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The bispectrum is an important statistics helpful for measuring the primordial non-Gaussianity
parameter fNL to less than order unity in error, which would allow us to distinguish between single
and multifield inflation models. The Spectro-Photometer for the History of the Universe, Epoch of
Reionization and Ices Explorer (SPHEREx) mission is particularly well-suited for making this
measurement with its ∼100 band all-sky observations in the near infrared. Consequently, the SPHEREx
data will contain galaxies with spectroscopiclike redshift measurements as well as those with much larger
errors. In this paper, we evaluate the impact of photometric redshift errors on fNL constraints in the context
of an updated multitracer forecast for SPHEREx, finding that the azimuthal averages of the first three even
bispectrum multipoles are no longer sufficient for capturing most of the information (as opposed to the case
of spectroscopic surveys shown in the literature). The final SPHEREx result with all five galaxy samples
and six redshift bins is however not severely impacted because the total result is dominated by the samples
with the best redshift errors, while the worse samples serve to reduce cosmic variance. Our fiducial result of
σfNL ¼ 0.7 from bispectrum alone is increased by 18% and 3%when using lmax ¼ 0 and 2, respectively. We
also explore the impact on parameter constraints when varying the fiducial redshift errors, as well as using
subsets of multitracer combinations or triangles with different squeezing factors. Note that the fiducial
result here is not the final SPHEREx capability, which is still on target for being σfNL ¼ 0.5 once the power
spectrum will be included.

DOI: 10.1103/PhysRevD.109.123511

I. INTRODUCTION

Single-field slow-roll inflation models predict that
the primordial perturbations in the Universe are mostly
Gaussian, with non-Gaussian deviations on the order of
Oð10−2Þ [1–3], while multifield inflation models can yield
local non-Gaussianities of order flocNL ≳ 1 [4]. Detecting or
constraining the amount of primordial non-Gaussianity
(PNG) at this level can help us distinguish between single
and multifield inflation models, and shed light into the
process by which inflation proceeded.
The best current limits on PNG come from observations

of the cosmic microwave background (CMB) temperature
and polarization by the Planck satellite: fNL ¼ −0.9� 5.1
(68% CL) [5] (We will now drop the superscript “loc” for
the rest of our paper as it pertains to local non-Gaussianities
only.). While the CMB is a two-dimensional map at the
surface of last scattering, the large-scale-structure (LSS) of
the Universe provides a three-dimensional map that gives
access to more measurable modes, and therefore the ability
to improve upon fNL constraints from the CMB.

The best measurements from LSS so far have σðfNLÞ∼
20–30: The most robust measurements are coming
from the three-dimensional power spectrum of quasars or
galaxies [6–10], while the photometric galaxy clustering
observations achieve similar precisions although with more
challenging systematics errors (e.g. [11]). Future spectro-
scopic surveys with increasing sky coverage such as
Euclid [12], DESI [13], and SPHEREx (Spectro-Photometer
for the History of the Universe, Epoch of Reionization and
Ices Explorer) [14] would improve on Planck constraints to
σðfNLÞ of a few. Various techniquesmay also be employed to
tighten constraints, for example cross-correlating with
the CMB lensing, using higher-order statistics such as the
bispectrum and the trispectrum, cross-correlating with the
kinetic Sunyaev-Zel’dovich signal or even using a field-level
inference (see e.g. [15–18]).
Among the upcoming surveys, SPHEREx [14] is a

unique survey specifically designed to measure fNL to
σðfNLÞ ∼ 0.5 in just its nominal mission. Being a spectral
survey without a spectrometer, it uses the linear variable
filter (LVF) technology to capture 102 spectral channels as
it steps across the entire sky. This results in an all-sky
spectral survey in the near-infrared (NIR) that enables us to
measure galaxy redshifts in a large volume and infer the*chenhe@caltech.edu
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impacts of PNG on the distribution of matter. The 102-band
observation lands itself somewhere between a traditional
photometric and spectroscopic observation, thereby inherit-
ing advantages as well as some challenges from both sides.
Recent studies suggest that for spectroscopic surveys,

most of the constraining power on cosmological parameters
can be captured with just the even l and m ¼ 0 modes of
the bispectrum spherical harmonics decomposition [19,20].
Here, we re-evaluate this claim for the photometric redshift
surveys in the context of the SPHEREx bispectrum fore-
cast, and find that this claim does not hold in general in the
presence of large enough photometric redshift errors. We
show however that the impact is minimal on the final
SPHEREx forecast because of the multitracer approach in
SPHEREx where samples with small redshift errors domi-
nate the results.
Our forecast represents an improved update to the

original SPHEREx forecast from Ref. [14]; we include
redshift space distortions (RSD) in the linear regime as well
as a more complete bias modeling to second order, and
perform a full multitracer analysis,1 while binning not only
in triangle shapes but also in triangle orientations, allowing
for a more precise modeling of the photometric redshift
errors as Gaussian damping rather than a hard cutoff in kk
for modes along the line-of-sight. We also show how results
could be impacted if the photometric redshift errors were to
vary from their current fiducial values.
Finally, we study the trade-off between the data vector

size reduction and the fNL constraining power from
selecting subsets of the galaxy samples or triangle shapes,
as well as how the fiducial result changes with kmin
and kmax for individual redshift bins. Compared to the
original forecast, our results were conducted with a more
conservative kmax ¼ 0.2ð1þ zÞ hMpc−1 to keep the mod-
eling to the linear regime only, while using a similar galaxy
sample specification with 5 samples and 11 redshift bins
(although in practice we use the first six redshift bins
where most of the bispectrum constraining power comes
from). Our result does not yet include the modeling of the
window function effects, as well as the wide-angle and
general relativity (GR) effects which are important on the
large scales we are probing. We leave these studies for
future work.
The paper is structured as follows. In Sec. II, we describe

the background related to PNG and the multitracer galaxy
bispectrum in redshift space. In Sec. III, we describe the
Fisher formalism used to forecast parameter errors for both
the Fourier bispectrum and the bispectrum multipoles. We
specify the SPHEREx forecast setup in Sec. IV and show
results in Sec. V. Finally, we conclude in Sec. VI.

II. BACKGROUND

We now present the background on the bispectrum signal
modeling. We start by describing the modeling of the
galaxy density in the presence of primordial non-
Gaussianity, then the multitracer galaxy bispectrum in
redshift space, and finally the definition and parametriza-
tion for the bispectrum multipoles.

A. Galaxy density in the presence
of primordial non-Gaussianty

We consider here the local-type primordial non-
Gaussianity parametrized by fNL,

ΦðxÞ ¼ φðxÞ þ fNLðφ2ðxÞ − hφ2iÞ; ð1Þ

where φ is an auxiliary primordial Gaussian potential.
Using the Poisson equation, we can relate the primordial
potential to the linearly evolved primordial matter density
perturbation δm;p as (valid on subhorizon scales in the
Newtonian limit)

ΦðkÞ ¼ δm;pðk; zÞ
αðk; zÞ ; ð2Þ

where

αðk; zÞ ¼ 2k2c2DðzÞTðkÞ
3H2

0Ωm
; ð3Þ

and where DðzÞ is the linear growth factor normalized at
z ¼ 0, TðkÞ the transfer function,Ωm the matter density and
H0 the Hubble constant. On large scales where TðkÞ ¼ 1, α
scales as k2=H2.
Working in perturbation theory, we expand the linear

matter density contrast δmðkÞ as

δmðkÞ ¼ δð1Þm ðkÞ þ δð2Þm ðkÞ þ δð3Þm ðkÞ þ…: ð4Þ

Given Eq. (2) the linearly evolved primordial matter density
field up to second order is then given by

δm;pðk;zÞ¼ αðk;zÞΦðkÞ¼ δð1Þm;pðk;zÞþfNLδ
ð2Þ
m;pðk;zÞ; ð5Þ

where

δð1Þm;pðk; zÞ ¼ αðk; zÞφðkÞ; ð6Þ

and

δð2Þm;pðk; zÞ ¼ αðk; zÞ
Z

d3q
ð2πÞ3 φðqÞφðk − qÞ: ð7Þ

Gravitational evolution also contributes to nonlinear
coupling starting at second order, so that the nonlinearly

1For a recent multitracer investigation of the bispectrum Fisher
analysis, see also Ref. [21].
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evolved matter density field receives an additional term
proportional to F2:

δð1Þm ðk; zÞ ¼ δð1Þm;pðk; zÞ; ð8Þ

δð2Þm ðk; zÞ ¼
Z

d3q
ð2πÞ3 δ

ð1Þ
m;pðqÞδð1Þm;pðk − qÞF2ðq; k − qÞ

þ fNLδ
ð2Þ
m;pðk; zÞ; ð9Þ

where F2 is the second-order mode coupling kernel,

F2ðk1;k2Þ¼
5

7
þ1

2

k1 ·k2
k1k2

�
k1
k2

þk2
k1

�
þ2

7

ðk1 ·k2Þ2
k21k

2
2

: ð10Þ

Galaxy surveys observe the density of galaxies, which
are biased tracers of the underlying dark matter density. We
follow Ref. [22] in our modeling for the galaxy density and
the galaxy bispectrum in the section to follow. We consider
the following bivariate bias model for the Eulerian galaxy
density constrast, where the dependence on φ arises in the
presence of non-Gaussianities:

δgðxÞ ¼ b10δmðxÞ þ b01φðxÞ

þ 1

2
b20

�
δmðxÞ

�
2 þ b11δmðxÞφðxÞ

þ 1

2
b02

�
φðxÞ�2 þ 1

2
bs2ðs2 − hs2iÞ − b01n2: ð11Þ

Here we have the tidal term [23,24],

s2ðkÞ ¼
Z

dq
ð2πÞ3 S2ðq; k − qÞδð1Þm ðqÞδð1Þm ðk − qÞ; ð12Þ

and the non-Gaussian shift term due to the displacement
of galaxies with respect to their initial positions q in
Lagrangian coordinates,

n2ðkÞ¼ 2

Z
dq

ð2πÞ3N 2ðq;k−qÞδ
ð1Þ
m ðqÞδð1Þm ðk−qÞ

αðjk−qjÞ ; ð13Þ

where

Sðk1; k2Þ ¼
ðk1 · k2Þ2
k21k

2
2

−
1

3
; ð14Þ

and

N ðk1; k2Þ ¼
k1 · k2
2k21

: ð15Þ

We note that we have ignored the stochastic contributions
to δg in Eq. (11), and also do not marginalize over any
potential deviations of the shot noise from Poisson

predictions (see Ref. [25] for example for the full stochastic
contributions to the tree-level bispectrum).
Taking only the first order terms in Eq. (11) we have

δgðkÞ ¼
�
b10 þ

b01
αðkÞ

�
δm;pðkÞ: ð16Þ

We will expound on the specific modeling and values we
take for each bias parameter in Sec. IV, where we will
assume an universal mass function, for which the relation-
ship between b10 and b01 becomes

b01 ¼ 2fNLδcðb10 − 1Þ; ð17Þ

and we recover the well-known linear-order result [26]

δgðkÞ ¼
�
b10 þ

2fNLδcðb10 − 1Þ
αðkÞ

�
δm;pðkÞ; ð18Þ

where δc ¼ 1.686 is the threshold for spherical collapse.
We note that recent studies have shown how the

universal mass function assumption for obtaining the
relation Eq. (17) for b01 (also known as bϕfNL) could
be inaccurate and could bias constraints on fNL (e.g. [27]).
So in a realistic analysis, one could marginalize over
theoretically informed priors for bϕ or choose to constrain
the combination bϕfNL instead [27,28]. Multitracer analy-
sis can also help to improve the fNL constraints for suitably
chosen galaxy samples (e.g. by maximizing the combina-
tion jbB10bA01 − bA10b

B
01j in a two-tracer analysis) [29].

B. Multitracer galaxy bispectrum
in redshift space

Let us define the multitracer bispectrum BABC
ggg as

hδAg ðk1ÞδBg ðk2ÞδCg ðk3Þi ¼ ð2πÞ3δDðk1 þ k2 þ k3Þ
× BABC

ggg ðk1; k2Þ; ð19Þ

where A, B, C denote the galaxy samples. Now the
wavevectors k1, k2, k3 will be associated with samples
A, B, C respectively. We only use the galaxy bispectrum
with samples from the same redshift bin i centered at zi.
Note that A; B;C ¼ 1::nb, so that there are nb ¼ n3tracer
multitracer combinations for each redshift bin.
To model the bispectrum in redshift space, we include

the linear Kaiser effects on large scales, and the damping of
small scales due to redshift errors, ignoring for now the
Alcock-Pazynski effects.
The redshift errors σAz;i ¼ σ̃Az ð1þ ziÞ decreases our

ability to measure modes parallel to the line-of-sight. We
choose to model this effect with a Gaussian suppression
using
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FABC
i ðk1; k2Þ ¼ e−

1
2
½k2

1
μ2
1
ðσAp;iÞ2þk2

2
μ2
2
ðσBp;iÞ2þk2

3
μ2
3
ðσCp;iÞ2�; ð20Þ

and

σAp;iðzÞ ¼ σ̃Az ð1þ ziÞ
c

2πHðzÞ : ð21Þ

Note that here σp;iðzÞ can no longer be factored out for the
multitracer bispectrum for which each galaxy sample may
have a different redshift error.

The multitracer bispectrum in redshift space is then
modeled as

BABC
ggg ðk1; k2jziÞ ¼ FABC

i ðk1; k2Þ½2ZA
1 ðk1ÞZB

1 ðk2Þ
× ZC

2 ðk1; k2ÞPðk1ÞPðk2Þ þ 2 cycl perm�;
ð22Þ

where

ZX
1 ðk1Þ ¼ bX10ð1þ βμ21Þ þ

bX01
αðk1Þ

ð23Þ

ZX
2 ðk1; k2Þ ¼ bX10

�
F2ðk1; k2Þ þ fNL

αðkÞ
αðk1Þαðk2Þ

�
þ bX20

2
þ 1

2
bXs2S2ðk1; k2Þ

þ bX11
2

�
1

αðk1Þ
þ 1

αðk2Þ
�
þ bX02

2

1

αðk1Þαðk2Þ
− bX01

�
N2ðk1; k2Þ
αðk2Þ

þ N2ðk2; k1Þ
αðk1Þ

�

þ fμ2
�
G2ðk1; k2Þ þ fNL

αðkÞ
αðk1Þαðk2Þ

�
þ 1

2
fμk

�
μ1
k1

ZX
1 ðk2Þ þ

μ2
k2

ZX
1 ðk1Þ

�
; ð24Þ

where μi ¼ k̂i · n̂, where n̂ is the line-of-sight, k ¼ k3 and
μ ¼ −μ3, and G2 is the second-order velocity kernel

G2ðk1;k2Þ¼
3

7
þ1

2

k1 ·k2
k1k2

�
k1
k2

þk2
k1

�
þ4

7

ðk1 ·k2Þ2
k21k

2
2

: ð25Þ

The last term in Eq. (24) is often also written as

1

2
fμk

�
μ1
k1

ZX
1 ðk2Þ þ

μ2
k2

ZX
1 ðk1Þ

�

¼ f2μ2k2
μ1μ2
2k1k2

þ bX10
fμk
2

�
μ1
k1

þ μ2
k2

�

þ bX01
fμk
2

�
μ1

k1αðk2Þ
þ μ2
k2αðk1Þ

�
: ð26Þ

C. Fourier space and multipole space bispectrum

1. Fourier space bispectrum

Given the shape of a triangle specified by (k1, k2, k3),
only two more parameters are needed to describe the
orientation of the triangle due to the symmetry of the
problem: Three degrees of freedom are taken away from
the nine coordinates that describe k1, k2, k3, by virtue of the
triangle condition k1 þ k2 þ k3 ¼ 0; one more is taken
away because of the azimuthal symmetry of the signal
around the line-of-sight vector.
While many choices exist for parametrizing the orienta-

tion of a triangle, we follow Ref. [30] using the following

two angles: (1) θ1, the polar angle of k1 where ẑ ¼ n̂; and
(2) ϕ12, the azimuthal angle of k2 in a coordinate system
ðx̂0; ŷ0; ẑ0Þ where ẑ0 ¼ k̂1. See Fig. 1 for an illustration.
In this parametrization we have

μ2 ¼ cosðθ1Þ cosðθ12Þ − sinðθ1Þ sinðθ12Þ cosðϕ12Þ; ð27Þ

and

μ3 ¼ −
k1μ1 þ k2μ2

k3
; ð28Þ

where

θ12 ¼ arccos

�
−k21 − k22 þ k23

2k1k2

�
: ð29Þ

is the polar angle of k2 in the primed coordinates, which is
the angle between k1 and k2 and is always restricted to be
between ½0; π�.
When using this parametrization, we use orientation bins

that are the linearly spaced in the variables μ1 ¼ cosðθ1Þ
and ϕ12 since these angles are uniformly distributed.

2. Bispectrum multipoles

Instead of parametrizing the orientation of the triangle,
we can also expand the angle dependence in spherical
harmonics:
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Blmðk1; k2; k3Þ ¼
1

4π

�
1

2π

Z
2π

0

dϕ1

��Z
1

−1
d cosðθ1Þ

�

×

�Z
2π

0

dϕ12

�
Bðk1; k2; k3;θ1;ϕ12;ϕ1Þ

× Y�
lmðθ1;ϕ12Þ

¼ 1

4π

�Z
1

−1
d cosðθ1Þ

��Z
2π

0

dϕ12

�

×Bðk1; k2; k3;θ1;ϕ12ÞY�
lmðθ1;ϕ12Þ; ð30Þ

where we have averaged the signal over ϕ1, the azimuthal
angle of k1 around the line-of-sight n̂ for which the signal is
symmetric. The factor of 1=ð4πÞ is a normalization con-
vention. The inverse relation is

Bðk1; k2; k3; θ1;ϕ12;ϕ1Þ ¼
X
l

Xl

m¼−l
Blmðk1; k2; k3Þ

× Ylmðθ1;ϕ12Þ:

Here the spherical harmonics are normalized such that

Y00¼ 1 and
Z

d2n̂
4π

Ylmðn̂ÞY�
l0m0 ðn̂Þ¼ δll0δmm0 : ð31Þ

The Blm with m ¼ 0 are usually called the bispectrum
multipoles. In our study, we will refer to all the lm modes
loosely as bispectrum multipoles. We investigate the effects
effect of truncating the sum at various lmax and investigate
the effect of omitting the odd l and m ≠ 0 modes.

III. FISHER FORMALISM

A. Fisher matrix for the Fourier bispectrum

Let B̃ABCðk1; k2; k3Þ represent the binned bispectrum
over triangle shapes and orientations with bin centers
denoted by ðk1; k2; k3Þ and ðθ;ϕÞ respectively. If we

approximate the binned bispectrum by the value at the
bin center, then the Fisher matrix for the multitracer
bispectrum in a single redshift bin can be written as

Fij ¼
X

ðk1;k2;k3Þ

X
ðθ;ϕÞ

X
ðABCÞ

X
ðA0B0C0Þ

∂B̃ABCðk1; k2; k3; θ;ϕÞ
∂pi

×
�

˜Cov
	−1 ∂B̃A0B0C0 ðk1; k2; k3; θ;ϕÞ

∂pj
; ð32Þ

where the sum is over nshape allowed triangle shape bins
with centers denoted by ðk1; k2; k3Þ and nori orientation bins
with centers denoted by ðθ;ϕÞ, and there is no correlation
between different triangle shapes and orientations in the
Gaussian approximation for the covariance matrix. There is
however a correlation between the different multitracer
combinations, so the covariance ˜Cov is a nb × nb matrix
where nb ¼ n3tracers is the number of multitracer combina-
tions. It can be written as

˜Cov ¼ Cov
V

Nmodes
; ð33Þ

where in the Gaussian approximation we have for a single
mode,

hδAg ðk1ÞδBg ðk2ÞδCg ðk3ÞδA0
g ðk01ÞδB

0
g ðk02ÞδC

0
g ðk03Þi ð34Þ

≈
�
PAA0
gg ðk1Þ þ

δAA0

n̄Ag

��
PBB0
gg ðk2Þ þ

δBB0

n̄Bg

�

×

�
PCC0
gg ðk3Þ þ

δCC0

n̄Cg

�
δDðk1 þ k01ÞδDðk2 þ k02Þ

× δDðk3 þ k03Þ ð35Þ

≡ Cov
�
BABC
ggg ðk1; k2Þ; BA0B0C0

ggg ðk01; k02Þ
	
δDðk1 þ k01Þ

× δDðk2 þ k02ÞδDðk3 þ k03Þ; ð36Þ

where

V
Nmodes

¼ ð2πÞ5
Vðdk1dk2dk3k1k2k3ÞðdμdϕÞβ

: ð37Þ

Here the number of modes is the number of closed
triangles Nmodes within a triangle shape and orientation bin
given a survey volume which sets the fundamental fre-
quency kF ≡ ð2πÞV−1=3, where V−1=3 is the volume of the
survey in the given redshift bin. In the limit that the bin
width Δki ≫ kF, the following expression is a good
approximation:

FIG. 1. The coordinate systems we choose for parametrizing
the triangle orientation for the Fourier space bispectrum. The two
parameters that are used for determining the triangle orientation
uniquely are θ1 and ϕ12. Note that ϕ1 is averaged over, as the
bispectrum signal is invariant under changes in ϕ1.

MEASURING fNL WITH THE SPHEREX MULTITRACER … PHYS. REV. D 109, 123511 (2024)

123511-5



Nmodes ¼
KΔ

k6F

¼ V2

ð2πÞ6
�
8π2k1k2k3Δk1Δk2Δk3β

�
1

4π
Δμ1Δϕ12

��
;

ð38Þ
where 8π2k1k2k3Δk1Δk2Δk3β is the number of closed
triangles in a triangle shape bin denoted by the bin centers
(k1, k2, k3) with bin widths Δk1, Δk2 and Δk3, and β ¼ 0.5
for degenerate triangles and 1 otherwise. The factor
1
4πΔμ1Δϕ12 corresponds to the fraction of triangles in a
fixed triangle shape bin that falls into the orientation bin
with centers ðμ;ϕ12Þ.
Note that we do not include the factor sB ¼ 6, 2, 1 for

equilateral, isoceles and scalene triangles, respectively,
often used in the orientation-averaged case. The difference
comes from the fact that we are keeping both triangle shape
and orientation bins, instead of only triangle shape bins. In
this case, we have that only one out of six possible
permutations in Eq. (34) is nonzero, because only
Fourier modes with the same magnitude and direction
are correlated. This is regardless of whether the triangle is
scalene, isosceles or equilateral.
Now because we have ordered the magnitudes

k1 ≤ k2 ≤ k3, a scalene triangle configuration will only
correlate with itself, leading to the first permutation (the
one wewrote down) being the nonzero term. For equilateral
(isosceles) triangles, they can correlate with 6 (2) triangles
including themselves, where the legs k1, k2, k3 are
permuted. In these cases, which one of the permutations
is the only nonzero one would depend on how the legs are
being permuted. The first permutation would correspond to
the diagonal element, while others would correspond to the
off-diagonal elements of the nori × nori sub-block of the
covariance matrix for a fixed triangle shape.
When the triangle orientations are averaged over, we

actually sum over this sub-block to get the covariance of the
triangle shape with itself. This gives rise to the factor of
sB ¼ 6, 2 and 1 for equilateral, isosceles and scalene
triangles, respectively, in the case of a single tracer. In
the multitracer case, however, the different permutations
could be different, so we would replace the sB factor by a
sum over the 6, 2, or 1 nonzero permutations explicitly for
equilateral, isosceles and scalene triangle shapes.
Since those other permutations, or off-diagonal terms,

appear only for equilateral and isoceles triangles, we ignore
them here because the bin with an equilateral or isoceles
triangle as its bin center necessarily contains many triangles
that are not equilateral or isoceles. As a result, we treat all
triangles as scalene, by keeping only the first permutation
in Eq. (35). This is equivalent to ignoring the sB factor in
the orientation-averaged case.
Finally, the length of our multitracer bispectrum data

vector for each redshift bin is n ¼ nb × nshape × nori ¼
125 × 104 × 25 ≈ 107 for nk ¼ 50, nθ ¼ 5, nϕ ¼ 5. The

exact number of triangle shapes nshape varies for different
redshift bins, since the values of kmin ¼ 2πV−1=3 and
kmax ¼ 0.2 hMpc−1ð1þ zÞ are dependent on the redshift
bin. We note also that we have used an approximate kmin
value corresponding to a cubic volume, whereas in reality,
the redshift bins are shaped as spherical shells in the full-
sky limit, or part of a spherical shell when the survey
window function is applied. A precise mode counting
treatment with the exact window function will be evaluated
in a future work.

B. Fisher matrix for the bispectrum multipoles

For the bispectrum multipoles, we have the following
Fisher matrix:

Fij¼
Z

dk1dk2dk3k1k2k3
X
ðl;mÞ

X
ðl0;m0Þ

X
ðABCÞ

X
ðA0B0C0Þ

×
∂BABC�

lm ðk1;k2;k3Þ
∂pi

�ð2πÞ5
V

Cov

�−1∂BA0B0C0
l0m0 ðk1;k2;k3Þ

∂pj
:

ð39Þ

Let B̃ABC
lm ðk1; k2; k3Þ represent the bispectrum binned over

triangle shapes that fall into the bin specified by the centers
ðk1; k2; k3Þ. Let this binned value be approximated by the
bispectrum value at this center configuration, and we have
that the Fisher matrix can be approximated as

Fij¼
X

ðk1;k2;k3Þ

X
ðl;mÞ

X
ðl0;m0Þ

X
ðABCÞ

X
ðA0B0C0Þ

×
∂B̃ABC�

lm ðk1;k2;k3Þ
∂pi

�
˜Cov
	−1∂B̃A0B0C0

l0m0 ðk1;k2;k3Þ
∂pj

: ð40Þ

The outer sum is taken over nshape unique triangle shapes
ðk1; k2; k3Þ, where k1, k2 and k3 are values of the k-bin
centers that satisfy the triangle inequality (0 < k1 ≤ k2 ≤
k3 ≤ k1 þ k2). There is also a sum over nlm pairs of ðl; mÞ
values, where l and m are integers satisfying 0 ≤ l ≤ lmax
and −l ≤ m ≤ l [and similarly for the ðl0; m0Þ pairs], as well
as a sum over nb ¼ n3tracers multitracer combinations (ABC)
where A; B;C ¼ 1::ntracers [and similarly for (A0B0C0)].
Because there is no correlation between different triangle

shapes (in the Gaussian covariance), whereas there is a
correlation between different ðl; mÞ pairs and multitracer
combinations, the covariance ˜Cov of the binned bispectrum
is a N × N matrix, where N ¼ nbnlm. It can be calculated
using

˜Cov ¼ Cov
ð2πÞ5sB

Vdk1dk2dk3k1k2k3β
; ð41Þ

where
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Cov
�
BABC�
lm ;BA0B0C0

l0m0
	¼ 1

ð4πÞ2
Z

dðcosθÞdϕ

×Y�
lmðθ;ϕÞYl0m0 ðθ;ϕÞ

�
PAA0 ðk1Þþ

1

n̄Ag

�

×

�
PBB0 ðk2Þþ

1

n̄Bg

��
PCC0 ðk3Þþ

1

n̄Cg

�
;

ð42Þ

and β ¼ 0.5 for degenerate triangles and 1 otherwise. The
factor of 1=ð4πÞ2 comes from the normalization of the
bispectrum multipoles in Eq. (30).
The marginalized error on parameter pi is obtained using

σpi
¼ ½F−1=2�ii: ð43Þ

The length of the data vector is slightly reduced here,
with n ¼ nb × nshape × nlm for a single redshift bin, where
nlm ¼ 25 when all ðl; mÞ pairs are used up to lmax ¼ 4,
which can be reduced nlm ¼ 2 without much loss of
information if only the even l and m ¼ 0 modes are used
up to lmax ¼ 2, as we will show later in Sec. V.

IV. FORECAST SETUP

We now present the setup for our Fisher forecast—the
galaxy bias modeling choices and the survey parameters.
The fiducial cosmology here is consistent with the Planck
2018 cosmology [31]; the primordial spectral amplitude
As ¼ 2.100 × 10−9 with the tilt ns ¼ 0.9659 and the
running of the tilt nrun ¼ 0, the baryon density
Ωbh2 ¼ 0.02238, the dark matter density Ωch2 ¼ 0.1201,
and the acoustic scale 100θMC ¼ 1.0409. For a given redshift
bin, we marginalize over the following set of parameters:
fAs;ns; nrun; fNL;Ωbh2;Ωch2;100θMC; bX10jX ¼ 1..5g. For
the joint Fisher forecast from all redshift bins, the con-
straining power on the cosmological parameters from each
redshift bin is combined, while the individual nz × nsample ¼
55 linear galaxy bias parameters are constrained by their
corresponding redshift bin only.

A. Bias modeling

We briefly summarize the galaxy bias modeling we
chose and refer the readers to Ref. [22] for more details.
Recall that the galaxy density field up to second order is
described by

δgðxÞ ¼ b10δmðxÞ þ b01φðxÞ
þ b20

�
δmðxÞ

�
2 þ b11δmðxÞφðxÞ

þ b02
�
φðxÞ�2 þ bs2ðs2 − hs2iÞ − b01n2; ð44Þ

where we have now absorbed the factors of 1=2 into b20,
b02 and bs2 . There are a total of six different kind of bias

parameters to model; b10, b01, b20, b11, b02 and bs2 , each
having 55 distinct values for the 5 galaxy samples and 11
redshift bins.
As previously noted, we assume an universal mass

function and use the following relation for b01:

b01 ¼ 2fNLδcðb10 − 1Þ: ð45Þ

For b20, we treat it as a function of b10 using a fit from
simulations in Ref. [32],

bLezeyras20 ðb10Þ¼
1

2
ð0.412−2.143b10þ0.929b210þ0.008b310Þ:

ð46Þ

Similarly for bs2, we use a relation to b10 obtained from a fit
to simulation results from Ref. [24],

bSaitos2 ðb10Þ ¼ −
2

7
ðb10 − 1Þ: ð47Þ

For b11 and b02, we can relate them to any given values of
b10, b20 and fNL using,

b11 ¼ bL11 þ bL01; ð48Þ

and

b02 ¼ f2NL4δcðδcbL20 − 2bL10Þ; ð49Þ

where the L superscript denotes Lagrangian bias, and we
suppressed the E superscript for the Eulerian biases, and the
Lagrangian quantities may be related to the Eulerian ones
as follows:

bL11 ¼ 2fNLðδcbL20 − bL10Þ; ð50Þ

bL20 ¼ b20 −
8

21
ðb10 − 1Þ; ð51Þ

bL10 ¼ b10 − 1; ð52Þ

and

bL01 ¼ b01; ð53Þ

The above results were obtained under the assumption of
the universal mass function, conservation of the galaxy
number density in a given volume, spherical collapse and
no velocity bias between galaxies and matter.
In the Fisher forecast, we vary the parameters b10 for

each sample and redshift bin when taking the derivative
with respect to b10, and let all other bias values vary
according to the relations described above. Note that we
have included b20 in the modeling for completeness, but it
drops out of the Fisher result here, since the b02 term is
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∝ f2NL and so the derivative with respect to fNL vanishes for
a Fisher forecast with fiducial value of fNL ¼ 0.

B. Survey parameters

The survey parameters have not changed significantly
since the original SPHEREx forecast. There are eleven
redshift bins ranging from z ¼ 0 to 4.6 (see definitions in
Table II in Appendix), with the galaxies in each redshift bin
divided by their redshift uncertainties falling in the bins
σ̃z ¼ σz=ð1þ zÞ ¼ 0–0.003 − 0.01–0.03 − 0.1–0.2. We
use the maximum value of the redshift bin in our forecast
for more conservative results: σ̃Az ¼ 0.003, 0.01, 0.03, 0.1
and 0.2 for A ¼ 1 to 5, respectively. So a lower sample
number means better redshift uncertainties. Note that in the
original bispectrum forecast, it was the mean value of σ̃Az
that was used, leading to slightly more optimistic but also
more realistic results.
The details of the procedure for obtaining the fiducial

galaxy number densities and biases are found in Ref. [14],
which we briefly summarize here. First, the simulated
SPHEREx galaxy catalog (based on COSMOS [33,34])
was piped through a template-fitting-based photometric
redshift measurement pipeline in order to produce a redshift
and a redshift error estimate for each galaxy. These
estimates were used to derive the galaxy number density
for the galaxy sample in each redshift bin and σ̃z bin.
The method of abundance matching was then used to

obtain an estimate of the linear galaxy bias for each galaxy
sample: The galaxies with the best redshift errors are
matched to the host halos with the largest total mass.
More specifically, the mass function in Ref. [35] was used
to find the minimum halo mass, for which the halo bias is
found using the fitting formula in Ref. [36] and set to the
linear galaxy bias. The fiducial values for the linear biases
and number densities are available at the SPHEREx public
Github repository,2 and also reproduced in Appendix for
convenience in Tables III and IV, respectively.

V. RESULTS

We now show the Fisher forecast results for the first six
redshift bins (0 < z < 1.6) (as we verified that higher
redshift bins contribute negligibly to the bispectrum con-
straint on fNL for SPHEREx). We begin by looking at how
photometric redshift errors affect the claim that the first
three even l and m ¼ 0 modes are sufficient for capturing
most of the constraining power. Then we investigate how
constraints would be impacted if the redshift errors were to
change from their fiducial values. We also study how the
constraints vary when using different subsets of multi-
tracers, as well as different subsets of triangle shapes for

various squeezing factors. Finally, we vary kmin and kmax
for individual redshift bins.

A. The impact of photometric error
on bispectrum multipoles

To illustrate how much of the total constraint is captured
by a set of bispectrum multipoles, we look at the improve-
ment ratio defined as

Improvement ratio ¼ σfNLðBfullÞ
σfNLðBlmÞ

; ð54Þ

where Bfull stands for the full constraint obtained by using
the Fourier space bispectrum with all the triangle shape and
orientation bins, whereas Blm stands for bispectrum multi-
poles with a specific set of l, m values. In this notation, the
improvement ratio will always be less than one for the
bispectrum multipoles, and higher means better constraints.
We show this improvement ratio for the unmarginalized

fNL uncertainty as a function of lmax in Figs. 2 and 3 for
individual galaxy samples. Various subsets of multipoles
are selected: “all l, m” for all multipoles up to lmax (blue
solid), “all l; m ¼ 0” for all multipoles up to lmax but
without the nonzero-m modes (orange dashed); “even l;
m ¼ 0” for all even l up to lmax without the nonzero-m
modes (green dotted). For a spectroscopic survey, we
expect that only l ¼ 0, 2 and 4 and m ¼ 0 will contribute
to the signal, when the RSD modeling only includes the
linear Kaiser effects and no window function effects are
accounted for.
This behavior is indeed observed for tracers with the

least redshift uncertainty. An example is shown in Fig. 2 for
the tracer in redshift bin 6 sample 1 [with zmid ¼ 1.3 and
σz=ð1þ zÞ ¼ 0.003, so giving subpercent σz]. This tracer
behaves like a spectroscopic sample [19]: lmax ¼ 4
is enough to capture all constraining power; using only

FIG. 2. Plot of the improvement ratio for σfNL of bispectrum
multipoles against the full bispectrum result, for a single tracer
with good redshift error; redshift bin 6, sample 1, for which
zmid ¼ 1.3 and σz=ð1þ zÞ ¼ 0.003.

2SPHEREx public github repository: https://github.com/
SPHEREx/Public-products/blob/master/galaxy_density_v28_
base_cbe.txt.
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m ¼ 0 modes affects the error by less than 2% and
removing odd multipoles has no impact on the constraints.
The story is however differentwhenwe look at tracerswith

larger redshift errors. In Fig. 3, we show the same plot for two
tracers: one with medium redshift uncertainty, redshift bin 3
sample 3 [with zmid ¼ 0.5, σz=ð1þ zÞ ¼ 0.03], which is also
a representative sample that contributes well to the combined
fNL constraint from all tracers and redshift bins, and the
sample with the worst redshift error, redshift bin 6 sample 5
[zmid ¼ 1.3, σz=ð1þ zÞ ¼ 0.2].
The first observation is that lmax ¼ 4 no longer captures

all the constraining power there is—higher multipoles
contain information too, because of the way the redshift
error modeling is a Gaussian function in kμ which has
nonzero multipole decomposition in all the multipoles.
Another impact is that the odd multipoles also contribute
slightly to the total constraints. Finally, removing m ≠ 0

modes has a bigger impact on the fNL constraint than in the
nearly-spectroscopic case; an additional 4% (10%) on top
of the 1% (10%) increase in fNL uncertainty from truncat-
ing at lmax ¼ 4, for the representative (worst) galaxy
sample. An overall consequence is that the monopole alone
no longer contains most of the information: The uncertainty
is degraded by roughly 8% (23%) for the representative
(worst) sample (as opposed to 2% in the case of the
spectroscopic-like sample).
While the findings of Ref. [19] no longer hold for a

photometric redshift sample where errors are naturally
bigger than in spectroscopic surveys, this is however not
a problem for SPHEREx. When combining all five samples
and six redshift bins in the multitracer analysis, we find that
the marginalized constraint is σfNL ¼ 0.86 (0.75), respec-
tively, for lmax ¼ 0 (lmax ¼ 2) where all the l and m modes
have been included up to that lmax. This represents a 18%
(3%) increase from the full constraint σfNL ¼ 0.73.
This behavior closely parallels that of the representative

sample with medium redshift uncertainty—redshift bin 3
sample 3. The reason is that the samples with the worst
redshift errors are also the ones that contribute the least to
the total constraint in a multitracer analysis. Consequently,
we can measure fNL with lmax ¼ 2with marginal loss in the
total constraining power. Note that we do not quote the
lmax ¼ 4 case for the full result because it is computation-
ally expensive to compute in the multitracer case as it
requires a larger sampling rate in the θ1 and ϕ12 parameters
for accurate results.
We note also that there are compelling reasons for

measuring the odd multipoles, even if they may not
contribute significantly to the final fNL constraints.
Because SPHEREx will reach larger scales than in previous
surveys, it will start to probe a variety of effects that will
become important on these scales. These include general
relativistic effects which would be the main cosmological
signal in the odd multipoles [37–40], as well as wide-angle
effects coming from the breakdown of the plane-parallel
approximation on large angular separations [41,42]. The
wide-angle effects, together with the window function
convolution [43] would also induce odd multipoles on
top of the GR signal. In this regard, measuring the odd l’s in
the bispectrum as a unique signature for GR effects as well
as for cross-checking wide-angle and window function
effects in the even multipoles. Of course, the modeling of
the bispectrum involving all these large scale effects could
become quite involved, and one might choose to do the
measurement in the power spectrum instead. We leave the
more precise forecast involving all these large scale effects
to future work.

B. Varying the redshift errors

Besides spreading the signal into more than just the
l ¼ 0, 2, 4 and m ¼ 0 modes, the presence of photometric
redshift error also poses the problem that the fNL constraint

FIG. 3. Plot of the improvement ratio for σfNL of bispectrum
multipoles against the full bispectrum result, for a single tracer
with medium and worst redshift error. Top: A representative
galaxy sample that contributes well to the total constraint; redshift
bin 3, sample 3 [zmid ¼ 0.5, σz=ð1þ zÞ ¼ 0.03]. Bottom: The
galaxy sample with the worst redshift error; redshift bin 6, sample
5 [zmid ¼ 1.3, σz=ð1þ zÞ ¼ 0.2].
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depends sensitively on the precise redshift error modeling
(since the bispectrum signal is Gaussian damped where σ2z
is exponentiated).
To quantify how sensitive σfNL is to the redshift error, we

vary σz by �20% for all samples. This variation is at the
level of the difference between choosing to use the
maximum or the mean of the measured distribution for
Δz≡ zmeasured − ztrue of a given sample. We find that the
marginalized constraint σfNL from the multitracer analysis
of the first six redshift bins varied by �8% when the
redshift error was changed by �20%, giving σfNL ¼ 0.79
and 0.67, respectively.
Looking at individual redshift bins, we find that varying

σz by �20% gives a �5% change in σfNL for redshift bin 3,
whereas for the higher redshift bins the induced change in
σfNL was larger (about 12–13% for example for redshift
bin 6) because the larger variation in the redshift
error σz ¼ σ̃zð1þ zÞ.

C. Varying multitracer combination

Another interesting question to ask is whether we really
need all five galaxy samples. The more galaxy samples we
use, the higher the number of multitracer bispectrum
combinations nb ¼ n3samples. Because the number of mocks
for accurately evaluating the covariance matrix using
simulations needs to be much larger than the data vector
size [44,45], a smaller data vector is more desirable. In
Fig. 4, we plot the marginalized σfNL from the Fourier
bispectrum as a function of various multitracer combina-
tions for the first six redshift bins combined. The plot is
zoomed so that for some combinations the marginalized
error is too high to be seen on the plot.
We first notice the single-tracer results on the left of the

plot, as well as the autobispectrum only result using all five
tracers. We note that the samples 4 and 5 from all redshift
bins combined are the least constraining by themselves,

because of the large redshift error they have. The first
samples are the most constraining ones, as expected.
Next, we note that the following combinations are

similar in fNL constraining power: The auto-only result
from all five redshift bins (auto [1, 2, 3, 4, 5]), and the full
multitracer result [1, 2]. The latter includes the cross-
bispectra (e.g. 112, 121, etc.) and already shows the power
of the multitracer analysis to cancel cosmic variance.
As we go further to the right side of the plot, we see that

adding samples 3, 4 and 5 gradually gets down to the final
result of σfNL ¼ 0.73. Even if the samples 4 and 5 by
themselves are not very constraining, they contribute to
the cancellation of cosmic variance, with their large number
densities—it is easier to find a larger number of galaxies
where the redshift error ismeasuredwithworse uncertainties.
Finally, we show in a gray band 10% degradation from

the best fNL error from all five tracers. The closest
combinations slightly above the 10% line would be [1,
2, 3, 4] and [1, 2, 4, 5], both of which are four-tracer results,
showing the importance of using the multitracer analysis to
achieve the finest constraints.
Because the redshift measurement pipeline is still under

research and development, it is also interesting to ask
ourselves how important it is for the best galaxy sample
to reach the required redshift uncertainty of σ̃z ≤ 0.003 in
order to measured σfNL to its desired accuracy. We see from
Fig. 4 that removing the best sample completely ([2, 3, 4, 5])
would lead to a ∼20% degradation in the fNL error.
Finally, we report that using the first 2, 3 or 4 best tracers,

we obtain σfNL ¼ 1.4, 1.0 and 0.8, respectively, represent-
ing a 91%, 37% and 12% degradation, respectively, from
the five-tracer version. Note however that the best set of
multitracer combinations for the power spectrum may not
be the same as that for the bispectrum, so in a combined
analysis with both the power spectrum and the bispectrum,
one may choose to select different subsets of tracers, as

FIG. 4. Plot of the marginalized σfNL for the full bispectrum in a single redshift bin (redshift bin 3) vs various multitracer combinations.
The shaded band contains constraints that are within 10% of the best constraint from the 5-tracer combination. The worst constraints are
outside the plot.
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long as the covariance between the resulting multitracer
combinations are properly accounted for.

D. Squeezed triangles-only result

Finally, we explore how the fNL constraints are impacted
if we choose to use only a subset of the available triangle
shapes, namely triangles with squeezing factors k2=k1 and
k3=k1 above a threshold Smin, and we recall that we order
k1 ≤ k2 ≤ k3 for unique triangle shapes.
As an example, we report results for the redshift bin 3

with all its five tracers in Table I. For the k-binning we have
adopted, we find that the marginalized σðfNLÞ only
degrades by 17% for Smin ¼ 4, while the number of
triangles are dramatically reduced by a factor of 9 from
12,000 to 1,294. For a more intermediate case with
Smin ¼ 2, the marginalized σðfNLÞ only degrades by
11% while the number of triangles is reduced by a factor
of 3.
The trade-off here is that the marginalized uncertainty for

the linear galaxy biases takes a hit: about a factor of ∼1.6
(∼2.8) worse for Smin ¼ 2 (Smin ¼ 4). This degradation in
the galaxy bias uncertainties is roughly independent of the
redshift error of the sample, since the linear galaxy bias for
all five samples have a similar factor of degradation. It
would be interesting to see whether the joint PS-Bis
constraints on the galaxy biases would suffer less from
excluding triangles, as the total constraint may rely more on
the degeneracy breaking between the power spectrum and
the bispectrum instead of the total number of triangles
available.

E. Varying kmin and kmax

The fNL constraining power from the bispectrum is
sensitive to both kmin and kmax because of the fact that most

of the signal comes from squeezed triangles, which are
composed of both large and small scale modes. In the
following, we quantify how σfNL changes with kmin and
kmax. We look at this dependency for individual redshift
bins, since each of them has a different fiducial kfidmin ¼
2πV−1=3

z and kfidmax ¼ 0.2 hMpc−1ð1þ zmidÞ.
In Fig. 5, we plot the ratio of σfNL for a given kmin to that

of the fiducial kfidmin. The redshift bins are shown in order of
increasing z in blue solid, dashed and dotted, and then in
orange solid, dashed and dotted. The scalings vary slightly
between redshift bins, with the strongest being a linear
scaling, but all close to a linear scaling; a factor of two
change in kmin induces roughly a factor of two change in
σfNL as well. Note that this is a rough estimate, since we are
approximating the number of large scale modes with the
volume Vz treated as a cubic box rather than a spherical
shell. In reality, the dependence on kmin will be affected by
the shape of the window function, which dictates the
number of modes at a given k-bin.
Next wevary σfNL with kmax in Fig. 6. Here again there is a

strong dependence, which becomes milder near the fiducial
kmax (the right end of the plot) for redshift bins 5 and 6, but
remains linear for most redshift bins. In this regime, the
results are not as affected by the window function. What
would be important to quantify instead is whether the
currently used linear theory suffices for modeling up to
kfidmax ¼ 0.2 hMpc−1ð1þ zmidÞ. Recent work on simulated
data suggested that the regime of validity for the tree-level
bispectrum to achieve unbiased parameter estimation for
BOSS is kmax ¼ 0.08 hMpc−1 [46]. This exercise remains
to be done for the SPHEREx survey, with its different
set of varying cosmological and nuisance parameters.
Additionally it would be useful to explore, using a simulated
likelihood analysis, how much a nonlinear modeling of the
bispectrum can extend the k-range and provide improve-
ment on σfNL .

TABLE I. Ratio of the marginalized parameter constraints for a
subset of the triangle shapes with squeezing factor threshold Smin
compared to all triangles. Constraints are for the 5-tracer analysis
in the redshift bin 3, and are marginalized over the parameter set
fAs; ns; fNL; nrun;Ωbh2;Ωch2; 100θMC; bX10jX ¼ 1..5g. We find
that the number of triangles is reduced by a factor of 3, 6 and
9 respectively compared to using all triangles for the subsets with
Smin ¼ 2, 3 and 4, while the fractional increase in the margin-
alized fNL error is only 6%, 11% and 17%, respectively. The
linear bias parameters are however more strongly impacted (we
show only for the bias for the first tracer as the other ones are
similar).

Smin ¼ 2 Smin ¼ 3 Smin ¼ 4

σðfNLÞ 1.06 1.11 1.17
σðAsÞ 1.4 1.8 2.2
σðnsÞ 1.4 1.8 2.4
σðnrunÞ 1.4 1.9 2.2
σðb110Þ 1.6 2.2 2.8
Ntriangles 3964 2072 1294

FIG. 5. Plot of the marginalized σfNL for the full bispectrum vs
kmin for individual redshift bins.
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VI. SUMMARY AND DISCUSSION

In this paper, we explored how the presence of photo-
metric redshift errors alter the well-known claim that
bispectrum multipoles with l ¼ 0, 2, 4 and m ¼ 0 capture
most of the constraint on cosmological parameters, which
was shown to be valid for spectroscopic surveys in
Refs. [19,20]. We showed, in the context of our updated
bispectrum forecast for SPHEREx, that individual galaxy
samples with sufficient redshift errors suffer from infor-
mation leaking into the higher multipoles, the m ≠ 0
modes, and the odd multipoles. We expect this to also
hold true for the power spectrum multipoles, though we did
not demonstrate this explicitly.
Future photometric redshift surveyswould need to account

for this effect when measuring the bispectrum or power
spectrummultipoles. In particular,we found that restricting to
the monopole alone affect the unmarginalized fNL error by
about 2% for a nearly spectroscopic sample [σz=ð1þ zÞ ¼
0.003], whereas it is about 30% for the SPHEREx sample
with the worst redshift error [σz=ð1þ zÞ ¼ 0.2]. For refer-
ence, LSST has the requirement that σz=ð1þ zÞ < 0.05with
the goal being 0.02. [47], similar to the SPHEREx sample 3.
The behavior of the total result from combining all five

samples and the first six redshift bins is dominated by the
best redshift accuracy samples and does not suffer as
severely. More precisely, using l ¼ 0 alone gave a mar-
ginalized error of σfNL ¼ 0.86, which is 18% degradation
compared to the full result using the Fourier bispectrum
σfNL ¼ 0.73, whereas using lmax ¼ 2 with all l, m modes
gave σfNL ¼ 0.75, within 3% of the full error.
Beside the above effects, the photo-z error is also

important to control carefully because of how sensitively
it can affect the constraining power; varying the redshift
errors of all samples by �20% led to a �8% change on the
final σfNL for the SPHEREx bispectrum. This variation is at
the level of the difference between the mean and the

maximum of the redshift error distribution for a given
sample. This finding motivates future work in which
we would need to characterize the precise shape of the
photo-z error distribution from simulations and investi-
gate the impact of its associated uncertainties on param-
eter constraints.
Finally, we also explored the trade-off in constraining

power that comes with reducing the data vector size by
selecting subsets of the multitracer combinations and
subsets of triangle shapes. We found that although samples
4 and 5 have large redshift errors and are not constraining
by themselves, their larger number densities do help with
reducing cosmic variance when used in combination with
the other samples in a multitracer setting. We found that the
first two, three and four tracers would raise the fNL error by
91%, 37% and 12%, respectively, from the five-tracer
result. Correspondingly, the data vector size reduction
would be a factor of 16, 5, and 2 for using two, three
and four tracers, respectively, which does not seem to be
compelling enough given the large amount of fNL con-
straint it would sacrifice.
For the triangle shapes, we looked at subsets of triangles

with squeezing factor thresholds Smin ¼ 2, 3 and 4, and
found in the case of a representative redshift bin (redshift
bin 3), the marginalized fNL error went up by 6%, 11% and
17% while the data vector size reduced by a factor of 3, 6
and 9, respectively. The bias parameters errors were the
most impacted, going up by a factor 2 to 3 depending on
the Smin chosen and in a fashion mostly independent of the
redshift uncertainty of the sample. This is because the fNL
constraint is dominated by squeezed triangles, whereas the
galaxy bias parameter constraints receive contributions
from all triangles. Since the power spectrum would also
be constraining the bias parameters and the other cosmo-
logical parameters, singling out highly squeezed triangles
might be an interesting option to reduce the data vector size
in a combined analysis.
Our fiducial analysis here can be extended in various

ways. We explored the dependence of σfNL on kmin and kmax

for individual redshift bins and found a strong dependence
that is roughly linear. This suggests that there is more
information to gain whenever kmin or kmax can be extended.
On the kmin side, surveys are often limited by systematics
on the large angular scales; on the kmax side, one may be
limited by the accuracy with which the nonlinear bispec-
trum can be modeled. There are also a variety of redshift
space effects that can be improved in our modeling, for
example including AP effects and using a more precise
redshift error distribution from simulations instead of
assuming a Gaussian distribution. Moreover, we have
omitted the modeling of wide-angle and GR effects which
appear on large scales, as well as window function effects.
The presence of wide-angle and window function effects
would lead to the mixing the signal between different
multipoles.

FIG. 6. Plot of the marginalized σfNL for the full bispectrum vs
kmax for individual redshift bins.
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Additionally, it would also be highly desirable to explore
compression methods for the bispectrum. Examples include
the modal bispectrum (which has been recently extended to
include RSD and fNL effects [20]), the massively optimized
parameter estimation and data (MOPED) compression
technique [48] (which uses the score function—the gradient
of the log likelihood—to achieve a compression where the
data vector size is the same as the number of parameters of
interest) and its generalized versions leading to likelihood-
free inference [49] (for an application to the galaxy bispec-
trum, see e.g. [50]).
In comparison with the previous SPHEREx forecast in

Ref. [14], our assumptions and modeling differed in the
following ways. We used a slightly more conservative
kmax ¼ 0.2ð1þ zÞ hMpc−1 and used only a linear model-
ing whereas the previous forecast had kmax ¼ 0.25ð1þ
zÞ hMpc−1 using a simple nonlinear modeling. We treated
the signal dependence on the triangle orientations in order
to model the impact of RSD and photometric redshift errors
more accurately instead of using a cutoff in kk. We
employed a slightly different bias prescription; while we
still only varied the linear galaxy biases, we modeled the
signal with a few more second-order effects in addition to
the b20 term, namely the bs2 , b11, b02 and n2 terms which
depended on the values of b10.
Finally, we performed a bispectrum-only forecast for

SPHEREx, whereas adding the power spectrum should
be helpful in breaking various parameter degeneracies
(e.g. [17]). In particular, we expect that the combined
power spectrum and bispectrum forecast would improve
significantly on the nrun constraint than that from the power
spectrum or bispectrum alone [14]. We also expect that
there would be more degeneracy breaking for galaxy bias
parameters. Adding the bispectrum should also help to
mildly break the complete degeneracy between bϕfNL and
fNL in the power spectrum, should one choose to use these
parameter combinations [27]. To do so accurately, we
would need to take into account the covariance between
the power spectrum and the bispectrum. Moreover, we have
assumed a Gaussian covariance throughout our forecast,
whereas including the non-Gaussian covariance could
affect the constraints on fNL [51,52]. We leave these
considerations for future work.
In sum, the bispectrum multipoles are an important

statistics that current and future surveys will measure in
order to best constrain the primordial non-Gaussianity and
study its implications for inflation. Being specifically
optimized for this goal, the SPHEREx mission will achieve
an all-sky observation in 102 NIR bands, making available

multiple galaxy samples with redshift measurements rang-
ing from spectrocopiclike to photometriclike. We presented
a refined forecast that is able to account for the redshift
space effects more accurately than before, and studied their
impact on fNL constraints. Characterizing the constraining
power of SPHEREx will be important as we seek to
understand and make use of this dataset to shed light on
the details of how inflation proceeded.
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APPENDIX: SURVEY PARAMETERS

We now list the redshift bins and the fiducial values for
the galaxy linear biases and number densities used in this
work in Tables II–IV, respectively.

TABLE II. Redshift bin definition for the 11 redshift bins for
SPHEREx.

Redshift bin zmin zmin

1 0 0.2
2 0.2 0.4
3 0.4 0.6
4 0.6 0.8
5 0.8 1.0
6 1.0 1.6
7 1.6 2.2
8 2.2 2.8
9 2.8 3.4
10 3.4 4.0
11 4.0 4.6
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