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We show that it is possible to directly measure the formation time of galaxies using a large-scale
structure. In particular, we show that the large-scale distribution of galaxies is sensitive to whether galaxies
form over a narrow period of time before their observed times, or are formed over a timescale on the order
of the age of the Universe. Along the way, we derive simple recursion relations for the perturbative terms of
the most general bias expansion for the galaxy density, thus fully extending the famous dark-matter
recursion relations to generic tracers.
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I. INTRODUCTION AND CONCLUSIONS

The establishment of the standard cosmological model,
from the hot big bang at early times to the cosmological
constant and cold dark-matter dominated late-time accel-
erated expansion, is one of the great triumphs of modern
science. It gives a depiction of a dynamical Universe that
has evolved over billions of years from a dense cosmic soup
to a sparse sprinkling of stars, galaxies, and dark-matter
halos. This familiar picture was not always obvious,
however.
For example, there was much debate in the second half of

the twentieth century about the so-called 1948 steady-state
model of the Universe [1]. This model proposed that
properties of the Universe, including number and types
of galaxies, did not change over time. Empirical evidence,
of course, eventually contradicted these ideas. One such
set of evidence was the observation that properties of
galaxies, including color and estimated ages, changed with
their measured redshifts (see, for example, [2,3]), sug-
gesting that the galaxies themselves evolved over time. This
confusion, though, is understandable. Indeed, we cannot
watch objects in the Universe evolve for very long; we can
only see static snapshots at various times in the past,
making it quite challenging to directly probe cosmic
timescales.
A concept that is related to, but distinct from, the

timescale of cosmic evolution is what we call a cosmic
response time, i.e., the temporal extent to which the past
influences galaxies at a given time.1 This in turn is related

to the formation time of galaxies, which is at least as long as
the response time.
In this work, we provide, as far as we can tell, the first

directly cosmologically observable signals that are sensi-
tive to the formation time of galaxies (or galaxy clusters and
other gravitationally bound objects in general). By studying
the response time of galaxies, we show that the static
pictures that we take of the Universe (in galaxy surveys, for
example) can contain unique signatures that are only
possible if galaxies have been forming over time periods
on the order of the age of the Universe. Even if we have an
incredibly large amount of evidence that this must be
the case, the possibility of a direct cosmological observa-
tion is, to us, quite an extraordinary prospect.2

Furthermore, since our reasoning is based on the
effective field theory of large-scale structure (EFT of
LSS, [7,8]), which is the unique theory of gravity, cold
dark matter, baryons, and tracers on large scales, our
conclusions do not depend on specific modeling choices
about stars or galaxies. Given the recent success of using
the EFT of LSS to analyze galaxy clustering data [9–13],
we now have the intriguing opportunity to explore the
Universe in this exciting new way.
It has been known for some time (see, e.g., [14,15]) that

on large scales, the galaxy distribution can be expressed as
a Taylor expansion in the fluctuations of the underlying
dark-matter distribution, an approach that goes by the
general name of the bias expansion (for a modern review,

*Corresponding author: mlewandowski@phys.ethz.ch
1Mathematically, this is the timescale of support of the Green’s

function describing the response.

2We stress that in this work, we are not concerned with ages or
generic evolution of structures (for which there is abundant
astrophysical evidence, some of which we mentioned above), but
with the response time of structures. Previous studies in this
direction include numerical simulations and the so-called
assembly bias [4,5], although it can be challenging to directly
relate the latter to galaxy formation time [6].
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see Ref. [16]). This makes intuitive sense, since galaxies
tend to form in regions of space where the dark-matter
density, and hence the gravitational potential, is highest.
In [17] it was argued that this dependence should be on
second spatial derivatives of the gravitational potential and
gradients of the dark-matter velocity, and a straightforward
extension allows for a dependence on spatial derivatives of
these quantities. But is galaxy clustering only affected by
the nearby dark-matter distribution at the time that we
measure it (local in time), or does the configuration of the
dark matter at earlier times, of order a Hubble time earlier,
have an impact (nonlocal in time)? Said another way, given
two identical localized dark-matter configurations at a
given time, will the same galaxies always form, or do
we need to know the whole history of that configuration?
This question was conceptually answered in [18], which

pointed out that the most general dependence, based on
the symmetries relevant to dark-matter and baryon dynam-
ics and galaxy formation on large scales, which are the
equivalence principle and diffeomorphism invariance (the
nonrelativistic limit of which is called Galilean invariance),
is on second spatial derivatives of the gravitational poten-
tial, gradients of the matter velocity (and the relative
velocity directly), and their spatial gradients, integrated
over all past times. This makes the EFT of LSS generally
local in space, but nonlocal in time.3

However, until now, the most advanced perturbative
calculations have shown that the non-local-in-time bias
expansion up to fourth order is mathematically equivalent
to the local-in-time expansion [21]. As we show in this
work, though, this is no longer true at fifth order, and thus it
is possible to see distinctly non-local-in-time effects in the
galaxy-clustering signal. Measuring the size of these effects
would then give us a direct indication of the formation
timescale of galaxies. As a side observation, this timescale
would also give a direct (versus indirect) lower bound on
the age of the Universe.
Notes. We work in the Newtonian approximation where

Φðx⃗; tÞ is the gravitational potential, aðtÞ is the scale factor
of the Universe, the Hubble parameter is defined by
HðtÞ≡ ȧðtÞ=aðtÞ, and the overdot “̇ ” stands for a deriva-
tive with respect to t. The dark-matter fluid is described by
the overdensity δðx⃗; tÞ and fluid velocity v⃗ðx⃗; tÞ. The
growth factor DðtÞ is defined as the growing mode solution
to the linear equation of motion for δ, i.e., satisfies
D̈þ 2HḊ − 3ΩmH2D=2 ¼ 0, where ΩmðtÞ is the time-
dependent matter fraction.
The building blocks of Galilean scalars are the dimen-

sionless tensors,

rij ≡ 2∂i∂jΦ
3Ωma2H2

; and pij ≡ −
D
aḊ

∂ivj: ð1Þ

For brevity, we will always denote the traces δijrij ¼ δ
(which is true because of the Poisson equation) and δijpij≡θ
(which is our definition of θ). Then, for other contractions,
we write the matrix products as simple multiplication, i.e.,
r2 ¼ rijrji, r2p ¼ rijrjkpki, rprp ¼ rijpjkrklpli, and so on
(repeated indices are always summed over). We work in the
so-called Einstein–de Sitter approximation, where the time
dependence of perturbations is given by

δðnÞðx⃗; tÞ ¼
�
DðtÞ
Dðt0Þ

�
n
δðnÞðx⃗; t0Þ;

θðnÞðx⃗; tÞ ¼
�
DðtÞ
Dðt0Þ

�
n
θðnÞðx⃗; t0Þ: ð2Þ

In thiswork,we focus on the lowest-derivative bias terms that
are sufficient to establish our claims, and leave a discussion
of higher-derivative bias (and counterterms) for future work.
Finally, we focus on the real space (as opposed to redshift
space) prediction, which in any case is the leading signal if
one restricts observations to directions near the line of sight.
We leave extending our results to redshift space to future
work. For a much more detailed explanation of the notation
used here, see Ref. [21].

II. COMPLETE BIAS EXPANSION
AND RECURSION

We start by constructing the most general bias expansion
for the galaxy overdensity δgðx⃗; tÞ≡ ðngðx⃗; tÞ − n̄gðtÞÞ=
n̄gðtÞ, where ngðx⃗; tÞ is the galaxy number-density field
and n̄gðtÞ is the average number density of galaxies, that is
consistent with the equivalence principle, diffeomorphism
invariance, and is nonlocal in time. Up to Nth order in
perturbations, we have

δgðx⃗; tÞjN ¼
XN
n¼1

δðnÞg ðx⃗; tÞ; ð3Þ

where the expression at nth order is given by the non-local-
in-time integral over the sum of all possible local-in-time
functions Om up to order n [18],

δðnÞg ðx⃗; tÞ ¼
X
Om

Z
t
dt0Hðt0ÞcOm

ðt; t0Þ

× ½Omðx⃗flðx⃗; t; t0Þ; t0Þ�ðnÞ; ð4Þ

evaluated along the fluid element

x⃗flðx⃗; t; t0Þ ¼ x⃗þ
Z

t0

t

dt00

aðt00Þ v⃗ðx⃗flðx⃗; t; t
00Þ; t00Þ; ð5Þ

and we use the square brackets and superscript notation
½·�ðnÞ to mean that we perturbatively expand the expression

3See also [19,20] for discussions of non-local-in-time effects in
dark-matter clustering.
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inside of the brackets and take the nth order piece.4

Neglecting baryons, as they are a small effect [27,28], in
Eq. (4), since δg is a Galilean scalar, the equivalence
principle implies that the set of functions fOmg is given by
all possible rotationally invariant contractions of the dark-
matter fields rij and pij, and integrating the Om along the
fluid element is the most general way to write a non-local-
in-time expression for δg. All of the complicated details of
galaxy-formation physics is then encoded in the functions
cOm

, which are a priori unknown (from the EFT point of
view) time-dependent kernels, which physically can be
thought of as the response of the galaxy overdensity to a
given field at a given time. The local-in-time expansion is
given by setting cOm

ðt; t0Þ ¼ cOm
ðtÞδDðt − t0Þ=HðtÞ. Notice

that we do not include any time derivatives of rij or pij in
the set fOmg because these operators are not present in the
strictly local-in-time limit (i.e., they would be suppressed
with respect to other terms by H=ωshort ≪ 1 where 1=ωshort
is the timescale of the relevant local-in-time physics) [18].
Thus, our expansion covers all Hubble-scale non-local-in-
time effects. From now on, in the list of functions fOmg, we
identify the subscript m on Om to denote that the function
starts at order m, i.e., m ¼ 3 for δ2θ; δ3; r2p;….
In this way, the bias expansion at order n is reduced to an

algorithmic procedure. To create the list of seed functions
fOmg, we list all contractions up to n factors of rij and pij.
We then iteratively Taylor expand Omðx⃗flðx⃗; t; t0Þ; t0Þ
around x⃗ using the recursive definition Eq. (5), and take
the nth order piece. After performing this expansion, we
end up with an expression that can be cast in the following
notation [21]:

½Omðx⃗flðx⃗; t; t0Þ; t0Þ�ðnÞ

¼
Xn−mþ1

α¼1

�
Dðt0Þ
DðtÞ

�
αþm−1

CðnÞ
Om;α

ðx⃗; tÞ: ð6Þ

The resulting bias functions CðnÞ
Om;α

, which we say are in the
fluid expansion of the seed functionOm, are defined by the
expansion in Eq. (6), whose form is guaranteed by
assuming the scaling time dependence of the dark-matter
fields Eq. (2), as well as the implied relation

CðnÞ
Om;α

ðx⃗; tÞ ¼
�
DðtÞ
Dðt0Þ

�
n
CðnÞ
Om;α

ðx⃗; t0Þ: ð7Þ

Plugging Eq. (6) into Eq. (4), and defining the expansion
coefficients

cOm;αðtÞ≡
Z

t
dt0Hðt0ÞcOm

ðt; t0Þ
�
Dðt0Þ
DðtÞ

�
αþm−1

; ð8Þ

we finally have the most general expansion of the over-
density at order n in terms of fields at the same time,

δðnÞg ðx⃗; tÞ ¼
X
Om

Xn−mþ1

α¼1

cOm;αðtÞCðnÞ
Om;α

ðx⃗; tÞ: ð9Þ

There is in fact a much simpler way to obtain the bias
functions CðnÞ

Om;α
, using recursion relations, which is an

additional key technical result of this work. While the
procedure described above is conceptually straightforward,
it can be practically quite cumbersome (see the derivation at
fourth order in [21], for example). The recursion relations
come in two parts. The first is the equal-time completeness
relation,

OðnÞ
m ðx⃗; tÞ ¼

Xn−mþ1

α¼1

CðnÞ
Om;α

ðx⃗; tÞ; ð10Þ

which is trivially obtained by setting t ¼ t0 in Eq. (6), and

where OðnÞ
m is the standard expansion of Om at nth order in

perturbations. The second, which captures the conse-
quences of expanding x⃗fl in Eq. (6), is the fluid recursion

CðnÞ
Om;α

ðx⃗; tÞ ¼ 1

n − α −mþ 1

×
Xn−1

l¼mþα−1
∂iC

ðlÞ
Om;α

ðx⃗; tÞ ∂i
∂
2
θðn−lÞðx⃗; tÞ; ð11Þ

which is valid for n − α −mþ 1 > 0. We explicitly derive
Eq. (11) in Appendix A. This recursion is reminiscent of
the famous dark-matter recursion relations [29], and pro-
vides, for the first time, a full generalization to generic
biased tracers. We give a diagrammatic representation of
this recursion relation in Fig. 1.
It is worth stressing that, unlike other treatments of

biased tracers (such as [30,31] and subsequent works), we
do not assume an instantaneous formation time of galaxies,
nor do we assume a continuity equation for galaxies.
Indeed, Eq. (11) is a consequence of Galilean invariance
(i.e. expanding x⃗fl), not of the conservation of galaxies.
Since we have formally done the integral over t0 in

Eq. (8), one might wonder where in Eq. (9) the non-local-
in-time effect has gone. Comparing Eq. (9) to the local-in-
time expression

δðnÞg;locðx⃗; tÞ ¼
X
Om

cOm
ðtÞOðnÞ

m ðx⃗; tÞ; ð12Þ

we see that the difference is in the basis functions of the
expansion (which as we will discuss below control the

4There was an interesting discussion [22] as to whether
intrinsic alignments (see Ref. [23] for an EFT description) of
galaxies are most affected by the gravitational field at late or early
times [24–26]. Our non-local-in-time bias expansion [Eq. (4)]
takes both possibilities into account.
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possible functional forms of the clustering signals), since
Eq. (9) is equivalent to Eq. (12) under the restriction that,
for all α, cOm;αðtÞ ¼ cOm

ðtÞ.

III. NON-LOCAL-IN-TIME BIAS IN LSS

We can now return to the main question posed by this
work: Is it possible to directly measure the effects of
nonlocality in time on galaxy clustering? In our perturba-
tive description, this is equivalent to the following math-
ematical question: Does the basis for the non-local-in-time
expansion Eq. (9) span a larger space than the basis for the
local-in-time expansion Eq. (12)? The answer, as we will
show below, is yes.
As shown in [21], the non-local-in-time and local-in-

time expansions are indeed equivalent up to fourth order in
perturbations.5 However, from the findings of this work,
this seems to simply be a consequence of expanding to low
orders in perturbation theory where there are too few
independent spatially local and Galilean invariant func-
tional forms available, since nonlocality in time is generi-
cally expected in the bias expansion [18].
So, to discover a non-local-in-time effect, we look to fifth

order. In particular, we will now find the non-local-in-time
basis for the expansion in Eq. (9). To find the fifth-order
functions CðnÞ

Om;α
, we form the set fOmg by finding all

rotationally invariant contractions of rij and pij up to fifth
order.Writing the first few terms, we have fOmg ¼ fδ; θ; δ2;
δθ; θ2; r2; rp; p2;…g, and overall there are 63 contractions

with up to five factors.6 We then find the functionsCðnÞ
Om;α

for
n ≤ 5 either by expanding x⃗fl as in Eq. (6), or, equivalently,
using the recursion relations [Eqs. (10) and (11)]. After this,
there are 151 bias functions for n ¼ 5. However, as described
in Appendix B, not all of these functions are independent. In
particular, we find a set of 122 degeneracy equations for
n ¼ 5, which means that there are 29 independent functions
that form the basis of the non-local-in-time expansion
Eq. (9).7 We provide all of the Fourier-space kernels relevant
for the fifth-order expansion, and confirm all degeneracy
equations, in associated Supplemental Material [35].
Next, we consider the basis of bias functions for the

local-in-time expression [Eq. (12)]. At fifth order, this
expansion starts with 63 terms; however, as before, not all
of them are linearly independent. We find 37 independent
degeneracy equations, and hence 26 independent functions
for the local-in-time bias expansion at fifth order. Indeed,
this is three less than the non-local-in-time expansion, and,
hence, the galaxy-clustering signal at fifth order is sensitive
to whether or not galaxies form on timescales of order
Hubble.
We are now in a position to explicitly give the fifth-order

basis derived for this work. To be more concrete, we can
write the fifth-order galaxy expansion in a basis with 26
elements that are local in time, and three that are nonlocal in
time. In this starting-from-time-locality (STL) basis, we
explicitly write

δð5Þg ðx⃗; tÞ ¼
X29
j¼1

b̃jðtÞLð5Þ
j ðx⃗; tÞ: ð13Þ

Wechoose the basis such that the elementswith j ¼ 1;…; 26
are a basis of the local expansion Eq. (12). Explicitly, we take

Lð5Þ
j ¼ Oð5Þ

m with the corresponding Om given by

fδ; θ; δθ; θ2; r2; rp; p2; θ3; r2p; rp2; p3;

r2θ; rpθ; p2θ; rp3; rprp; rp2δ; r3δ2;

δ5; r3θ; rp2θ; rpδθ; r2θ2; rpθ2; δθ3; θ4g; ð14Þ
for j ¼ 1;…; 26. Thus, the nonlocality in time is contained in
the final three basis elements, which we take to be

Lð5Þ
27 ¼ Cð5Þ

δ;5; Lð5Þ
28 ¼ Cð5Þ

r2;4; Lð5Þ
29 ¼ Cð5Þ

p3;3: ð15Þ

Nonzero b̃27, b̃28, and b̃29 can only come from non-local-
in-time physics, so we call them non-local-in-time bias

FIG. 1. Diagrammatic representation of one way of using the
recursion relations Eq. (10) and Eq. (11) to determine the full set

of bias functions CðnÞ
Om;α

in the fluid expansion of a seed function
Om. The red arrows indicate the use of the fluid recursion
Eq. (11), while the blue arrows indicate the use of the complete-
ness relation Eq. (10). Thus, the terms in the red shading
(α < n −mþ 1) are determined by the fluid recursion
Eq. (11) and the terms in the blue shading (α ¼ n −mþ 1)
are determined by the completeness relation Eq. (10).

5Focusing on up to fourth order, the authors of [16,32]
discussed how it is possible to map non-local-in-time terms into
very special non-local-in-space terms. The bases discussed there
are degenerate with a local-in-time and local-in-space one,
though [21].

6Here and in the rest of this work, since we work up to fifth
order, we have already taken into account degeneracies that come
from the fact that rð1Þij ¼ pð1Þ

ij in terms that start at fifth order. If we
do not do this, there are 130 contractions with up to five factors.

7Using the Lagrangian basis expansion, the authors of [33,34]
derived the number of independent fifth-order biases as 29, which
is in agreement with our findings.
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parameters.8 We connect this basis to the so-called basis of
descendants and show how fourth- and lower-order biases
automatically consistently appear in Eq. (13) in Appendix C.
To see more quantitatively how the non-local-in-time

bias parameters measure the timescale of galaxy formation,
consider the expression Eq. (8) for the bias parameters.
Assuming that the kernel cOm

ðt; t0Þ has support over a
timescale of order 1=ω and expanding around the local-in-
time limit, we have

cOm;αðtÞ ≈ cOm
ðtÞ

�
1þ gOm;αðtÞ

H
ω
þ � � �

�
; ð16Þ

where the � � � represents terms higher order in H=ω, and
gOm;αðtÞ ∼Oð1Þ. Since the non-local-in-time bias parame-
ters b̃27, b̃28, and b̃29 all vanish in the local-in-time limit,
they are proportional to (at least) H=ω. The size of the
deviation from the first term, which is the local-in-time
piece, is controlled by H=ω: if there is a sizable deviation
from the local-in-time limit, then ω ∼H, and thus the
timescale of the kernel cOm

ðt; t0Þ is of the order 1=H.9 In our
case, this happens if b̃27, b̃28, or b̃29 are order unity. This in
turn would mean that the formation of the observed
population of galaxies has been affected by the state of
the Universe up to a Hubble time ago, and thus that it has
formed on a timescale on the order of the age of the
Universe.
It can be illuminating to momentarily consider a system

that is truly local in time. In this case, as we have discussed
above, the bias parameters are expected to scale like
H=ωshort ≪ 1. However, in the EFT, higher-order loops will
generically contribute to the lower-order bias parameters.
Importantly, for a system that is truly local in time, those
loops are expected to shift the bias parameters also by an
amount that scales likeH=ωshort. Given, though, that the cold
dark-matter fluid is itself nonlocal in time [19,20], we expect
that higher-order dark-matter loops will generically contrib-
ute ∼Oð1Þ to the galaxy bias parameters. We remind the
reader that by galaxies in this work, we mean gravitationally
bound structures that form around the nonlinear scale at a
given Hubble time.

IV. OBSERVABLE SIGNATURES

Until now, we have focused on the perturbative galaxy
overdensity field itself. In large-scale structure analyses, we
typically compare to data using correlation functions (or
n-point functions if they contain n fields) of the overdensity
fields of various tracers. Thus, one way to measure the non-
local-in-time effect that we have discovered in this work is
in correlation functions. Since we found that this effect
arises at fifth order in perturbations, the lowest order
observables sensitive to it are the two-loop two-point
function through

hδð5Þg1 ðx⃗1Þδð1Þg2 ðx⃗2Þi; ð17Þ

the two-loop three-point function through

hδð5Þg1 ðx⃗1Þδð2Þg2 ðx⃗2Þδð1Þg3 ðx⃗3Þi; ð18Þ

the one-loop four-point function through

hδð5Þg1 ðx⃗1Þδð1Þg2 ðx⃗2Þδð1Þg3 ðx⃗3Þδð1Þg4 ðx⃗4Þi; ð19Þ

the one-loop five-point function through

hδð5Þg1 ðx⃗1Þδð2Þg2 ðx⃗2Þδð1Þg3 ðx⃗3Þδð1Þg4 ðx⃗4Þδð1Þg5 ðx⃗5Þi; ð20Þ

and the tree-level six-point function through

hδð5Þg1 ðx⃗1Þδð1Þg2 ðx⃗2Þδð1Þg3 ðx⃗3Þδð1Þg4 ðx⃗4Þδð1Þg5 ðx⃗5Þδð1Þg6 ðx⃗6Þi; ð21Þ

where we have used the subscript gi to denote possibly
different tracer samples (each of which can have a different
set of bias parameters), and we have taken all fields to be at
the same time t and dropped that argument to remove
clutter.
As two explicit examples, consider the contributions to

the two-loop two-point function [Eq. (17)] and the tree-
level six-point function [Eq. (20)] for gi ¼ g for
i ¼ 1;…; 6. Using the STL basis [Eq. (13)], we have the
explicit non-local-in-time contributions

X29
j¼27

b̃jhLð5Þ
j ðx⃗1Þδð1Þg ðx⃗2Þi;

X29
j¼27

b̃jhLð5Þ
j ðx⃗1Þδð1Þg ðx⃗2Þδð1Þg ðx⃗3Þδð1Þg ðx⃗4Þδð1Þg ðx⃗5Þδð1Þg ðx⃗6Þi;

ð22Þ

to the two-point and six-point functions, respectively. As
we have seen, these would not be present in the galaxy
correlation functions if galaxies formed in a local-in-time
way. This makes them concrete, direct, observable signa-
tures of the formation time of galaxies.

8Here we reference the size of the physical bias parameters,
which are generally made up of a combination of bare and
counterterm contributions.

9Of course, the measurement of a smaller deviation from the
local-in-time limit means that the formation timescale could be
correspondingly smaller. It could also mean that the theory is
fine-tuned in the sense that higher-order loop contributions
accidentally largely cancel the lower-order biases. On the other
hand, it could also be that for a quasi-local-in-time theory, the
coefficients of some non-local-in-time operators are accidentally
large, which we refer to as being anomalous. These accidents
becomemore andmore unlikely as onemeasures more parameters.
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APPENDIX A: PROOF OF FLUID RECURSION

To derive Eq. (11), we will want to take d=dt of Eq. (6),
which means that we will need to know ∂tx⃗flðx⃗; t; t0Þ. To
find that, we notice that by definition the fluid element
satisfies the composition rule,

x⃗flðx⃗flðx⃗; tin; tÞ; t; t0Þ ¼ x⃗flðx⃗; tin; t0Þ: ðA1Þ

Since the right-hand side is independent of t, this implies

d
dt

x⃗flðx⃗flðx⃗; tin; tÞ; t; t0Þ ¼ 0: ðA2Þ

Using the chain rule, and

d
dt

x⃗flðx⃗; tin; tÞ ¼
1

aðtÞ v⃗ðx⃗flðx⃗; tin; tÞ; tÞ; ðA3Þ

which follows immediately from the definition of x⃗fl
Eq. (5), this implies

0 ¼
�
∂

∂t
x⃗flðy⃗; t; t0Þ þ

viðy⃗; tÞ
aðtÞ

∂

∂yi
x⃗flðy⃗; t; t0Þ

�����
y⃗¼x⃗flðx⃗;tin;tÞ

:

ðA4Þ

Since the initial tin is arbitrary, we can take tin ¼ t, which
gives

�
∂

∂t
þ viðx⃗; tÞ

aðtÞ
∂

∂xi

�
x⃗flðx⃗; t; t0Þ ¼ 0: ðA5Þ

This equation simply says that the convective derivative of
the fluid element is zero, which makes intuitive sense since
the convective derivative is defined to be along the
fluid flow.
Now we take d=dt of both sides of Eq. (6). The right-

hand side is simple, and we have [defining Dα
mðt0; tÞ≡

ðDðt0Þ=DðtÞÞαþm−1 to reduce clutter]

DðtÞ
ḊðtÞ

d
dt

Xn−mþ1

α¼1

Dα
mðt0; tÞCðnÞ

Om;α
ðx⃗; tÞ

¼
Xn−mþ1

α¼1

Dα
mðt0; tÞðn − α −mþ 1ÞCðnÞ

Om;α
ðx⃗; tÞ; ðA6Þ

where we have used Eq. (7) for the time dependence

of CðnÞ
Om;α

.

On the left-hand side, we have

d
dt

½Omðx⃗flðx⃗; t; t0Þ; t0Þ�ðnÞ ¼
�
d
dt

Omðx⃗flðx⃗; t; t0Þ; t0Þ
�ðnÞ

¼
�
∂

∂t
xiflðx⃗; t; t0Þ

∂

∂yi
Omðy⃗; t0Þjy⃗¼x⃗flðx⃗;t;t0Þ

�ðnÞ

¼
�
−
vjðx⃗; tÞ
aðtÞ

∂

∂xj
xiflðx⃗; t; t0Þ

∂

∂yi
Omðy⃗; t0Þjy⃗¼x⃗flðx⃗;t;t0Þ

�ðnÞ

¼
�
−
vjðx⃗; tÞ
aðtÞ

∂

∂xi
Omðx⃗flðx⃗; t; t0Þ; t0Þ

�ðnÞ

¼ ḊðtÞ
DðtÞ

�
∂i

∂
2
θðx⃗; tÞ ∂

∂xi
Omðx⃗flðx⃗; t; t0Þ; t0Þ

�ðnÞ

¼ ḊðtÞ
DðtÞ

Xn−1
l¼m

∂i

∂
2
θðn−lÞðx⃗; tÞ ∂

∂xi
½Omðx⃗flðx⃗; t; t0Þ; t0Þ�ðlÞ;

ðA7Þ

where we have used Eq. (A5) to go from the second to third
line, the chain rule to go from the third to fourth line, and
the definition of θ from Eq. (1) in the fifth line. Now, we use
Eq. (6) to replace ½Omðx⃗flðx⃗; t; t0Þ; t0Þ�ðlÞ to get

DðtÞ
ḊðtÞ

d
dt

½Omðx⃗flðx⃗; t; t0Þ; t0Þ�ðnÞ

¼
Xn−1
l¼m

Xl−mþ1

α¼1

Dα
mðt0; tÞ

∂i

∂
2
θðn−lÞðx⃗; tÞ∂iCðlÞ

Om;α
ðx⃗; tÞ

¼
Xn−m
α¼1

Dα
mðt0; tÞ

Xn−1
l¼mþα−1

∂i

∂
2
θðn−lÞðx⃗; tÞ∂iCðlÞ

Om;α
ðx⃗; tÞ;

ðA8Þ

where we have simply changed the order of the sums
between the second and third lines. Equating the coef-
ficients of each power of Dðt0Þ in Eqs. (A6) and (A8) then
gives our recursion relation [Eq. (11)].

APPENDIX B: DEGENERACY EQUATIONS

As mentioned in the main text, not all of the bias
functions CðnÞ

Om;α
at a given n are linearly independent in

the sense that

X
Om

Xn−mþ1

α¼1

dðnÞi;Om;α
CðnÞ
Om;α

ðx⃗; tÞ ¼ 0; ðB1Þ

for some time-independent coefficients dðnÞi;Om;α
for

i ¼ 1;…; NðnÞ
d , where NðnÞ

d ≡ rank½dðnÞ� is the number of
independent degeneracy equations. In particular, we find

Nð5Þ
d ¼ 122, and [21] foundNð4Þ

d ¼ 73. Additionally, letting
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NðnÞ
C be the number of CðnÞ

Om;α
functions that result after the

procedure described in the main article, we findNð5Þ
C ¼ 151

and [21] found Nð4Þ
C ¼ 88. Finally, using NðnÞ

b ≡ NðnÞ
C −

NðnÞ
d to denote the number of basis elements at order n, this

means that Nð5Þ
b ¼ 29 and Nð4Þ

b ¼ 15.10 We confirm all of
the fifth-order degeneracy equations in the associated
Supplemental Material.
Thus, one can solve the degeneracy equations [Eq. (B1)]

in terms of NðnÞ
b basis elements, which we denote generi-

cally as EðnÞ
j ðx⃗; tÞ for j ¼ 1;…; NðnÞ

b . Since this is a basis,
all of the original functions can be written in terms of it, so
we have

CðnÞ
Om;α

ðx⃗; tÞ ¼
XNðnÞ

b

j¼1

AðnÞ
Om;α;j

EðnÞ
j ðx⃗; tÞ; ðB2Þ

for some time-independent coefficients AðnÞ
Om;α;j

. Plugging
Eq. (B2) into Eq. (9) then gives

δðnÞg ðx⃗; tÞ ¼
XNðnÞ

b

j¼1

eðnÞj ðtÞEðnÞ
j ðx⃗; tÞ; ðB3Þ

where eðnÞj ðtÞ ¼ P
Om

Pn−mþ1
α¼1 cOm;αðtÞAðnÞ

Om;α;j
. The coeffi-

cients ejðtÞ are called bias parameters, and we have now
written the galaxy overdensity in terms of the minimal
number of linearly independent functions.

APPENDIX C: BASIS OF DESCENDANTS

Another, perhapsmore natural, choice of basis functions is
the so-called basis of descendants [36],where ifCðnÞ

Om;α
is used

at order n, then Cðnþ1Þ
Om;αþ1 is used at order nþ 1. We write the

fifth-order expansion in the basis of descendants as

δð5Þg ðx⃗; tÞ ¼
X29
j¼1

bjðtÞBð5Þ
j ðx⃗; tÞ: ðC1Þ

As shown below, the first 15 terms in Eq. (C1) are
determined by the fourth-order terms. That is, for
j ¼ 1;…; 15, the bj in Eq. (C1) are the same as those in
[21], and the basis functions are given by

Bð5Þ
j ¼ Bð4Þ

j j
Cð4Þ
Om;α→Cð5Þ

Om;α
; ðC2Þ

where the Bð4Þ
j are given explicitly in [21]. For the new

elements derived here, i.e., j ¼ 16;…; 29, we have

Bð5Þ
j ¼ Cð5Þ

Om;α
, where the indices Om; α take the following

values for the given j:

j∶ 16 17 18 19 20 21 22

Om; α∶ δ; 5 δ2; 4 r2; 4 δ3; 3 r3; 3 r2δ; 3 δ4; 2

j∶ 23 24 25 26 27 28 29

Om; α∶ r3δ; 2 r4; 2 δ5; 1 r5; 1 r4δ; 1 r3δ2; 1 p3; 3
:

ðC3Þ

We also note that fifth order is the first time that ∂ivj has to
be used as a seed function to form a basis, for example

through Cð5Þ
p3;3

above. This is contrasted with the case at

fourth order where ∂i∂jΦ is enough [21].
Converting between the STL basis and the basis of

descendants, we find the following expression for the non-
local-in-time bias parameters and the basis-of-descendants
bias parameters:

b̃27 ¼ b1 − 4b2 þ 6b3 − 4b4 þ 90b8 − 76b9 þ b16;

b̃28 ¼ b18 − b9;

b̃29 ¼ −
4b8
3

þ 4b9
3

−
10b11
3

þ 7b20
3

þ b29: ðC4Þ

APPENDIX D: LOWER-ORDER BIAS
PARAMETERS

Here we show how bias parameters at fourth order
appear automatically as biases at fifth order. For notational
convenience, in this Appendix we will use Γ as the

combined index Om; α, as in CðnÞ
Γ ≡ CðnÞ

Om;α
, and Γn as

the set of the relevantOm and α at order n, as defined in the
sum in Eq. (9). We start with the fifth-order degeneracy
equations. It turns out, as we explicitly check in the
Supplemental Material, that the full set of degeneracy

equations satisfied by Cð5Þ
Γ , Eq. (B1) with n ¼ 5, can be

put in the block form

0 ¼
X
Γ∈Γ4

dð4Þi;ΓC
ð5Þ
Γ ðx⃗; tÞ þ

X
Γ∈Γ5nΓ4

d̃ð5Þi;ΓC
ð5Þ
Γ ðx⃗; tÞ; ðD1Þ

for i ¼ 1;…; Nð5Þ
d , with dð4Þi;Γ ¼ 0 for i∈ ½Nð4Þ

d þ 1; Nð5Þ
d � and

d̃ð5Þi;Γ ¼ 0 for i∈ ½1; Nð4Þ
d �. For i ¼ 1;…; Nð4Þ

d , the second

term on the right-hand side of Eq. (D1) vanishes, so theCð5Þ
Γ

with Γ∈Γ4 satisfy the same equations as the fourth-order
functions, Eq. (B1) with n ¼ 4. Therefore we can write

10For completeness, we also have Nð3Þ
b ¼ 7, Nð2Þ

b ¼ 3, and
Nð1Þ

b ¼ 1 with this method [36].
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them in an analogous way to the n ¼ 4 case of Eq. (B2),
that is

Cð5Þ
Γ ðx⃗; tÞ ¼

XNð4Þ
b

j¼1

Að4Þ
Γ;jE

ð5Þ
j ðx⃗; tÞ; ðD2Þ

for Γ∈Γ4, with

Eð5Þ
j ≡ Eð4Þ

j j
Cð4Þ
Γ →Cð5Þ

Γ
; ðD3Þ

for j ¼ 1;…; Nð4Þ
b . Said another way, since the Eð4Þ

j are just

linear combinations of some Cð4Þ
Γ , we define Eð5Þ

j for j ¼
1;…; Nð4Þ

b to be the same expressions as Eð4Þ
j , but with Cð4Þ

Γ

replaced with Cð5Þ
Γ , i.e.,

Eð4Þ
j ðx⃗; tÞ ¼

X
Γ∈Γ4

βð4Þj;ΓC
ð4Þ
Γ ðx⃗; tÞ;

Eð5Þ
j ðx⃗; tÞ ¼

X
Γ∈Γ4

βð4Þj;ΓC
ð5Þ
Γ ðx⃗; tÞ; ðD4Þ

for some coefficients βð4Þj;Γ.

Now, the bias expansion at fifth order is

δð5Þg ðx⃗; tÞ ¼
X
Γ∈Γ5

cΓðtÞCð5Þ
Γ ðx⃗; tÞ: ðD5Þ

The sum above can be split into a sum over Γ∈Γ4 and a
sum over Γ∈Γ5nΓ4. For the sum over Γ4, we have

X
Γ∈Γ4

cΓðtÞCð5Þ
Γ ðx⃗; tÞ ¼

XNð4Þ
b

j¼1

eð4Þj ðtÞEð5Þ
j ðx⃗; tÞ; ðD6Þ

where we have used Eq. (D2) and the definition of eð4Þj ðtÞ
below Eq. (B3). Thus, the degeneracy equations [Eq. (D1)]
ensure that it is exactly the fourth-order bias parameters

eð4Þj ðtÞ that appear in Eq. (D6). Then, for the sum over
Γ∈Γ5nΓ4 in Eq. (D5), one can solve for the remaining

Nð5Þ
b − Nð4Þ

b basis elements using the rest of the degeneracy
equations in Eq. (D1), and this will introduce the additional
bias parameters that were not present at fourth order. Since

this is true for generic bias parameters eð4Þj ðtÞ, it is true in
particular for the basis of descendant bias parameters

bð4Þj ðtÞ in Eq. (C1).
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