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The search for subsolar mass primordial black holes (PBHs) poses a challenging problem due to the low
signal-to-noise ratio, extended signal duration, and computational cost demands, compared to solar mass
binary black hole events. In this paper, we explore the possibility of investigating the mass range between
subsolar and planetary masses, which is not accessible using standard matched filtering and continuous
wave searches. We propose a systematic approach employing the Viterbi algorithm, a dynamic
programming algorithm that identifies the most likely sequence of hidden Markov states given a sequence
of observations, to detect signals from small mass PBH binaries. We formulate the methodology, provide
the optimal length for short-time Fourier transforms, and estimate sensitivity. Subsequently, we
demonstrate the effectiveness of the Viterbi algorithm in identifying signals within mock data containing
Gaussian noise. Our approach offers the primary advantage of being agnostic and computationally
efficient.
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I. INTRODUCTION

The study of black holes has become a central
focus, driven by the detection of gravitational waves
(GWs) resulting from binary black hole mergers [1–5].
Simultaneously, there is a growing interest in primordial
black holes (PBHs)—black holes formed in the early
Universe—as a potential explanation for the origin of
observed black holes [6–11], some of which pose challenges
for explanations based on astrophysical origins. The
concept of PBHs was initially speculated by Zel’dovich
and Novikov [12] and later formally proposed by Hawking
and Carr [13–15] (see also [16–20]). PBHs are also fascinat-
ing as a strong candidate for providing a possible explanation
for dark matter. Depending on the time of their formation,
their masses can vary from the Planck mass to the mass of a
supermassive black hole [21,22].
A detection of a subsolar mass black hole by the LIGO-

Virgo-KAGRA (LVK) Collaboration [23–26] would pro-
vide smoking gun evidence for PBHs, as astrophysical
black holes are expected to have masses larger than ∼1M⊙.
Searches for subsolar mass binary black hole events have
been performed with the first, second, and third (O3)

observing run data [27–34] using the matched filtering
method for compact binary coalescence (CBC), and no
significant event has been identified so far. The primary
challenge in subsolar mass searches is computational time,
as the number of templates and their duration increases
dramatically when the minimum mass included in the
search is small [35], limiting the current search range of
the smallest black hole mass to be 0.1M⊙. For smaller
masses, the signal becomes more similar to continuous
waves, and constraints on planetary and asteroid mass have
been reported using the upper limits obtained by continu-
ous wave (c.w.) searches with LVK O3 data [36,37]. In this
case, the frequency evolution of the inspiral signal must be
smaller than the maximum spin-up allowed in the c.w.
search (typically ḟ < 10−9 Hz=s). This corresponds to an
upper mass limit of < 3 × 10−5M⊙ for equal mass binaries.
In this paper, we aim to investigate the possibility of

exploring the intermediate mass range that is not covered
by the subsolar CBC and c.w. searches, specifically
3 × 10−5M⊙ < M < 0.1M⊙. We still employ a c.w. search
algorithm, but the segment size of the short-time Fourier
transform (SFT) must be optimally adjusted depending on
the frequency evolution of the signal, which is determined by
the chirp mass. In this case, the SFT length is much shorter
than those used in typical c.w. searches. It isworth noting that
the investigation into this mass range complements micro-
lensing observations and helps to explore the mass range
indicated by ultrashort-timescale Optical Gravitational
Lensing Experiment events (10−6–10−4M⊙) [38].
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The pioneering work in exploring this mass range with
GW data [39] is developed assuming the frequency-Hough
and generalized frequency-Hough algorithms, primarily
designed for c.w. searches. In our study, we employ the
Viterbi dynamic programming algorithm [40], which iden-
tifies the most likely sequence of hidden Markov states in a
model-agnosticway. The application of theViterbi statistic to
c.w. searches has been extensively studied [37,41–46] (see
also [47–49] for other applications), and the full search
pipeline is available as the SOAP package [50]. As observed in
the c.w. searches [37], we expect the Viterbi algorithm to be
less sensitive compared to the frequency-Hough algorithm,
but it offers significant advantages in terms of computation
time and an agnostic approach. The frequency-Hough
method assumes a power-law spectrum, while Viterbi, in
principle, can detect arbitrary curves in the time-frequency
domain. This flexibility is amajor advantage in the portion of
the parameter space where higher-order post-Newtonians
(PNs) start to become non-negligible.
The structure of the paper is the following: In Sec. II, we

first present a summary of the Viterbi algorithm and discuss
its theoretical basis. Subsequently, we show that the length
of the SFT needs to be optimized based on the chirp mass of
the binary system. Then, we provide a detailed description
of how to compute the optimum length. We also provide an
estimation of the sensitivity in terms of distance and its
implications for the PBH abundance that could be obtained
through this search. Additionally, we discuss the detection
statistics with a detailed investigation into their distribution.
Following that, in Sec. III, we demonstrate the application
of the SOAP package to the search of planetary-mass binary
black holes by preparing mock data containing Gaussian
noise and injections of signals, with varying luminosity
distances and chirp masses. Finally, in Sec. IV, we present
the conclusions of our study and the outlook for future
investigations. Appendix A demonstrates that higher-order
PNs are indeed non-negligible for most of the parameter
space, supporting the advantage of the model-agnostic
nature of our method.

II. METHODOLOGY

A. Viterbi algorithm framework

In this work, we make use of the Viterbi algorithm, via the
SOAP package [37,44–46], in order to search for hidden GW
signals belonging to planetary-mass black hole mergers. The
Viterbi algorithm is a dynamic programming algorithm that
is used to find themost probable sequence of hidden states in
a Markov model that is based on data. It focuses on
maximizing the probability of a signal existing within the
data in every possible direction, after each discrete step in
the detection process.A significantmerit of this process is the
fact that less computational cost is needed since there is a
significant reduction in the number of possible tracks that
need to be calculated beforehand.

In the SOAP algorithm, the time series data are divided
into N segments of equal length, forming the dataset of
time series segments xi, denoted as D≡ fxig, where i
labels the time sequence of segments. The track we are
looking for is a list of frequencies ν≡ fνig, where νi is the
frequency of the GW signal in the segment xi. The main
goal of the algorithm is to maximize the posterior prob-
ability of each possible signal track in order to identify the
most probable one. Following the Bayes theorem, the
posterior probability takes the form

pðνjDÞ ¼ pðνÞpðDjνÞ
pðDÞ ; ð2:1Þ

where pðDjνÞ is the likelihood, or probability, of a signal
existing within the track, pðνÞ is the prior probability of the
track and pðDÞ is the marginalized likelihood of the model.
We can split the prior probability of the track in a set of
transition probabilities,

pðνÞ ¼ pðνN−1;…; ν1; ν0Þ

¼ pðν0Þ
YN−1

i¼1

pðνijνi−1Þ; ð2:2Þ

where ν0 is the frequency of the first time step and
pðνijνi−1Þ is the transition probability for νi given the
frequency at the previous time step was νi−1. We use the
same transition probability as in [44].
In this light, the posterior Bayesian probability charac-

terized by Eq. (2.1) takes the form

pðνjDÞ ¼ pðν0Þpðx0jν0Þ
Q

N−1
i¼1 pðνijνi−1ÞpðxijνiÞP

S

n
pðν0Þpðx0jν0Þ

Q
N−1
i¼1 pðνijνi−1ÞpðxijνiÞ

o ;

ð2:3Þ

where we have used the fact that we can factorize the
likelihood pðDjνÞ as

pðDjνÞ ¼
YN−1

i¼0

pðxijνiÞ: ð2:4Þ

The most probable signal track is then found by maximiz-
ing the logarithm of the numerator in Eq. (2.3),

logpðν̂jDÞ ¼ max
ν

n
logpðν0Þ þ logpðx0jν0Þ

þ
XN−1

i¼1

h
logpðνijνi−1Þ þ logpðxijνiÞ

io
þ const:; ð2:5Þ

for each frequency at each time step.
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B. Short-time Fourier transforms

The main input of the Viterbi algorithm is the short-time
Fourier transforms of the available data frames. More
specifically, the SFT computation process works by divid-
ing the time function s½n� of the strain data into smaller
chunks, typically using a rectangular window function
w½n�, where n is the label for a time series of discrete data
points. With a finite-duration window from 0 toNw − 1, the
SFT is given by

s̃½n; k� ¼
Xn

m¼n−ðNw−1Þ
w½m − n�s½m�e−i2πkNf

m
; ð2:6Þ

where Nf ¼ TSFTfs=2, with fs being the sampling fre-
quency, is the number of discrete frequency channels and k
is the label for GW frequency bins. Here, the variablem is a
dummy time index, and n pinpoints the location of the
window along the time axis.
In order to apply continuous wave search techniques, our

main assumption is that, in each of the SFTs, the signal has
to be contained in a single frequency bin. Therefore, in ith
SFTs, the waveform can be approximated as

hðtÞ ¼ hi cosð2πfitþ ϕiÞ → h̃ðfÞ ¼ 1

2
hieiϕiδðf − fiÞ:

ð2:7Þ

In the case of a compact binary coalescence, the time at
which the signal has a frequency f is given by [51]

tGWðfÞ ¼ tc −
5

256

�
GMc

c3

�
−5=3

ðπfÞ−8=3; ð2:8Þ

which is a monotonically increasing function. Here, tc is
the time of coalescence and Mc is the chirp mass. The
frequency bin size is determined by Δf ¼ 1=TSFT, where
TSFT is the SFT length. Thus, the condition that the signal
stays in the same frequency bin (between f − Δf=2 and
f þ Δf=2) throughout the SFT time is given by

TSFT ≤ tGW

�
f þ 1

2TSFT

�
− tGW

�
f −

1

2TSFT

�
; ð2:9Þ

while the maximum frequency f� for which the inequality
is satisfied is given by

TSFT ¼ tGW

�
f� þ

1

2TSFT

�
− tGW

�
f� −

1

2TSFT

�

≈
1

TSFT

dtGW
df

¼ 1

TSFT

5π

96

�
GMc

c3

�
−5=3

ðπf�Þ−11=3:

ð2:10Þ

Finally, solving for f�, we obtain

f� ¼
1

π

�
5π

96

�
3=11

�
GMc

c3

�
−5=11

T−6=11
SFT : ð2:11Þ

C. Optimum SFT length

In order to find the optimum SFT length, let us define the
total signal-to-noise ratio (SNR) given by adding the SNR
of each of these segments,

ρ2tot ¼
X
i

jρmf
i j2: ð2:12Þ

Here, ρmf
i is the matched filter SNR in the ith SFT,

ρmf
i ¼ hh; sii

ρopti

; ð2:13Þ

where h and si represent the GW template and the strain
data of ith segment, respectively, and h·; ·i represents the
noise-weighted inner product, defined as

ha; bi ¼ 4

Z
fmax

fmin

ã�ðfÞb̃ðfÞ
SnðfÞ

df; ð2:14Þ

where the tilde denotes the Fourier transform. The optimum
SNR ρopti is given by

ρopti ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hh; hi

p
; ð2:15Þ

where SnðfÞ is the noise power spectral density (PSD) of
the detector. When the signal is given by the monochro-
matic form as in Eq. (2.7) in each SFT, the optimum SNR,
defined in Eq. (2.15), is approximately equal to

ρopti ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TSFT

SnðfiÞ

s
hi; ð2:16Þ

and the matched filter SNR, defined in Eq. (2.13), is
given by

ρmf
i ≃

2s̃ðfiÞeiϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfiÞTSFT

p : ð2:17Þ

Assuming that the detector strain s̃ðfiÞ has a signal part
hi and a Gaussian noise part ni, the matched filter SNR in
each SFT of Eq. (2.17) is a complex normal variable with a
mean given by the optimum SNR of Eq. (2.16). Therefore,
the square of the total incoherent SNR of Eq. (2.12) is
distributed like a noncentral χ2 distribution with 2NSFT

degrees of freedom and noncentrality parameter ðρopttot Þ2,
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pðxÞ ¼ 1

2
e−ðxþðρopttot Þ2Þ=2

�
x

ðρopttot Þ2
�ðNSFT−1Þ=2

INSFT−1ðρopttot
ffiffiffi
x

p Þ;

ð2:18Þ

where NSFT ¼ T=TSFT is the number of SFTs with T being
the total observation time, Iν is a modified Bessel function
of the first kind, and ρopttot is the total optimal SNR obtained
by summing over optimal SNRs of those bins in which the
signal is monochromatic,

ρopttot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

Z
f�ðTSFTÞ

f0

df
jh̃ðfÞj2
SnðfÞ

s
: ð2:19Þ

The probability distribution of Eq. (2.18) has the following
mean μ and standard deviation σ [52]:

μðρopttot ; NSFTÞ ¼ 2NSFT þ ðρopttot Þ2; ð2:20aÞ

σðρopttot ; NSFTÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSFT þ ðρopttot Þ2

q
: ð2:20bÞ

For very large NSFT, the higher-order moments tend to 0,
and as expected from the central limit theorem, the
distribution of Eq. (2.18) can be approximated by a
Gaussian with the mean and standard deviation given in
Eq. (2.20). Assuming that NSFT ≫ 1 and a Gaussian is a
good approximation, the number of “σ’s” nσ at which a
signal with optimum SNR ρopttot is expected to be is given by

nσ ¼
μðρopttot ; NSFTÞ − μð0; NSFTÞ

σð0; NSFTÞ
¼ ðρopttot Þ2

2
ffiffiffiffiffiffiffiffiffiffi
NSFT

p : ð2:21Þ

So if we want to detect a signal with a significance of nσ, it
needs to have an optimum SNR larger than

ρopttot ¼ ð4n2σNSFTÞ1=4: ð2:22Þ

To optimize our search, we want to maximize nσ. For the
inspiral part of a CBC signal, using the stationary phase
approximation and multiplying the factor ð2=5Þ2 to average
over the polarization, position in the sky, and inclination,
the squared amplitude of the frequency domain strain is
given by [51]

jh̃ðfÞj2¼ 1

30π4=3

�
c
dL

�
2
�
GMc

c3

�
5=3

f−7=3∝f−7=3; ð2:23Þ

where dL is the luminosity distance to the source. Using
NSFT ¼ T=TSFT, Eq. (2.21) can be rewritten as

nσ ¼
ðc=dLÞ2ðGMc=c3Þ5=3

15π4=3

ffiffiffiffiffiffiffiffiffiffi
TSFT

T

r Z
f�

f0

df

f7=3SnðfÞ
: ð2:24Þ

To assess the potential of our search, it is interesting to
compute its range of reach as a function of the chirp mass,
the SFT length, and the significance nσ. This can be done
by solving for dL in Eq. (2.24),

dL
c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMc=c3Þ5=3
15π4=3nσ

ffiffiffiffiffiffiffiffiffiffi
TSFT

T

r Z
f�ðTSFTÞ

f0

df

f7=3SnðfÞ

s
: ð2:25Þ

Here, the observation time T that needs to be substituted
into this equation is the time when the data and the CBC
signal coincide,

T ¼ Tðdata ∩ CBC signalÞ; ð2:26Þ

and the integral of Eq. (2.25) has to be computed only over
the frequencies contained in this time. The length of the
CBC signal between the low-frequency cutoff f0 and the
frequency f�, at which it stops being contained in a single
SFT, can be obtained from Eq. (2.8),

TCBC ¼ 5

256

�
GMc

c3

�
−5=3h

ðπf0Þ−8=3 − ðπf�Þ−8=3
i

≈
5

256

�
GMc

c3

�
−5=3

ðπf0Þ−8=3; ð2:27Þ

where we have used the approximation ðπf0Þ−8=3 ≫
ðπf�Þ−8=3. For simplicity, we assume that the signal is
fully contained in the data and so T ¼ TCBC. Note that,
using a low-frequency cutoff of 60 Hz, CBC signals with
chirp masses smaller than 1.4 × 10−4M⊙ lasts more than
one year in the detector, as we can see from Eq. (2.27).
Substituting T ¼ TCBC in Eq. (2.25), we obtain

dL
c

¼
�
256TSFT

1125n2σ

�
1=4

f2=30

�
GMc

c3

�
5=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
f�

f0

df

f7=3SnðfÞ

s
;

ð2:28Þ

and using the relation between TSFT and f� of Eq. (2.11),
we obtain

dL
c

¼ 211=8ðGMc=c3Þ25=24
155=8π1=3

f2=30

f11=24�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nσ

Z
f�

f0

df

f7=3SnðfÞ

s
:

ð2:29Þ

Here, f0 and f� are parameters that can be tuned by
changing the low-frequency cutoff and the SFT length. In
practice, we want to choose the values of f0 and f� that
maximize the luminosity distances that our searches can
reach. In Eq. (2.29), we can separate the part that depends
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on f0 and f�, and the function that we want to maximize to
obtain the optimum f0 and f� is

Fðf0; f�Þ ¼
f2=30

f11=24�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
f�

f0

df

f7=3SnðfÞ

s
: ð2:30Þ

Note that this function is solely determined by the shape of
the PSD and does not depend on the signal parameters,
such as the chirp mass. In Fig. 1, we show the color map of
Fðf0; f�Þ computed for a typical LIGO O3 PSD [26],
where we observe that there is a well-defined maximum at
f0;opt ¼ 61.1 and f�;opt ¼ 126.8 Hz. To obtain this value of
f�, the optimum SFT length depends on the chirp mass as
given in Eq. (2.11),

Topt
SFT ¼

�
5π

96

�
1=2

�
GMc

c3

�
−5=6

ðπf�;optÞ−11=6

¼ 8.50 s

�
Mc

10−2M⊙

�
−5=6

�
f�;opt

126.8 Hz

�
−11=6

: ð2:31Þ

In Fig. 2, we plot the optimum SFT length as a function of
chirp mass. We also plot the color map of nσ=nσ;max, where
nσ;max is the value obtained when we apply the optimal SFT
length. This shows how much the significance gets
degraded when we apply nonoptimum SFT length.
Then, using the maximum of Fðf0; f�Þ, we can derive

the maximum distance at which we can see an event as a
function of the chirp mass and nσ ,

dL ¼ 0.190 Mpc

�
Mc

10−2M⊙

�
25=24

�
nσ
10

�
−1=2

×
Fðf0; f�Þ

7.77 × 1021 Hz1=24
: ð2:32Þ

Thus, for chirp masses of order Mc ∼ 5 × 10−2M⊙, the
range of reach of the search is of order 1 Mpc, while for
chirp masses of order Mc ∼ 6 × 10−4M⊙, the range of
reach of the search is of order 10 kpc.
This can be compared with the sight distance obtained

using a fully coherent search, which is given by [51]

dcohL ¼ c

nσπ2=3

ffiffiffiffiffi
2

15

r �
GMc

c3

�
5=6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
fmax

fmin

df

f7=3SnðfÞ

s
: ð2:33Þ

If we assume that the coherent search is performed between
20 and 2048Hz, with a typical LIGOO3 sensitivity, the sight
distance of the coherent search is approximately given by

dcohL ¼ 0.544 Mpc

�
Mc

10−2M⊙

�
5=6

�
nσ
10

�
−1

×

� R fmax
fmin

df
f7=3SnðfÞ

3.85 × 1043 Hz−1=3

�1=2

: ð2:34Þ

This is interpreted as an optimal sensitivity, and we see that
the Viterbi algorithm can reach the luminosity distance with
the same order of magnitude.
Comparing the predicted sight distances of the coherent

[Eq. (2.33)] and incoherent [Eq. (2.29)] cases, itmight appear
that we could have dcohL < dincL , contradicting the expectation
that a fully coherent matched filter search is optimal. Indeed,
the ratio between both sight distances is given by

dincL

dcohL
¼ ncohσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nincσ
ffiffiffiffiffiffiffiffiffiffi
NSFT

pp ; ð2:35Þ

where we have assumed that the coherent and incoherent
searches cover the same frequency range, i.e., fmin ¼ f0 and
fmax ¼ f� in Eq. (2.33), and we have used

FIG. 1. Color map of Fðf0; f�Þ [defined in Eq. (2.30)] nor-
malized by its maximum value as a function f0 and f�. For SnðfÞ
we assume a typical LIGO O3 PSD [53]. We also show with a
dot the point where the maximum of the function is reached,
for f0;opt ¼ 61.1 and f�;opt ¼ 126.8 Hz with a value of
Fðf0;opt; f�;optÞ ¼ 7.77 × 1021 Hz1=24.

FIG. 2. Color map of nσ given by Eq. (2.21), normalized to the
maximum possible nσ that can be obtained at each chirp mass as a
function of the SFT length and the chirp mass. We also show with
a solid black line the optimum SFT length as a function of the
chirp mass. We assume the same typical LIGO O3 PSD of Fig. 1
and use the optimum low-frequency cutoff of f0 ¼ 61.1 Hz.
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NSFT ¼ TCBC

TSFT
¼

ffiffiffiffiffi
30

p

64π4=3
f11=6� f−8=30

�
GMc

c3

�
−5=6

: ð2:36Þ

A priori, one could think that the ratio dincL =dcohL of
Eq. (2.35) can become greater than 1, if ncohσ >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nincσ

ffiffiffiffiffiffiffiffiffiffi
NSFT

pp
. However, we have to take into account

that ncohσ and nincσ indicate different confidences due to the
difference in their distributions, and we should compare
them at a fixed confidence. In the case of the coherent
search, ncohσ follows a normal N ð0; 1Þ distribution, and
therefore the false alarm probability (FAP) is

FAPcoh ¼ PN ð0;1Þðρmf > ncohσ Þ ¼ 1

2
erfc

�
ncohσ ffiffiffi
2

p
�
; ð2:37Þ

where erfcðxÞ is the complementary error function. In the
incoherent case, nincσ follows a χ2 distribution with 2NSFT
degrees of freedom, and therefore

FAPinc ¼ Pχ2
2NSFT

ðρ2tot > 2NSFT þ 2
ffiffiffiffiffiffiffiffiffiffi
NSFT

p
nincσ Þ

¼ QðNSFT; NSFT þ
ffiffiffiffiffiffiffiffiffiffi
NSFT

p
nincσ Þ; ð2:38Þ

where Qða; xÞ is the regularized upper incomplete γ
function, defined as

Qða; xÞ ¼ 1

ΓðaÞ
Z

∞

x
ta−1e−tdt: ð2:39Þ

When both methods have the same FAP, the values of nσ for
the coherent and incoherent searches are related by

1

2
erfc

�
ncohσ ffiffiffi
2

p
�

¼ QðNSFT; NSFT þ
ffiffiffiffiffiffiffiffiffiffi
NSFT

p
nincσ Þ: ð2:40Þ

In Fig. 3, we plot the ratio dincL =dcohL by substituting this
relation to Eq. (2.35). We observe that dincL =dcohL < 1 for all
plotted values of NSFT and ncohσ , confirming that the
coherent search is always more sensitive than the incoher-
ent one. We also plot the line ncohσ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NSFT − 1
p

, which
separates the two different behaviors of the ratio dincL =dcohL .
When ncohσ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSFT − 1

p
, the χ22NSFT

distribution can be
well approximated by a Gaussian, and therefore we expect
nincσ ≈ ncohσ , and Eq. (2.35) reduces to

dincL

dcohL
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncohσ

2
ffiffiffiffiffiffiffiffiffiffi
NSFT

p
s

: ð2:41Þ

Therefore, in the limit of having a very large number of
SFTs, the sight distance of the incoherent search is
degraded proportional to N−1=4

SFT compared to the coherent

case. On the opposite limit, when ncohσ ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSFT − 1

p
, we

can approximate the ratio dincL =dcohL of Eq. (2.35) as

dincL

dcohL
≈ 1 −

2NSFT − 1

2ðncohσ Þ2 log

�
1þ ðncohσ Þ2

2NSFT

�
; ð2:42Þ

which again confirms that the ratio is always smaller than 1.
In Eq. (2.42) we also observe that dincL =dcohL ≈ 1 when
NSFT ≪ ðncohσ Þ2, indicating that in this regime the sensi-
tivity lost by using an incoherent search is small.

D. Constraint on PBH abundance

The primary motivation for exploring black holes in this
mass range is to investigate the possible existence of PBHs.
One of our key interests lies in constraining the PBH
abundance, often expressed as fPBH, the fraction of PBHs
relative to the dark matter abundance. Although the
constraints heavily depend on the PBH mass function,
here, for simplicity, let us consider a monochromatic mass
function. Assuming the early binary formation channel [8],
which is considered to be dominant compared to the late
binary formation [6,7,54], the comoving merger rate
density for equal-mass PBHs is given by [55,56]

R ¼ 1.6 × 106 Gpc−3 yr−1fsup

�
mPBH

M⊙

�
−32=37

f53=37PBH ;

ð2:43Þ

where mPBH is the PBH mass, and fsup is the suppression
factor that effectively takes into account PBH binary

FIG. 3. Ratio between the coherent and incoherent sight
distances computed, using Eq. (2.35) and applying the condition
of Eq. (2.40) to impose both to correspond to the same FAP. The
contour lines of the ratio are shown as a function of the number of
σ’s of the coherent search ncohσ and the number of SFTs NSFT [or,
equivalently, the chirp mass Mc, which is related via Eq. (2.36)]
and is shown on the upper horizontal axis. The red curve is
plotted to show the boundary of ncohσ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NSFT − 1
p

, below which
the distribution of nincσ can be approximated by a Gaussian.
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disruptions by early forming clusters due to Poisson
fluctuations in the initial PBH separation, by matter
inhomogeneities and by nearby PBHs [55]. The value of
the suppression factor is still not clearly understood, but a
plausible range is 0.001 < fsup < 1 for relatively large
PBH fraction fPBH > 0.1 [55].
The nondetection of merger events provides an upper

limit on the rate density, given by Rupper ∼ hVTobsi−1,
where V represents the comoving volume to which obser-
vations are sensitive. In the range of our interest, specifi-
cally < Oð100Þ kpc, we can safely approximate that the
luminosity distance is equivalent to the comoving distance.
Assuming the total observation time of Tobs ¼ 1 yr and
substituting Eq. (2.32) to V ¼ 4πd3L=3, we obtain

Rupper ¼ 53.7 Mpc−3 yr−1
�

mPBH

10−2M⊙

�
−25=8

: ð2:44Þ

By comparing Eqs. (2.43) and (2.44), we obtain

fPBH ¼ 935f−37=53sup

�
mPBH

10−2M⊙

�
−669=424

: ð2:45Þ

While this surpasses the interesting limit, it is important to
note that within our Galaxy at distances of approximately
50 kpc, which corresponds to the horizon distances for
black hole masses smaller than ∼3 × 10−3M⊙, we can
anticipate an enhancement in the event rate proportional to
the overdensity of dark matter. Subsequently, the merger
rate density is amplified by a factor of ∼3.3 × 105 [39],
resulting in an interesting upper bound of

fPBH ¼ 0.11f−37=53sup

�
mPBH

10−3M⊙

�
−669=424

: ð2:46Þ

Here, we have considered only the rate density enhance-
ment within our Galactic Halo. However, one can also
anticipate additional directional enhancements at the
Galactic Center or within the Solar System vicinity, which
could further strengthen the constraints, as discussed in
[39]. Note also that this represents the sensitivity curve of
O3, and the constraints are expected to improve, yielding
an enhanced upper bound with future upgraded detectors.

E. Distribution of the Viterbi detection statistic

In this subsection, we discuss the distribution of the total
SNR of the track recovered by the Viterbi algorithm in
detail. The distribution of the total SNR squared ρ2tot,
defined in Eq. (2.12), is described by Eq. (2.18) if the
track is arbitrarily chosen. However, to be precise, this is
not the case because the Viterbi algorithm selects the track
with the maximum value of ρ2tot out of all possible tracks
allowed by a given transition matrix. Consequently,

maxν⃗ ρ2tot;ν⃗ ≡ ρ2tot;max does not follow the χ2 distribution
of Eq. (2.18).
Given a flat transition matrix that enables one to jump to

nJ frequency segments away per time step (where nJ ¼ 1 is
the setting in our case), the probability to calculate Eq. (2.2)
is given by

pðνijνi−1Þ ¼
� 1

2nJþ1
1
Δf jνi − νi−1j ≤ nJ

0 1
Δf jνi − νi−1j > nJ

; ð2:47Þ

where Δf ¼ 1=TSFT is the frequency resolution of the SFT.
There are 2nJ þ 1 possibleways at each time step, and this is
raised to the power of NSFT when considering combinations
across all time steps. Then, as the algorithm equally explores
all initial frequencies, the total number of tracks that the
Viterbi algorithmmaximizes over is obtained bymultiplying
the number of frequency segments nf ¼ TSFTðfmax − fminÞ,

Nt ¼ nfð2nJ þ 1ÞNSFT : ð2:48Þ

For typical values ofnJ ¼ 1 andNSFT ∼ 1000, the number of
possible tracks becomes huge, of order ∼10500.
If we assume the tracks to be independent, computing the

distribution of the maximum total SNR squared among
these tracks is simple (see Appendix B). However, the
correlations between tracks are crucial. Given that different
SFT segments are uncorrelated, we have

Covðjρmf
ij j2; jρmf

kl j2Þ ¼ 4δij;kl; ð2:49Þ

where ρmf
ij denotes the matched filter SNR in the jth

frequency of the ith SFT segment, which are distributed
as uncorrelated complex Gaussians. Using Eq. (2.49), we
find that the correlation between two different tracks is
given by

rðρ2tot;ν⃗1 ;ρ2tot;ν⃗2Þ≡
Covðρ2tot;ν⃗1 ;ρ2tot;ν⃗2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðρ2tot;ν⃗1ÞVarðρ2tot;ν⃗2Þ

q ¼ nc
NSFT

; ð2:50Þ

where nc is the number of segments that tracks have in
common.
Given the complexity of theproblem, inpractice,we investi-

gate the distribution of ρ2tot;max using simulated background
data assuming Gaussian noise. In Fig. 4, we plot the mean
and standard deviation of this distribution as a function of the
number of SFTs, NSFT considered in the analysis, while
fixing nf ¼ 1000 and nJ ¼ 1, which are the values con-
sistent with our mock data analysis in the subsequent
section. In the simulations, we observe that the distribution
depends very weakly on nf, similar to what happens in the
uncorrelated case discussed in Appendix B. This can be
expected writing Eq. (2.48) as Nt ¼ ð2nJ þ 1ÞNSFTþlogðnfÞ
and observing that usually logðnfÞ ≪ NSFT.
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In Fig. 4, we find that, similar to Eq. (2.20), in the
absence of signal (ρopttot ¼ 0), the mean is proportional to
NSFT and the standard deviation is proportional to

ffiffiffiffiffiffiffiffiffiffi
NSFT

p
.

The proportionality constants are, however, very different,
and we find

μðρopttot ¼ 0; NSFTÞ ¼ 4.8NSFT; ð2:51aÞ

σðρopttot ¼ 0; NSFTÞ ¼ 0.74
ffiffiffiffiffiffiffiffiffiffi
NSFT

p
: ð2:51bÞ

In Fig. 5, we show how the probability distribution
function (PDF) of ρ2tot;max varies as a function of NSFT. We
can observe that, for NSFT ¼ 1, it resembles a Gumbel
distribution, as expected from Appendix B, since in this
case there is no correlation between paths. However, as
NSFT increases, the distribution becomes more symmetric,

resembling something more similar to a generalized
extreme value (GEV) distribution

PGEVðxÞ ¼ exp
n
−ð1þ γxÞ−1=γ

o
; ð2:52Þ

which approaches the Gumbel distribution in the limit of
γ → 0. Fitting the GEV distribution to the NSFT ¼ 1000
data, we obtain a best fit value of γ ¼ −0.133, shown also
in Fig. 5.
Similar to what is done with the critical ratio of the

Hough transform [57], to preselect events when using the
Viterbi algorithm, we can look at the number of standard
deviations from the mean the observed total SNR of the
reconstructed track is at

nσ ¼
ρ2tot;max − μðρopttot ¼ 0; NSFTÞ

σðρopttot ¼ 0; NSFTÞ
: ð2:53Þ

To evaluate the expectation value of nσ , we can use the
fact that, for a sufficiently loud signal, the Viterbi track
corresponds to the true track, and in this case, μðρopttot ; NSFTÞ
is given by Eq. (2.20a). Therefore, we obtain

hnσi ≈
2NSFT þ ðρopttot Þ2 − μðρopttot ¼ 0; NSFTÞ

σðρopttot ¼ 0; NSFTÞ
: ð2:54Þ

Substituting the approximations of μ and σ shown in
Eq. (2.51) for the nJ ¼ 1 case, hnσi is approximately
given by

hnσi ≈
ðρopttot Þ2 − 2.88NSFT

0.74
ffiffiffiffiffiffiffiffiffiffi
NSFT

p : ð2:55Þ

We expect that, in the absence of signal ðρopttot Þ2 → 0, we
would have hnσi → 0. However, this is not the behavior we
observe in Eq. (2.54) because of the loud signal assumption.
We see hnσi vanishes when ðρopttot Þ2 ¼ μðρopttot ¼ 0; NSFTÞ−
2NSFT, and we will see in the next section that, at this point,
Eq. (2.54) no longer serves as a good approximation. The
approximation is broken because, as the signal becomes
fainter, we do not expect the Viterbi algorithm to recover the
true track but a noise-dominated track.
Note that in the derivation of the optimum length of the

SFT, done in Sec. II C, we did not consider the trials factor
of the Viterbi algorithm, and therefore the form of nσ in
Eq. (2.21), which is used to optimize the SFT length, is
much simpler. However, in the large SNR limit in which a
signal can be detected and where Eq. (2.55) applies, we do
not expect the trials factor to be so relevant, since we find
the same dependence of nσ ∝ ðρopttot Þ2=

ffiffiffiffiffiffiffiffiffiffi
NSFT

p
. Therefore,

even if the correction by the trials factor may introduce a
factor of difference in the sensitivity estimate, we expect the
estimates of Sec. II C, in which we have full analytical
control, to be broadly applicable.

FIG. 4. Mean μ and standard deviation σ of the distribution of
the maximum over Viterbi tracks of the total SNR ρ2tot;max as a
function of the number of SFTs, NSFT. Note that the vertical axis
has different scales for the mean (left) and the standard deviation
(right). We assume nf ¼ 1000 and nJ ¼ 1, consistent with the
values used in our analysis of Sec. III.

FIG. 5. PDF of ρ2tot;max scaled and shifted to have zero mean and
a standard deviation of 1.
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III. TEST WITH MOCK DATA

In this section, we demonstrate a search of PBH compact
binary coalescence with the SOAP algorithm. For simplicity,
we focus on cases where the two bodies have equal masses
and zero spins. We inject signals into Gaussian noise
generated with the O3 PSD, considering three different
chirp masses, i.e., ½10−2; 5 × 10−3; 2 × 10−3�M⊙. The CBC
signals in the Solar System Barycenter are simulated using
the 3.5PN TaylorT3 approximant [58]. This approximant
was chosen because it gives a closed analytical form of the
waveform as a function of time, allowing us to easily
compute the signal in segments, which is necessary, due to
memory limitations, for preparing the very long signals
considered in this study. We then compute the time-
dependent projection of the signal into the Hanford and
Livingston detectors using LALSuite [53].
Following the theoretical predictions for the optimum

SFT length given in Eq. (2.31), we find that the optimum
SFT lengths needed for chirp masses considered here are
½8.5; 15; 32� s, respectively. We use the LALPulsar library
[53,59], more specifically, the lalpulsar_MakeSFTs func-
tion, to create the SFTs.
Using the PYTHON SOAPCW library [50], we have

successfully detected the injected signals that correspond
to PBH inspiral signatures. In Fig. 6, we plot the root-mean-
square (rms) differences between the injected signal and the
track detected by the Viterbi algorithm given in units of
frequency bins, as functions of the luminosity distance of the
source (left panel) and their total SNR (right panel).
The larger the rms value, the larger the deviation between
the injected signal and thedetected one. For aCBCsignal, the
power deposited in each SFT bin can be very different (the
amplitude of the signal drastically increases as the system
evolves). Since we expect the Viterbi algorithm to fit better
the parts of the track containingmore signal, we have defined

the rms differently than Ref. [44], weighting by the optimum
SNR of each SFT, i.e.,

rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NSFT

XNSFT

i¼1

ðρopti Þ2
ðρopttot Þ2

�
ν0;i − νV;i

Δf

�
2

vuut ; ð3:1Þ

where ν0;i and νV;i denote the frequencies the tracks go
through in the ith SFT for the injected signal and the Viterbi
track, respectively, while ðρopti Þ2 denotes the squared opti-
mum SNR in the ith SFT such that ðρopttot Þ2 ¼

PNSFT
i¼1 ðρopti Þ2.

As seen in the right panel, we observe that the efficiency
of the algorithm is getting progressively worse as we lower
the SNR. In the left panel, we observe a similar but reverse
correlation between the rms and the dL of the sources. The
result is consistent with our sensitivity estimate, Eq. (2.32),
which indicates dL ¼ ½190; 92; 36� kpc (with nσ ¼ 10)
for ½10−2; 5 × 10−3; 2 × 10−3�M⊙.
Figure 7 displays the spectrogram, illustrating the track

of the injected signal in Gaussian noise (left panel) and the
track detected by Viterbi (right panel) for the case of
½Mc; dL� ¼ ½10−2M⊙; 147 kpc�. The correspondingmatched
filter SNR is 86.8. This represents the marginal luminos-
ity distance where the rms starts to increase for larger
distances. We observe that the algorithm successfully
traces the signal, with the exception of a small portion at
lower frequencies due to the lower SNR in that range. If
the source is at a closer distance, the track is accurately
detected even at low frequencies.
In Fig. 8 we show the number of standard deviations nσ,

which indicates the extent to which the observed value
deviates from the zero signal mean as given in Eq. (2.53), as
a function of the luminosity distance dL for different chirp
masses. The realizations are the same as those in Fig. 6. We
observe that the approximation in Eq. (2.54) for the

FIG. 6. Left: the rms differences between the detected signal by the algorithm and the zero-noise injection as a function of the
luminosity distances (dL) of the sources. The rms is given in units of frequency bins. Right: the rms differences between the detected
signal by the algorithm and the zero-noise injection as a function of the total SNR for various cases of luminosity distances (dL).
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expected value of nσ fits the data well at small values
of the luminosity distance, i.e., large SNRs. However, as
expected, when ðρopttot Þ2 → μðρ2tot;max;0Þ−2NSFT, the approxi-
mation becomes worse and tends to underestimate nσ.

Comparing with Fig. 6, we observe that the approximation
begins to fail when the rms becomes large. This implies that
the Viterbi algorithm is not following the injected track but
rather is tracking a noise-dominated path, and the
assumption of following the injected track, used to derive
our approximation, is no longer valid. Looking at the
distance at which the data points cross nσ ¼ 10, we observe
that the sight distance derived in Eq. (2.32) provides a
reliable estimate of the search range. This indicates that, in
terms of nσ , the Viterbi algorithm does not significantly
lose sensitivity due to the trial factor. We have to keep in
mind, however, that having the same nσ does not mean
having the same statistical significance; this depends on the
underlying distribution. The distribution of ρ2tot;max;0, shown
in Fig. 5, has heavier tails than a Gaussian, and therefore the
same value of nσ than in Eq. (2.32) is less significant.
Finally, in Table I, we present the average time required

to perform signal detection for each case ofMc along with
the corresponding standard deviation. The calculation was
conducted on a standard M1 MacBook Pro, utilizing a
sample of detections with varying Mc values. Note that
only the SOAP algorithm part is considered here, and the
SFT preparation time is excluded.
The major advantage of the Viterbi algorithm is evident:

the search can be efficiently completed in approximately
10 s with a laptop computer. In fact, the more time-
consuming part is the SFT preparation. To prevent signal
loss, it is essential to prepare various datasets with differing
SFT lengths to search for different PBH masses. Referring
to Fig. 2, we find that, to maintain a loss of detection
efficiency below 10%, the SFTs should be prepared with a
mass bin size of Δ log10Mc ∼ 0.3.

IV. CONCLUSIONS

In this paper, we have considered the application of the
Viterbi algorithm to small mass black hole binary search for
a range that is not accessible by the current subsolar mass

FIG. 7. Signal detection using the Viterbi algorithm in the case of ½Mc; dL� ¼ ½10−2M⊙; 147 kpc�. Left: the spectrogram of the
injected signal hidden within the Gaussian noise. Right: the detected signal by the Viterbi algorithm.

FIG. 8. For the different chirp mass cases, we show as a
function of luminosity distance dL the number of standard
deviations nσ the SNR is away from the zero signal mean given
by Eq. (2.53) (dots) and approximated expected value of nσ of
Eq. (2.54) (solid lines).

TABLE I. The average time (Δt) needed in order to complete a
signal detection using a standard M1 MacBook Pro for each case
ofMc used in our analysis, along with its standard deviation. For
reference, we also show the number of SFTs NSFT and frequen-
cies nf for each case.

McðM⊙Þ NSFT nf ΔtðsÞ
10−2 2560 552 1.34� 0.03
5 × 10−3 2730 1035 1.79� 0.02
2 × 10−3 1280 2208 3.00� 0.01
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search and c.w. search. A notable distinction from the c.w.
approach is the necessity to segment the data appropriately,
accounting for the gradual evolution of the signal fre-
quency. As a key outcome, we have provided an estimation
of the optimal length for the SFT that enhances our search
efficiency. Additionally, we have provided sensitivity
estimations based on the O3 noise curve. We then dem-
onstrated that it is indeed possible to use the Viterbi
algorithm to scan the LVK data and accurately point to
the gravitational wave signals. We have tested the method
by injecting signals from sources with three different chirp
masses, ½10−2; 5 × 10−3; 2 × 10−3�M⊙, considering lumi-
nosity distances within the range of dL ¼ ½5; 150� kpc and
successfully captured the signal for close events.
The Viterbi algorithm is highly efficient in terms of

computational cost and benefits greatly from the fact that it
is agnostic of the characteristic signature of the gravita-
tional waveform of the hidden signal. On the other hand, it
sacrifices in terms of accuracy in its prediction. Therefore,
we can use this methodology to provide a quick first search
of possible signals hidden within the data, and then it
should be followed by a more thorough, in-depth analysis
of the possible targets.
In the present work, we simulate the data assuming that

the noise is stationary and Gaussian. To employ our
method in real data analysis, we need to account for
the nonstationarity and non-Gaussianity of the detector
noise, particularly, the narrow spectral disturbances, so-
called “lines” that can severely degrade the sensitivity
[60]. This point remains to be covered in future work. In
addition, it would be interesting to cover the cases of
asymmetric and extreme mass ratios, as well as to expand
the chirp mass range that we consider in our analysis.
Currently, the primary bottleneck in terms of computation
time is the SFT preparation, as we must adjust the FFT
length based on the considered chirp mass. We can tackle
this challenge by using short FFT databases [61,62],
incorporating functions that facilitate easy changes to
the FFT length. Moreover, band sampled data could
potentially offer a solution [63]. This will be another
focus of our future work.

The codes used by the authors in the analysis of the paper
will be made publicly available upon publication here [64].
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APPENDIX A: VALIDITY OF THE
LEADING-ORDER POST-NEWTONIAN

EXPANSION

One of the key advantages of the Viterbi algorithm is its
agnostic nature, enabling us to follow the signal track even
when the GW inspiral signal deviates from the power-law
spectrum. Here, we evaluate the deviation from the power-
law evolution due to PN corrections and show that, indeed,
PN corrections alter the frequency evolution in the cases of
our interest. The next-to-leading-order PN expression is
given by [58]

fGWðtÞ ¼
c3θ3c

8πGMc

�
1þ

�
743

2688
þ 11

32
η

�
η−2=5θ2c

�
; ðA1Þ

where η ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio,
Mc ¼ η3=5M is the chirp mass, and θc is defined as

θcðtÞ ¼
�
c3ðtc − tÞ
5GMc

�−1=8
; ðA2Þ

with tc being the coalescence time. From Eq. (A1), we can
deduce that the correction to the leading-order PN approxi-
mation is given by

δf¼ fGWðtÞ−fLOGWðtÞ¼
c3θ3c

8πGMc

�
743

2688η2=5
þ11

32
η3=5

�
θ2c

¼ fLOGWðtÞ
�

743

2688η2=5
þ11

32
η3=5

��
8πGMcfLOGWðtÞ

c3

�
2=3

;

ðA3Þ
where fLOGWðtÞ is the leading-order PN approximation of the
frequency evolution that we want to test. The condition that
has to be satisfied to neglect higher-order terms is that the
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error in the frequency approximation is smaller than the
resolution of the SFT, that is,

δf <
1

TSFT
: ðA4Þ

Using Eq. (A3), this is equivalent to

f <

�
743

2688η2=5
þ 11

32
η3=5

�
−3=5

T−3=5
SFT

�
8πGMc

c3

�
−2=5

;

ðA5Þ
where we have defined fLOGWðtÞ≡ f to simplify the nota-
tion. We observe that Eq. (A5) establishes the maximum
frequency up to which the leading-order PN approximation
is valid. In Eq. (2.11), we have also determined that, for a
given SFT length, there is a maximum frequency f� beyond
which the energy of the SFT will be contained in a single
frequency bin. If in Eq. (A5) we evaluate f ¼ f�ðTSFTÞ to
check the condition at the point where it is more likely to be
violated, we find

TSFT <
1944π6

3125

�
743

2688η2=5
þ11

32
η3=5

�
−11GMc

c3

¼ 0.00467 s

� 743
2688η2=5

þ 11
32
η3=5

0.6309

�−11�
Mc

10−2M⊙

�
; ðA6Þ

where for the evaluation we have assumed the equal-mass
case (η ¼ 1=4), which gives the loosest constraint. For
typical SFT lengths used in GW searches, which are
∼Oð1 sÞ in the shortest cases, we observe that there should
be measurable deviations from the leading-order PN
evolution.
Finally, this condition becomes more severe for the

asymmetric mass case (small η). Therefore, the advantages
of the Viterbi algorithm may become more prominent,
particularly in scenarios such as mini-extreme-mass ratio
inspiral searches [65].

APPENDIX B: DISTRIBUTION OF VITERBI
TOTAL SNR FOR UNCORRELATED PATHS

Here, we provide an analytical estimation of the dis-
tribution of the maximum total SNR squared in the case
where tracks are not correlated. The cumulative distribution
function (CDF) of the maximum ρ2tot;ν⃗ of Nt independent
paths can be computed as

PVðxÞ≡ P
�
∩
ν⃗
ρ2tot;ν⃗ < x

�
¼

Y
ν⃗

Pðρ2tot;ν⃗ < xÞ

¼ Pðρ2tot < xÞNt : ðB1Þ
Limiting ourselves to the case with no signal, then
Pðρ2tot < xÞ is the CDF of a χ2 distribution with 2NSFT
degrees of freedom,

Pðρ2tot < xÞ ¼ 1 −
ΓðNSFT; x=2Þ
ΓðNSFTÞ

; ðB2Þ

where ΓðNSFT; x=2Þ is the upper incomplete γ function
[52]. Then we obtain

PVðxÞ ¼ exp

�
Nt log

�
1 −

ΓðNSFT; x=2Þ
ΓðNSFTÞ

��
: ðB3Þ

Now, our interest lies in the center of the probability
distribution rather than its tail. Therefore, whenNt ≫ 1, the
logarithmic component is a negative number that should be
very small. In this regime, we can employ the approxima-
tion logð1 − XÞ ≈ −X and proceed to obtain

PVðxÞ ≈ exp

�
−Nt

ΓðNSFT; x=2Þ
ΓðNSFTÞ

�

¼ exp
n
−e−αðxÞ

o
; ðB4Þ

where we have defined

αðxÞ ¼ log
ΓðNSFTÞ

Nt
− logΓðNSFT; x=2Þ: ðB5Þ

In the limit of very large NSFT, αðxÞ can be approximated
as [52]

αðxÞ ≈ log
ΓðNSFTÞ

Nt
þ x
2
− ðNSFT − 1Þ log x

2
þO

�
x

NSFT

�
:

ðB6Þ

This αðxÞ becomes zero when

x0 ¼ 2ðNSFT−1Þz0; where logðz0Þ− z0þC¼ 0; ðB7Þ

with C given by

C ¼ logðNSFT − 1Þ logðNtÞ − logðΓðNSFTÞÞ
NSFT − 1

≈ 1þ logð2nJ þ 1Þ þO
�

1

NSFT

�
: ðB8Þ

Here, we have assumed Nt ¼ nfð2nJ þ 1ÞNSFT with
NSFT ≫ 1 and NSFT ≫ lnðnfÞ. Therefore, we have
x0 ∼OðNSFTÞ, and from Eqs. (B6) and (B7), we obtain

α0ðx0Þ ≈
1

2

�
1 −

1

z0

�
þO

�
1

NSFT

�
; ðB9Þ

and α00ðx0Þ ∼Oð1=NSFTÞ → 0. Therefore, the CDF of
Eq. (B4) follows the Gumbel distribution
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PVðxÞ ≈ exp
n
−e−α0ðx0Þðx−x0Þ

o
; ðB10Þ

in accordance with the extreme value theorem. This is a
well-known distribution, having a mean μ and standard
deviation σ given by

μ ¼ x0 þ
γ

α0ðx0Þ
and σ ¼ π

α0ðx0Þ
ffiffiffi
6

p ; ðB11Þ

where γ is the Euler-Mascheroni constant. In Fig. 9, we
show these quantities, to leading-order in NSFT, as a
function of NSFT. For a value of nJ ¼ 1, which is the
number of jumps we allow for in our Viterbi implementa-
tion, from Eq. (B7), we have z0ðnJ ¼ 1Þ ¼ 3.289, and
therefore μnJ¼1 ∼ 6.58NSFT and σnJ¼1 ¼ 3.69.
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