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In the last few years, there has been significant progress in the development of machine learning methods
tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network
bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational
times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the
neural network bundle method that results in a significant reduction of the computational times of the
statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate
the luminosity distance of type Ia supernovae, which is usually computed through an integral with
numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky
fðRÞ models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheonþ
compilation and cosmic chronometers. Another original aspect of this work is the different treatment we
provide for the absolute magnitude of type Ia supernovae during the inference process, which results in
different estimates of the distortion parameter than the ones obtained in the literature. We show that the
statistical analyses carried out with our new method require lower computational times than the ones
performed with both the numerical and the neural network method from our previous work. This reduction
in time is more significant in the case of a difficult computational problem such as the ones addressed in this
work.

DOI: 10.1103/PhysRevD.109.123514

I. INTRODUCTION

One of the central challenges in theoretical cosmology lies
in identifying the physical mechanism responsible for the
current accelerated expansion of the Universe. According to
the standard cosmological model ΛCDM, this acceleration
can be explained by including a cosmological constant in
Einstein equations. Although this model successfully
explains a broad set of existing observational data [1], it
falls short in accounting for the value of the cosmological
constant inferred from observations. Furthermore, there are
some inconsistencies within the ΛCDM framework, such as
the so-called Hubble tension, a disagreement between the
value of theHubble constant inferred fromdata of the cosmic

microwave background (CMB) assuming the standard
cosmological model [1], and the one obtained from type
Ia supernovae and Cepheid data [2], which are model
independent.
Motivated by this observational discrepancy, researchers

explore alternative cosmological models to account for the
current accelerated expansion and resolve the Hubble ten-
sion. These alternative frameworks generally fall into two
families: (i) dark energy and (ii) modified gravity. In dark
energy models, a new component is added to the energy-
momentum tensor, either in the form of a fluid with a time-
dependent equation of state or a scalar field that is minimally
coupled to gravity with a specific potential. On the contrary,
modified gravity theories propose alternatives to general
relativity to describe the gravitational interaction. One such
example are fðRÞ theories, which introduce modifications to*augustochantada01@gmail.com
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the Einstein-Hilbert action in the form of a function of the
Ricci scalar. Typically, the differential systems that describe
the cosmological dynamics in thesemodified gravity models
are more complex than those of the standard ΛCDMmodel.
Consequently, the computational times to perform parameter
inference in these alternative models are significantly larger
than those needed for the ΛCDM model.
Recently, neural networks (NNs) have gained traction as

powerful tools for handling both data and models. In
cosmology these have been employed to extract additional
information from existing data in order to constrain cosmo-
logical models [3–6] and to create faster Monte Carlo
samplers for Bayesian inference [7,8]. Other applications
to cosmology include training NNs as emulators of Einstein-
Boltzmann solvers [9,10]. Additionally, unsupervised meth-
ods for solving differential equations have been developed
[11] and used in applications like physics-informed neural
networks [12]. A notable extension of these methods is the
NNbundlemethod [13], which generates a set of solutions of
a given differential system. The advantage of this method is
that the outcome of the NN method can be regarded as a
function of the independent variable and the free parameters
of the differential system. Moreover, this method does not
require the use of traditional numerical solvers to obtain the
solutions.
We have previously demonstrated the efficacy of this

method in solving the background dynamics of the Universe
for four different cosmologicalmodels [14].Wevalidated the
solutions obtained through the NN bundle method by
comparing them with solutions from a traditional numerical
solver. The main advantage of this method is that the
integration of the differential system is performed only once,
and thereafter the solutions can be used indefinitely for
parameter inference. This reduces the computational time
for statistical analysis using the Markov Chain Monte Carlo
(MCMC) algorithm, particularly for cosmological models
that are computationally intensive to integrate.
In this work, we take a step further by demonstrating that

using the NN method to compute the luminosity distance
significantly reduces the time required for the inference
process. To illustrate this, we consider the fðRÞ Hu-Sawicki
model, which we tackled in our previous work, and addi-
tionally we analyze the Starobinsky model. The latter is
computationally more intensive to integrate than the former
and therefore represents a more challenging test for the NN
method.We test the predictions of the background dynamics
of these models with recent data from cosmic chronometers
[15–22] and type Ia supernovae (SNIa) [23]. The originality
of our statistical analysis lies in the choice of the prior of SNIa
absolute magnitude, which is different than the ones adopted
in the literature for the same models and datasets [24]. This
results in different values of the inferred distortion parameter
b of the fðRÞ model.
The structure of this article is as follows. In Sec. II, we

briefly describe the basics of both the Hu-Sawicki and
Starobinsky fðRÞmodels. In Sec. III, we describe the details

of theNNbundlemethodwhen applied to both fðRÞmodels.
We also describe the improvements to the inference process
that involve the NN bundle method and leads to the
optimization of computational times. Afterward, we show
a comparison between the solutions obtained with the NN
method for the fðRÞ models and the ones obtained with a
traditional numerical solver. Additionally, we describe the
appropriate treatment of the prior assumed for the absolute
magnitude of SNIa. In Sec. IV, we show the results of the
statistical analysis where we compare the predictions of
our model with data from cosmic chronometers and type Ia
supernovae. We also discuss our results as compared with
similar analyses [24,25]. Most importantly, we show the
significant time reduction of computational times achieved in
this study compared to both our previous work and the
numerical method. In Sec. V, we present our conclusions.

II. THEORETICAL MODELS

In this paper, we focus on a particular class of modified
gravity theories, namely, fðRÞ theories, whose action can
be written as

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm: ð1Þ

Here κ ¼ 8πG (we adopt c ¼ 1 throughout this paper), R is
the Ricci scalar, g is the metric determinant, fðRÞ is an
arbitrary function of R, and Sm refers to the matter action.
FromEq. (1), themodifiedEinstein equations can be derived.
The assumption of an isotropic and homogeneous uni-

verse, which is the usual cosmological scenario, naturally
leads us to use the Friedmann-Lemaître-Robertson-Walker
metric. By applying the modified Einstein equations to the
cosmological setting, we obtain the following modified
Friedmann equations, which describe the dynamical evolu-
tion of the background:

H2 ¼ 1

3fR

�
κρm þ RfR − f

2
− 3HṘfRR

�
;

2Ḣ þ 3H2 ¼ −
1

fR

�
−
RfR − f

2
þ fRRRṘ2

þ �R̈þ 2HṘ
�
fRR

�
; ð2Þ

where we use the notation f ¼ fðRÞ, fR ¼ df=dR,
fRR ¼ d2f=dR2, etc., and the dot refers to the derivative
with respect to cosmic time. Also, ρm is the total matter
energy density and H refers to the Hubble parameter.
In this paper, we analyze the Hu-Sawicki and Starobinsky

models with n ¼ 1. For the Hu-Sawicki model [26],

fHSðRÞ ¼ R − 2Λ
�
1 −

1

1þ R
Λb

�
; ð3Þ
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while for the Starobinsky model [27],

fSðRÞ ¼ R − 2Λ
�
1 −

1

1þ � R
Λb

�
2

�
: ð4Þ

Here Λ is the cosmological constant and b is the distortion
parameter that measures the model’s departure fromΛCDM.
To solve the Friedmann equations, we assume the following
change of variables [14,28]:

x ¼ ṘfRR
HfR

; v ¼ R
6H2

; y ¼ f
6H2fR

;

Ω ¼ κρm
3H2fR

; r ¼ R
Λ
: ð5Þ

In this way, the Friedmann equations can be written as
follows:8>>>>>>>>>>><

>>>>>>>>>>>:

dx
dz ¼ 1

1þz ð−Ω − 2vþ xþ 4yþ xvþ x2Þ
1
Γ
dy
dz ¼ −1

1þz

�
vx − xy þ 4y − 2yv

Γ

�
1
Γ
dv
dz ¼ −v

1þz

�
xþ 4−2v

Γ

�
dΩ
dz ¼ Ω

1þz ð−1þ 2vþ xÞ
1
Γ
dr
dz ¼ −rx

1þz ;

ð6Þ

where the factor Γ ¼ fR
RfRR

. If we assume the Hu-Sawicki
model, Γ can be expressed as follows:

ΓHSðrÞ ¼
ðrþ bÞ

h
ðrþ bÞ2 − 2b

i
4br

; ð7Þ

while for the Starobinsky model,

ΓSðrÞ ¼
ðr2 þ b2Þ

h
ðr2 þ b2Þ2 − 4b2r

i
4rb2ð3r2 − b2Þ : ð8Þ

To facilitate the implementation of the method, an addi-
tional variable change (r0 ¼ ln r) is done in Eq. (6) before
the training of the NN.
The initial conditions of the system were chosen so that

at high redshift the model behaves as the ΛCDM one; in
this work for obtaining the solutions with the NN method
we use z0 ¼ 10, where z0 is the redshift at which the initial
conditions of Eq. (6) are set (see Sec. III B for a discussion
of the initial conditions). For further details on the change
of variables and initial conditions, we refer the reader to our
previous work [14].
Note that the second, third, and fifth equations in the

differential system in Eq. (6) are expressed nontraditionally,
that is, the factor Γ appears in the denominator, on the
left-hand side of the equation. This way of writing the

differential system was used only for the Starobinsky
model and the reason for this will be made clearer in
Sec. III.
To compare the theoretical model with the observations,

the Hubble parameter is needed. Therefore, after solving the
system of equations described in Eq. (6), one can obtain
the solution for H using the following relation:

H ¼ HΛ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2v

ð1 − ΩΛ
m;0Þ

r
: ð9Þ

Here ΩΛ
m;0 is the matter density parameter in the ΛCDM

model which should be distinguished from Ωm;0, the matter
density parameter defined in the fðRÞ model. Similarly, HΛ

0

denotes the Hubble constant in the ΛCDMmodel, whileH0

is the same quantity in the fðRÞ model. Since the matter
energy density is an observable quantity, the following
relation holds:

Ωm;0H2
0 ¼ ΩΛ

m;0ðHΛ
0 Þ2: ð10Þ

III. METHOD

A. The new NN bundle method

In our previous work [14], we extensively discussed the
application of the NN bundle method in the cosmological
context. Below, we recall the main aspects of the method.
First, we describe the method for the case in which neither
the differential system nor the initial condition depends on
any parameter. The NN method can be formulated as an
optimization problem. The goal is to tune the networks’
internal parameters to minimize a specific loss function. We
denote the vector of the outputs of the NNs as uN ðtÞ, where
t is the independent variable. The loss function to be
minimized is then1

Lðũ; tÞ ¼
XM
i

Riðũ; tÞ2; ð11Þ

where Ri are the residuals of the M differential equations,
i.e., the left-hand side of the ith differential equation minus
its right-hand side,2 and ũðtÞ is a reparametrization of the
outputs uN ðtÞ so as to enforce the initial condition u0.

1Actually, the loss function in Eq. (11) is evaluated at
Nbatch random points of the domain in each iteration of the
optimization process so that the total loss at each iteration is
J ¼ 1

Nbatch

PNbatch
i LðũðtiÞ; tiÞ.

2It follows that, if ũ is the exact solution, it satisfies the
differential system and therefore the loss function is exactly zero.
Since the outcomes of the NN method are not exact solutions, the
loss measures how far the solutions are from satisfying the
differential system. For details, see Ref. [14].
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ũðtÞ ¼ u0 þ ð1 − e−ðt−t0ÞÞuN ðtÞ: ð12Þ

Now, we move to the NN bundle method, which is applied
when the differential system and/or the initial conditions
depend on free parameters. We will call θ the vector that
includes all those parameters. In this case, the loss function
to be optimized reads3

Lðũ; t; θÞ ¼
XM
i

Riðũ; t; θÞ2; ð13Þ

and ũðt; θÞ is a reparametrization of the outputs uN ðt; θÞ so
as to enforce the initial condition u0ðθÞ,

ũðt; θÞ ¼ u0ðθÞ þ ð1 − e−ðt−t0ÞÞuN ðt; θÞ: ð14Þ

In this way, when the optimization process finishes, the
trained neural network represents the solution of the
differential system for any value of the free parameters θ
within the training range. This is different from numerical
methods, where the system needs to be integrated for every
choice of the free parameters.
With regards to the unsupervised nature of the training,

the key to understanding it lies in the residuals, which are
calculated from the differential equations of the system. In
this way, each residual depends on the independent
variable, the bundle parameters, the evaluated reparame-
trized networks, and nothing else. At each iteration, the
residuals are evaluated at random points of the domain
(independent variable and bundle parameters). This calcu-
lation involves evaluating the reparametrized networks and
their derivatives4 (with respect to the independent variable)
at these points. Then, the value of the loss is calculated, and
the internal parameters of the network are tuned in order to
lower it.
To implement the method to solve the background

equations of the fðRÞ models, we use the loss described
in Eq. (13).5 When the solution of a given differential
system is known for a fixed value of one or more of the free
parameters, it is useful to consider the perturbative repar-
ametrization that was proposed and applied in our previous

work [14] to the quintessence and fðRÞ Hu-Sawicki
models. When applied to the fðRÞ models that are con-
cerned here, this takes the form

ũðz; b;ΩΛ
m;0Þ ¼ ûðz;ΩΛ

m;0Þ þ ð1 − e−ðz−z0ÞÞ
× ð1 − e−bÞuN ðz; b;ΩΛ

m;0Þ: ð15Þ

Here ûðz;ΩΛ
m;0Þ denotes theΛCDM solution of Eq. (6) (i.e.,

for b → 0) which is already known, and the job of the
second term is to correct it in order to make the solution
valid for the whole bundle. We recall that the bundle
parameters are b and ΩΛ

m;0.
6 In Fig. 1 we show a graph that

represents the neural network described before.
This reparametrization helps to circumvent the singu-

larity of the differential system at b ¼ 0 [see Eqs. (7) and
(8)]. In contrast, for numerical methods, an approximate
analytical function is usually used when b approaches 0,
since the singularity causes an increase in the computa-
tional times of the statistical analysis [29].
Regarding the implementation of the method to the

Starobinsky model, it is important to highlight our
approach in formulating Eq. (6). Traditional numerical
solvers typically require differential equations to be
arranged with the derivative of the independent variable
isolated on one side and the rest on the other side. However,
the NN method is not bound by this constraint; the residual
can be structured in any way that preserves the same
equality that the equation conveys. Thus, we chose to
define the residuals based on the formulation presented in

FIG. 1. Graph that represents a neural network like the ones
employed in this work. It has three inputs that correspond to the
independent variable and the two parameters of the bundle, two
hidden layers with the same amount of units each, and a single
output that is then reparametrized to satisfy the initial condition.

3Actually, the loss function in Eq. (13) is evaluated at Nbatch
random points of the domain in each iteration of the optimization
process so that the total loss at each iteration is J ¼
1

Nbatch

PNbatch
i Lðũ; ti; θiÞ.

4These are not to be confused with derivatives involving the
stochastic gradient descent algorithm used to optimize the net-
works. The derivatives mentioned here are the ones necessary to
compute the residuals, i.e., the derivatives that appear in the
differential equations.

5We also add an extra term to the loss in Eq. (13) to explicitly
enforce relationships between the dependent variables that must
be satisfied (see Appendix B 3 of our previous work [14] for more
information).

6The parameter b enters in Eq. (6) through Γ [Eqs. (7) and (8)],
while the initial conditions depend on ΩΛ

m;0 (see our previous
work [14]).
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Eq. (6), inspired by the fact that the singularity in Γ makes
the balance between the equations uneven. Consequently,
we use the residuals that correspond to the second, third,
and fifth equations of Eq. (6). Therefore, these residuals no
longer exhibited a divergent behavior close to b ¼ 0. This
shows a useful flexibility that the NN method has that
numerical methods do not. This last technique was needed
in addition to the perturbative reparametrization to make
the solutions accurate at low values of b for the Starobinsky
model. In the case of the Hu-Sawicki model, the differential
equations and, in consequence, the residuals and the loss
are written in the usual way (see our previous paper for
details [14]).
In this work, we present an improvement that signifi-

cantly reduces the time it takes to perform an MCMC
analysis. This improvement is related to the computation of
the luminosity distance of type Ia supernovae,

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð16Þ

Building upon the previous equation, it becomes evident
that we must carry out an integration involving an integrand
1
H, derived from the output of the NNmethod. In the context
of numerical integration methods, the integrand (which in
this case is a function of the NN) must be evaluated at Nint
different values of z. The computational time for this
process is directly proportional to Nint. Furthermore, it is
important to note that the accuracy of the numerical
integration method improves with higher values of Nint.
Therefore, this poses a computational bottleneck, particu-
larly when this integral must be recalculated at each
parameter sample in the MCMC process.
To mitigate this computational challenge, one can con-

sider NNs once again to evaluate the integral. Using the
fundamental theorem of calculus, we can transform the
integral equation into a differential equation. This way, we
define

dI
dz

¼ 1

EðzÞ ; IðzÞjz¼0 ¼ 0; ð17Þ

where EðzÞ ¼ HðzÞ=HΛ
0 and IðzÞ ¼ dLðzÞHΛ

0 =ð1þ zÞ.
Next we describe the specific steps of our new NN method.
First, a set of NNs are trained to obtain Eðz; b;ΩΛ

m;0Þ from
Eq. (6). The trained NNs are then used in Eq. (17) to define
another differential equation which is also solved with the
NN bundle method. Therefore, after training, we obtain a
new NN that represents Iðz; b;ΩΛ

m;0Þ. In this way, the
integration that is needed to obtain the luminosity distance
is no longer computed during the MCMC process. Instead,
it is performed in the NN training that yields Iðz; b;ΩΛ

m;0Þ
(i.e., a bundle solution of the integral), resulting in a
reduction of the computational times of the inference
process. We also note that, in this way, the likelihood is

completely analytical since all of the theoretical predictions
of the observable quantities come from NNs that work as
functions of the parameters and the independent variable. In
short, with our new approach the NN bundle method is
applied twice: first to solve the differential system and
second to compute the luminosity distance. On the con-
trary, in our previous work [14], we only used the NN
bundle method to solve the differential system, while the
luminosity distance was computed with numerical methods.
The concept of using NNs to perform an integration has

been explored by other authors [30–33]. Specifically, the
idea of using the fundamental theorem of calculus to turn
an integral equation into a differential one and after that use
a NN-based method to solve it has been explored in
Refs. [31–33]. Nevertheless, our work is the first one to
extend this concept to the case where the integrand is a
solution previously obtained by the NN bundle method.
Indeed, the integrand of Eq. (17) is computed from the
solution of the differential system described by Eq. (6).

B. Accuracy of solutions

All of the NNs in this work have three inputs (correspond-
ing to z, b, andΩΛ

m;0), two hidden layers of 32 units each, and
one output for a total of 1217 trainable parameters per NN.
Each NN has a single output so that, when reparametrized as
in Eq. (15), it should approximate the associated dependent
variable that solves the corresponding differential equation. It
should be noted that the specific architecture used in this
work was chosen based on its simplicity and effectiveness.
Indeed, it has proven to be effective with a relatively low
amount of trainable parameters.
The training ranges for the input parameters of theNNs are

as follows: for the Hu-Sawicki model, z∈ ½0; 10�, b∈ ð0; 3�,
andΩΛ

m;0 ∈ ½0.05; 0.4�, while for the Starobinskymodel, they
are z∈ ½0; 10�, b∈ ð0; 4�, and ΩΛ

m;0 ∈ ½0.1; 0.4�.
When the training is finished, the NN internal parameters

adopt the values that correspond to the lowest value of the
total loss. This latter value resulted to be Lmin ¼ 1.14 ×
10−5 [for Eq. (6)] and Lmin ¼ 5.43 × 10−9 [for Eq. (17)] in
the Hu-Sawicki model, while they turned out to be Lmin ¼
2.19 × 10−6 [for Eq. (6)] and Lmin ¼ 8.16 × 10−9 [for
Eq. (17)] in the Starobinsky model.
However, the training of the NNs does not give any

information about the error in the quantities that we are
interested in (H and dL). For this reason, we evaluate the
precision of the outputs given by the NNs by computing the
absolute value of the relative difference between these
NN-based solutions and the ones obtained from a numeri-
cal solver. In particular, we used the Runge-Kutta methods7

found in SciPy’s [34] tool to solve initial value problems and

7We used RKF45 for the Hu-Sawicki model and Radau IIA
family of order 5 for the Starobinsky model. The latter method is
meant for stiff problems and it was necessary to use it for the
convergence of the Starobinsky model.
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consider low tolerance for both relative and absolute errors,
10−7 and 10−12, respectively. We chose the Runge-Kutta
method for being well-established and tested, as well as for
its presence in a widely used library.
Now, we focus on two specific quantities, H=HΛ

0 and
HΛ

0 dL. The results are shown in Figs. 2 and 3, where
the range of the parameters covers the region of the
parameter space that is within the 95% confidence level,

ðb;ΩΛ
m;0Þ∈ ð0; 2.1� × ½0.1; 0.35� and ðb;ΩΛ

m;0Þ∈ ð0; 3.2� ×
½0.2; 0.35� for Hu-Sawicki and Starobinsky models,
respectively, as we will later show in Sec. III C. The
figures also show the dependence with redshift in the
region relevant to the datasets we are considering. These
plots show that the errors are, at most, ∼1.8% and ∼0.8%
in the region of the parameter space evaluated, for
Hu-Sawicki and Starobinsky models, respectively.

(a) (b)

FIG. 2. The percentage error of the NN-based bundle solution of H=HΛ
0 (a) and HΛ

0 dL (b) in the Hu-Sawicki model with n ¼ 1,
through comparison to numerical solutions. The range of the comparison goes through a section of the training range of the parameters
of the bundle.

(a) (b)

FIG. 3. The percentage error of the NN-based bundle solution of H=HΛ
0 (a) and HΛ

0 dL (b) in the Starobinsky model with n ¼ 1,
through comparison to numerical solutions. The range of the comparison goes through a section of the training range of the parameters
of the bundle.
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The choice of the initial condition deserves a detailed
explanation. The bottom line is that we used z0 ¼ 10 for
the NN method for both models, but in the case of the
numerical method, we could only use this value for the
Hu-Sawicki model, while for the Starobinsky model we
needed to compute the initial condition more carefully, as
we explain in what follows.
Specifically, Ref. [24] highlights that using a fixed and

low value of z0 can lead to numerical instabilities in some
areas of the parameter space. We verified by ourselves that
there are instabilities in the numerical method in specific
regions of the parameter space when using the initial
condition z0 ¼ 10 in the case of the Starobinsky model.
On the other hand, a more thorough method for computing
z0 was developed in Refs. [25,35], where its value depends
on both b and ΩΛ

m;0. For the Starobinsky model with n ¼ 1,
this is

z0 ¼
"
1 −ΩΛ

m;0 −ΩΛ
r;0

ΩΛ
m;0

 
b

ffiffiffiffiffiffiffiffiffiffiffi
1

ϵ
− 1

r
− 4

!#
1=3

− 1 ð18Þ

with ΩΛ
r;0 ¼ 2.97 × 10−4ΩΛ

m;0, and ϵ ≪ 1.8 This alternative
method can lead to significantly higher values of z0,
sometimes on the order of 100. For such high z0 values,
the radiation component of the Universe can no longer be
neglected in the Friedmann equations and, consequently,
in the initial conditions. Also, a high value of z0 results in
an increase in the computing times of the solution.
Nevertheless, using Eq. (18) to determine the initial
condition resolved the numerical issues, and therefore
we used the initial condition taken from Eq. (18) in all
calculations performed with the numerical method for the
Starobinsky model. We stress that for the Hu-Sawicki
model we always use z0 ¼ 10. This discussion is relevant
to understand the comparison between the results of the
inference process obtained using the numerical method
with those obtained using NNs (as shown later) and for the
estimation of the computing times of both methods.
Going back to Fig. 3, which displays the comparison

between the NN and the numerical solutions for the
Starobinsky model, we notice that the solutions obtained
with the NN method using the initial condition at z0 ¼ 10
closely match those obtained using the numerical method,
which employs Eq. (18). This agreement is observed within
the parameter space region encompassing the 95% confi-
dence level. Hence, one advantage of the NN method
is its ability to achieve stability without requiring a
more comprehensive initial condition. A comparison
between z0 ¼ 10 and z0 ¼ z0ðb;ΩΛ

m;0Þ with the numerical
method revealed no significant differences, with variations

remaining below ∼1.74% for the Hu-Sawicki model and
∼0.06% for the Starobinsky model in the same parameter
space region as the one shown in Figs. 2 and 3. However,
due to stability issues during the computations of the
MCMC process, it was required to use the more complex
initial condition for the Starobinsky case when using the
numerical method.

C. Statistical analysis

1. Datasets

In this section we briefly describe the datasets used in the
statistical analysis of this work: cosmic chronometers
and SNIa.
We use 32 measurements [15–22] of H that were

obtained using the cosmic chronometers technique within
a range of redshift z∈ ½0.07; 1.965�. The likelihood func-
tion is

LCC ∝ exp

(
−
1

2

X32
i¼1

�
HobsðziÞ−Hthðzi;b;ΩΛ

m;0Þ
σHobsðziÞ

�2)
; ð19Þ

where HobsðziÞ refers to the observational measurements
ofHðzÞ and σHobsðziÞ refers to the corresponding error, while
Hthðzi; b;ΩΛ

m;0Þ is the model’s prediction that is obtained by
evaluating two trained NNs [one corresponding to
vðzi; b;ΩΛ

m;0Þ and another to rðzi; b;ΩΛ
m;0Þ9 in Eq. (9)].

We emphasise that these two NNs are trained together with
another three, representing the five variables in Eq. (5), to
solve Eq. (6).
It is widely accepted that SNIa can be considered as

standard candles due to the homogeneity of their light
curves. This makes them ideal for determining distances
and also to constrain cosmological parameters. From the
supernovae light curves, it is possible to infer the distance
moduli μ, which can be expressed as

μobs ¼ m̃b −M; ð20Þ

where m̃b refers to the corrected overall flux normalization
(see Appendix A) and M is the absolute magnitude. This
last equation is a simplified version of the Tripp formula
[36], which includes additional corrections described by
extra parameters that will not be used in this work. In
Appendix A, we describe the complete Tripp formula and
the reasons that lead us to use Eq. (20) in this work. On the
other hand, the distance moduli are related to the luminosity
distance [Eq. (16)] as

μðzÞ ¼ 25þ 5 log10 ðdLðzÞÞ: ð21Þ
8The value of ϵ is usually determined by imposing

f½Rðz ¼ z0Þ� ¼ R − 2Λð1 − ϵÞ, thus it depends on the specific
fðRÞ being used [25]. We use the values used in Ref. [24]. 9We recall that the actual dependant variable used is r0 ¼ ln r.
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In this work, we consider 1590 SNIa, at redshifts z ∈
½0.01; 2.26� from the Pantheonþ compilation [23].
The likelihood function can be written as

LSNIa ∝ exp

	
−
1

2
ΔμT · C−1 · Δμ



; ð22Þ

where the vector Δμ ¼ μobs − μthðb;ΩΛ
m;0Þ contains the

difference between the observed value and the theoretical
prediction of the distance modulus for each measurement in
the compilation, while C denotes the covariance matrix. The
theoretical predictions of μ are computed using a single NN
corresponding to Iðz; b;ΩΛ

m;0Þ in combination with the fact
that dL ¼ Ið1þ zÞ=HΛ

0 and Eq. (21). This last NN is only
trained after the training associated with solving Eq. (6) is
done. Then, using the resulting trained NNs, Eq. (17) can be
defined to now train the NN that represents Iðz; b;ΩΛ

m;0Þ.

2. Methodology for the statistical analysis

The likelihood function used in the MCMC process is
the product of two separate likelihood functions: the one in
Eq. (19) and the one in Eq. (22). We recall that the free
parameters of the posterior distribution are b, ΩΛ

m, HΛ
0 , and

M. We use uniform priors for b, ΩΛ
m;0, and HΛ

0 ; b∈ ð0; 3�,
ΩΛ

m;0 ∈ ½0.05; 0.4�, and HΛ
0 ∈ ½50; 100�, respectively for the

Hu-Sawicki model. For the Starobinsky model we use the
same prior for HΛ

0 , and the flat priors for the other two are
b∈ ð0; 4� and ΩΛ

m;0 ∈ ½0.1; 0.4�.
For the treatment of the absolute magnitude of SNIa,

various approaches exist in the literature. These can be
summarized as (i) using a uniformprior andmarginalizingM
[24,37], (ii) takingM as a free parameterwith a uniformprior
[14,38], and (iii) taking M as a free parameter and using a
Gaussian prior withmean and standard deviation determined
from independent data. We choose the (iii) method as
developed in [39,40] where the Cepheid data from the
SH0ES Collaboration are used to determine the prior
parameters of M. In particular, we used a Gaussian distri-
bution centered on μM ¼ −19.243 with σM ¼ 0.32. We
stress that the methods described in (i) and (ii) assume equal
probability of all values ofM, which would be reasonable if
no further information about this quantity is available.
However, as is well known, Cepheid data from the
SH0ES Collaboration can be used to extract information
about M [39,40]. Therefore, our treatment is more appro-
priate than the one reported in Ref. [24]. On the other hand,
leaving M as a free parameter or performing the marginali-
zation with a uniform prior can bias the estimation of
cosmological parameters.10 In fact, we did perform the

inference process considering the approaches (i) and
(ii) described before, and we found a significant change in
the estimated values of b. On the other hand, it has been
shown in Ref. [40] that considering the Gaussian prior in
this way yields very similar results to the case when the
Pantheonþ and SH0ES data are considered. In this way, our
approach allows us to include the information provided by
the SH0ES Collaboration that is relevant for the Hubble
tension while providing a prior onM that is independent of
the dataset considered for the statistical analysis.

IV. RESULTS

In this section, we present and discuss the results of the
statistical analysis using the MCMC algorithm with the
NN-based solutions. We then compare the time required for
the MCMC analysis using this new method with the one
required by the numerical method and the method
employed in our previous work [14].

A. Results from the statistical analysis

In Figs. 4 and 5, we show the 68% and 95% confidence
level contours of the posterior probability distribution of
the parameters, using a numerical method and using the
NN-based solutions for both fðRÞ models analyzed in this
work. As it can be seen in the figures, the results are fully
compatible with each other, showing that the errors shown

FIG. 4. Results of the statistical analysis for the fðRÞ Hu-
Sawicki model using NNs (in blue) and using a numerical solver
(in red). The darker and brighter regions correspond to the 68%
and 95% confidence regions, respectively. The plots on the
diagonal show the posterior probability density for each of the
free parameters of the model.

10We notice that the marginalization proposed in [37] is
performed over the variable M ¼ M þ 5 logðc=H0

Mpc Þ, which in-
volves the Hubble constant. Therefore, this marginalization is not
recommended to estimate H0 to address the Hubble tension.
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in Figs. 2 and 3 do not significantly affect the results of the
statistical analysis. We also show the resulting 68% and
95% confidence intervals and mean and best fit values for
the parameters of the models obtained using NNs in
Tables I and II for Hu-Sawicki and Starobinsky models,
respectively. We note that the results are shown for Ωm;0

andH0 which are the parameters of the fðRÞmodel instead
of ΩΛ

m;0 and HΛ
0 (parameters of the ΛCDM model). These

quantities are related by Eq. (10) allowing us to obtainΩm;0

andH0 fromΩΛ
m;0 andH

Λ
0 by a postprocessing. For this, we

also need the value of H0 which is obtained evaluating for
each model Hðz ¼ 0Þ.
The posterior distributions and confidence contours of

the cosmological parameters Ωm;0 and H0 are very similar
for both models analyzed in this paper. Therefore, we

offer next the corresponding discussion that applies to
both models. We note that the obtained value of Ωm;0 is
consistent with the ones inferred considering other cosmo-
logical datasets [1,41] and assuming the ΛCDM model.
Furthermore, the obtained value ofH0 is consistent with the
value estimated by Ref. [2] using data from SNIa and
Cepheids from the SH0ES Collaboration. This result is not
surprising since we are using the same datasets: SNIa data
together with the prior onM that is derived from the SH0ES
data (see discussion above). The only difference is that the
analysis performed by Ref. [2] is completely model inde-
pendent, while we are assuming an alternative cosmological
model based on modified gravity theories. On the other
hand, the obtained confidence interval ofH0 in Ref. [24] [for
both Hu-Sawicki and Starobinsky fðRÞ models], when the
SH0ES data are not included in the analysis, is consistent
with the one inferred from CMB data [1] and in tension with
the one obtained by Ref. [2]. Therefore, we verify here, as
discussed elsewhere, that the high values of H0 are only
obtained when the SH0ES data are considered.
Now, we focus on the posterior distribution of the

distortion parameter b for the Hu-Sawicki model. We note
that the obtained confidence intervals of the b parameter are
shifted to larger values with respect to the one obtained in
our previous work for the same model and the Pantheon
compilation. This is the same behavior as the one obtained
with the Starobinsky model in this paper and also in
Ref. [24].
Next, we discuss the posterior distribution of the b

parameter for the Starobinsky model. We observe signifi-
cant variations in the confidence intervals for parameter b
based on the choice of datasets used for the statistical
analysis. Specifically, the confidence interval for b obtained
here with the Pantheonþ compilation data differs notably
from the values reported in Ref. [25], which used the
Pantheon Collaboration data together with other datasets.
On the other hand, the obtained confidence interval of b in
Ref. [24], where the Pantheonþ compilation data are
considered, has also larger values than the ones obtained
in Ref. [25], as well as larger values than the ones obtained
here. The reason for this last discrepancy can be found in
the choice of the prior onM. We recall that a large value of
b in the Starobinsky model does not imply a huge departure

FIG. 5. Results of the statistical analysis for the fðRÞ Star-
obinsky model using NNs (in blue) and using a numerical solver
(in red). The darker and brighter regions correspond to the 68%
and 95% confidence regions, respectively. The plots on the
diagonal show the posterior probability density for each of the
free parameters of the model.

TABLE I. Constraints on the parameters of the fðRÞ Hu-Sawicki cosmological model with n ¼ 1. The table
shows the 68% and 95% confidence intervals (C.I.) for each free parameter, along with their mean values. The
reduced χ2ν is also shown for the best fit.

b Ωm;0
H0

�
km=s
Mpc

�
M χ2ν

68% C.I. [0.255, 1.465] [0.216, 0.291] [70.582, 72.662] ½−19.327;−19.267�
95% C.I. [0, 2.049] [0.181, 0.321] [69.572, 73.682] ½−19.357;−19.239�
Mean 1.018 0.251 71.613 −19.298
Best fit 0.296 0.306 67.883 −19.416 0.876
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from ΛCDM as is the case for the fðRÞ Hu-Sawicki
model [25].
Our results and the ones of Ref. [24] (for both the

Hu-Sawicki and the Starobinsky models), point out that the
data from the Pantheonþ compilation are more consistent
with departures from the ΛCDM model than previous
datasets from the same collaboration. We also noted an
absence of degeneration in theH0-b plane (in both models)
and this behavior is also observed in Ref. [24] where a
different choice for the prior onM was made. Therefore, we
conclude that the negligible correlation between H0 and b
is not affected by the choice of the prior on M. This also
discards the possibility that the larger value of b allowed by
the Pantheonþ dataset is rooted in any degeneracy between
b and H0. Furthermore, we note a degeneration in the
Ωm-b plane in Fig. 5 as was also observed in Ref. [24].

B. Improved computational efficiency

One of the main motivations behind this work is to
improve the speedup achieved on inference processes with
the NN bundle method in our previous work.
In this section, we show our results regarding the time

that it took to complete different MCMC processes, which
use the same datasets, depending on the method used to
compute the solutions of the given model being tested.
These methods include a numerical method (Runge-Kutta),
the NN method of our previous work, and the NN method
presented here. For the NN method corresponding to our
previous paper, we run all MCMC processes on CPU as
well as on GPU. On the other hand, we run only on CPU for
the method introduced here (see discussion below for more
details). For the numerical method,11 we set the error
tolerances to rtol ¼ 10−3 and atol ¼ 10−6, which are both
the default values in SciPy’s [34] method for solving initial
value problems, and also match the order of the error in
Figs. 2 and 3 (using the same ground truths as comparison).

We perform these analyses for the Hu-Sawicki and
Starobinsky fðRÞ models.
Table III shows our results for the MCMC algorithm

computing times. In each column, we observe that the
fastest method is the one presented in this work. Indeed, the
new NN method moves the computational cost of both
solving Eq. (6) and computing Eq. (16) to the training stage
of the NNs. In this way, the computations needed at each
step of the MCMC algorithm are just the evaluations of the
necessary NNs on only the 1622 data points (cosmic
chronometers and SNIa). Also, the fact that these points
are not so many means that there is no incentive to leverage
the parallelization capabilities of a GPU, due to the CPU
being faster. We have corroborated that this is indeed what
happens in our case. Nevertheless, this could be subject to
change if the amount of data is large enough. This behavior
is not the case for the old NN method. In that case, the
parallelization that the GPU provides is far more important.
The reason for this is the necessity of evaluating the NNs in
a large number of points to perform the integration in
Eq. (16) (see Sec. III for more details).
One more trend that can be observed from Table III is

that the advantage of using either NN method is larger for
the Starobinsky model than the Hu-Sawicki model. This is
because the Starobinsky model is more complex than the
Hu-Sawicki model, which makes it more difficult to solve
for the numerical method, and thus the advantage that
either NN method provides over the numerical is enhanced.

TABLE II. Constraints on the parameters of the fðRÞ Starobinsky cosmological model with n ¼ 1. The table
shows the 68% and 95% confidence intervals (C.I.) for each free parameter, along with their mean values. The
reduced χ2ν is also shown for the best fit.

b Ωm;0
H0

�
km=s
Mpc

�
M χ2ν

68% C.I. [0.872, 2.706] [0.252, 0.304] [70.551, 72.636] ½−19.329;−19.269�
95% C.I. [0.135, 3.157] [0.226, 0.328] [69.534, 73.63] ½−19.36;−19.24�
Mean 1.714 0.277 71.588 −19.299
Best fit 0.753 0.312 67.842 −19.417 0.876

TABLE III. The computation times of MCMC processes
applied to two different fðRÞ models (Hu-Sawicki and Staro-
binsky) using the same datasets are compared across various
techniques for computing solutions. These techniques include a
numerical method (Runge-Kutta), the NN method described in
our previous work [14], and the NN method introduced in this
study. All CPU computations were performed on an Intel i5-8400
and, for GPU computations, a single NVidia A100 was utilized.

Method (hardware)
Hu-Sawicki

model
Starobinsky

model

Numerical method (CPU) 11 h 51 min >2 days 17 h
Old NN method (CPU) 17 h 21 min 2 h 25 min
Old NN method (GPU) 11 h 51 min 1 h 33 min
New NN method (CPU) 2 h 6 min 18 min

11We recall here that we used the following Runge-Kutta
methods from the SciPy library: RKF45 for the Hu-Sawicki model
and Radau IIA family of order 5 for the Starobinsky model. We
verified that using Radau IIA for the Hu-Sawicki model results in
an increase of the computational times, while using it for the
Starobinsky model implies an important reduction.
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This further shows that, regardless of the improvements
made here, a major factor on whether the numerical method
or either NN method is faster comes down to the difficulty
of the problem that is being solved.
On the other hand, let us mention some differences in

the settings of the MCMC process of this work with
respect to the ones of our previous work that affect the
calculation of the respective computational times: (i) in
this work, we did not consider the times of postprocessing
of the chains as was done in our previous work, (ii) the
tolerance of the Runge-Kutta method is different, and
(iii) the amount of iterations of the MCMC process also
changed. A detailed discussion of all these changes can be
found in Appendix B.
There is an important clarification to be made regarding

the time that it takes to compute the calculations of the
MCMC algorithm using the numerical method for the
Starobinsky model in Table III. For that run of the MCMC
algorithm we found that the numerical method struggled to
compute solutions in certain regions of the parameter space
[roughly ðb;ΩΛ

m;0Þ∈ ½3; 4� × ½0.1; 0.17�]. We estimate that
this would make the time for the the MCMC algorithm to
complete on the order of a month. To mitigate this issue we
adjusted the prior on ΩΛ

m;0 to be uniform such that
ΩΛ

m;0 ∈ ½0.17; 0.4�, differing from the more natural prior
of ΩΛ

m;0 ∈ ½0.1; 0.4� we used for the NN method. We saw
that this change in the prior did not seem to affect the results
given the fact that the posterior distributions did not have a
significant number of samples close to the boundary of
ΩΛ

m;0 ¼ 0.17. Nevertheless, because this choice of prior is
not a natural one, we argue that the time we obtain is
actually a lower bound on one corresponding to a more
realistic scenario. We stress that we did not encounter this
problem in either of the NN methods.
A relevant discussion to be had is the one corresponding to

the time needed for the training of the NNs. The training that
corresponds to Eq. (6) was two days, while for Eq. (17) was
5 h 31 min, with both being done on a single NVidia A100
GPU. Even though these numbers seem to negate the
advantage suggested by the ones shown in Table III, we
echo our arguments from our previous work in Appendix F 4
of Ref. [14]. There we stressed that, because the training of
the NNs is done only once, the time taken for training
becomes negligible over repeated use of the solutions.
While it is true that, generally, the training of the NNs

is done once, it is important to remark on cases where
additional training would be needed: (i) a different
theoretical model is considered to be tested against
the data, (ii) new data that lay outside of the training
range of the independent variable are considered, and
(iii) the inclusion of new data results in confidence
intervals whose range is outside the training range of the
NNs. This last example was the case when we tried to
use the NNs we trained for the Hu-Sawicki model in our

previous work [14] for the statistical analysis performed
in this work. Therefore, we trained new NNs with a
wider training range in ΩΛ

m;0. These newly trained NNs
cover a wide enough range so that we expect that there
will be no need to retrain this networks in the future.

V. CONCLUSIONS

In this work, we introduce the application of the NN
bundle method to solve integral equations in scenarios
where the integrand is computed with solutions of a
differential system. We apply this approach to compute
the luminosity distance, defined by an integral equation
whose integrand is a function of the Hubble parameter
which, in turn, is calculated by solving a differential
system. By employing this technique, we develop a
completely analytical likelihood function for use in an
MCMC process aimed at constraining a cosmological
model’s parameters. This results in a notable reduction in
the MCMC algorithm completion time compared to
utilizing a numerical method or the NN method employed
in our previous work [14].
During our study, we found that, for the Starobinsky

fðRÞ model, certain numerical instabilities reported in
Ref. [24] and replicated here are not present when using
the NN method. In the numerical approach, these insta-
bilities are typically addressed by modifying the initial
conditions in a manner that increases the computational
cost of solving the differential equations.
One of the main achievements of this work is the set of

trained neural networks of alternative cosmological mod-
els that offer an improvement in speed of the MCMC
inference process. Once trained, these networks can be
used indefinitely with current and future datasets.
Furthermore, the idea of computing the luminosity dis-
tance with the new NN method can be applied to other
theoretical models to reduce the computational times of
the inference process. Greater improvements in computa-
tional times will be obtained from using the new NN
method for models that are computationally intensive to
integrate.
On the other hand, this work provides an original

analysis of the Hu-Sawicki and Starobinsky fðRÞ models
with recent data from cosmic chronometers and SNIa from
the Pantheonþ compilation. The originality of our analysis
lies in the appropriate treatment of the absolute magnitude
of SNIa, as has been discussed in Sec. III C 2. This choice
affects the estimation of the distortion parameter b which
measures the departure of the model with respect to ΛCDM
(see discussion in Sec. IV).
In summary, we present here a novel way to incorporate

the NN bundle method into an inference pipeline, making
the likelihood analytical for any model whose observables
are described by solutions to differential and integral
equations. Consequently, the time required to complete
the statistical analysis is significantly reduced.
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Finally, further improvements that can be brought into
the method to make it an even more appealing option are
left for future work. Among them, we can mention:

(i) to improve the method so that it can provide the error
of its own solution (this has been explored in
Ref. [42], but the application to the cosmological
scenario is missing);

(ii) optimization of the NN architecture to further
improve the speed of the training stage, as well as
the inference process; and

(iii) perform the inference process the Hamiltonian
Monte Carlo algorithm [43] instead of the MCMC
algorithm (this can be achieved due to the fact that
the likelihood now is analytical and, even more
important, differentiable).
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APPENDIX A: TYPE IA SUPERNOVAE
NUISANCE PARAMETERS

The distance modulus can be expressed by a modified
version of the formula proposed in Ref. [36],

μ ¼ mb −M þ αx1 − βcþ ΔM þ ΔB: ðA1Þ
Here α and β are global nuisance parameters that relate
stretch (x1) and color (c), respectively, to luminosity.
Additionally, M is the absolute magnitude of a SNIa. ΔB
is a correction term that accounts for selection biases
(the procedure is described in detail in Appendix A of
Ref. [23]). Finally, ΔM is the luminosity correction for
residual correlations between the standardized brightness of
a SNIa and the host galaxy, which depends on the nuisance
parameter γ. This way, the corrected overall flux normali-
zation is defined as m̃b ¼ mb þ αx1 − βcþ ΔM þ ΔB. The
so-called nuisance parameters (α, β, γ) are usually estimated
from the comparison of the observational data with the
standard cosmological model (ΛCDM). It has been shown
that considering alternative cosmological models does not
significantly change the estimation of these parameters
[38,44]. Therefore, for the purposes of testing cosmological
models, the Pantheonþ compilation also provides a dataset
where all nuisance parameters are fixed assuming the
ΛCDM model and, in consequence, Eq. (A1) is reduced
to Eq. (20).

APPENDIX B: COMPUTING TIME DETAILS

The main goal of our previous work [14] was to test the
viability and advantages of the NN bundle method in the
cosmological context. As part of that analysis, we reported
the computing times of the inference process with a similar
procedure to the one in Sec. IV B. Nevertheless, given that
the main goal of the work presented here is the advantage
that the NNs provide in regard to the computing times, we
have refined our methodology for the comparison between
the numerical method and the NN method. For this, we
have introduced two changes in the settings of the MCMC
process.
First, we have increased the value of the error tolerances

of the Runge-Kutta method in this paper to rtol ¼ 10−3 and
atol ¼ 10−6 from rtol ¼ 10−6 and atol ¼ 10−9 of our pre-
vious work. This is more fair to the numerical method
because it makes its precision comparable to the NN
method while making the method faster. It is also important
to recall that the tolerances used here are the default ones in
SciPy’s [34] method for solving initial value problems.
The other change in methodology with respect to our

previous work is that we no longer take into account the
time needed to do the postprocessing of the chains required
to obtain H0 and Ωm;0 (for more details, see Sec. II). While
this computation is unavoidable, it is theoretically possible
to optimize the MCMC algorithm so that it is no longer
necessary to integrate the equations again to do the
postprocessing. Because of this fact, it was unfair for the
numerical method to include the postprocessing time
because it meant to integrate again for each chain in order
to obtain H0, while for the NNs it just entailed evaluating
them at z ¼ 0.
One last note on the difference between the times shown in

Table III and the ones shown in our previous work is
the difference in the amount of iterations of the MCMC
algorithm. Because we changed the data and priors for the
Hu-Sawicki model (new cosmic chronometer data, updated
Pantheonþ sample, theGaussian prior forM, and the bounds
on the prior ofΩΛ

m;0), the amount of iterations needed for the
MCMC algorithm changed from our previous work. For
example, the amount of iterations needed for the MCMC
algorithm to converge for the Hu-Sawicki model in our
previous work was 22000, while the one corresponding for
thisworkwas 206500.With regard to the Starobinskymodel,
the iterations neededwere 28400. This iswhy the time it took
for the MCMC algorithm to complete on the Hu-Sawicki
model on the old NNmethod in Table III does not match the
one in our previous paper, even though the NNmethod is the
same. Also, this difference between the amount of iterations
explains why the NN method took more time for the Hu-
Sawicki model in Table III than for the Starobinsky model.
Otherwise, the process should take the same amount of time,
because in both cases the computations are the same (i.e.,
evaluating threeNNson the samedata points in each iteration
of the MCMC algorithm).
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