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We consider a cosmic string moving through a gas of superfluid dark matter (SFDM) particles and
analyze how it affects the dark matter distribution. We look at two different cases; first, a cosmic string
passing through an already condensed region, and second, through a region that is not yet condensed. In the
former, the string induces a weak shock in the superfluid, and the Bose-Einstein condensate (BEC)
survives. In the latter, a wake of larger density is formed behind the string, and we study under which
conditions a BEC can be formed in the virialized region of the wake. By requiring the thermalization of the
DM particles and the overlap of their de Broglie wavelengths inside the wake, we obtain an upper bound on
the mass of the dark matter particles on the order of 10 eV, which is compatible with typical SFDMmodels.
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I. INTRODUCTION

The fundamental nature of dark matter (DM) remains a
significant open problem in cosmology. Although the
ΛCDM model successfully describes it, on large scales,
as a fluid of collisionless particles and vanishing sound
speed, small DM interactions with itself or other species
would affect its small-scale distribution and behavior. In
fact, there is a striking correlation between the acceleration
in galaxies and the total baryonic mass within them [1,2].
These and other correlations [3] challenge the cold DM
picture on galactic scales [4] but can be accounted for by
the superfluid dark matter approach [5].
Superfluid dark matter models are essentially based on

the formation of a Bose-Einstein condensate (BEC) of DM
particles on galactic scales and its associated phonon
excitations [6–18] (see also [19–21] for studies of cosmo-
logical BEC and [22–24] for a more complete list of
references). The phonons might mediate a long-range
interaction between the baryons, which reproduce the
modified Newtonian dynamics (MOND) of the baryonic
acceleration on such scales [25]. Given their typical speeds
in galaxies, the (supposedly bosonic) DM particles should
have a mass of the order of eV or less for the BEC to be
formed [16]. Moreover, thermal effects should be included
so that the condensed region is a genuine superfluid with
inviscid and normal flows, and the density profile of finite
temperature superfluid cores within galaxies can be com-
puted for different superfluid equations of state [26].

Finite temperature superfluids are described by the
two-fluid model historically initiated by London and
Tisza [27–29] but independently established by Landau [30]
(see also [31,32] for historical notes). In this model, a
superfluid has two associated flows, an inviscid and a normal
one, in which entropy and temperature can only be trans-
ported by the latter. One commonly talks about a “two-
component” fluid where the superfluid component is a BEC,
and the normal component is composed of quasiparticles in
thermal equilibrium [33,34]. The relative energy density in
these components depends on the temperature, and only the
normal component is present for temperatures greater than
the BEC critical temperature. The Landau two-fluid model
predicted two kinds of sounds in superfluids; the usual
adiabatic one, where perturbations in the energy density and
pressure are propagated with sound speed cs1, and another
one associated with the propagation of entropy and temper-
ature fluctuations with sound speed cs2. Explaining these
sound speeds for Helium II is one of the great achievements
of the Landau two-fluid model.
Superfluid DM would also exhibit wavelike interference

patterns on large scales [35,36] and has also been proposed
as an explanation for the origin of cosmic filament spin
[37]. The fundamental differences in the physics of cold
and superfluid DM translate to new prospects for obser-
vations. In the present work, we take a step toward
understanding how superfluid DM modifies cosmic string
signatures [38–42].
It is well-known how the motion of a long cosmic string

through a gas of DM particles affects its distribution. For
collisionless DM, a wake is formed downstream of the
flow, with the cosmic string at its apex, within which the
density is twice the initial DM density [43–46]. These
cosmic string wakes affect the accretion of baryonic matter
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in a statistically different way compared to the usual DM
accretion, leading to distinct signatures [47–58]. In this
paper, we investigate how this picture changes if the DM
particles are light bosons that can undergo a phase
transition and generate a BEC.1

The context of our study is the standard big bang model
of cosmology with a homogeneous and isotropic space-
time given by the metric

ds2 ¼ −dt2 þ aðtÞ2dx2; ð1:1Þ

where t is the physical time, the x are the comoving spatial
coordinates, and aðtÞ is the cosmological scale factor. We
assume that matter is described by a field theory which has
cosmic string solutions. In this situation, a network of
cosmic strings inevitably [60,61] forms in a symmetry-
breaking phase transition which occurs at some energy
scale η in the early universe and persists to the current time.
The string distribution takes on a scaling distribution (see
e.g. [40–42]) according to which there is a network of long
strings with mean curvature radius and mean separation
comparable to the Hubble scale t. Thus, at all times a
Hubble volume t3 is crossed by a fixed numberN of strings.
At each time t, the network can be modelled [62–64] as a
set of straight string segments of length comparable to t.
Note that the distribution of the long strings is independent
of the one free parameter of the string model, namely the
string tension μ ∼ η2. The string tension is typically
expressed in terms of the dimensionless number Gμ, where
G is Newton’s gravitational constant.
Since strings are relativistic objects, their transverse

motion is typically at relativistic speeds. Space perpendicular
to a straight string is conical [65] with deficit angle 8πGμ.
Hence, a string segment moving through the plasma will
produce an overdense region in its wake [43–46,55], as
illustrated in Fig. 1. A string segment present at time ti with
transverse velocity vs in the x-direction and tangent vector
along the z-axis will produce a wake of length c1ti in the
z-direction, depth tivsγðvsÞ along the x-axis [where γðvsÞ
is the relativistic gamma factor associated with vs], and
with a width along the y-direction which is proportional
to 4πGμvsγðvsÞti.2
The wake is a nonlinear overdensity and will hence

gravitationally attract matter from above and below it. This
means that matter particles acquire a peculiar velocity
towards the wake, i.e. in the y-direction. The accretion of
matter onto a wake can be modeled using the Zel’dovich
approximation [67] which is based on following the
evolution of mass shells as they are attracted towards the

wake. The mass shells begin expanding away from the
wake with the Hubble flow. The gravity of the wake slows
down the expansion, and eventually [at a time tðti; qÞ,
where ti is the time when the wake is created], a shell which
begins at a comoving height q above the wake “turns
around”, i.e. begins to collapse onto the wake. At the time
of this turnaround, the density inside of the wake is twice
the background density. For regular cold dark matter, it is
assumed that the matter virializes at a distance from the
wake which is half of the turnaround distance. Then, the
density inside the wake is four times the background
density.
We study two situations where the superfluid phase of

DM particles can generate differences in the flow around
moving cosmic strings compared to cold DM; firstly, the
moving cosmic string can pass by an already condensed
region and secondly, the wake formation can happen at
redshifts such that the DM density inside the wake is
greater than a critical density necessary for a BEC. In the
latter case, the DM particles might condense inside the
virialized region in the wake; in the former, the cosmic
string wake will generically contain a shock since cosmic
string speeds are relativistic and, as such, supersonic
relative to the superfluid. Wakes can begin to accrete
matter at the time teq of equal matter and radiation density,
and wakes created at this time will be the most numerous.
Hence, in the application section of this paper, we shall
consider a wake created at a time ti close to teq.
After some reasonable physical assumptions, this paper

provides first-principle analytic computations of superfluid
DM flows around moving cosmic strings. For generality,
and since cosmic strings move at relativistic speeds, we
consider the relativistic effective field theory approach to
superfluids.3 Relevant aspects of this description are
reviewed in the next section. In Sec. III, we solve the
Taub-Rankine-Hugoniot junction equations for linearized
and strong shocks in the superfluid. In Sec. IV, we estimate
the redshift where BEC can be formed in the cosmic string

FIG. 1. Schematic representation of the dimensions of a
wake formed at ti. The order one constant c1 is determined by
numerical simulations. Figure extracted from [66].

1Natural ultralight DM candidates are axion fields, which can
also have cosmic string solutions. For generality, we shall not
assume a relation between the field theory origin of DM and the
cosmic string. For a study on cosmic strings with BEC in their
core, see Ref. [59].

2Note that we are taking the average width.

3See Refs. [68,69] for limitations of the nonrelativistic effec-
tive field theory approach in dealing with supersonic processes.
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wake as a function of the DM particle mass. We discuss
applications and prospects for future directions in Sec. V. In
most of the paper, we use natural units in which the speed
of light, the Planck constant and the Boltzmann constant
are all set to 1.

II. FIELD THEORY APPROACH
TO SUPERFLUIDS

There are different but equivalent formalisms generaliz-
ing Landau’s two-fluidmodel to the relativistic case [70–77]
(see also [78,79] and references therein). To set some
notation and make the discussion self-contained, in this
section, we review some of the results on the effective field
theory (EFT) description of superfluids as presented in [77],
which we will follow closely. For simplification, we will
assume that the normal component is dissipationless.
From the EFT perspective, below the superfluid’s critical

temperature, Tc, the superfluid component is a BEC
described by a state that spontaneously breaks a global
U(1) symmetry. This U(1) symmetry is associated with the
conservation of particle number in the fluid. By the
Goldstone theorem, there is a gapless excitation ψ which
nonlinearly realizes the U(1) symmetry as

ψ → ψ þ a; a ¼ const: ð2:1Þ

The most general action that is Poincaré invariant4 and
compatible with this symmetry has the form

S¼
Z

d4xFðXÞ; with X¼ ∂μψ∂
μψ ; ð2:2Þ

and the U(1) current is given by

jμðxÞ ¼ 2F0ðXÞ∂μψ : ð2:3Þ

A homogeneous and isotropic BEC state (or superfluid
phase at T ¼ 0) can be described by ψ ¼ μt, since this
implies a state of uniform charge density and vanishing
spatial current,

jμ ¼ −2μF0ð−μ2Þð1; 0; 0; 0Þ: ð2:4Þ

The equation of motion for ψ is equivalent to the con-
servation of particle number, ∂μjμ ¼ 0. Note that if we
define a four-velocity satisfying uμ ∝ ∂

μψ , the system is

equivalent to a fluid with an irrotational flow. Now, at finite
temperature, there will be excitations in the fluid/gas, and
not all particles will be condensed in the ground state; some
particles will, instead, occupy excited states. At finite T,
these perturbations will reach thermal equilibrium, and if
they are in a regime where the mean free time and path of a
phonon are much smaller than the spacetime volume
occupied by the fluid, this thermal bath of phonons will
be described by usual hydrodynamics. However, as T
approaches Tc, the symmetry is restored, the BEC is gone
and only the normal component remains.
To describe the normal fluid component in field theory,

we use embedding coordinates ϕi of the fluid. They map
spacetime points to positions of the fluid elements,
xμ → ϕiðx; tÞ, i ¼ 1, 2, 3 [80–82]. At a fixed time, these
maps should be invertible (det ∂iϕi ≠ 0), and, if the fluid is
incompressible, also volume preserving (det ∂jϕi ¼ 1). For
dissipationless fluids, given Poincaré invariance and the
homogeneity and isotropy of the fluid’s internal space, the
ϕi should enter the action through the combination [80],

Jμ ¼ 1

6
ϵμαβγϵijk∂αϕ

i
∂βϕ

j
∂γϕ

k: ð2:5Þ

With ∂
μψ and Jμ, we can construct three scalar

quantities [77],

X¼∂μψ∂
μψ ; b¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−JμJμ
p

; and y¼−
1

b
Jμ∂μψ : ð2:6Þ

The vector uμ ¼ −Jμ=b is actually the four-velocity of
the normal fluid component, since it is normalized to −1
and the fluid’s comoving coordinates do not change
along its integral curves, uμ∂μϕi ¼ 0.
In summary, the low-energy Lagrangian density describ-

ing superfluidity will have the form

L ¼ Fðb; X; yÞ: ð2:7Þ

All the infrared dynamics of finite-temperature relativistic
superfluids are encoded in that Lagrangian. It can be shown
that one can recover two sound speeds for perturbations
around an equilibrium solution for ψ and ϕi, which are the
relativistic versions of Landau’s two sounds [77].
To recover the superfluid’s hydrodynamics, we first write

the superfluid action for an arbitrary metric

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Fðb; X; yÞ ð2:8Þ

and then compute its associated energy-momentum tensor

Tμν ¼ 2XFXũμũνþðyFy−bFbÞuμuνþðF−bFbÞgμν;
ð2:9Þ

4The applicability of this argument to the case of a cosmic
string wake background can be justified as follows. In a local
initial frame the usual laws of special relativity apply and it then
follows that the matter action takes the given form. To obtain the
action in a curved background, we must covariantize it, that
replacing partial derivatives by covariant derivates and making
the space-time volume integral invariant. Since the cosmic string
wake background is flat except at the location of the string, the
covariant derivatives reduce to regular partial derivatives.
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where ũμ ¼ −∂μψ=
ffiffiffiffiffiffiffi
−X

p
. Note that X, b, and y now depend

on the metric.
Moreover, the current associated with the U(1) symmetry

ψ → ψ þ const is

jμ ¼ −2
ffiffiffiffiffiffiffi
−X

p
FXũμ þ Fyuμ; ð2:10Þ

and its conservation physically means the conservation of
particle number. Both Tμν and jμ have contributions from
the superfluid and normal components.
Now, we can start identifying the fluid variables. In the

frame comoving with the normal fluid, we have

Tμνuμuν ¼ yFy − F − 2y2FX ¼ ρ ð2:11Þ

and

−jμuμ ¼ Fy − 2yFX ¼ n; ð2:12Þ

where, by definition, ρ and n are the energy and number
densities that can be measured in that frame. To identify the
fluid stresses, we contract the energy-momentum tensor
with the projector associated to the spacelike directions
perpendicular to uμ,

Tμνðημν þ uμuνÞ ¼ 3ðF − bFbÞ − 2FXðX þ y2Þ: ð2:13Þ

So, we identify p ¼ F − bFb as the pressure, and the term
∝ ðX þ y2Þ as a contribution from the anisotropic stress-
tensor (this could also be seen directly from Tμν). The
chemical potential μ, entropy density s and temperature T
are identified after assuming the first law of thermody-
namics [77] (see also [83]):

μ ¼ y; s ¼ b; and T ¼ −Fb: ð2:14Þ

The entropy current

Jμ ¼ suμ ¼ buμ; ð2:15Þ

is identically conserved (as expected for a nondissipa-
tive fluid).
Computing the differential of p, we obtain [77]

dp ¼ sdT þ ndμþ 2FXξdξ; ð2:16Þ

where ξ is the modulus of the spacelike four-vector
ξμ ¼ ðημν þ uμuνÞ∂νψ . So, the pressure is a function of
T, μ, and ξ. This defines the equation of state of the
superfluid. Once this function is given, we can construct the
Lagrangian as

L ¼ F ¼ pþ bFb ¼ p − sT ¼ p − T
dp
dT

; ð2:17Þ

while expressing the result as a function of b ¼ s ¼
dp=dT, y ¼ μ, and X ¼ ξ2 − y2. This maps the thermo-
dynamic and field theory descriptions, and vice versa.
To better understand the physical meaning of ξμ, recall

first that ũμ ¼ −∂μψ=
ffiffiffiffiffiffiffi
−X

p
, and so

ũμ ¼ yffiffiffiffiffiffiffi
−X

p uμ −
1ffiffiffiffiffiffiffi
−X

p ξμ: ð2:18Þ

Contracting with uμ gives

γ ¼ −ũμuμ ¼
yffiffiffiffiffiffiffi
−X

p ; ð2:19Þ

where γ is the Lorentz factor for the velocity of one
component as measured in the other component’s frame.
On the other hand, contracting with ũμ gives

−1 ¼ ũμũμ ¼ −γ2 −
1ffiffiffiffiffiffiffi
−X

p ξμũμ: ð2:20Þ

In the normal component frame, uμ ¼ ð1; 0Þ, ξμ ¼ ð0; ξiÞ,
and ũμ ¼ γð1; viÞ, where vi is the superfluid component
velocity. Thus,

γ2 − 1 ¼ −
1ffiffiffiffiffiffiffi
−X

p γξivi ⇒ γ2v2 ¼ −
γffiffiffiffiffiffiffi
−X

p ξivi; ð2:21Þ

and we conclude that ξi ¼ −yvi. When there is no relative
velocity between the normal and superfluid parts, ξμ ¼ 0

and y ¼ ffiffiffiffiffiffiffi
−X

p
.

III. SHOCKS IN THE SUPERFLUID FLOW

An interesting property of having a fluid described by
two velocity fields is that it will generically have anisot-
ropies. This can be seen, for instance, from the spatial
components of Tμν above; as long as uμ ≠ ũμ there will be
anisotropic stresses. Moreover, there is a nonvanishing
momentum flux density in one of the frames comoving
with one of the fields. For instance, in the frame where
uμ ¼ ð1; 0; 0; 0Þ, we have

Ti0 ¼ 2XFXγ
2vi; ð3:1Þ

where vi is the relative velocity between the superfluid and
normal components as measured in the latter’s frame, and γ
is its associated Lorentz factor.
In the following, we shall redefine the two timelike

vector fields ũμ and uμ in order to make the intrinsic
superfluid anisotropy manifest. This will also select the
frame in which there is no momentum flux, and so in some
sense, it might be thought of as the “center of mass” frame
for the superfluid. A similar approach was considered
in [84,85], but in the context of a noninteracting two-
perfect fluid system, which is physically distinct from a
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superfluid. We define four-vectors Vμ and Wμ as

Vμ ¼ cos αũμ þ R sin αuμ; ð3:2aÞ

Wμ ¼ −
1

R
sin αũμ þ cos αuμ; ð3:2bÞ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yFy − bFb

2XFX

s
: ð3:3Þ

These definitions are such that

Tμν ¼ 2XFXVμVν þ ðyFy − bFbÞWμWν þ ðF − bFbÞgμν;
ð3:4Þ

for any choice of α. We shall fix α by demanding that
VμWμ ¼ 0,

VμWμ ¼ 0 ⇒ tan 2α ¼ 2R
R2 − 1

uμũμ ¼
2R

1 − R2
γ: ð3:5Þ

In this way, Vμ is timelike while Wμ is spacelike,5 and
there is no momentum flux in the frame where Vi ¼ 0

because in this case, we should have W0 ¼ 0, and
so Ti0 ¼ 0. Note that the Lorentz factor after the last
equality is associated with the relative velocity between ũμ

and uμ.
In terms of the normalized vectors

Uμ ¼ Vμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VρVρ

p and Aμ ¼ Wμffiffiffiffiffiffiffiffiffiffiffiffiffi
WρWρ

p ; ð3:6Þ

we have

Tμν ¼ 2XFXð−VρVρÞUμUν þ ðyFy − bFbÞðWρWρÞAμAν

þ ðF − bFbÞgμν: ð3:7Þ

Computing V2 and W2, we find

VμVμ ¼ −
1

2
ð1þ R2Þ − 1

2

ð1 − R2Þ
cos 2α

;

WμWμ ¼ −
1

2

�
1þ 1

R2

�
−
1

2

�
1 −

1

R2

�
1

cos 2α
; ð3:8Þ

and the ðcos 2αÞ−1 in these expressions is given by

1

cos 2α
¼

�ð2XFX þ yFy − bFbÞ2 þ 4ð2XFXÞðyFy − bFbÞ
�ðũμuμÞ2 − 1

��
1=2

j2XFX − ðyFy − bFbÞj
: ð3:9Þ

So, we can write

Tμν ¼ðρUþpUÞUμUνþpUgμνþðpA−pUÞAμAν; ð3:10Þ
where we have defined

ρU ¼ −F þ 1

2
ð2XFX þ yFy þ bFbÞ

þ 1

2

�ð2XFX þ yFy − bFbÞ2 þ 4ð2XFXÞ
× ðyFy − bFbÞ

�ðũμuμÞ2 − 1
��

1=2; ð3:11Þ

pA ¼ F −
1

2
ð2XFX þ yFy þ bFbÞ

þ 1

2

�ð2XFX þ yFy − bFbÞ2 þ 4ð2XFXÞ
× ðyFy − bFbÞ

�ðũμuμÞ2 − 1
��

1=2; ð3:12Þ

pU ¼ F − bFb: ð3:13Þ

Note that, in the absence of relative velocity, ũμuμ ¼ −1,
we have pA ¼ pU, and the anisotropic term vanishes. Also
in this case, R ¼ tan α and

VμVμjγ¼1¼−
1

cos2α
¼−ð1þR2Þ; Wμjγ¼1¼ 0: ð3:14Þ

Moreover, the energy density ρU and pressure pU coincide
with the ones discussed in Sec. II after setting y ¼ ffiffiffiffiffiffiffi

−X
p

.
Using the same definitions in the expression for the

number current, we have

jμ ¼
ffiffiffiffiffiffiffiffiffi
−V2

p �
−2

ffiffiffiffiffiffiffi
−X

p
FX cos αþ Fy

R
sin α

�
Uμ

þ
ffiffiffiffiffiffiffi
W2

p
ð2R

ffiffiffiffiffiffiffi
−X

p
FX sin αþ Fy cos αÞAμ

¼ nUUμ þ jAAμ; ð3:15Þ

where

nU ¼ −jμUμ and jA ¼ jμAμ ð3:16Þ

are the particle number density and flux in the frame
comoving with Uμ. We see that, although there is no
momentum flux in such a frame, there is still a flux of

5Actually, VμWμ ¼ 0 alone does not fix which vector is time-
like. We also need to assume R < 1. If this is not so, one needs to
redefine R → 1=R, otherwise Wμ will be timelike. We have
assumed, without loss of generality, that 2XFX > yFy − bFb,
which is most reasonable at very low temperatures.
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particles, which vanishes if there is no relative velocity
between the components.
In this section, we study how a straight cosmic string

extended along the z-axis and moving with constant
velocity −vþ∂x affects a cylindrical symmetric superfluid
configuration,6 with symmetry axis along the string.
Equivalently, we shall analyze the flow in the cosmic
string rest frame, where the superfluid as a whole is moving
with speed vþ in the x-axis. In such symmetric configu-
rations, chosen to simplify the analysis, the only anisotropy
is parallel to the string, and we take Aμ ¼ ð0; 0; 0; 1Þ in the
string comoving frame. Such symmetric configurations
also include the homogeneous case

ψðxÞ ¼ y0t; ϕiðxÞ ¼ b1=30 xi ⇒ yðxÞ ¼ y0 ¼
ffiffiffiffiffiffiffi
−X

p
;

bðxÞ ¼ b0; ũμ ¼ ð1; 0; 0; 0Þ ¼ uμ; ð3:17Þ

where there is no relative velocity between the components,
and there are no anisotropies at all. The resulting flow
solution is also a good approximation for the one when the
relative velocity is very small. Note that, in the non-
relativistic regime, the relative speed between the super-
fluid and normal velocity fields is much smaller than the
string speed.
In the cosmic string rest frame, the metric is

ds2 ¼ −dt2 þ dr2 þ dz2 þ ð1 − 4GμÞ2r2dϕ2; ð3:18Þ

where μ is the string tension.
Firstly, we shall use coordinates where the cosmic string

metric is still Minkowskian, but the new axial angle ϕ̃ ¼
ð1 − 4GμÞϕ has a deficit proportional to the string tension:

x¼ rcos½ð1−4GμÞϕþ4πGμ�;
y¼ rsin½ð1−4GμÞϕþ4πGμ�; 0≤ ϕ̃< ð1−4GμÞ2π:

ð3:19Þ

In these coordinates, we have

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2; ð3:20Þ

and the wedge

−ϵx ≤ y ≤ ϵx; ϵ ¼ tanð4πGμÞ; ð3:21Þ

is left uncovered. The line segments y� ¼ �ϵx, for x > 0,
correspond to ϕ ¼ 0 and ϕ ¼ 2π, and so should be
identified. In other words, a total wedge angle of 8πGμ
is missing in the conical spacetime transverse to a cosmic

string. Note that the shift 4πGμ inside the argument of the
trigonometric functions in the definition of the Cartesian
coordinates only sets the position of the wedge, which in
this case is along the positive x-axis.
When the string passes by a gas of collisionless DM

particles with a spatial axial distribution along the string,
individual particles in the y > 0 (y < 0) plane receive an
impulse towards the negative (positive) y-axis. This
produces a wake with a total aperture angle 8πGμγþ
(for small Gμ and order-one Lorentz gamma factors),
within which the mass density is initially twice the density
outside the wake [46]. However, for a fluid with finite
sound speed cs,

7 the flow around the cosmic string is
more involved and strongly depends on the ratio cs=v
between the sound and string speeds. In fact, for super-
sonic string speeds, the flow exhibits a shock, i.e. a surface
of discontinuity in the fluid variables downstream of the
flow past the string. This is similar to the shocks in the
flow of baryonic matter, as studied in [46], where shells of
baryonic matter collide due to the relative velocity induced
by the string. Note, however, that such shocks differ from
the later ones that originate from gravitational instabilities
inside the wake [89]. For superfluids at finite temper-
atures, there are always two intrinsic sound speeds, but we
shall see that only the adiabatic sound speed is relevant for
the presence of shocks.
Since cosmic string speeds are relativistic, we shall

use the formalism of relativistic shocks to describe the
jump in energy density, velocity, and pressure across the
shock [90–95] (see also [33]). Cosmic string induced
shocks were first studied in [46], although in the non-
relativistic setting. A relativistic analysis for perfect fluids
with a polytropic equation of state was carried out in [96],
for the strong shock case. In the following, we shall adopt
the more general results of [97], where shocks in relativistic
perfect fluids were studied and, for linearized shocks, no
equations of state were assumed.
The fundamental equations for relativistic shocks are

obtained from integrating the local conservation equations,

∇μTμν ¼ 0; ∇μjμ ¼ 0; ð3:22Þ

across the shock front. This results into

½jμ�nμ ¼ 0; ð3:23aÞ

½Tμν�nν ¼ 0; ð3:23bÞ

where ½A� ¼ Aþ − A− denotes the difference between the
value of a variable A in front of and behind the shock, and
nμ is the unit vector normal to the discontinuity surface.
These are the relativistic (and covariant) versions of the
Rankine-Hugoniot junction condition equations [33].

6Note that interesting effects of wiggly cosmic strings
which lead to turbulence and magnetic field generation in the
case of perfect fluid matter have been considered in [86] (see
also [87,88]). 7Note that cs is not the string velocity v.
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The stationary physical configuration considered is
depicted in Fig. 2. For the cosmic string solution above,
the shock front is perpendicular to the xy-plane and has a
normal vector of the form

nμ ¼ ð0;− sinΦ; cosΦ; 0Þ; ð3:24Þ

where the half-angle of the shockΦ is to be determined. For
the symmetric superfluid configurations discussed before
we have Xμnμ ¼ 0, and the Taub-Rankine-Hugoniot equa-
tions give

½ðρU þ pUÞUμUν þ pUη
μν�nν ¼ 0; ð3:25aÞ

½nUUμ�nμ ¼ 0: ð3:25bÞ

We shall drop the subindicesU in the fluid variables for the
rest of this section.
In the stationary case, the velocity field Ui (in Cartesian

coordinates) is parallel to the x-axis before the shock front
and to the wedge after the shock front,

Uμ
þ ¼ ðγþ;Uþ;0;0Þ; Uμ

−¼ðγ−;U−;ϵU−;0Þ: ð3:26Þ

Note that, in the notation above, U ¼ γv, where v is the
three-speed and γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

p
. Hence, 0 ≤ U < ∞. In the

fluid’s rest frame, the cosmic string speed is vþ.
Equation (3.25b) thus gives

n−U−ðα − ϵÞ ¼ nþUþα; ð3:27Þ

where α ¼ tanΦ. Meanwhile, the μ ¼ 0, 1, 2 components
of (3.25a) give, respectively,

ðρ−þp−Þðα− ϵÞγ−U− ¼ðρþþpþÞαγþUþ; ð3:28aÞ

ðρ−þp−Þðα− ϵÞU2
−þαp−¼ αðρþþpþÞU2þþαpþ;

ð3:28bÞ

p−þðρ−þp−Þϵðϵ−αÞU2
−¼pþ: ð3:28cÞ

The last three equations have four unknowns, α; U−; ρ−,
and p−, and so we need an equation of state behind the
shock to solve for them exactly. Having found U− and α,
we might solve (3.27) for n−. However, for weak shocks, in
which the change in the fluid variables across the shock is
small, we can relate energy density and pressure perturba-
tions using the fluid’s adiabatic sound speed. In that case,
we can find the variation in the fluid variables for an
arbitrary equation of state. Such solutions should exist, for
a fixed Uþ, provided the deficit angle is small enough and
the change in the fluid variables are of order Gμ.
To find the weak shock solution, we write

U−¼UþþδU; ρ−¼ρþþδρ; p−¼pþþδp; ð3:29Þ

and make the approximation

δp ≈ c2sδρ; ð3:30Þ

where

c2s ¼
�
∂p
∂ρ

�
s

ð3:31Þ

is the fluid’s adiabatic sound speed. Now, we need to
solve Eq. (3.28) to first order in Gμ. Firstly, we use

FIG. 2. This figure shows a shock formed behind a cosmic string: the string is lying along the z-axis and Φ is the shock’s half-angle.
The lines L and L0 are equivalent, and 4πGμ is the missing wedge’s half-angle. The dashed lines represent the fluid’s streamlines.
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Eqs. (3.28b) and (3.28c) to write p− in terms of known
quantities and α,

p− ¼ pþ þ ϵα

1þ ϵα
ðρþ þ pþÞU2þ: ð3:32Þ

Then we plug this result into (3.28b) to find

U2
−ðρ− þ p−Þðα − ϵÞ ¼ α

1þ ϵα
ðρþ þ pþÞU2þ; ð3:33Þ

and inserting this into (3.28a) yields, after some algebraic
manipulations,

U2
− ¼ U2þ

ð1þ ϵαÞ2ð1þU2þÞ − ð1þ ϵ2ÞU2þ
: ð3:34Þ

Perturbing (3.32) and (3.34) we find, to first order in ϵ,

δU ≈ −ϵαUþð1þU2þÞ; ð3:35Þ

δp ≈ ϵαðρþ þ pþÞU2þ: ð3:36Þ

Using these results and one of the original equations, we
can find α in terms of cs and known quantities. For
instance, perturbing (3.28b) gives

α½ðδρþ δpÞU2þ þ 2ðρþ þ pþÞUþδU þ δp�
− ϵðρþ þ pþÞU2þ ¼ 0; ð3:37Þ

to first order in ϵ. Inserting the expressions for δU and δp
into this equation yields

tanΦ ¼ α ≈
Usffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2þ − U2
s

p ; ð3:38Þ

where Us ¼ γscs ¼ cs=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2s

p
. Note that for Uþ ∼Us,

Φ ≃ π=2, which matches the high-speed limit of subsonic
flow [97]. However, for string speeds much higher than the
sound speed, α decreases and the shock becomes a thin
wedge in the wake of the string through the fluid.
In summary, to first order in the deficit angle, the

linearized shock solution to the relativistic Taub-
Rankine-Hugoniot equations is [97]

δU ≈ −ϵαUþð1þ U2þÞ; ð3:39Þ

δp ≈ ϵαðρþ þ pþÞU2þ; ð3:40Þ

δρ ≈ ϵαðρþ þ pþÞð1þ U2
sÞ
U2þ
U2

s
; ð3:41Þ

α ≈
Usffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2þ −U2
s

p : ð3:42Þ

The linearized solution above cannot be trusted for string
speeds very close to the speed of light, or for very
nonrelativistic sound speeds; in those cases, the perturba-
tions are not so small compared with the values outside the
shock. For instance, the condition δρ < ðρþ þ pþÞ gives

ϵ
Usffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2þ −U2
s

p ð1þ U2
sÞ
U2þ
U2

s
< 1; ð3:43Þ

that for Uþ ≫ Us reduces to ϵUþ=Us < 1, which can be
violated as Uþ=Us → ∞ for a fixed ϵ. In this limit, the
shock is very strong and α becomes very small, of the order
of ϵ. Let us assume that this is the case and estimate the
change in the fluid variables after taking α to be larger but
of the same order of the deficit angle:

α ∼ 4πGμ; α − 4πGμ ∼ 4πGμ: ð3:44Þ

So, expanding (3.34) for large Uþ and α ∼ ϵ ≈ 4πGμ ≪ 1,
we get

U2
− ∼

1

3ϵ2
∼

1

48π2G2μ2
; ð3:45Þ

while (3.32) gives

p− ∼2ϵ2ðρþþpþÞU2þ∼32π2G2μ2ðρþþpþÞU2þ: ð3:46Þ

Using these results into (3.33), we also find

ρ− ∼4ϵ2ðρþþpþÞU2þ∼64π2G2μ2ðρþþpþÞU2þ: ð3:47Þ

Hence, we conclude that, for Uþ ≫ ðGμÞ−1, the jump in
energy density and pressure is very large. Presumably, the
jump in temperature is also very big, and the BEC cannot
be maintained inside the shock. In fact, at very low
temperatures, the equation of state for a gas of weakly
interacting bosonic particles has a weak dependence on the
number density of particles. In the noninteracting case,
p ∝ T5=2, and so a large increase in pressure is accom-
panied by a large increase in temperature. More realisti-
cally, we should also take into account the change in
number density, since it might be large enough to imply a
higher value of Tc inside the strong shock. However,
from (3.27), we get

n− ¼ nþUþ
U−

α

α − ϵ
∼ 2

ffiffiffi
3

p
nþUþϵ; ð3:48Þ

and so, although significant, the fractional change in the
number density is comparatively smaller than in the ones
associated with energy density and pressure. Hence, we
conclude that, generically, the temperature in the strong
shock will increase, such that T− > Tc and the BEC is
destroyed in the wake of the moving string.
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Fortunately, for DM condensed in the superfluids phase,
the sound speed is nonrelativistic and, moreover, the typical
speed of large sections of long cosmic strings is not so close
to the speed of light. So, realistically, the linearized solution
is a good approximation for the fluid variables inside the
shock. In fact, the typical sound speed in the core of
spherical DM superfluid condensates is cs ∼ 10−5c (as
derived from the solution in [15]). In this case, the
condition δρ < ðρþ þ pþÞ for the linearized solution to
be consistent gives

Uþ <
cs

4πGμ
; ð3:49Þ

and so Uþ < 10−6ðGμÞ−1. For Gμ ∼ 10−7, we get Uþ < 1,
and so weak shocks require a Lorentz factor associated to
vþ at most of order unity, which is the case for cosmic
string speeds.

IV. SUPERFLUID PHASE INSIDE
COSMIC STRING WAKES

In this section, we want to analyze under which con-
ditions a BEC can be formed inside the wake of a cosmic
string. For the condensate to be formed, two conditions
need to be satisfied [15,33]: first, the thermal de Broglie
wavelength λth of the DM particles has to be larger than the
characteristic inter-particle separation l ¼ n−1=3, and sec-
ond, the DM particles have to thermalize.
The first condition,

λth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2

mkBT

s
≳ l ¼

�
1

n

�
1=3

; ð4:1Þ

is equivalent to requiring that the de Broglie wavelength of
DM particles overlap in the region where we want them to
condense. Equivalently, at a fixed temperature T, the BEC
forms when the number density of particles is larger than a
critical density nc [24],

n > nc ≡ ζð3
2
Þ

λ3th
; ð4:2Þ

where ζð3=2Þ is the Riemmann zeta function. Assuming
that the DM particles follow the velocity dispersion kBT ∼
mv2=2 and using ρ ¼ nm, the previous inequality reduces
to the following bound on the mass:

m4 ≲ ð4πℏ2Þ3=2
ζð3=2Þ

ρ

v3
: ð4:3Þ

Now, let us apply this condition to the wake of a long
string. We consider a wake formed at a time ti > teq (wakes
formed ∼teq have the largest surface density). Due to the
passing of the string, the comoving coordinates xi of the

DM particles are perturbed relative to the Hubble flow, such
that their physical position is aðtÞ½xi þ ψ iðxj; tÞ�. DM
accretion into wakes can be described by the time evolution
of ψ i. Assuming the Zel’dovich approximation and the
wake along the x-axis, such that only ψ ¼ ψy is nontrivial,
we have [41]

ψðt;yÞ¼−
3

5
uiti

	�
t
ti

�
2=3

−
�
t
ti

�
−1

 ½θðyÞ−θð−yÞ�

2
; ð4:4Þ

where θðyÞ is the Heaviside step function and ui ¼
aðtiÞ−14πGμvsγs is an initial velocity boost given by the
string to nearby particles. Here, vs is the velocity of the
string, and γs ¼ ð1 − v2sÞ−1=2 the corresponding Lorentz
factor. For t ≫ ti, only the first term in the brackets
significantly contributes to the solution.
The physical distance of a DM particle to the wake,

which initially increases because of the Hubble flow,
becomes maximal at a time t̄ and eventually starts
decreasing due to the gravitational pull of shells of
matter. So, we have DM shells that turn around at t̄.
The physical height of the turnaround surface above the
wake’s center is

hðt̄Þ ¼ aðt̄Þjψðt̄Þj ¼ 3

5
uiti

�
t̄
ti

�
2=3

�
t̄
t0

�
2=3

: ð4:5Þ

The velocity of the particles inside the virialized region
in the wake is

vvir ≡ vðtvÞ ¼ ajψ̇ðtvÞj ¼
2

5
ui

�
ti
t0

�
1=3

�
tv
t0

�
1=3

¼ 23=4ð1þ 23=4Þ1=3
5

ui

�
ti
t0

�
1=3

�
t̄
t0

�
1=3

; ð4:6Þ

where t̄ is the time when a shell of particles turns around
and falls into the wake, and tv ¼ ð1þ 2−3=4Þt̄ is the time
when the shell enters the virialized region, which we
assume to have a height of hðt̄Þ=2 above the wake’s center.
The density of DM particles inside this region, ρvir, is four
times the background density.
Assuming matter domination and H0¼h×2×10−33 eV,

we obtain an upper bound on the mass of the DM
particles,

m≲ 31

�
h

0.67

�
1=2

�
Gμ
10−7

�
−3=4

�
vsγs
1=

ffiffiffi
3

p
�

−3=4

×

�
1þ zi
1þ zeq

�
−3=8

ð1þ z̄Þ9=8 eV: ð4:7Þ

Figure 3 shows a plot of the upper bound on the mass m in
eV as a function of the redshift z; the shaded region is the
range of allowed masses. Hence, at around the epoch of
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reionization, z ∼ 10, the DM particles have to be lighter
than ∼455 eV for the BEC to form.8

The second condition, the requirement that the DM
particles thermalize, can be written as

Γtdyn ≳ 1; ð4:8Þ

where Γ is the DM self-interaction rate, and tdyn the time
associated to the wake dynamics. For scalar DM, the former
is given by [98]

Γ ¼ N vρ
σ

m
; N ¼ ρ

m
ð2πÞ3

4π
3
ðmvÞ3 ; ð4:9Þ

where σ is the DM self-interaction cross section and the
Bose enhancement factorN takes into account the fact that
the DM particles interact over an excited background state.
The dynamical time can be estimated as the time it takes for
a DM particle to cross the virialized region,

tdyn ≈
hðt̄Þ
vvir

¼ 3

23=4
t̄ ¼ 3

23=4
t0ð1þ z̄Þ−3=2: ð4:10Þ

Combining those expressions, we obtain a bound on
σ=m of

σ

m
≳ 4 × 10−2

�
m
eV

�
4
�

Gμ
10−7

�
2
�

vsγs
1=

ffiffiffi
3

p
�

2
�

h
0.67

�
−3

×

�
1þ zi
1þ zeq

�
ð1þ z̄Þ−11=2 cm2

g
: ð4:11Þ

Equivalently, σ=m≳ 2 × 102 GeV−3, for the same fiducial
value of the parameters.
We can estimate the critical temperature of the con-

densate by computing the critical velocity vc that saturates
the first condition on the mass,

vc ¼
ð4πℏ2Þ1=2
ζ1=3ð3=2Þ

�
ρ

m4

�
1=3

; ð4:12Þ

and then use Tc ∼mv2c=ð2kBÞ:

Tc ∼
m
2kB

ð4πℏ2Þ
ζ2=3ð3=2Þ

�
ρ

m4

�
2=3

¼ 11

�
m
eV

�
−5=3

�
h

0.67

�
4=3

ð1þ z̄Þ2 mK: ð4:13Þ

For T < Tc, we have the superfluid phase. We
can estimate the fraction of DM particles in the BEC
component after neglecting interactions. In this case, the
fraction is just the one for an ideal quantum gas of bosonic
particles,

N0

N
≈ 1 −

�
T
Tc

�
3=2

: ð4:14Þ

FIG. 3. Log-log plot of the upper bound on the DM-particle mass (4.7) as a function of the redshift,mðzÞ. The shaded region shows the
range of allowed masses for the particles’ de Broglie wavelength to be larger than the typical interparticle separation inside the cosmic
string wake.

8Note that the region in which the BEC forms is given by the
initial comoving height q of the shell which is turning over at the
redshift z̄.
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The gas temperature in units of Tc is given by

T
Tc

∼ 1 × 10−4
�

h
0.67

�
−4=3

�
m
eV

�
8=3

�
Gμ
10−7

�
2

×

�
vsγs
1=

ffiffiffi
3

p
�

2
�
1þ zi
1þ zeq

�
ð1þ z̄Þ−3; ð4:15Þ

and so

N0

N
≈ 1 − 1 × 10−6

�
h

0.67

�
−2
�
m
eV

�
4
�

Gμ
10−7

�
3

×

�
vsγs
1=

ffiffiffi
3

p
�

3
�
1þ zi
1þ zeq

�
3=2

ð1þ z̄Þ−9=2: ð4:16Þ

Thus, most of the particles are found in the BEC, regardless
of the turnaround redshift.

V. DISCUSSIONS AND CONCLUSION

In this paper we studied the motion of a cosmic string
through a gas of superfluid dark matter particles. We first
reviewed the necessary formalism to approach the subject,
an effective field theory approach to superfluids. We then
studied two distinct cases; a cosmic string passing through
a BEC, and a string moving through a region where the DM
is not condensed. In the first case, we looked at the shock
induced in the fluid by the string and solved the Taub-
Rankine-Hugoniot junction equations. For usual cosmic
string speeds, we concluded that the shock is weak and
therefore the DM remains in the superfluid phase after the
passage of the string. For extreme cases in which the
cosmic string travels at velocities very close to c, we found
that the large jump in energy and pressure across the shock
leads to an increase in the temperature and the subsequent
destruction of the condensate.
In the second case, we studied under which conditions

the DM might condense into a superfluid phase. A string
moving through a fluid leads to the formation of an
overdensity in its wake. Similarly to what happens in
galaxies, this increase in the DM density can cause it to
condense into a superfluid, provided that two conditions
are satisfied; first, the de Broglie wavelengths of the DM
particles have to overlap inside the wake, and second, the
particles have to thermalize. The former condition was
translated into an upper bound on the mass of the DM
particles, m≲ 31 eV for a wake formed at zeq, Gμ ∼ 10−7

and string speeds ∼0.5. The latter condition led to a
lower bound on the ratio between the interaction cross
section and mass, σ=m≳ 4 × 10−2ðm=eVÞ4 cm2=g for the
same parameters, in agreement with constraints on the
cross section of self-interacting DM, σ=m < cm2=g [99].
As can be seen from [15], these bounds are compatible
with the ones in models of superfluid DM in galactic
scales. For sub-eV particles, taking into account the

Bose-enhancement factor in the interaction rate, the
Bullet Cluster constraint gives σ=m≲10−2ðm=eVÞ4 cm2=g
[100,101].9 From (4.11), we see that there are regions of
the ðGμ; vs; zi; z̄Þ parameter space that can easily accom-
modate this refined constraint. Finally, we computed the
critical temperature below which de DM condenses, and
the result is in the mK range for the same parameters used
to estimate the previous bounds.
As future directions, one could study how the presence

of a BEC inside the cosmic string wake leads to new
observational signatures. A new baryonic interaction that
arises from the coupling to the phonons would modify the
equations describing baryonic accretion. This should lead
to changes in the thickness and/or shape of the wake, and
in consequence, to modifications in the wake signatures.
Such new features would affect wake signals in 21 cm
surveys, CMB polarization, and large-scale structure
maps [52–58]. As mentioned, cosmic strings moving
through a condensate at ultrarelativistic speeds are
expected to destroy the condensate. Since the typical
speeds of long cosmic strings are much lower, a more
relevant scenario might be oscillating loops in a con-
densate; in the context of halo accretion, loops oscillating
at speeds close to c will heat up the fluid above Tc and
destroy the condensate. This affects the usual scenario of
DM accretion into loops.
On a more speculative note, the general dynamics of the

superfluid around moving cosmic strings might be such
that vortices are formed. The general motion of vortices in
the conical geometry transverse to cosmic strings has been
studied in [102], although in the nonrelativistic limit. Since
cosmic strings are relativistic, it would be interesting to
generalize these results. Superfluid vortices generated by
cosmic string motion would contribute to the spin of
cosmic filaments, as studied in [37], and leave strong-
lensing observable imprints on the dark matter halo sub-
structure [103]. Moreover, it would be worth exploring how
a change in the nature of the superfluid could modify our
results, such as in the dark-charged superfluid model
of [104,105]. Analogously to turbulent effects in the
baryonic wakes [86], another future direction is the study
of quantum turbulence in the superfluid wake.
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