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We demonstrate the effectiveness of one of the many multitracer analyses enabled by optimal transport
(OT) reconstruction. Leveraging a semidiscrete OT algorithm, we determine the displacements between
initial and observed positions of biased tracers and the remaining matter field. With only redshift-space
distorted final positions of biased tracers and a simple premise for the remaining mass distribution as input,
OT solves the displacement field. This extracted field, assuming asymptotically uniform density and a
gradient flow displacement, enables reconstruction of the initial overdensity fluctuation field. We show that
the divergence of the OT displacement field is a good proxy of the linear density field, even though the
method never assumes the linear theory growth. Additionally, this divergence field can be combined with
the reconstructed protohalos to provide a higher signal-to-noise measurement of the baryon acoustic
oscillations standard ruler than was possible with either measurement individually.
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I. INTRODUCTION

Essentially all currently viable models for cosmological
structure formation suggest that the initial conditions were
almost exquisitely uniform. In fact, in simulations of
cosmological structure formation, the initial density field
is homogeneous (particles start from a grid), and sub-
sequent evolution is driven by inhomogeneous perturba-
tions in the initial velocity field. In this case, the initial
velocity field is the gradient of a potential field, and the
overdensity field is explicitly related to the divergence of
the initial velocity field:

δinit ∝ ∇ · vinit ∝ ∇2Φinit; ð1Þ

where Φinit is the initial gravitational potential [1].
Although the constant of proportionality depends on the
cosmological model, the relation is otherwise general.
It is common to use q to denote the initial position of a

particle, and x its position at some later time t. Then the
displacement S is defined by

xðtÞ ¼ qþ Sðq; tÞ: ð2Þ

Optimal transport (hereafter OT) theory is a fast-growing
gem in mathematics that, broadly, computes distances and
relations between different probability distributions [2]. In
cosmology OT is a natural framework to use since it can
exactly reconstruct the displacements Sðq; tÞ in (2) if they
are gradients of a potential (see Refs. [3–5] and references
therein). In cosmological structure formation, this is explic-
itly true in Lagrangian perturbation theory up to and
including the second order (see e.g. [6]). This, and the fact
that the initial conditions were “uniform” has motivated
the use of OT methods for reconstructing the displace-
ments, from knowledge of only the particle positions at
some late time [3,7]. i.e. if n labels a particle, then OT
determines estimates SOTn of each of the displacements Sn,
knowing only the set of final positions xn. From this,
qOTn ≡ xn − SOTn. Recent development of semidiscrete
optimal transport methods [8,9] has transformed the field
by vastly increasing the speed with which the displace-
ments, and hence the initial conditions, can be reconstruc-
ted [10–12]. Note, the displacement S can be equivalently
thought of as a function of q or x. In computing derivatives,*farnik.nikakhtar@yale.edu
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spatial derivatives with respect to q will be denoted as ∇q,
while those with respect to x will be denoted as ∇x.
Such reconstructions are particularly attractive for studies

which seek to constrain cosmological parameters from the
statistical properties of the initial field [13]. The most used
summary statistic of the field is the power spectrumPðkÞ, or
its Fourier transform, the two-point correlation function
ξðrÞ. Typically, these are estimated directly from the particle
distribution. However, the distribution of qOTn is uniform
(by design!), so ξOTðrÞ ¼ 0 for all r. For this reason,
Ref. [10] estimated two-point statistics of the slightly
evolved positions xnðαÞ ¼ qOTn þ αSOTn, for α ∼ 0.1. To
compare this with the “initial” conditions in the simulations,
they used the evolved positions qn þ vinit−n=ðafHÞ (the
displacement is just initial speed times a suitably chosen
time), but because afH ¼ aðd lnD=d ln aÞðd ln a=dtÞ
depends on a cosmological model [DðaÞ is the linear theory
growth factor], matching α to ðafHÞ−1 gave the impression
that the comparison was model dependent.
One of the goals of this work is to show that Eq. (1)

offers a more direct, cosmology-independent estimate of
the statistics of the initial fluctuation field. (Strictly speak-
ing, to a good approximation, it is the initial fluctuation
field evolved using linear theory to the time of observation.)
We do this in two steps. In Sec. II, we consider the ideal
case in which one starts from perfect information about the
evolved dark matter field (all the xn are known), as in
Ref. [10]. In Sec. III, we show how to treat the case in
which evolved positions of only a biased subset of the full
field are known, as in Ref. [12]. This second step requires a
guess about the distribution of the mass that is not directly
associated with the biased tracers, which we refer to as the
“dust.” While previous work in the OT context primarily
focused on reconstructing the biased field [14], here we
show the dual reconstruction capability inherent in OT—
namely, the reconstruction of both the protohalo field and
the linear dark matter field. This leads to a discussion on the
potential synergy between these reconstructions, providing
a good context for contrasting our reconstruction scheme
with other approaches. In a broad sense, the OT displace-
ment field solves a nonlinear continuity equation, in
contrast to standard reconstruction algorithms e.g. [13,15],
which solve the linearized continuity equation. Compared
to action minimization-based algorithms e.g. [16,17],
which attempt to trace objects backwards along estimated
trajectories, OT searches for an effective potential, the
gradient of which maps each object from its observed
position to its initial Lagrangian position—its solution is
unique and the intermediate positions do not enter the
analysis explicitly. Section IV discusses our results in the
context of multitracer studies of large-scale structure, and
highlights the fact that OT-like methods allow displace-
ments and quantities built from the displacement field to be
used as tracers of the cosmological fluctuation field. We
summarize our results in Sec. V.

We demonstrate our methods using the dark matter and
halo distributions in the same HADES cosmological sim-
ulations [18] that were used in Ref. [14]. The background
cosmological model is flat Λ cold dark matter (ΛCDM)
with ðΩm;Ωb; hÞ ¼ 0.3175; 0.049; 0.6711Þ. The initial
fluctuations were Gaussian with PLinðkÞ having shape
and amplitude parameters ðns; σ8Þ ¼ 0.9624; 0.833Þ, and
each simulation evolves 5123 particles in a periodic box that
is L ¼ 1h−1 Gpc on a side, so the particle mass is
mp ¼ 6.5 × 1011h−1M⊙. We focus on the z ¼ 0 outputs,
where we consider the dark matter field, as well as halos
more massive than 20mp; see Ref. [14] for further details
about how the halos were identified. All our results are
averaged over 20 simulation boxes.

II. PERFECT KNOWLEDGE
OF THE FULL NONLINEAR FIELD

A. Divergence of displacement

Before we begin, it is important to distinguish between a
number of measures of the initial power spectrum (PS).
First is the theoretical PS which is used to generate the
Fourier modes of the initial fluctuation field δinit. We refer
to the related power spectrum, scaled to z ¼ 0 using linear
theory, as PLinðkÞ. We use PICðkÞ to denote the power
spectrum of the scalar δIC, which is the initial fluctuation
field δinit, scaled to z ¼ 0 using linear theory. This power
spectrum should differ from PLinðkÞ only because it is a
single stochastic realization (of which PLin is the mean).
The Fourier modes of the initial velocities and

densities are related: vinit ¼ ikδinit=k2, so that ∇ · vinit ¼
−ðafHÞinitδinit. The vector vinit=ðafHÞinit has units of
distance, and ðD0=DinitÞvinit=ðafHÞinit ≡ SZel corresponds
to the displacement vector, from the initial to the present
time, in the Zeldovich approximation. We will define the
scalar ΘZel ≡∇q · SZel, and use PΘZΘZ

ðkÞ to denote the
power spectrum of ΘZel. Since ΘZel ¼ −ðD0=DinitÞδinit ¼
−δIC, PΘZΘZ

ðkÞ should be the same as PICðkÞ, so a
comparison of the twomeasures the accuracy of our scheme
for estimating velocity divergences in the simulations.
Note that PΘZΘZ

ðkÞ will differ from the power spectrum
of the Zeldovich-evolved density field, where particles
move along straight lines following the gradient flow until
z ¼ 0, as detailed in [19]. In addition, since the true
displacement of a particle, Strue, is different from the
approximate SZel (the Zeldovich displacement is just the
first-order term in Lagrangian perturbation theory), PΘZΘZ

differs from the power spectrum of the divergence of the
actual displacements, PΘΘðkÞ, where

Θ≡∇q · Strue; ð3Þ

and we shall discuss ∇x · S, the divergence at x rather than
q, in Appendix C.
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Finally, we define ΘOT as the divergence of the displace-
ments returned by our OT reconstructions. Recall that
whereas the set of Strue ¼ x − q displacements uses a full
cosmological simulation to obtain the evolved positions x
from an initial grid of q positions, OT starts from this list of
x positions, and returns a list of corresponding qs (Laguerre
cell barycenters that are not necessarily on a grid).

B. Cross correlations

Before we look at the power spectra themselves, it is
helpful to look at how closely these different quantities
correlate with one another. To quantify the degree of
correlation, we use the normalized coefficient

rABðkÞ≡ hPABðkÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PAAðkÞPBBðkÞ

p : ð4Þ

(Note that we do not subtract shot noise from any
measurements.) To help calibrate the figures throughout
the paper, the thin gray curve in Fig. 1 shows that the
nonlinear field is well correlated with the initial one only on
very large scales (r ≥ 0.9 only if k ≤ 0.1h Mpc−1). We see
that δinit andΘZ are extremely tightly correlated (pink curve
shows r ∼ 1 for essentially all k), as expected. More
interesting is that Θ and ΘZ, and Θ and δinit, are also quite
well correlated on baryon acoustic oscillations (BAO)
scales (red and green curves, which overlap almost exactly,
have r ≥ 0.9 for k ≤ 0.45h Mpc−1). This matters, because
the reconstructed ΘOT is extremely well correlated with
the true Θ (blue curve)—this, after all, is why OT
reconstruction is interesting in the first place—so ΘOT is
well correlated with both ΘZ and δinit (yellow and purple
curves, which overlap almost exactly, show r ≥ 0.9 for
k ≤ 0.35h Mpc−1). Hence, compared to the nonlinear
density field, the reconstructed ΘOT field provides about
ð0.35=0.1Þ3 ∼ 40× more k modes with r ∼ 1 to the initial
fluctuation field.
This is nontrivial, because the explicit goal of OT is to

returnSOT ¼ Strue, and the blue curve inFig. 1 suggests that it
does this rather well. However, other than doing sowhile also
returning a uniform density field, it does not explicitly try to
reconstruct δinit orΘZ. Since Strue ≠ SZel, even if OT returned
Strue perfectly, it would not perform better–in the sense of
correlating with δinit—than the green curve shown in Fig. 1.
Stated differently: if we use ΦOTðqÞ to denote the

potential which determines the OT-reconstructed displace-
ments∇ΦOT, then, becauseSOT ≈ Strue ≠ SZel, we know that
ΦOT ≠ Φinit. This is not surprising, since by definition, the
gradient of the OT potential moves particles to their exact
nonlinear positions, in contrast to∇Φinit, whichwould result
in the Zeldovich-evolved field. Nevertheless, the correlation
between ΘOT ≡ k2ΦOT and δinit ≡ k2Φinit (purple curve) is
sufficiently good on BAO scales that we should be able to
useΘOT as a proxy for δinit. We test this explicitly in the next
sections.

C. Power spectra and correlation functions

Figure 2 shows the power spectra associated with these
different divergences. To guide the eye, the dashed curve in
the top panel shows PLinðkÞ; it is very similar to PIC and to
PΘZΘZ

ðkÞ. The power spectrum of true divergences is also
remarkably similar to PLinðkÞ, despite the fact that Θ is not
as well correlated with δinit.
We are most interested in ΘOT. Although the curve for

ΘOT has noticeably less power than the others at large k, it
is in excellent agreement on BAO scales. Note in particular
that, whereas amplitudes are scaled out in rðkÞ, they matter
here. Nevertheless, on BAO scales, the power spectrum of
ΘOT is an excellent tracer of PLinðkÞ. To emphasize the
agreement, the middle panel shows the (square root of the)
ratio of these PðkÞ to PLinðkÞ. This shows thatΘOT is within
a few percent of linear theory on BAO scales; in fact, it
traces the jaggedness at small k that is due to cosmic
variance. The bottom panel shows the result of taking the
ratio with respect to PΘZΘZ

ðkÞ instead (we take the average
of the ratio, rather than the ratio of the averages). This
removes the cosmic variance, and shows that ΘOTðkÞ has
the linear theory amplitude to within a few percent for
k ≤ 0.1h Mpc−1. (While the nonlinear field also has the
right amplitude at low k, the previous figure shows that it
has rðkÞ ∼ 1 over a much smaller range of k.)
Figure 3 shows the result of Fourier transforming the

power spectra shown in the previous figure. In practice, this
transformation is performed using a fast Fourier transform
(FFT) on the 3D power spectrum calculated in the box. On
BAO scales, all the curves are in excellent agreement with
linear theory (shaded region shows the rms scatter between

FIG. 1. Normalized correlation coefficients between the
various divergences in real space, as defined in the text. On
the k ≤ 0.2h=Mpc scales that are most relevant to BAO analyses,
the OT displacement divergences are remarkably well correlated
with the true ones (blue), even though the OT algorithm includes
no cosmological information. They are less well correlated with
the initial density field (purple that overlaps with yellow), but are
still much better than the nonlinear density (gray). The green
curve overlaps with the red curve as well.
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20 simulations), except for the one labeled nonlinear, for
which the BAO feature is obviously smeared out. In
particular, ξ of ΘOT reproduces the shape and amplitude
of ξLin (on BAO scales) rather well. This demonstrates how
one can use the OT displacements to reconstruct the shape
and amplitude of ξLin (on BAO scales) without using any
cosmological information. In particular, it was not neces-
sary to specify a growth factor when defining the recon-
structed displacements, and the extra scaling used by
Ref. [10] is unnecessary.
Before we end this section, we recall from the

Introduction that one can think of OT as approximately
returning the initial fluctuation field evolved using linear
theory to the time of observation. This is because, although
our results show that this approximation is very good, the
OT reconstruction does differ slightly from ξLin. We know
that ΦOT is not the linear Φ, but has higher-order correc-
tions to it. It may be possible to construct a better estimate

of the linear Φ from the ΦOT. Exploring this is currently
work in progress.

III. BIASED, REDSHIFT-SPACE
DISTORTED TRACERS

In the previous section we have outlined what could be
achieved if one had a perfect knowledge of positions (but
not velocities) in the nonlinear field. In practice, one
usually only has information about a biased subset of
the nonlinear field whose positions have been distorted by
peculiar velocities, so we now discuss how to extend our
method to this more realistic case.

A. Reconstructing both biased tracers
and the total field

The OT approach assumes that a reasonably accurate
mass estimate is available for each tracer, and all statistics
are “mass weighted.” However, it also requires knowledge
of the amount and spatial distribution of the mass that is not
observed, what we call the dust. Reference [14] shows that
in order to model the missing dust one must assume values
for two cosmological parameters: Ωm and σ8.
The curve that is second from top in Fig. 4 shows the

cross correlation between the full initial and reconstructed
fields when the OTalgorithm is started with mass-weighted
halos more massive than 1013h−1M⊙ plus the true dust (i.e.
particles that were not in these halos) in real space (dashed).
For comparison, the top (solid) curve shows the result of
starting from the full nonlinear field (i.e. same as the yellow
or purple curves in Fig. 1). Some of the degradation in rðkÞ
is because, in our reconstruction, we treat all the mass of a
halo as being concentrated at its center, and the mass of the
reconstructed protohalo as being located at the barycenter
of its Laguerre cell, so that all of a halo’s mass has the same
displacement vector: xcom − qcom. A better model would

FIG. 2. Comparison of various power spectra in real space (as
labeled). Dashed line shows the expected z ¼ 0 linear theory
curve, PLinðkÞ, and uppermost blue line shows the actual,
evolved, nonlinear curve PNLðkÞ. Yellow curve, for ΘOT, repre-
sents our reconstruction of the shape and amplitude of PLinðkÞ
from PNLðkÞ, despite having no cosmological information (e.g.
linear theory growth factor). Middle: The result of dividing each
of these curves by PLinðkÞ and taking the square root. Bottom:
They were each divided by PICðkÞ; this removes cosmic variance.

FIG. 3. Correlation functions corresponding to the power
spectra shown in the previous figure. Note in particular that it
was not necessary to specify a growth factor for the ΘOT curve,
but it is, nevertheless, indistinguishable from the other linear
field curves.
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distribute the mass uniformly within the Laguerre cell, with
displacement given by ðxcom − qcomÞ − ðq − qcomÞ.
Of course, in practice, we do not know the true spatial

distribution of the dust. If our guess is not accurate, then
this will further degrade rðkÞ. Reference [14] discusses a
number of approximations which one can use to model the
dust. A simple Wiener-filter model, that uses the observed
tracers to guide the placement of the dust particles, was
shown to work quite well and shall hence be used hereafter.
For this model, if δb is the fluctuation in the biased tracer
field, then

δd ¼
hδbδdi
hδbδbi

δb ≈ ðbd=bÞδb; ð5Þ

where the final expression assumes that hδbδdi ≈ bbdPðkÞ
and hδ2bi ≈ b2PðkÞ þ noise ≈ b2PðkÞ on BAO scales.
In addition, Ref. [14] also studied the impact of redshift-

space distortions—the anisotropy induced by the fact that
estimated distances along the line of sight are distorted by
peculiar velocities—finding that ignoring them altogether
was a rather good approximation, at least for restoring the
monopole of the two-point correlation to its initial shape.
The curve that is third from top in Fig. 4 (dotted) shows

the result of starting from redshift-space distorted positions
of biased tracers, using the Wiener-filter model to generate
the dust, performing the semidiscrete OT reconstruction,
and then measuring rðkÞ between ΘOT of the full field (i.e.
reconstructed halos plus dust) and δinit. Evidently, inaccur-
acies in the Wiener-filter model for the dust and redshift-
space distortions do degrade rðkÞ, but it is still significantly
better than δNL (bottom gray curve, same as the gray curve
in Fig. 1).

Figures 5 and 6 show the corresponding PðkÞ and ξðrÞ of
the reconstructed protohalos and of ΘOT. We do not
subtract shot noise from the measured PðkÞ; this is
negligible for the full field, but significant for the halos
and protohalos. [We mass weight the halos, so the
shot noise is not n̄−1h , but ðPi m

2
i =VÞ=ð

P
i mi=VÞ2 ¼

n̄−1h hm2i=hmi2.]
The first thing to notice is that PðkÞ and ξðrÞ of the

OT reconstructed halos (yellow) are extremely similar to
the protohalos (green). This is the agreement previously
reported by Ref. [14]. Although Ref. [14] focused on the
reconstructed position of biased tracers, the same OT
algorithm also outputs the displacements of the dust
particles as well. We can use the full set of displacements
(mass-weighted halos plus dust) to estimate ΘOT as
described in the previous section. This gives the purple
curves, which are very close to PIC or ξIC (pink) on BAO
scales. Evidently, neither inaccuracies in the Wiener-filter
model for the dust nor redshift-space distortions degrade
the agreement substantially compared to the ideal case
shown in the previous section. We conclude that our OT
methodology successfully reconstructs both the positions
of the biased tracers and the fluctuations in the full field.

B. Combining the two reconstructions

Figures 5 and 6 show that the amplitude of the clustering
signal of the reconstructed biased tracers is smaller than
that in the evolved field. The physics which drives this
difference—essentially the continuity equation—dictates
that if the biased subset initially satisfies δb ¼ bLδL
then the evolved subset satisfies ðbL þ 1ÞδNL (e.g.

FIG. 4. Dependence of normalized cross correlation between
the full initial and reconstructed fields, when the OT algorithm is
started from the full nonlinear field (solid; OT-matter), from
mass-weighted halos plus the true dust in real space (dashed;
OT-W), and from mass-weighted halos plus the Wiener filter
model for the dust, in redshift space (dotted; OT-Gz). For
comparison, the gray curve (same as in Fig. 1) shows the
δIC − δNL correlation.

FIG. 5. Initial, evolved and reconstructed power spectra. Top
blue curve shows observed monopole of a biased, redshift-space
distorted set of tracers (mass-weighted halos more massive than
1013h−1M⊙); green and peach curves show the power spectra of
the corresponding protohalos and of the initial dark matter field
(PIC ≈ PLin). Yellow and purple curves show the power spectra of
the OT reconstructed halos and ΘOT of the full reconstructed
field, and red curve shows the power spectrum of the field which
is their sum (OT reconstructed halo fluctuations plus ΘOT).
Dashed black line shows the shot noise for mass-weighted halos.
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Refs. [12,20]). However, because the amplitude of the
reconstructed signal is smaller (yellow curve lies far below
blue), the signal to noise of the BAO feature in the
reconstructed field is diminished. We can use our knowl-
edge of the physics to correct for this as follows.
On BAO scales, δNL ≈ δL ≈ ΘZel, so the evolved subset

ðbL þ 1ÞδNL is approximately bLδL þ ΘZel. This suggests
that if we add the reconstructed halo and ΘOT fluctuation
fields, then the result should have a power spectrum which
is given by

hðbLδL þ ΘZelÞ2i ≈ b2LPLin þ 2bLPLin þ PLin

≈ ðbþ 1Þ2PLin: ð6Þ

That is, it should have approximately the same amplitude as
the original signal. The red curve shows this result: The
overall amplitude of the signal is nearly restored. On scales
slightly below the BAO feature, the red curve lies slightly
below the blue one. This slight mismatch is reassuring,
because the blue curve is the redshift-space distorted
monopole, so it is slightly enhanced compared to the
real-space correlation [21], which is the quantity that OT
aims to reconstruct.
In addition to this slight difference in amplitude, the OT

reconstructed signal also has a sharper BAO feature
compared to the linear matter field. The reason for this
is also understood [12]: most protohalos are associated with
peaks in the initial field, and this is due to the scale-
dependent nature of the “bias” factor bL, which includes a
k2 term that sharpens the peak amplitude [22,23]. There is
further corroborating evidence of the peak-protohalo cor-
respondence: the initial speeds of peaks are predicted to be
smaller than the rms speeds of randomly chosen positions,
and protohalo speeds are indeed smaller, and well repro-
duced by peak theory [24]. So, it is reassuring that OT

returns smaller rms displacements for the halo field
(∼9.1h−1 Mpc) than for the total (9.8h−1 Mpc).
In the evolved field, the scale-independent piece

increases, but the scale-dependent piece decreases (both
by unity) [25]. Adding the linear (rather than the evolved)
fluctuation field to that of the protohalos increases the
scale-independent bias while leaving the scale-dependent
part unchanged. This results in an enhanced BAO signal. To
check that this is indeed what is going on, the dashed black
curve shows the correlation function of the field that is the
sum of the actual protohalo and δinit fluctuation fields. Our
(red) OT-reconstructed curve is in great agreement, indicat-
ing that the reason for the enhanced signal is understood.
Of course, the two reconstructed fields are not indepen-

dent, so when constraining parameters from the shape/scale
of the BAO signal, the covariance between the reconstructed
halo and matter (i.e. ΘOT) fields must be taken into account.
This raises the question: What combination (linear or non-
linear) of the two fields has the most constraining power ? In
this context, the straight linear sum of the two fields is not
obviously optimal, but it does illustrate the potential gains
from combining the two.We return to this in the next section.

C. Relation to previous work

The straight linear sum has an interesting connection to
what is known as “standard: reconstruction [26] (see
Ref. [27] for a perturbative analysis and [28] for a summary
of relatedmethods). In this approach, the observed nonlinear,
biased field δbðkÞ is first smoothed with a filter GðjkjÞ, and
then used to define a displacement field SGðkÞ≡ iðk=k2Þ
½δbðkÞ=b�GðkÞ. The observed particles are shifted by
−SGðkÞ, and the overdensity field which results is called
δdisplaced. In addition, a uniform distribution of particles
covering the same geometry is also shifted by −SGðkÞ,
and the resulting field is called δshifted. The reconstructed field
is δrec ≡ δdisplaced − δshifted. This method requires knowledge
of b (hence σ8), and depends on a smoothing filter GðkÞ to
satisfy the linearized version of the continuity equation.
Typically GðkÞ ≈ expð−k2R2=2Þ with R ≈ 15h−1 Mpc or
more, mainly calibrated with simulations. If δdisplaced → 0,
then δrec ≈ −δshifted. If, in addition, these shifts are gradients
of a potential field (more likely if the smoothing scale R is
large), then δshifted ≈ ∇ · SG, which is the moral equivalent of
ΘOT (modulo the smoothing window).
The correspondence is even closer. The standard method

assumes that δm ¼ δb=b (on sufficiently large scales)
whereas OT models the dust. However, for the simplest
Wiener-filter dust model [Eq. (5)], if fb is the mass fraction
in biased tracers, then the total mass fluctuation field is
given by

δm ≡ fbδb þ ð1 − fbÞδd
≈ ½fb þ ð1 − fbÞðbbd=b2Þ�δb ¼ δb=b; ð7Þ

FIG. 6. Correlation functions corresponding to the power
spectra shown in Fig. 5. The dashed black curve shows the
correlation function of the sum of the actual protohalo and δinit
fluctuation fields.
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where the second line assumes that δd=bd ¼ δb=b ¼ δm on
BAO scales (i.e. shot noise can be ignored), and the final
expression follows from the fact that fbbþð1−fbÞbd≡1.
Therefore, unless more sophisticated models for the dust
are used, the starting assumptions for OT and the standard
approaches are very similar. Of course, OT is guaranteed to
have δdisplaced ¼ 0 without having to introduce any smooth-
ing window. And, perhaps more importantly, as Ref. [14]
notes, OT is able to quantify the systematic error which
comes from inaccuracies in the model for the dust.
The OT approach also has a close connection to the

work of Ref. [29]. We discuss this in Appendix C. OT
differs from this, more standard, and action-minimization
approaches by explicitly tracking the dust component
separately. As a result, the displacements it returns for
the biased tracers are physically intuitive: e.g. for halos, OT
returns both how halos have moved, and how their shapes
evolved as they formed. In addition, it returns at least two
reconstructed fields: the halos and the dust. In the previous
section, we showed that this allowed us to provide a
reconstructed BAO signal that had higher signal to noise
than if we had worked with either field individually. We
exploit another benefit of having more than one field in the
next section.

IV. MULTIPLE TRACER ANALYSES

Although we have focused on the virtues of OT
reconstruction for BAO-related science, there is consider-
able interest in using the large-scale clustering signal to
constrain the statistical properties of the initial fluc-
tuation field.
For example, suppose we wish to find that linear

combination of the reconstructed halo and Θ fields, δh
and ΘOT, for which the difference from the full (initial)
matter field δm is as small as possible (in a least-squared
sense). Then, we want that wh and wΘ which minimize

χ2ðkÞ≡X
i

�
δmðkÞ − whδhðkÞ − wΘΘOTðkÞ

�
2; ð8Þ

where the sum is over all modes with magnitude jkj ¼ k.
This yields

wh ¼
Pmh

Phh

1 − r2hΘðrmΘ=rmhrhΘÞ
1 − r2hΘ

wΘ ¼ PmΘ

PΘΘ

1 − r2hΘðrmh=rmΘrΘhÞ
1 − r2hΘ

ð9Þ

with variance

χ2min ¼ Pmm

�
1 − r2mh −

ðrmΘ − rmhrhΘÞ2
1 − r2hΘ

�

¼ Pmm

�
1 − r2mΘ −

ðrmh − rmΘrhΘÞ2
1 − r2hΘ

�
: ð10Þ

If we only used one field, δh, then the variance would be
Pmmð1 − r2mhÞ, so the final term shows how much the
variance is reduced by adding the extra field. There is no
reduction only if the correlation between δm and Θ is
entirely due to the correlations of δm and δh with Θ: i.e.
only if rmΘ ¼ rmhrhΘ. Figure 7 shows the various cross-
correlation coefficients: rmΘ ≠ rmhrhΘ in general.
It is conventional [e.g. Ref. [30] ] to use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2min=Pmm

p
as a

measure of the stochasticity between the optimallyweighted
fields, whδh þ wΘΘ, with wh and wΘ given by Eq. (9), and
the one they are trying to represent, δm. Figure 8 shows the
stochasticity as a function of k. For this (mass-weighted)
halo example, the reconstructed halos are closer to the initial
conditions (ICs) than the evolvedhalos—reconstructionwas
useful—but the reconstructed ΘOT field is much closer, so
that adding ΘOT to the halos results in significant gains (i.e.
reduction in stochasticity), but not vice versa.
Furthermore, because OT reconstruction does not assume

that the initial field was Gaussian, it provides a useful
framework for studying departures from Gaussianity.
Indeed, Ref. [31] explored the use of the one-point distri-
bution of divergences in the full OT reconstructed field (i.e.
without considering the added complication of starting from
a biased tracer field) as a tool for quantifying primordial
non-Gaussianity. However, other constraints on primordial
non-Gaussianity are now sufficiently tight that one-point
statistics are not expected to provide competitive con-
straints; two-point or higher-order statistics are expected
to be more informative.
Models where the primordial non-Gaussianity is “local”

are a case in point. These have ϕðxÞ ¼ ϕGðxÞ þ fNLϕ2
GðxÞ,

FIG. 7. Correlation coefficients between the initial field and the
ΘOT estimate of it, the reconstructed halo field, and the evolved
(unreconstructed) halo field, and between the two reconstructed
fields. Note that rðkÞmay not be 1 at large scales due to shot noise.
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where ϕG is an isotropic Gaussian random field. On large
scales in these models, biased tracers satisfy δbðkÞ ¼
bδδðkÞ þ fNLbϕϕðkÞ. Since ϕðkÞ ∝ δðkÞ=k2, the clustering
of biased tracers has a characteristic scale dependence [32].
However, the scales on which this is dramatic are so large
that cosmic variance on the measured power spectrum is a
concern. On the other hand, the cosmological information
here—in this case the amplitude of fNL—is carried, not by
the power spectrum itself, but by the ratio of the biased and
unbiased fields, or by the ratio of two differently biased
fields.
If both fields suffer the same cosmic variance then, to

first approximation, cosmic variance cancels when one
studies their ratio [33]. To be useful in practice, the tracer
fields must occupy the same survey volume and have
different bias factors. For two such tracers, A and B, the
error on fNL is proportional to jbAδ bBϕ − bBδ b

A
ϕj−1 [34]. If

bϕ ∝ bδ − 1 then this becomes ðbBδ − bAδ Þ−2. We will work
with this approximation in what follows, but it is not crucial
to the spirit of our analysis.
The main point we wish to make is that OT

reconstruction naturally provides us with at least three
tracer fields, in addition to the observed, unreconstructed
one, which can be used to address such problems: the mass-
weighted and unweighted halo reconstructed fields, and Θ
(not to mention linear combinations of these fields).
Roughly, such studies require n̄ðbBδ − bAδ Þ2Pmm ≫ 1. If
bBδ and bAδ refer to halos before and after reconstruction,
then bAδ ¼ bBδ − 1, so bBδ − bAδ ¼ 1, and we require
n̄Pmm ≫ 1. Typically, surveys have n̄ðbBδ Þ2Pmm ∼ 3, so
we would like a large enough number density of tracers that
n̄Pmm ≫ ð3=ðbBδ Þ2Þ. (For example, in Fig. 5, the effective
number density is ∼10−4 so the (un)reconstructed halos
have n̄b2P ∼ ð10Þ3.) Of course, sample B could be mass-
weighted halos at their evolved positions, and sample A
could be the unweighted halos at their reconstructed

positions: this would increase bBδ − bAδ , and so improve
the constraint on fNL.
In this context, it is worth mentioning that there exists a

well-developed literature on how to best weight biased
tracers such as halos so as to reproduce the full matter
distributionwith as little stochasticity as possible [30,35]. For
halos, the optimal weight (in a linear least-squares sense), is
the sum of two terms: the halo mass and a Wiener-filter-like
termwhich involves the halo-dust cross-correlation function.
Since OT works most easily with mass-weighted halos, it
would be natural to apply these optimal weighting schemes
to the evolved and reconstructed halo fields, before
combining them in a multitracer analysis. We leave this to
future work.

V. DISCUSSION AND CONCLUSIONS

Optimal transport reconstruction returns the set of
displacements which map a clustered point distribution
to a uniform field. If the displacements are gradients of a
potential, they are exactly reconstructed. Although the
reconstructed point distribution is uniform, the field defined
by the divergence of the displacements, ΘðqÞ is not. We
showed that this field is quite well correlated with the initial
density fluctuation field, evolved using linear theory
(purple curve in Fig. 1). That is, ΘðqÞ represents the OT
reconstruction of the linearly evolved field starting from the
nonlinearly evolved field, even though OT makes no
assumption about the amplitude of linear theory growth.
We argued that becauseOTreconstructs displacements rather
than densities or velocities, there is an upper limit to the
fidelity with which ΘðqÞ can trace the linear theory over-
density field (red or green curves in Fig. 1). Nevertheless, the
pair-correlation function of this OT reconstructed field,
ξðjqi − qjjÞ≡ hΘðqiÞΘðqjÞi, is extremely similar to that of
the pair-correlation function in linear theory ξLinðjqjÞ, both in
amplitude and shape (Fig. 3), on the large scales that are
relevant to BAO physics. This is also true of its power
spectrum: PΘΘðjkjÞ ≈ PLinðjkjÞ (Fig. 2).
In practice, only observations of the evolved positions of a

subset of the fieldwill be available, and thesewill suffer from
redshift-space distortions. Previous work has shown how to
estimate the distribution of the remaining mass, the dust,
from the observed subset, before the OT reconstruction can
be performed. In principle, inaccuracies in this estimate of
the dust can impact the fidelity of the OT reconstructions of
the biased tracers. In practice, even the simplest Wiener-
filter model of the dust allows rather good reconstruction of
the displacements of the biased tracers. This remains true for
the full field (biased tracers plus dust) as well: although the
fidelity of the reconstruction is not as good as in the ideal
case, it is still rather good on BAO scales (compare orange
and blue curves in Fig. 4). In particular, the reconstructed
power spectra and correlation functions are in good agree-
ment with the linear theory shapes and amplitudes, both for
the biased subset (yellow and green curves in Figs. 5 and 6

FIG. 8. Stochasticity between the initial fluctuation field and
the evolved halo field, the OT reconstructed halos, the divergence
of the OT displacements of the full field, and the optimal linear
combination of the two reconstructed fields.
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agree) and for the full field (purple and pink curves agree),
on BAO scales.
Previous OT work has made the point that the recon-

structed BAO feature in the clustering signal of the biased
subset can be used to estimate the cosmological distance
scale [12]. Our work now allows the full reconstructed field
to be used as well. Since the two fields are correlated with
one another, this raises the question of how best to combine
the two. The amplitude of the correlation function in either
of the two fields is smaller than in the original nonlinear
field (compare orange and yellow curves with blue in
Figs. 5 and 6). However, the signal in the field that is a
simple sum of the two fields has the same amplitude as the
original measurement, but with an enhanced BAO feature
(red curves in Figs. 5 and 6). We discussed why summing
the two fields is physically reasonable, and why peak
theory provides a useful framework for understanding why
this enhances the BAO feature: peak theory explains both
this enhancement and the fact that the OT displacements for
the halo field are slightly smaller than for the total field.
Finally, we discussed how this summed field, and our
treatment of the dust, compare to other reconstruction
methods in the literature (Sec. III C).
It is encouraging that the OT methodology can be used to

estimate the linear theory correlations. Nevertheless, there
is room for improvement. We have assumed that divergence
of OT displacement is a good estimator for linear theory
density, but it may be possible to do better. In addition,
our current Wiener-filter model for the dust degrades the
fidelity of the reconstruction (orange curve lies below the
blue in Fig. 4). This “linear” dust model can be improved
by including the fact that the dust-tracer correlation
depends on the mass of the tracers and their environ-
ment [30,36]. Alternatively, recent machine-learning based
methods may provide better “nonlinear” dust assignment
models [37,38]. Incorporating these improvements into our
approach is the subject of work in progress.
We believe there is good reason for doing so. Some

cosmological analyses benefit from having multiple
tracer fields over the same survey volume (Sec. IV). OT
reconstruction naturally provides us with at least four tracer
fields, in addition to the observed, unreconstructed one: the
unweighted, mass- and optimally weighted reconstructed
halo fields, and Θ (not to mention combinations of these
fields). For such studies, the inclusion of higher-fidelity
dust models and optimally weighting the reconstructed
fields should reap rich dividends.
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APPENDIX A: TECHNICAL DETAILS ABOUT
ESTIMATING DIVERGENCES

In the initial conditions of the simulations, we have vðrÞ
on a grid in configuration space. We do not estimate the
divergence in configuration space. Instead, we perform a
FFT to obtain vðkÞ on a grid in Fourier space. We then
evaluate ik · vðkÞ at each Fourier-space grid point and
divide by ðafHÞinit to get ΘZelðkÞ. Finally, if needed, we
inverse-FFT back to real space. The power spectrum of the
divergence is determined by summing the squared magni-
tudes of the components of ΘZelðkÞ over all available
k modes.
In practice, for OT reconstructions, we estimate the

divergence by interpolating the displacements SOTðrÞ of the
reconstructed Laguerre cell barycenters onto a real-space
grid. We then perform an FFT to obtain SOTðkÞ on a grid in
Fourier space, evaluate ik · SOTðkÞ at each Fourier-space
grid point, and finally, compute the power spectrum.
However, in sparse tracer fields, there may be many empty
voxels. Assigning zero velocity to such voxels is incorrect.
To address this in our OT reconstruction measurements, we
compute the divergence of both halo and dust displace-
ments, since this combined field is not sparse. We also
perform different convergence tests, such as varying grid
sizes and mass-assignment schemes for the displacement
field, to effectively mitigate this issue.
For our analyses, we chose a three-dimensional grid with

512 points along each dimension, resulting in a total 5123

grid points or voxels. We also used the triangular-shaped
cloud (TSC) mass-assignment scheme for assigning mass
(or displacement values) to the grid points. The TSC
scheme is a higher-order mass-assignment method that
distributes the mass of particles over a local neighborhood
of grid points, using a weighted average where the weights
decrease with distance from the particle’s actual position.
Compared to simpler schemes such as nearest grid point or
cloud-in-cell, TSC offers improved accuracy in represent-
ing the density and displacement fields by considering a
larger neighborhood around each point. This smoother
representation of the field is also advantageous in Fourier-
space analysis and in reducing numerical artifacts.

APPENDIX B: EFFECT OF
POINT-MASS HALOS ONLY

The main text showed results which reconstruct the
initial protohalo and matter fields starting from biased
tracers in redshift space, with a simple Wiener-filter model
for the dust. This model leads to the lowest of the three rðkÞ
curves shown in Fig. 4. The middle curve there starts from
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the same halos, but in configuration space, and uses the true
dust. This cannot be done in real data, but, for complete-
ness, Figs. 9 and 10 show the associated PðkÞ and ξðrÞ. In
contrast to Figs. 5 and 6, the reconstructed (red) and input
(blue) curves have the same amplitude (because the blue
curve is not redshift-space distorted).

APPENDIX C: CONNECTION TO
RECONSTRUCTION USING MULTIGRID

GAUSS-SEIDEL RELAXATION

Reference [29] describes a multigrid Gauss-Seidel relax-
ation method for reconstructing the initial field from the
evolved one. We discuss how it compares to our method
here. Related to this discussion, and as mentioned in the
text, the displacement can be equivalently thought of as a
function of q or x. Here, we also show explicitly the
difference between taking the derivative with respect to
x and q.

1. Displacement potential in the initial field

We start with the gradient of Eq. (2), because it is related
to the nonlinear density:

1þ δðxÞ ¼ 1

jdx=dqj : ðC1Þ

If the displacements S are gradients of a potential ψðqÞ,
then the nonlinear density is the (inverse of the) Jacobian
determinant of the “deformation tensor” of second deriv-
atives of the potential. In this case, we can write the
determinant as

dx
dq

¼ det jδij − ψ ijj ¼ 1 − I1 þ I2 − I3; ðC2Þ

where

I1 ¼ Trðψ iiÞ ¼
X
i

ψ ii ¼ −∇q · S;

I2 ¼
X
j>i

ψ iiψ jj − ψ ijψ ij;

I3 ¼ detðψ ijÞ: ðC3Þ

Thus,

1þδðxÞ¼ 1

jdx=dqj ¼ 1þ I1þ
2

3
I21þ

I21−3I2
3

þ…; ðC4Þ

although the nonlinear density is given by the determinant
of the deformation tensor, the leading-order term, I1, is the
trace of the deformation tensor. It is useful to think of this
trace as the sum of the three eigenvalues of the tensor,
because

∇q · S ¼ ∇q · x − 3 ¼
X3
i¼1

ð1 − λiÞ − 3 ¼ −
X3
i¼1

λi: ðC5Þ

That is, the trace equals the divergence (at q) of the
displacements, which is why this divergence played a
leading role in the main text. Note that the divergence
evaluated at x (rather than q) of the same displacements is

∇x · S ¼ 3 −
X3
i¼1

ð1 − λiÞ−1 ¼ −
X3
i¼1

λi
1 − λi

: ðC6Þ

This nonlinear divergence diverges as λi → 1.
The combinations

δL ≡ I1; q2L ≡ I21 − 3I2; u3L ≡ 2I31
9

− I1I2 þ 3I3 ðC7Þ

are special. If we define

FIG. 9. Same as Fig. 5 but when the OTalgorithm starts with the
(point-mass) halos in real space and the correct distribution of dust.

FIG. 10. Correlation functions corresponding to the power
spectra shown in Fig. 9. The dashed black curve shows the
correlation function of the sum of the actual protohalo and the
initial fluctuation fields.
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λ̄i ≡ λi −
P

iλi
3

; ðC8Þ

then

δL ¼
X
i

λi; q2L ¼
P

iλ̄
2
i

2=3
and u3L ¼

X
i

λ̄3i : ðC9Þ

The analysis above shows that δL equals the divergence (at
the initial position q) of displacements δL ¼ −∇q · S. The
quantity q2L is the “traceless shear” [e.g. [39] ]. In a
Gaussian random field, δL is a Gaussian variable, q2L is
distributed as χ25 and is independent of δL, and μL ≡
ð9u3L=2Þ=q3L is distributed like the cosine of an angle: it
is uniform over −1 ≤ μL ≤ 1.
In terms of these variables, Eq. (C2) reads

dx
dq

¼ ð1 − δL=3Þ3ð1 −Q2
L=3 −U3

L=3Þ; ðC10Þ

whereQL ≡ qL=ð1 − δL=3Þ andUL ≡ uL=ð1 − δL=3Þ. This
form will be useful below, in part because qL and uL both
vanish in spherical symmetry (when all the λi are equal then
all λ̄i ¼ 0), so the first term isolates the spherical contri-
bution, and the second term encodes the corrections from
asphericity.

2. Displacement potential in the displaced field

Reference [29] assumes that

1þ δNLðxÞ ¼
dq
dx

¼ det jδij þ ζijj; ðC11Þ

where q ¼ x − S. The difference in notation compared to
Eq. (C1) is intended to highlight the fact that here we will
work with derivatives with respect to x, whereas until now
all derivatives were with respect to q.
The second equality follows from assuming that the

displacements S are gradients of a potential ζðxÞ, so the
determinant on the right-hand side involves second deriv-
atives (with respect to the evolved position x) of ζðxÞ.
However, if the flow is potential, then the displacement
S ¼ x − q can also be thought of as the gradient with
respect to the initial position q of a (different) potential
ψðqÞ: In particular, ∇qψ ¼ S ¼ ∇xζ, and the potentials
ζðxÞ and ψðqÞ are Legendre transforms of one another [3].
The main point we make below is that Ref. [29] aims
to estimate ζðxÞ whereas we estimate ψðqÞ [compare
Eqs. (C11) and (C1)].
To see how the methods are related, let 1þ Λi denote the

eigenvalues of the deformation tensor δij þ ζij. In terms of
these, equation (8) of Ref. [29] reads

1þ δNL ¼ ð1þ∇2ζ=3Þ3ð1 −Q2
NL=3þU3

NL=3Þ; ðC12Þ

where QNL and UNL are the same combinations of the Λi
thatQL and UL are of the λi. A little algebra shows that, for
the right-hand sides of Eqs. (C11) and (C1) equal one
another,

ΛiðxÞ ¼
λiðqÞ

1 − λiðqÞ
: ðC13Þ

This is just as expected from Eq. (C6), and is most easily
shown by using Eq. (C13) in their equation (3).
Since the quantity of interest for reconstruction is δL,

Sec. II. B ofRef. [29] describes the additional steps thatmust
be taken to estimate δLðqÞ once ζðxÞ is estimated. However,
Eq. (C13) shows that this is not really necessary, since

δLðqÞ≡
X
i

λiðqÞ ¼
X
i

ΛiðxÞ
1þ ΛiðxÞ

; ðC14Þ

where it is understood that x is displaced from q by the
gradient of a potential, ı.e. their analysis does not exploit the
fact that ζðxÞ and ψðqÞ are related by a Legendre transform.
The analysis of Ref. [29], like that of Ref. [10], assumes

knowledge of the full evolved density field ρðxÞ. To treat
the (more realistic) case in which positions of only a biased
subset are known, Ref. [40] argues that one must assume a
model for the bias (e.g. δb ¼ b1δþ b2δ2=2þ � � �), and use
this to express δ in terms of δb. In effect, this assigns
weights to the halo field. This differs from our approach, in
which we assume a simple model for the dust (essentially,
δb ¼ b1δ; while it is potentially interesting to extend the
dust model to incorporate high-order bias models, this
would come with the cost of introducing more free
parameters). Moreover, as Ref. [12] notes, because we
use dust rather than a modified weight at the location of
each halo, our approach accurately recovers the displace-
ment vectors of halos, as well as the evolution of their
shapes, extremely well. This matters because the protohalo
centers are not uniformly distributed in the initial con-
ditions, so an approach which weights the halo field will
have trouble returning a displacement field which is
physically intuitive.
An additional benefit of our methodology is that, in

contrast to Gauss-Seidel relaxation, the OT algorithm is
guaranteed to converge to the unique solution [9]. In
Ref. [29] BAO reconstruction problem was studied also
because of its mathematical similarities to a particular class
of modified gravity theories: the field equation in the
“quartic Galileon model” is also a nonlinear elliptical
partial differential equation. Having demonstrated the
correspondence between the semidiscrete OT algorithm
and the Gauss-Seidel relaxation one, our work suggests that
it would be interesting to see if semidiscrete OT is useful in
the context of quartic Galileons, especially because Gauss-
Seidel has linear speed of convergence, whereas for OT it is
nearly quadratic.
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