous “extrinsic” scalar
field ϕ [50]. Thus, one defines a Lagrangian Lϕ as
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Lϕ ¼ 1

2
ϕ̇2 − VðϕÞ; ð73Þ

where the time derivative is represented by the dot symbol.
Immediately, one writes the related energy-momentum
tensor as

Tϕ
μν ¼ ∂μϕ∂νϕþ gμν

�
1

2
ϕ̇2 − VðϕÞ

�
: ð74Þ

From the conservation of Eq. (74), the inflation dynamics is
coupled to the background evolution and we obtain the
relations

ρ̄ext ¼
ϕ̇2

2
þ VðϕÞ; ð75Þ

p̄ext ¼
ϕ̇2

2
− VðϕÞ; ð76Þ

where ρ̄ext and p̄ext denote the energy density and pressure
generated by extrinsic curvature as a function of the
extrinsic scalar field ϕ, respectively.
As shown in Ref. [50], using Eqs. (51)–(53), (75), and

(76), by direct integration, one obtains the potential ϕðaÞ as

ϕðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3ð1þ wÞj

p
Mpl ln a: ð77Þ

Hereafter, we denote the reduced Planck mass as
Mpl ¼ 1ffiffiffiffiffiffi

8πG
p ¼ c ¼ 1. The potential VðϕÞ is also obtained

straightforwardly as

VðϕÞ ¼ V0e−α0ϕ; ð78Þ

where α0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij3ð1þ wÞjp

. This kind of exponential model
is well known in the literature and is commonly referred to
as power-law inflation (PLI) [69–72]. Such a potential was
also studied in the context of M-theory [73] and Randall-
Sundrum II scenarios [74]. Due to the strong constraints
imposed by Planck data [75] on PLI, we follow the
generalization proposed in Refs. [76,77] called β-exponen-
tial inflation. In Ref. [76], the authors introduced a class of
potentials in the form

VðϕÞ ¼ V0exp1−βð−λϕ=MplÞ
¼ V0½1þ βð−λϕ=MplÞ�1=β: ð79Þ

In general, the function exp1−βðfÞ ¼ ½1þ βf�1=β may be
1þ βf > 0 or exp1−βðfÞ ¼ 0. Then, Eq. (79) should satisfy
the identities exp1−βðln1−βðfÞÞ ¼ f and ln1−βðfÞþ
ln1−βðgÞ¼ ln1−βðfgÞ−β½ln1−βðfÞ ln1−βðgÞ� for any g < 0.
The term ln1−βðfÞ ¼ ðfβ − 1Þ=β is referred to as the
generalized logarithm function. For our purposes,
Eq. (78) can be generalized to Eq. (79) in the form

VðϕÞ ¼ V0½1 − βα0ϕ�1=β: ð80Þ

Assuming that the field starts rolling in a local minimum as
∂
2VðϕÞ
∂
2ϕ

¼ 0 for any β ≠ 1, starting at ϕ ¼ ϕmin ¼ 1, one

obtains the condition β ¼ 1
α0
> 0. Thus, we can write

Eq. (80) as

VðϕÞ ¼ V0½1 − ϕ�α0 : ð81Þ

Then, one defines the pair of slow-roll parameters

ε ¼ 1

2κ

�
V;ϕ

V

�
2

; ð82Þ

η ¼ 1

κ

V;ϕϕ

V
: ð83Þ

In order to submit the model to the scrutiny of observational
data, they are expressed as

ηs ¼ 1 − 6εþ 2η; ð84Þ

r ¼ 16ε; ð85Þ

where ηs is the spectral tilt and r is the tensor-to-scalar ratio.
The relation between the parameters is given by

ηs ¼ 1 −
α0ðα0 þ 2Þ
ð1 − ϕ⋆Þ2

; ð86Þ

r ¼ 8α20
ð1 − ϕ⋆Þ2

; ð87Þ

where ϕ⋆ is the field before the end of inflation given by

ϕ⋆ ¼ 1 − α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5þ 2

α0
N

s
: ð88Þ

The quantity N denotes the number of e-folds before the
end of inflation and is defined as

N ¼
Z

ϕ⋆

ϕend

dϕ
2

ffiffiffi
ε

p ¼ ϕ2
⋆

2α0
−
ϕ⋆

α0
þ 1

2α0
−
α0
4
: ð89Þ

At the end of inflation, the field ϕend is calculated from the
condition εðϕendÞ ∼ 1, and one finds

ϕend ¼ 1 −
α0

ffiffiffi
2

p

2
: ð90Þ
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The slow-roll parameters as functions of ϕ are given by

εðϕÞ ¼ α20
2ð1 − ϕÞ2 ; ð91Þ

ηðϕÞ ¼ α0ðα0 − 2Þ
2ð1 − ϕ⋆Þ2

: ð92Þ

Figure 1 shows the ηs − r plane for selected values of the
parameter α0 in Eq. (78) for the number of e-folds N ¼ 50
and N ¼ 60. The 68% and 95% CL contours correspond to
joint fitting Planck ð2018Þ þ BK18þ LSS extracted from
publicly available CosmoMC chains [55]. Examining the
behavior of the α0 parameter, we end up concluding that
higher values of α0 for the prediction of r are in agreement
with observations but compromise the prediction of the
spectral index ηs. In contrast, lower values of α0 (it is worth
noting that α0 ¼ 0 mimics ΛCDM) are consistent with
Planck data at the 1σ CL for the tensor-to-scalar ratio r.
In this case, α0 ¼ 0.13 and α0 ¼ 0.5 suggest that w ¼
−0.9944 and w ¼ −0.9167, respectively. On the other hand,
when considering the combinations with HiLLiPoP and

LoLLiPoP likelihoods [75] with BICEP2/Keck 2015 data
[78] as hlpTTþ lowTþ lowlEB and hlpTTþ lowTþ
lowlEBþ BK15, α0 ¼ 0.5 is compatible at the 1σ and
2σ CL.

V. DATA AND METHODOLOGY

To delineate constraints on the free parameter of our
model, we examine several data sets individually as well as
in various combinations. Specifically, we consider the
following:
(1) Utilizing the latest NPIPE Planck DR4 likelihoods

[53,54] of the Planck 2018 legacy data release, our
analysis incorporates CMB measurements. These
include the high-l Plik TT likelihood spanning the
multipole range 30 ≤ l ≤ 2508, as well as TE and
EE measurements within the multipole range
30 ≤ l ≤ 1996. Additionally, we incorporate low-
lTT-only (2 ≤ l ≤ 29) and EE-only (2 ≤ l ≤ 29)
likelihoods. Furthermore, our data set encompasses
CMB NPIPE Planck lensing power spectrum mea-
surements, collectively referred to as the Planck
data set.

(2) The B-mode polarization data from the BICEP2/
Keck Collaboration [55]. We refer to this data set
as BK18.

(3) We refer to this data set as LSS. We consider the 6dF
Galaxy Survey [56], the SDSS DR7 MGS [57] and
clustering measurements of eBOSS associated with
the SDSS’s Sixteenth Data Release [58]. This collec-
tion encompasses data from luminous red galaxies,
emission line galaxies, quasars, the Lyman-alpha
forest autocorrelation (lyauto), and the Lyman-alpha
forest x quasar cross-correlation (lyxqso). Table I
details the diverse baryon acoustic oscillation
(BAO) components considered in this work.
(a) The Hubble distance at redshift z:

DHðzÞ ¼
c

HðzÞ ; ð93Þ

where HðzÞ is the Hubble parameter.

FIG. 1. ηs − r plane for the range of values of the parameter α0
in Eq. (78), for the number of e-folds N ¼ 50 and N ¼ 60. The
contours correspond to joint fitting Planckþ BK18þ LSS (68%
and 95% CL) [55] at the pivot scale kp ¼ 0.05 Mpc−1.

TABLE I. Data sets from SDSS employed in our analysis.

Data set ID Description Reference

sixdf_2011_bao 6dF Galaxy Survey [56]
sdss_dr7_mgs SDSS DR7 MGS [57]
sdss_dr16_baoplus_lrg BOSS DR16—Luminous red galaxies [58]
sdss_dr16_baoplus_elg BOSS DR16—Emission line galaxies [79]
sdss_dr16_baoplus_qso BOSS DR16—Quasars [79]
sdss_dr16_baoplus_lyauto BOSS DR16—Lyman-alpha forest autocorrelation [79]
sdss_dr16_baoplus_lyxqso BOSS DR16—Lyman-alpha forest x quasar cross-correlation [79]
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(b) The comoving angular diameter distance,DMðzÞ,
which also only depends on the expansion history:

DMðzÞ ¼
c
H0

Z
z

0

dz0
H0

Hðz0Þ : ð94Þ

(c) The spherically averaged BAO distance:

DVðzÞ ¼ rd½zD2
MðzÞDHðzÞ�1=3; ð95Þ

where rd is the BAO scale, which we treat as a
derived parameter in our analyses.
For the growth measurements, the growth

function f can be expressed as a differential in
the amplitude of linear matter fluctuations on a
comoving scale of 8 h−1Mpc, σ8ðzÞ, in the form

fðzÞ ¼ ∂ ln σ8
∂ ln a

: ð96Þ

The RSD measurements provide constraints on
the quantity fðzÞσ8ðzÞ. σ8ðzÞ depends on the
matter power spectrum, Pðk; zÞ, which is calcu-
lated by default in the Boltzmann code. Both fðzÞ
and σ8ðzÞ are sensitive to variations in the
effective gravitational coupling and the light
deflection parameter, which play a crucial role
in Poisson and lensing equations in MG models.

The joint likelihood analysis is conducted using
MGCAMB-II [59] through the Cobaya [60] sampler,
employing the μ − Σ parametrization defined as follows:

μða; kÞ ¼ 1þ μ0
ΩDE

ΩDEð0Þ
; ð97Þ

Σða; kÞ ¼ 1þ Σ0

ΩDE

ΩDEð0Þ
: ð98Þ

Here, ΩDEðaÞ is denoted as the extrinsic contribution
ΩextðaÞ, which means that ΩDEð0Þ ¼ Ωextð0Þ ¼ 1 −Ωmð0Þ.
The forms of Eqs. (97) and (98) in this parametrization are

obtained from expanding the function χðaÞ ≪ 1 in the
denominator of Eq. (68). We assume a pivot scale fixed at
ap ¼ 10−4 and kp ¼ 0.05 Mpc−1. It is worth noting that
the anisotropic stress is not considered in our analysis.
The priors on the baseline parameters utilized in our

analysis are detailed in Table II. In all runs, we ensure a
Gelman-Rubin convergence criterion of R − 1 < 0.03. In
the subsequent section, we will unveil the outcomes of our
Bayesian analysis and delve into their implications.

VI. RESULTS

We commence our analysis by scrutinizing the con-
straints derived exclusively from the joint analysis of the
Planck and BK18 data sets. The primary statistical findings
concerning the cosmological parameters of interest are
summarized in Table III.
We analyze the results by examining the parameters that

indicate deviations from the standard ΛCDM cosmology.
Figure 2 illustrates the parameter space for γs, μ, and Σ.
Figure 3 shows the ns − r plane. We note that the tensor-

to-scalar ratio r effects arise from MG scenario outlined in
this study. In canonical parametric PðkÞ inflation and
ΛCDM dynamics, r < 0.036 at 95% CL [29] is found,
whereas for the present modified scenario, we find a r <
0.0307 at 95% CL with Planckþ BK18 data. This
represents a variation of Δr ¼ 0.03 as compared with
standard model, suggesting the signature of an MG model.

TABLE II. Summary of 68% and 95% CL limits for the parameters of interest obtained from Planck þ BK18 and
Planckþ BK18þ LSS joint data at the pivot scale kp ¼ 0.05 Mpc−1.

Planckþ BK18 Planckþ BK18þ LSS

Parameter 68% CL 95% CL 68% CL 95% CL

ns 0.9646� 0.0031 0.9646þ0.0057
−0.0060 0.9648� 0.0030 0.9648þ0.0056

−0.0060
r 0.0142þ0.0049

−0.012 < 0.0307 0.0139þ0.0044
−0.013 < 0.0303

H0 66.981� 0.078 66.98þ0.15
−0.15 67.001� 0.078 67.00þ0.15

−0.15
Ωm 0.31794� 0.00074 0.3179þ0.0014

−0.0015 0.31776� 0.00074 0.3178þ0.0014
−0.0014

μ − 1 −0.01þ0.17
−0.21 −0.01þ0.40

−0.34 0.02� 0.15 0.02þ0.30
−0.28

Σ − 1 −0.053þ0.051
−0.042 −0.053þ0.093

−0.098 −0.049þ0.048
−0.042 −0.049þ0.083

−0.091
108γs −0.3þ3.1

−3.8 −0.3þ7.2
−6.2 0.3� 2.7 0.3þ5.4

−5.0

TABLE III. The cosmological parameters along with their
respective priors employed in the parameter estimation analysis.

Parameter Prior

Ωbh2 U½0.017; 0.027�
Ωch2 U½0.09; 0.15�
θMC U½0.0103; 0.0105�
τreio N ½0.065; 0.0015�
logð1010AsÞ U½2.6; 3.5�
ns U½0.9; 1.1�
108 γs U½−1; 1�
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At the pivot scale kp ¼ 0.05 Mpc−1, our result is compat-
ible with the upper bounds predicted by current Planck data
[75] with r < 0.032 at 95% CL from E- and B-mode
spectra BK18 [55] and LSS data [79]. In addition, our
upper constraint on r with r < 0.0307 at 95% CL is also

tighter than the standard joint data Planckþ BK18 with
r < 0.036 and NPIPE (PR4) with r < 0.056 at 95% CL.
Our results indicate a lower value for r as compared with
the observations from the PR4 BB spectrum for multipoles
between l ¼ 2 and l ¼ 150 with r ¼ 0.033� 0.069 [75].
In contrast with the frequentist profile likelihood method
[30] with an upper limit of r < 0.037 at 95% CL, we also
obtain a tighter constraint on r for the same combination of
Planck, BK18, and LSS with r < 0.0303 at 95% CL. In this
context, our inflationary model partially constrains data
better than the ΛCDM model does.
Considering the scalar spectral index ns, we obtain a value

of ns ¼ 0.9641� 0.0031withPlanckþ BK18þ LSS data
at 68% CL which is close to base ΛCDM Planck
TT;TE;EEþ lowEþ lensing with ns ¼ 0.9649� 0.0042
at 68% CL and ns ¼ 0.9665� 0.0038 at 68% CL when
considering Planck TT;TE;EEþ lowEþ lensingþ LSS.
On the other hand, the small differences between the ns
value seem to affect the value ofH0, which is roughly 0.5%
lower than the Planck-ΛCDM case. From the Planckþ
BK18þ LSSdata set, in the analysis of slow-roll parameters,
the model prefers the case where α0 ¼ 0.13 gives
w ¼ −0.9944, as shown in Fig. 1 for the number of e-folds
N ¼ 50 and N ¼ 60. Most importantly, the model does not
require a larger number of e-folds to provide a tighter
constraint on r. We also verified that the inclusion of LSS
data does not significantly change the value of ns but
influences the H0 values, which may be improved with
upcoming new constraints on the reionization optical depth
whose uncertainties may provoke a large impact on funda-
mental cosmological parameters such as ns [80].

VII. FINAL REMARKS

In this paper, we have derived the gravitational equations
within four dimensions by inducing them from a five-
dimensional bulk, employing the Nash embeddings frame-
work and incorporating them into a well-established μ − Σ
representation. From the analysis of the slow-roll condi-
tions, we have obtained a PLI model that was generalized to
the β-exponential inflation [76,77]. We obtained w ¼
−0.9944 for the number of e-folds in the range N ¼ 50
and N ¼ 60. Interestingly, this model also sits within the
previous reasonable expected number of e-folds compatible
with the tighter restriction on r, which is important to
maintain the window of solving the horizon problem. This
enabled us to assess and investigate the impact of the model
on linear perturbations in the CMB data. Apart from the
values of the tensor-to-ratio parameter, our primary analy-
ses revealed similar predictions to those of the ΛCDM
model. Additionally, we quantified the model’s predictions
concerning inflationary dynamics. By utilizing data from
CMB-PR4, BICEP/Keck Array 2018, and certain LSS
measurements, we established a tighter upper limit of
r < 0.0303 at 95% CL. As compared with the ΛCDM
model, such apparent improvement of the tensor-to-ratio

FIG. 2. Triangle plot contourswithMGparametersμ − Σ and the
γs parameter of theβmodel for the combined analyses ofPlanckþ
BK18 (red line) and Planck þ BK18þ LSS (blue line).

FIG. 3. Contours in the ns − r plane, delineating the 68% and
95% CL, represent the combined analyses of Planckþ BK18
(grey dashed line contour) and Planckþ BK18þ LSS (blue line
contour) using the β model. The red contour illustrates the joint
fitting of Planck þ BK18þ LSS extracted from publicly avail-
able CosmoMC chains [55]. For interpretation of the references
to color in this figure legend, the reader is referred to the web
version of this article.
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parameter and a similar but lower value of the scalar
spectral index ns may suggest the glimpse of an MG
signature, which may be improved in future experiments.
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