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Domain walls (DWs) are topological defects originating from phase transitions in the early Universe. In
the presence of an energy imbalance between distinct vacua, enclosed DW cavities shrink until the entire
network disappears. By studying the dynamics of thin-shell bubbles in general relativity, we demonstrate
that closed DWs with sizes exceeding the cosmic horizon tend to annihilate later than the average. This
delayed annihilation allows for the formation of large overdensities, which, upon entering the Hubble
horizon, eventually collapse to form primordial black holes (PBHs). We rely on 3D percolation theory to
calculate the number density of these late-annihilating DWs, enabling us to infer the abundance of PBHs. A
key insight from our study is that DW networks with the potential to emit observable gravitational waves
are also likely to yield detectable PBHs. Additionally, we study the production of wormholes connected to
baby universes and conclude on the possibility to generate a multiverse.
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I. INTRODUCTION

The study of primordial black holes (PBHs) has become a
vibrant field of exploration since the 2015 discovery of
gravitational waves from solar-mass black holes mergers [1].
Any observation of black holes withmasses below that of the
Sun would be a smoking gun for the gravitational collapse of
large density fluctuation, present in the initial cosmic plasma
[2]. An intriguing possibility involves the inhomogeneities
generated by domain walls (DWs) either under the form of
networks [3–6] or nucleated during inflation [7–12].
DW networks are topological defects that form during

cosmological phase transitions in the early Universe when
nearly degenerate vacua are present. Shortly after its
formation, the DW network evolves in a scaling regime
during which the correlation length approximately equals
the horizon size L ∼ t [13], and the fraction of the total
Universe energy density stored in DWs increases linearly
with time ρDW=ρtot ∝ t [13]. A Universe dominated by
DWs would lead to a Universe either primarily filled with
black holes or to eternally inflating universes, depending on

whether the observer location lies within a true vacuum or
false vacuum region [14]. A graceful exit from this
daunting scenario could occur if there is an energy bias
Vbias between the different vacua, as we review in Sec. II.
After a time tann, the vacuum energy difference Vbias
counterbalances the pressure due to the wall tension σ,
driving DWs towards annihilation before they can domi-
nate the Universe at a time tdom [15–18]. During this
annihilation phase, closed DWs shrink and, under specific
conditions, could enter within their Schwarzschild radius
and form PBHs [4,7–9], a process dubbed “catastrogene-
sis” in [5,6]. As explained above, if tann ≳ tdom, then the
Universe is filled with PBHs and wormholes connected to
baby universes [14]. Per continuity, we conclude that there
must exist a region in the ballpark tann ≲ tdom, where DWs
networks produce just enough PBHs to explain dark matter
(DM), or just enough wormholes to generate a multiverse in
our past light cone [19–21].
Correcting for mistakes of previous work [4–6], we

calculate the abundance of PBHs, and for the first time the
number of those which hid behind their horizon a worm-
hole connected to an eternally inflating baby universe.
Previous studies [4–6] incorrectly assumed that the radius
of DWs grows as R ≃ t. Using energy arguments, Ref. [22]
commented that the relation R ≃ t is not applicable during
the annihilation phase. Our results suggest that R ≃ t is
never valid, neither during the annihilation phase nor at
any other period. In Sec. III, we solve the equation of
motion (EoM) of a single spherical DW in an expanding
universe, derived from Einstein equations in the thin-shell
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limit. The main results are sketched in Fig. 1. The radius
grows as R ∝ a or slower if superhorizon R≳ t, but quickly
shrink if subhorizon R≲ t. We find that PBHs enter their
Schwarzschild radius if they have a radius larger than R≳
RPBH
ann > t just before the annihilation phase. While most of

DWs shrink and decay away into scalar waves, those DWs
with superhorizon size, which we call late annihilators,
continue to grow during the annihilation phase until they
finally collapse when entering inside the cosmic horizon.
We also derive a critical radius Rbaby

ann larger than RPBH
ann by

about 30% above which DWs collapse into wormholes
connected to eternally inflating baby universes. We find
that the PBH formation threshold RPBH

ann is highly sensitive
to the surface energy of DWs, which can have Lorentz
factors up to γ ∼ 10, and to gravitational binding energies.
These contributions, which constitute 75% of the PBH
mass, were overlooked in prior studies [4–6]. In Sec. IV, we
employ for the first time percolation theory to estimate the
fraction of closed DWs which are large enough to host a
false vacuum ball of radius Rmin. In Sec. V, we deduce the
abundance of PBHs and wormholes. In Sec. VI, we review
the stochastic gravitational wave background (SGWB)
produced by annihilating DW networks. We point the
complementarity between GW detectability by future
observatories, PBHs, and baby-universe production.

II. BIASED NETWORK EVOLUTION

Initially, the work of the DW surface tension σ, with
equivalent pressure PT ¼ Cdσ=L toward straightening, is
dampened by the friction pressure PV ≃ βT4. The quantity
L is the correlation length of the DW network, Cd and β are
dimensionless parameters setting, respectively, the strength
of the straightening pressure and of the DW-plasma
interactions. Estimating DWs to have typical curvature
radius L ≃ vt, one obtains that DWs start moving with
relativistic velocity v ≃ Oð0.1Þ after the time

trel ≃ 2 × 10−3
�

v
0.1

��
100

g⋆

�
β

Cd

M2
Pl

σ
; ð1Þ

whereMPI ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
≃ 2.435 × 1018 GeV is the reduced

Planck mass, g⋆ the number of relativistic degrees of
freedom and where we used Friedmann’s equation
T ¼ 1.2

ffiffiffiffiffiffiffiffiffiffiffiffi
MPl=t

p
=g1=4⋆ . The magnitude of the friction coef-

ficient, denoted by β, varies depending on the particle
physics model [23,24]. In our study, we assume β ≪ 1 and
briefly touch upon the implications of friction on PBH
formation towards the end of the paper in Sec. V C. We
assume that the energy bias Vbias is initially insignificant at
the time of DW formation and remains negligible when
they begin to move without friction. Under these condi-
tions, numerical simulations have shown that the energy
density of DWs quickly reaches the scaling regime,

ρDW ¼ σ

L
; L ¼ t=A; ð2Þ

where A is the area parameter. Based on numerical simu-
lations, the area parameter for a Z2 symmetric model is
approximately A ≃ 0.8� 0.1 [25]. In contrast, ZNDW

sym-
metric models withNDW > 2, where cosmic strings attached
to NDW DWs are present, tend to yield larger values A ¼
ð0.37� 0.04ÞNDW [26]. DWs annihilate when the vacuum
pressure PV ¼ Vbias dominates over the pressure PT ¼
Cdσ=L arising from their surface tension σ, after the time

tann ≃ CdA
σ

Vbias
; ð3Þ

where the factor Cd ≃ Oða fewÞ can be inferred from
numerical simulations [26] and which we set to Cd ≃ 3.
To prevent entering the catastrophic scenario of DW domi-
nation, DW annihilation must proceed before the network
dominates the energy budget of the Universe, occurring
when 3M2

PlH
2 ≃ Vbias around the time

tdom ≃
ffiffiffi
3

p
MPl

2
ffiffiffiffiffiffiffiffiffi
Vbias

p ¼ 1.5 × 10−11 s

�
300 GeV

V1=4
bias

�
2

; ð4Þ

which, upon comparing to Eq. (3), leads to the condition

FIG. 1. Domain wall late-annihilation mechanism. During
annihilation (green region), closed DWs with subhorizon size
shrink exponentially fast while super-horizon DWs continue to
grow due to Hubble flow. Closed DW configurations with a
radius larger than RPBH

ann at the onset of the annihilation phase,
which are dubbed “late annihilators” in the orange region, enter
inside their Schwarzschild radius R ≲ 2GM in the blue region,
leading them to collapse into PBHs. DWs with radius larger than
Rbaby
ann become larger than the cosmological horizon H−1

b of an
inflating universe with same vacuum energy Vbias as their interior,
in the purple region, with H2

b ¼ Vbias=3M2
Pl. They become

eternally inflating baby universes detaching from the parent
universe through wormholes and leaving PBHs behind.
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Vbias ≳ 4

3
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ð5Þ
In the absence of a bias, the DW network would dominate
when 3M2

PlH
2 ≃ σ=L after the time

tunbiasdom ¼ 3M2
Pl

4Aσ
¼ 1.5 × 10−11 s

A

�
58 PeV

σ1=3

�
3

: ð6Þ

III. TIME EVOLUTION OF A SPHERICAL DW

A. Equation of motion

The DW network contains closed configurations of size
RðtÞ which we treat as spherical for simplicity. We discuss
the implication of such approximation later in Sec. V C. We
denote by RðtÞ ¼ aðtÞχðtÞ the physical radius of a spherical
DWand by χðtÞ its comoving radius. We introduce the wall
Lorentz factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðaχ̇Þ2

p
. The EoM of a spherical

DW can be determined through the Israel junction con-
ditions [7–9,27–31], named after Werner Israel [32]. These
conditions equate the discontinuity in the extrinsic curva-
ture across the wall to the wall surface energy-momentum
tensor [33]. For a shrinking DW, one obtains [9]

χ̈ þ ð4 − 3a2χ̇2ÞHχ̇ þ 2

a2χ
ð1 − a2χ̇2Þ

¼ −
�
Vbias

σ
− 6πGσ

� ð1 − a2χ̇2Þ3=2
a

; ð7Þ

where aðtÞ is the scale factor of the Universe inside the DW,

ȧðtÞ ¼ HðtÞaðtÞ; H2ðtÞ ¼ ρradðtÞ þ Vbias

3M2
Pl

; ð8Þ

with ρradðtÞ ¼ ρradðtannÞ½aðtannÞ=aðtÞ�4. Introducing the
dimensionless quantities

χ̃ðτÞ≡ χðt=tannÞ=tann; τ≡ t=tann; ð9Þ
the EoM in Eq. (7) can be rewritten as

̈χ̃ þ ð4 − 3a2 ˙̃χ2ÞH̃ ˙̃χþ 2

a2χ̃
ð1 − a2 ˙̃χ2Þ

¼ −
�
ACd −

9αann
16A

� ð1 − a2 ˙̃χ2Þ3=2
a

; ð10Þ

where the dot now denotes the derivative with respect to τ,
H̃ is defined below, and αann is the DW network energy
fraction at tann

αann ≡ ρDW
ρtot

����
t¼tann

≃
�

tann
tunbiasdom

�
≃ C−1

d

�
tann
tdom

�
2

; ð11Þ

where we used ρtot ≃ 3M2
Pl=4t

2 and Eqs. (2)–(4), and (6).
Upon approximating ρradðtannÞ ≃ ρtotðtannÞ, which is exact

if tdom ≫ tann, the dimensionless Hubble factor reads

H̃ðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðtannÞ=aðtÞÞ4 þ Cdα

2
ann

q
=2: ð12Þ

We determine the evolution of closed DWs assuming that
their comoving motion is initially frozen with a radius Ri
much larger than the horizon Ri ≫ ti much before the onset
of annihilation ti ≪ tann. We solve the equation of motion in
Eq. (10) and Friedmann’s equation in Eq. (8) with initial
conditions

aðtiÞχðtiÞ ¼ Ri; χ0ðtiÞ ¼ 0; aðtiÞ ¼ 1; ð13Þ
with Ri ≫ ti and ti ≪ tann. The initial radius Ri labels the
different trajectories. Examples ofDW trajectories are shown
in Fig. 4 (left).

B. PBH collapse time

Closed DWs collapse into PBHs at a time tPBH after that
they shrink below their Schwarzschild radius,

RðtPBHÞ ¼ 2GMðtPBHÞ: ð14Þ
The mass-energy M contained within the spherical DW is
given by the Misner-Sharp mass [34,35]. The latter can be
decomposed as [9]

M ¼ Mbulk þMbdy þMbind; ð15Þ
where

Mbulk ¼
4π

3
VbiasR3; ð16Þ

is a bulk term,

Mbdy ¼ 4πσγR2 ð17Þ
is a boundary term, and

Mbind ¼ −8π2Gσ2R3 þ 4πσHb

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
R3; ð18Þ

with Hb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vbias=3M2

Pl

p
, includes the repulsive surface-

surface gravitational binding energy [36] and the attractive
surface-volume gravitational binding energy, with the
former typically being dominant. From numerically inte-
grating the EoM in Eq. (10) and solving for roots of
Eq. (14) assuming RðtPBHÞ ¼ tPBH (PBHs cannot form
faster than what causality allows) we find that PBHs form
after the time, see the left panel of Fig. 2:

tPBH ≃
1

2

ffiffiffiffiffiffiffiffiffiffi
3M2

Pl

Vbias

s
¼ tannffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cdαann
p ≃ tdom; ð19Þ

which is around the time tdom in Eq. (4) when DW interiors
become dominated by the vacuum energy Vbias. If we had
approximated the DW mass by its volume termM ≃ Mbulk,
then we would have found that PBHs are twice longer to
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form tPBH ≃ 2tPBH, see the left panel of Fig. 2. Such
difference can impact the PBH abundance by many orders
of magnitude. In fact the bulk term composes only 25% of
the DW total mass at the time of collapse, see the right
panel of Fig. 2. The large surface term, composing 50% of
the mass budget, can be attributed to the large Lorentz
factor shown in Fig. 3.

C. Late annihilators

Typical DWs annihilate at tann in Eq. (3) when the
volume term in Eq. (16) dominates over the surface term in
Eq. (17). This argument however neglect Hubble expansion
which becomes important for R≳ t. In the absence of
analytical solution, we solve Eq. (10) numerically and
display the DW trajectory in the left panel of Fig. 4. We find

that DWs grow when their radius is superhorizon R > t,
and quickly shrink under the work of their own surface
tension and vacuum pressure when entering the horizon
R < t. The trajectory of the smallest spherical DWs that can
collapse into PBHs is shown in dark orange. It enters its
Schwarzschild radius at Hubble crossing R ≃ t. Larger
DWs enter their Schwarzschild radius while R > t (blue
region) but they only start to collapse after they become
causally connected when R ≃ t (black line). The radius
RPBH
ann at tann of the smallest DW which collapse into PBH is

plotted in the right panel of Fig. 4 as a function of αann, for
different approximations for the Misner-Sharp mass in
Eq. (15). We also show in gray the approximation RðtÞ ∝
t1=2 only accounting for the Hubble flow and neglecting
effects from the bias Vbias and surface tension σ, which
become important when R approaches R ∼ t. The most
precise approximation shown with the black line is well
reproduced with the fitting function:

RPBH
ann

tann
≃ 0.780Log210ðαannÞ − 0.618Log10ðαannÞ þ 0.407:

ð20Þ

Closed DW configurations with a radius larger than R≳
RPBH
ann at the onset of the annihilation phase at tann are the

population of late annihilators that collapse into PBHs
after tPBH.

1
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FIG. 2. Left: we show the time tPBH at which a spherical DW collapses into PBH, found from integrating the equations of motion in
Eqs. (8) and (10) with the boundary conditions in Eq. (13) and solving Eq. (14), for different levels of approximation of the DW mass,
either accounting for volume (“bulk”), surface (“bdy”), and gravitational binding (“bind”) terms in black, or neglecting binding term in
blue or neglecting both binding and surface terms in purple. The purple line, where only the vacuum energy is included, also corresponds
to the time tbaby in Eq. (22) of formation of a baby universe. Right: composition of the DW mass at the time tPBH when it enters its
Schwarzschild radius. The bulk component only accounts for 25% of the DW mass. Another 25% is given by gravitational binding
energies Mbind and 50% of the DW mass is given by its surface term Mbdy.

10–2 10–1 1

1

10

FIG. 3. Lorentz factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðaχ̇Þ2

p
of shrinking DW at

the time tPBH of collapse into PBH.

1Their existence was postulated in [4,37] under the name of
late birds. They are the DW network analogs of late bloomers that
are formed in the context of first-order phase transitions [38–40].
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D. Baby universe

If the radius R of a DW becomes larger than the
cosmological horizon H−1

b of an inflating universe with
vacuum energy density Vbias, which would occur around
the time tbaby

RðtbabyÞ ≃ H−1
b ; Hb ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vbias=3M2

Pl

q
; ð21Þ

then the DW radius grows exponentially with time, see the
left panel of Fig. 4. This leads to the formation of an
eternally inflating universe with a vacuum energy denoted
by Vbias called a child universe in [41] and a baby universe
in [42,43].
The baby universe detaches from the parent universe

through a wormhole, which closes off within a timescale
comparable to its light crossing time. Observers outside
the DW will continue to experience the power-law
Hubble expansion characteristic of a radiation-dominated
universe. They will perceive the DW as shrinking until it
collapses into a PBH, see, e.g., [7,19]. The observation of
the DW collapsing into a PBH, while at the same time
the coordinate RðtÞ is exponentially growing, appears
paradoxical. This seeming contradiction finds resolution
upon recognizing that the growing DW radius RðtÞ is in
fact defined in the parallel exterior region of the maxi-
mally extended Schwarzschild space-time diagram [29].
Consequently, a wormhole forms between the growing DW
and the external observer, as illustrated by the space-time
diagrams C, D, and E in [29]. The surface area along the
wormhole throat interpolates between the growing DW
surface observed from the inside, and the surface area
perceived from the outside, as depicted in Fig. 11 of [7].
The same figure shows that the throat quickly pinches off,

forming a BH horizon on both sides, one in the inflating
baby universe and one in the parent radiation-dominated
universe. Another consequence of the wormhole geometry,
demonstrated in Appendix C of [29], is that in spite of
having a growing radius RðtÞ, the DW is subject to a proper
acceleration which is oriented inward, toward the expand-
ing baby universe.
Numerically, we find that wormholes leading to the baby

universe form roughly around twice the time of PBH
formation, as given in Eq. (19):

tbaby ≃ 2tPBH ≃ 2tdom: ð22Þ
Since 2GMbulk ¼ H2

bR
3 in Eq. (15), the time tbaby actually

corresponds to the purple line in the left panel of Fig. 2. We
find that the minimal DW radius at the onset of the
annihilation phase for the latter to collapse into a wormhole
is well approximated by the fitting function:

Rbaby
ann

tann
≃ 0.951Log210ðαannÞ − 0.860Log10ðαannÞ þ 1.15;

ð23Þ
which for the same reason as before corresponds to the
purple line in the right panel of Fig. 4. The abundance of
late annihilators, whose size are larger than either Eqs. (20)
or (23), depending on whether they form a simple PBH or a
PBHþ wormhole, is determined in the next section using
percolation theory.

IV. PERCOLATION THEORY IN 3D

The goal of this section is to estimate the size distribution
of closed DWs. In anticipation of future, appropriate

10–1 1 10

10- 1

1

10

10–2 10–1 1

1

10

FIG. 4. Left: time evolution of the radius RðtÞ of a spherical DW from solving the full DW EoM for different initial sizes. DWs
collapses into PBHs if they cross their Schwarzschild radius in the blue region. The dark orange line shows the trajectory of the smallest
spherical DW collapsing into PBH. The gray line shows the would-be DW trajectory from completely neglecting effects from the bias
Vbias and surface tension σ, i.e., solely accounting for Hubble flow RðtÞ ∝ aðtÞ. Right: we show the minimal radius that spherical DW
must have at tann in order to collapse into PBH after tPBH. The Schwarzschild radius is calculated with volume term only (purple), plus
surface term (“bdy”) (blue), and binding terms (black). Due to the relationship 2GMbulk ¼ H−1

b , the purple line is also the critical radius
to form a baby universe. The fitting formula for black and purple lines are given in Eqs. (20) and (23), respectively.
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numerical simulations to accurately compute this distribu-
tion, we here propose to discretize the DW network on a
lattice and to use principles and results from percolation
theory [44–46].

A. Discretization

A DW network can be viewed as a collection of domains
of constant field configuration whose typical size is set by
the correlation length L, which in the scaling regime
becomes of the order of the horizon size L ∼ t. The
correlation length is usually estimated from the network
energy density [13,26,47,48]:

L
t
≃

σ

ρDWt
¼ A−1; ð24Þ

where A is the area parameter introduced in Eq. (2).
Using results from field-theory lattice simulations, for
Z2-symmetric models one finds L=t ≃ 1.25þ0.18

−0.14 [26] or
L=t ≃ 1.14� 0.04 [48], while ZNDW

-symmetric models
withNDW > 2 are associated to a shorter correlation length,
L=t ≃ ð2.70� 0.30Þ=NDW [26]. The values of the field
ϕðr; tÞ giving rise to the DW networks are correlated within
region of size L and becomes quickly uncorrelated at larger
distances. This motivates the modeling of the DW network
as a 3D periodic lattice containing N3 sites with lattice
spacing set equal to the correlation length L [46,49–51].
Assuming a Z2-symmetric model, every individual

lattice sites can be in one of two states, either occupied
or empty, corresponding to the field sitting in the false or
true vacuum, respectively. Each site is occupied or empty
entirely randomly, independently of the state of its neigh-
bors, with a probability p or 1 − p, respectively. In
presence of an initial bias Vbias, the probability of false
vacuum occupation reads [18]

p
1 − p

¼ exp ð−ΔF=TÞ ≃ exp ð−Vbias=V0Þ; ð25Þ

where T is the temperature and ΔF and V0 are the free
energy difference and energy density barrier between the
two minima. We assume that the potential bias is negligible
at the time of DW formation Vbias ≪ V0 such that we have
p ¼ 0.5. The occupied sites are either isolated from one
another or they form small groups of neighbors. These
groups are called clusters [44–46]. An s cluster is defined
as a group of s occupied lattice sites connected by nearest
neighbor distances. Above some critical probability pc
(¼ 0.311 for a cubic lattice), the system undergoes a phase
transition from having no infinite cluster when p < pc to
having one infinite cluster when p > pc; in other words,
the system becomes percolated by one continuous path of
occupied sites. This infinite cluster is unique. Apart from
the infinite cluster, there will also be many finite clusters
dispersed throughout the lattice. We define ns as the total
number of finite clusters of size s divided by the total

number of lattice sites N3. Hence, the total number of such
clusters is Ns ¼ ns × N3. The probability that any selected
lattice site is part of a s cluster is given by Ps ¼ s × ns. We
refer the reader to [44–46] for reviews on percolation
theory.

B. Number of late annihilators

In principle, the number ns of s cluster has been
calculated with Markov chain Monte Carlo (MCMC)
simulations [46,52–55] together with their typical radius
Rs. We address this topic in Appendix A. However, we
conclude that since these clusters tend to be irregular in
shape and contain internal holes, we cannot rely on existing
results from MCMC simulations to determine the fraction
of DWs that collapse into PBHs. Therefore, we follow a
different route which we now outline in detail. In Sec. III,
we concluded that DWs collapsing into PBHs are the ones
that are larger than a given radius Rmin in Eqs. (20) or (23).
We suppose that we can relax the assumption on their
spherical shape as long as they are large enough to contain
a fully occupied ball of radius Rmin. In doing so, any
deviation from sphericity would add more mass than
required for the collapse to occur. We define sballðrminÞ
as the minimal number of lattice sites of size L to fully
cover a ball of radius Rmin, with rmin ≡ Rmin=L. The
probability that all those sites are occupied is psballðrminÞ,
where p ¼ 0.5 is the occupation probability. Multiplying it
by the highest number of balls that can be packed on the full
lattice c0N3=sball where c0 ¼ π=3

ffiffiffi
2

p
≃ 0.74, we obtain the

number of s-clusters large enough to contain a ball of radius
rmin (in unit of L):

nsphðrminÞ ¼ d
c0

sballðrminÞ
psballðrminÞ; ð26Þ

where we normalized by the total number of sites N3. We
introduced the degeneracy factor d to account for configu-
rations that are not aligned with the arbitrarily fixed
division of the lattice into c0N3=sball sites. In the diluted
limit, we anticipate that d⟶

sball→∞
sball=c0, corresponding to

the number of choices for the displacement of the ball
center. In the context of calculating the abundance of PBHs,
we can confidently work within the diluted limit, and thus
Eq. (26) becomes

nsphðrminÞ ≃ psballðrminÞ; ð27Þ
Those clusters carry an energy:

Esph ¼ ϵ × sballðrminÞ × nsphðrminÞ; ð28Þ

where ϵ is the energy of one occupied sites. This must be
compared with the energy of the DW network:

EDW ¼ ϵðpþ pÞ ¼ ϵ; ð29Þ
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where the two terms accounts for the bulk and surface
energy of the DW network that at tann are exactly equal. We
deduce that the energy fraction contained in closed DW
large enough to contain a spherical ball of radius rmin is
given by

F ðrminÞ ¼
Esph

EDW
¼ sballnsph ≃ sballpsballðrminÞ; ð30Þ

where we recall rmin ≡ Rmin=L and p ¼ 0.5. In
Appendix B, we calculate the minimal number slattballðrÞ
of cubes of unit length required to fully cover a ball of
radius r, under the form of analytical sums. The result is
plotted with a green line in the left panel of Fig. 5 against its
upper and lower limit shown with red and blue lines:

⌈4πr3
3

⌉ < slattballðrÞ ≤ ⌈2r⌉3: ð31Þ

We observe that for small radii r∈ ½1; 5�, the value adheres
to its upper limit, representing a cube of length 2R. This is
due to the low number of lattice sites ∈ ½10; 103�.
Conversely, for larger radii r≳ 10, it approaches its lower
limit, representing perfect packing. The stair-case behavior
of slattballðrÞ arises because of the modeling of the field
configuration on a discrete lattice. It should not reflect any
physical property of the real system that should instead
show a smooth behavior. This motivates the introduction of
a smooth version ssmooth

ball ðrÞ obtained under the double

condition to interpolate the analytical sum slattballðrÞ in
Eq. (B3) as best as possible while keeping it always
smaller than its upper limit ssmooth

ball ðrÞ ≤ ⌈2r⌉3.
The resulting smooth interpolation shown with black line

in the left panel of Fig. 5 reads

ssmooth
ball ðrÞ

r3
¼ 8þ

�
1þ tanh ða1 log ðr=a2ÞÞ

2

��
4π

3
− 8

�
;

ð32Þ

where a1 ≃ 1.15, a2 ≃ 5.55, and r≡ R=L. The expression
in Eq. (32) explicitly renders the asymptotics of
ssmooth
ball ðrÞ=r3 approaching 8 as r → 1, and 4π=3 as
r → ∞. The energy fraction F ðrminÞ of closed DWs larger
than a ball of radius rmin is obtained from plugging
ssmooth
ball ðrminÞ in Eq. (32) into Eq. (30), and is shown with
a black line in the right panel of Fig. 5. It is compared to the
expression obtained from injecting the analytical sum
slattballðrminÞ in Eq. (B3) of Appendix B as well as its upper
and lower limits in Eq. (31), resulting in lower and upper
limits on F shown with red and blue lines, respectively.
Additionally, we depict with a gray line the energy fraction
F of late annihilators which would have been obtained if
results from MCMC simulations presented in Eq. (A3) of
Appendix A were plugged in Eq. (30). By doing this, we
would have dramatically overestimated the abundance of
DW on the verge to collapse to PBH.

1 10

10

102

103

104

1.0 1.5 2.0 2.5 3.0
10–30

10–25

10–20

10–15

10–10

10–5

1

FIG. 5. Left: minimum number of lattice sites, denoted as sball, required to completely cover a spherical region of radius R. The green
line illustrates the lattice result, which is given by the analytical summations derived in Appendix B. To eliminate the unphysical stair-
step behavior, a smooth interpolation is applied, as depicted by the black line, with the additional condition that it must not surpass the
upper limit represented by the red line, see Eq. (32). As the radius R increases, the number of lattice sites approaches the perfect-packing
limit, indicated by the blue line. Right: energy fraction of the network retained in closed DWs, which are sufficiently large to contain a
false vacuum sphere with radius R. It is obtained by injecting the function sballðRÞ shown in the left panel in Eq. (30). The black line
represents the most accurate result, achieving a smooth interpolation of the lattice data depicted in green, while consistently exceeding
the lower limit, marked by the red line. In contrast, the MCMC result, presented in Appendix A and shown in gray, obtained from
injecting Eq. (A3) in Eq. (30), tends to overestimate the fraction F of DWs on the verge to collapse into PBHs as it also includes DWs
that are significantly nonspherical or that possess internal holes. It is important to note the anticorrelation between the legends of the two
panels: the lower limit in the left panel corresponds to the upper limit in the right panel, and vice versa for the upper limit. Instead, the
colors match across both panels. L is the network correlation length.
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V. PBH AND WORMHOLE ABUNDANCE

Now that we are in possession of the critical size RPBH
min

and Rbaby
min beyond which closed DW collapse into PBH and

wormholes, derived in Sec. III, and of the DW size
distribution derived in Sec. IV, we can now proceed to
the derivation of the PBH and wormhole abundance.

A. PBHs

The PBH contribution to the DM abundance is

fPBH ¼ ρcollðtPBHÞ
ρDMðtPBHÞ

¼ ρDWðtannÞ
ρDMðtPBHÞ

ρcollðtPBHÞ
ρcollðtannÞ

F coll; ð33Þ

where ρDMðtÞ is the DM energy density, ρcollðtÞ is the
energy density stored in collapsing DWs and F coll is the
collapsing fraction at the onset of annihilation,

F coll ≡ ρcollðtannÞ
ρDWðtannÞ

: ð34Þ

The first factor on the right side of Eq. (33) can be evaluated
from evolving DWs, DM, and radiation energy densities
like t−1, a−3 and g⋆ðTÞT4, respectively, and matching
them at tunbiasdom in Eq. (6) and matter-radiation equality
when eq ≃ 0.80 eV. The second factor in Eq. (33) can be
evaluated from using that DWs collapsing into PBHs have
superhorizon size and therefore their energy evolves
approximately as a−1. One obtains

fPBH ¼ G ×R ×
Tdom

Teq
× F coll; ð35Þ

with

G≡
�
geqs⋆
geq⋆

��
gPBHs⋆

ganns⋆

�
1=3

� ðgann⋆ gdom⋆ Þ1=4
gPBHs⋆ =ðgPBH⋆ Þ1=2

�
∼ 1; ð36Þ

and

R ≃
�
tPBH
tunbiasdom

��
tdom
tann

�
1=2

∼ 1: ð37Þ

The different temperatures can be calculated from the
characteristic times in Eqs. (3), (4), (6), and (14) using
T ≃ 1.23ðMPl=tÞ1=2=g⋆ðTÞ1=4, with g⋆ðTÞ and g�sðTÞ as
the number of relativistic degrees of freedom appearing in
energy and entropy density, respectively, written as gX� and
gXs;� with X the associated epoch in Eq. (36). In Eqs. (36)
and (37), behind the sign ∼ we anticipated that PBH
formation reaches maximum efficiency when DWs have
the longest lifespan. This happens when they annihilate
just before dominating the Universe tann ∼ tdom ∼ tunbiasdom ,
which together with Eq. (19), implies G ∼ 1 and R ∼ 1.

The collapsing fraction F coll is given by the fraction of
closed DWs in Eq. (30) with a radius larger than the critical
threshold:

F coll ¼ F ðrPBHann Þ ≃ sballðrPBHann Þ × psballðrPBHann Þ; ð38Þ

where p ¼ 0.5 and rPBHann ≡ RPBH
ann =L. The function

sballðr ¼ R=LÞ, given in Eq. (32), is the number of
correlated regions within a ball of radius R. The network
correlation length Lmust be evaluated at tann just before the
annihilation stage starts, thus in the scaling regime.
Possible values for L are discussed below Eq. (24). The
critical radius RPBH

ann at tann beyond which DWs are expected
to collapse into PBHs is given by the fitting function
in Eq. (20).
For rapid use, we propose the following fitting function

for Eq. (38):

F coll ≃ exp

�
−

a
lb

�
1

αann

� c
ld
�
; ð39Þ

with a ≃ 0.659, b ≃ 2.49, c ≃ 1.61, and d ¼ 0.195. We
checked that Eq. (39) provides a very good approximation
of Eq. (38), after substitution of Eqs. (20) and (32), for
l≡ L=t within the range [0.2, 2]. The PBH abundance in
shown with brown lines in Figs. 6 and 7. The minimal PBH
mass is given by the mass inside the Schwarzschild radius
at horizon crossing RschðtPBHÞ ¼ tPBH:

MPBH ≃
tPBH
2G

≃ M⊕

�
217 GeV

V1=4
bias

�
2

; ð40Þ

where tPBH is given by Eq. (19) andM⊕ ≃ 3.00 × 10−6M⊙
where M⊕ and M⊙ are Earth and Sun masses. The PBH
mass can also be calculated as MPBH ≃ 4 × 4πt3PBHVbias=3,
which is the bulk mass inside the horizon multiplied by a
factor of 4 accounting for the surface and gravitational
binding energies, see the right panel of Fig. 2. In principle,
PBH produced above the threshold R ≫ RPBH

ann have larger
mass than the minimal value in Eq. (40). The production of
heavier PBH is exponentially suppressed by the late-
annihilator fraction in Eq. (30), thus we expect a nearly
monochromatic mass distribution for PBHs produced by
DW networks. We leave its precise calculation for future
works. In Fig. 6, we recast the usual PBHs astrophysical
constraints in the parameter space of DW networks.

B. Wormholes

The critical DW radius Rbaby
min in Eq. (23) beyond which

the collapse into PBHs is also associated to the creation of a
wormhole connected to an inflating baby universe is about
30% times larger than the critical radius RPBH

min in Eq. (20)
for forming simple PBHs. Due to the exponential suppres-
sion in Eq. (30), this implies that the wormhole production
rate is significantly lower than the PBH production rate.
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In spite of this suppression, is it possible that at least one
baby universe has been created within our past light cone?
The number fbaby of baby universes formed in our past light
cone is simply

fbaby ¼ N patchesðTdomÞ × F ðRbaby
ann Þ; ð41Þ

where the DW fraction F ðRminÞ is defined in Eqs. (30)
and (32), and the baby threshold Rbaby

ann is given in Eq. (23).

The function N patchesðTdomÞ is the number of Hubble
patches, at the time of collapse in Eqs. (22) and (4) when
the temperature is approximately Tdom, in our past light
cone. It reads

N patches ¼
�
adomHdom

a0H0

�
3

;

≃
1.3 × 1038

h3

�
g⋆ðTdomÞ

100

�
1=2

�
Tdom

100 GeV

�
3

; ð42Þ

FIG. 6. Exclusion constraints on DW network occupying an energy fraction αann defined in Eq. (11) at the onset of the annihilation
phase driven by a bias energy density difference Vbias between distinct vacua. PBHs are produced around the temperature V1=4

bias shown on
the bottom x axis with the PBH mass shown on the top x axis. The colorful regions are excluded due to the presence of PBHs. The two
yellow areas on the left side indicate regions excluded by the cosmic microwave background (CMB) either due to μ distortion caused by
inhomogeneities accompanying the production of very large PBH shown in dashed [56–58], or due to the accretion of large PBHs shown
in solid [59–61]. The region in cyan is ruled out due to limits on the black hole merging rate from LIGO-Virgo-Kagra (LVK) [62]. The
purple region is excluded by the constraints from MACHO [63], Eros [64], OGLE [65], and HSC [66] microlensing experiments. The
red and purple dotted horizontal ellipses show the best-fit regions that can explain the anomalies observed in OGLE and HSC
microlensing data [65–67]. The brown area shows where DM would overclose the Universe. Above the purple dashed line, more than
one baby universe fbaby ≳ 1 is produced in our past light cone. We only show it in the region not excluded by PBH overproduction. At
smaller masses, PBH evaporate within a universe lifetime [68,69]. Since we do not observe the presence of Hawking radiation, neither in
terms of cosmic-ray fluxes [70–74], nor in terms of modification of the ionization fraction in CMB [75–77], nor in terms of modificaton
of the abundance of light elements produced during big-bang nucleosynthesis (BBN) [70], we can exclude the red, yellow, and green
regions on the right side, respectively. The gray region labeled “DW domination” defined by tann ≳ tdom, see Eq. (11), indicates where
the bias vacuum energy becomes larger than the radiation density of the Universe. Such region is expected to lead to a PBH-dominated
universe as mentioned in the introduction. Additionally, the blue-gray regions indicate where SGWB produced from DW annihilation
are excluded by NANOGrav 15-year (NG15) data [78] andO3 run of LVK [79]. We use that no SGWBwith a signal-to-noise ratio larger
than SNR ≤ 5 has been detected in NG15 and SNR ≤ 2 for LVK. The blue-filled black dotted vertical ellipse shows the 90% favored
region which can explain the SGWB recently detected in NG15 [80–84], using the Bayesian analysis of [85]. The regions labeled
“BBN” in gray, are excluded by the constraints on number of effective degrees of freedom Neff ≲ 0.4 [86,87]. Two scenarios must be
distinguished according to whether the DW network annihilates into degrees of freedom from the Standard Model (SM) or from a dark
sector, see Appendix C for the details. Last, the DW network correlation length has been set to L ¼ 0.8t, which is a rather conservative
assumption for Z2-symmetric network, see Eq. (24).
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where h≡H0=100 km=s=Mpc with H0 the Hubble con-
stant today. We approximated g�ðTÞ ≃ g�;sðTÞ and used
g�sðT0Þ ≃ 3.94. The DW network parameter space produc-
ing at least one wormhole connected to baby universe is
indicated with the dashed purple line in Figs. 6 and 7.

C. Further considerations

Finally, we discuss additional effects which could impact
the PBHs abundance predicted in this work, as well as
aspects reserved for future investigation.

1. Collapse of subhorizon PBHs

In this study, we only account for PBHs formed fromDWs
entering their Schwarzschild radius at the moment of their
horizon entry or before.We do not account for the possibility
for DWs to enter their Schwarzschild radius much after their
horizon entry, at a radiusRsch=t ∼ ðt=2tdomÞ2, possiblymuch
smaller than t, where we assumed Rsch ¼ 2GM with
M ∼ 4πt3=3. PBH formation well within the horizon can
only occur if they are spherical enough to shrinkby a factor of
ð2tdom=tÞ2 ≫ 1 to become fully contained within their
Schwarzschild sphere. The PBHabundance from subhorizon
collapse is highly sensitive to the distribution of DW shapes.

For this reason, in this analysis we made the conservative
choice to not account for this additional contribution, which
we leave for future research.

2. Deviation from spherical symmetry

In Sec. III, we calculate the critical radius RPBH
ann beyond

which DWs collapse into PBH, see, e.g., Eq. (15). The fact
that DWs are in general not spherical raises the question
whether this treatment is appropriate to describe the real
physical system. However, we apply this criteria on closed
DWwhich are large enough to contain a ball of radius Rmin,
their abundance F ðRminÞ being derived in Sec. IV. If
Rmin ¼ RPBH

ann , then those DWs will all unavoidably collapse
into PBHs whatever their shape. This is because non-
sphericity will participate to a mass larger than MðRminÞ in
Eq. (15) and therefore make it easier to collapse into PBHs.
Instead, our analysis is in fact conservative with respect to
nonsphericity since it misses DW configurations that are
not accounted by F ðRminÞ due to their nonspherical shapes
in spite of being successful at forming PBHs.

3. Internal holes

Our analysis focuses on calculating the amount of com-
pletely false-vacuum-dominated spherical configurations.

FIG. 7. Observability of SGWB produced by annihilating DW networks (blue) compared to PBH abundance (brown). Solid blue lines
indicate existing GW constraints from NANOGrav 15-year data release (NG15) [78] and runO3 from LVK [79], assuming the signal-to-
noise ratio detection thresholds SNR ¼ 5 and SNR ¼ 2, respectively. The dashed blue lines indicate the future prospects from SKA
[88], LISA [89–91], and ET/CE [92–94]. The low opacity regions show the most optimistic prospects, assuming a low detection
threshold SNR ¼ 1 (equivalent to 1σ deviation from noise) after T ¼ 20 years of observation (T ¼ 10 years for SKA) [95] and the
perfect subtraction of all the stochastic astrophysical GW foregrounds, see, e.g., Fig. 6 in [96]. Instead the higher opacity regions show
the more conservative prospects assuming no astrophysical foreground subtraction. The thickness of the brown bands represents the
uncertainty on the correlation length L of the DW network L=t∈ ½0.6; 1�, the solid line showing the central value L ¼ 0.8t. Above the
purple line, at least one eternally inflating baby universe is produced in our past light cone, assuming L ¼ 0.8t. The regions labeled
“BBN” and “DW domination” are the same as in Fig. 6.
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Consequently, it excludes false vacuum configurations
that could collapse into PBHs despite possessing internal
cavities of the true vacuum phase. The study of PBH
formation via cheeselike configurations is postponed to
future research, with the anticipation that such corrections
are likely to increase the amount of PBHs.

4. Correlation length

The PBH abundance shows an exponential sensitivity
to the correlation length L of the DW network, as
indicated in Eq. (39). In this study, we suggest esti-
mating L through the DW network energy density, with
L ≈ σ=ρDW, as presented in Eq. (24). This approach
benefits from previous lattice calculations, where the
relationship L=t ≈ ð2.70� 0.30Þ=NDW was established
for the ZNDW

symmetric model [26]. This result implies
that the PBH abundance dramatically decreases as the
number NDW of nearly degenerate vacua increases. A
more precise determination of the correlation length,
along with its dependency on NDW, is left for future
studies. Also the precise dependence of the late-
annihilator fraction as a function of the number of
vacua is left for future studies. The question at hand
is whether the fraction of late annihilators experiences a
significant reduction for NDW > 2 due to the substitution
of p ¼ 0.5 with p ¼ 1=NDW in Eq. (30).

5. Friction

The assumption of a significant source of friction—
which is considered negligible in this study but may
become relevant in certain scenarios [23,24]—would slow
down the motion of DW, thereby reducing the correlation
length L, and preventing it from keeping pace with the
cosmic horizon L ∼ t [97]. This could subsequently lower
the resulting PBH abundance, see, e.g., the right panel of
Fig. 5. Nevertheless, DWs that are larger than the cosmic
horizon should remain unaffected by friction, suggesting
that PBH formation should still occur in the presence of
friction. In any case, whether or not friction is active, as
mentioned in the introduction if the DW network were to
dominate the energy density of the Universe, one should
anticipate a substantial production of PBHs, including
those that host a baby universe.

6. Presence of an initial bias

Our analysis assumes that Vbias is absent at the time of
network formation. The presence of a large initial bias Vbias
already active at the time of network formation [37,51,98],
i.e., such that tann < tform, would impact the occupation
probability p in Eq. (25) and reduce the fraction F of late
annihilators in Eq. (38) and the resulting PBH abundance.
Also models of DW with time-decreasing surface tension
[99–101] would give different results.

VI. GRAVITATIONAL WAVES

During the annihilation process, DWs are driven to rela-
tivistic speed and radiate GWs (see, e.g., [16,102–107]). The
GW power spectrum today Ω0

GW can be related to the GW
power spectrum at the annihilation epoch Ωann

GW by

Ω0
GWh

2 ¼ DΩann
GW; ð43Þ

where D≡ ρradðTannÞ=ρradðT0Þ is the redshift factor of the
Universe radiation energy density ρradðTÞ ¼ π2g�T4=30
assuming an adiabatic evolution T ∝ g−1=3s;� a−1:

D ¼ Ω0
radh

2

�
g�ðTannÞ
g⋆ðT0Þ

��
gs;�ðT0Þ
gs;�ðTannÞ

�
4=3

≃ 1.62 × 10−5
�
g�ðTannÞ
106.75

��
106.75

gs;�ðTannÞ
�

4=3
; ð44Þ

We introduced today’s radiation energy fraction Ω0
radh

2¼
h2ρradðT0Þ=ρ0≃4.18×10−5withT0 ≃ 2.73 K[108], today’s
critical density ρ0 ¼ 3M2

PlH
2
0 with H0 ≃ 100h km=s=Mpc,

g�ðT0Þ ≃ 3.38 and gs;⋆ðT0Þ ≃ 3.94, assuming Neff ≃ 3.045
[109,110]. The GW spectrum produced by long-lived DWs
annihilating at tann follows from the quadrupole formula
[25,111–113]:

Ωann
GW ¼ ϵGW

GA2σ2

ρradðtannÞ
SðfÞ ¼ 3

32π
ϵGWα

2
annSðfÞ: ð45Þ

The dimensionless quantity ϵGW encodes the deviation from
the quadrupole formula and is fitted on lattice simulations
ϵGW ≃ 0.7� 0.4 [25]. The spectral function SðfÞmust have
an IR slope ΩGW ∝ f3 to respect causality [114–117] and a
UV slope ΩGW ∝ f−1 as suggested by lattice simulations
results [25] (though more complicated spectra are possible,
see, e.g., [118]). This motivates the modeling of SðfÞ by the
following smoothing function:

SðfÞ ¼ 2

ðf=fpeakÞ þ ðfpeak=fÞ3
: ð46Þ

The peak frequency is given the Hubble factor at the time of
annihilation redshifted until today [25]:

fpeak ¼
aðtannÞ
aðt0Þ

HðtannÞ ≃ 1.6 mHz

�
g⋆ðTannÞ
106.75

�
1=2

×

�
106.75
g�sðTannÞ

�
1=3

�
Tann

10 TeV

�
: ð47Þ

In Fig. 6, we show the exclusion regions due to the limit
on SGWB by Pulsar Timing Arrays NANOGrav [78], and
earth-based interometers LIGO-Virgo-Kagra (run O3) [79].
In Fig. 7, we also present the potential for detection by
futurepulsar timing arraySquareKilometerArray (SKA) [88],
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as well as forthcoming space-based interferometers Laser
Interferometer Space Antenna (LISA) [89,90], Einstein
Explorer (ET) [92,93], and Cosmic Explorer (CE) [94]. We
have set the signal-to-noise ratios at SNR ¼ 5 and SNR ¼ 2
for NG15 and LVK O3, respectively, and (SNR ¼ 1,
T ¼ 10 years) for SKA, as well as (SNR ¼ 1,
T ¼ 20 years) for LISA, ET, and CE, where T is the
observation time. The power-law integrated curves (PLIC)
are adopted from [95]. For CE and ET, we choose the
minimum of the two PLIC. For NG15, we show both the
posterior—labeled “NG15 fit”—assuming that the recently
detected GW signal [80–84] is sourced by annihilating DWs
[85,119], and the exclusion constraints—labeled “GWexclu-
sion”—which wewould have had if no GWwould have been
detected [78]. We can interpret the latter as the current NG15
constraints on annihilating DWs assuming that the origin of
the GW signal is imputed to supermassive black hole binaries.
For the future GW prospects, we explore two different
scenarios, depending on whether the expected astrophysical
foreground could be subtracted or not. We take into account
the galactic white dwarf binaries, referencing either the model
from [120,121] or the one from [90], as well as extragalactic
supermassive blackhole binaries from [122], and extragalactic
compact binaries (comprisingof neutron stars andblackholes)
fitted on LIGO O3 data [79]. We refer to Fig. 6 in [96] for a
visualization of the different GW astrophysical foregrounds
across frequencies. The shaded regions in Figs. 6 and 7
correspond to places where the GW background from DW in
Eq. (43) exceeds the corresponding PLIC plus the eventual
GW astrophysical foregrounds.

VII. CONCLUSION

DW networks could have formed in the early Universe
after the spontaneous breaking of a ZN symmetry with
N > 1. In presence of a vacuum energy difference Vbias
lifting the degeneracy between theN vacua, DWs are driven
toward annihilating each other. In order to be viable, the DW
network must annihilate before occupying a significant
energy fraction of the Universe. The Schwarzschild radius
of DWs grows with radius as Rsch ∝ R2 or R3 according to
whether surface or bulk energy dominates. The average size
of DWs, which is set by the correlation length L of the
network, grows with cosmic time as L ≃ t. This seems to
imply that there must be a time tPBH when most of the DWs
enter their Schwarzschild radius and collapse into PBHs.
This time is closely related the time tdom ∼ tPBH when the
Universe becomes dominated by the DW network energy
density. This is the recipe followed by previous papers [4–6]
to calculate the PBH abundance from DW networks.
However, as first pointed in [22], the DW growth cannot
be applied during the annihilation phase which necessarily
precedes PBH formation tann ≲ tPBH to prevent DW domi-
nation. In this work, we find that only superhorizon DWs
continue to grow like R ∝ aðtÞ or slower while sub-horizon
DWs shrink. This implies that only superhorizonDWswhich

are larger than a given threshold, R ≥ RPBH
ann , can enter the

horizon after tPBH and collapse into PBHs. We call this
population late annihilators.We calculate the PBH formation
threshold RPBH

ann accounting for volume, surface, and gravi-
tational binding energies arising from Einstein equations.
We introduce a new formalism borrowed from percolation
theory in 3D to calculate the abundance of late annihilators
which we find to be exponentially suppressed for small DW
energy fraction αann or small network correlation length L,
see Eq. (39).
We are able to translate PBH exclusion constraints to

the parameter space of DW networks in Fig. 6. We find
that the newly constrained parameter space overlaps with the
regions which are either currently probed by GW observa-
tories or will be probed in the future, see Fig. 7. We conclude
that Bayesian analysis of DW network interpretation of
stochastic GW background in current and future observato-
ries should account for constraints from PBH production as
initiated in our companion paper [85].
Another novelty of the present study is to have deter-

mined the conditions for DWs to continue expanding
forever as seen from an observer located inside. Those
eternally inflating baby universes are connected to their
parent universe through a wormhole. The latter pinches off
in one light crossing time, leaving a PBH behind, with no
residual evidence for the baby universe genesis. Those
eternally inflating baby universes are in principle allowed
to undergo nucleation of bubbles of any other vacua
permitted by the underlying particle physics [19–21].
Hence, baby universes will evolve into complex space-
time structures, comprising a multitude of eternally inflat-
ing regions interconnected by wormholes, giving rise to a
multiverse. We find that the possibility to have a baby
universe formed in our past light cone is excluded by
PBH overproduction, except in the region where PBH
evaporate before the onset of BBN if they are lighter than
10−24M⊙ ∼ 109 g. This occurs if the bias energy density is
larger than Vbias ≳ ð1012 GeVÞ4, see Figs. 6 and 7.
Finally, the μ-distortion constraints shown in dashed

yellow region in Fig. 6 assume that inhomogeneities
sourced by the DW networks are not highly non-
Gaussian [58] in contrast to the claim in [4]. Those
μ-distortion constraints could jeopardize the possibility
for PBH to be produced from QCD axion cosmological
scenarios as initially proposed in [4]. We leave more
quantitative conclusions for future studies.
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APPENDIX A: MCMC SIMULATIONS

The number of s clusters has been calculated with
MCMC simulations in both condensed matter [52–55]
and cosmological context [46]. One finds [46]

ns ¼
0.0501
sτ

exp f−0.6299PsσðPsσ þ 1.6679Þg; ðA1Þ

where τ ≃ 2.17, σ ≃ 0.48, P ≡ ðp − pcÞ=pc. For p > pc,
the average cluster radius Rs is given by [46]

Rs=L ¼ 0.702jp − pcj−0.124s1=3: ðA2Þ

For an occupation probability p ¼ 0.5 and the percolation
threshold of a cubic lattice pc ¼ 0.311, Eqs. (A1) and (A2)
simplify to

ns ≃ 0.0501s−2.17 expf−0.2326s0.96 − 0.6385s0.48g; ðA3Þ

andRs ¼ 0.863s1=3. Since p > pc, most of the lattice points
belong to the infinite cluster.We noteP∞ the probability that
an occupied site belongs to this percolating cluster. A given
lattice point can either be empty with a probability 1 − p,
occupied in the percolating clusterwith a probabilitypP∞, or
occupied in a finite cluster with a probability

P
s sns.

Summing all the possibilities leads to [44]

1 − pþ pP∞ þ
X
s

sns ¼ 1: ðA4Þ

Plugging Eq. (A3) into Eq. (A4) for p ¼ 0.5, we calculate
P∞ ≃ 0.92. For the cosmological system (N → þ∞), it
means that 92% of the false vacuum region (with vacuum
energyVbias) is contained inside an infinite DW spanning the
whole Universe and only 8% of the false vacuum region is
contained inside finite, closed, DWs. The number of these
closed DWs is represented by ns in Eq. (A3). However, the
formula given in Eq. (A3) is not suitable for estimating the
number of DWs collapsing into PBHs due to two
considerations.
First, the analysis conducted in Sec. III presumes that

the DWs are spherical. The scaling relationship between
cluster volume and radius s ∝ R3

s in Eq. (A2) suggests that
clusters exhibit a dropletlike shape, as elaborated in [44].
Nonetheless, when observing the simulated shapes of DWs
on a lattice, e.g., as in Fig. 1 of [13], it becomes evident
that typical closed DWs can deviate significantly from a
spherical shape at larger sizes. This deviation can be
characterized by their inner radius being potentially much

smaller than their average radius Rs. Second, at larger sizes,
clusters tend to encompass a considerable number of
internal holes, similar to Swiss cheese [44]. In light of
these factors, we deduce that the number distribution ns,
derived from MCMC simulations in Eq. (A3), which
accounts for clusters that are significantly irregular in
shape and contain internal holes, would overestimate the
number of DWs on the verge of collapse. Statistical
methods to determine the shape of an s cluster, for instance
the classical Wulff construction in the supercritical regime
where the surface energy is minimized for a given volume
(e.g., [123–125]), are beyond the scope of this study. In this
work, we determine the fraction of DWs collapsing into
PBHs with our own methods as indicated in Sec. IV B. The
outcomes displayed in the right panel of Fig. 5 indeed
indicate that results from MCMC simulations found in the
literature would significantly overestimate the fraction of
DWs undergoing collapse.2

APPENDIX B: NUMBER OF CUBES
TO COVER A BALL

In this appendix, we calculate the minimal number of
cubes of length L required to fully cover a ball of radius R,
or equivalently the number of cubes of unit length covering
a ball of radius r ¼ R=L. We propose the two configura-
tions shown in Fig. 8 where the center of the ball is either a
face or a center of a cube. We start with the latter. We can
divide the ball into eight octants, which we subsequently
divide into ⌈r⌉ layers denoted by j∈ ⟦0…brc⟧, one of them
being shown in the left panel of Fig. 8. The radius of the
circle coinciding with the boundary of the ball at a layer j is
rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − j2

p
. Denoting the column number by

i∈ ⟦0…brc⟧, the number of cubes filling a row, shown

in red color, is ⌈ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j − i2

q ⌉. We deduce the total number of

cubes filling the ball for the configuration shown in the left
panel of Fig. 8:

sball;1ðrÞ ¼ 8
Xbrc
j¼0

Xb
ffiffiffiffiffiffiffiffiffi
r2−j2

p
c

i¼0

⌈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − i2 − j2

q
⌉: ðB1Þ

We now pass to the next configuration where the ball
center coincides with the center of a cube. We start by
isolating the three orthogonal layers along the planes ðXYÞ,
ðXZÞ, and ðYZÞ passing through the center of the ball,
one of them being shown in the right panel of Fig. 8.

2Note that Fig. 5 (right) displays Eq. (A1) for p ¼ 0.5 and
s≲ 42, derived from substituting Rs ≲ 3 into Eq. (A2). This
corresponds to Psσ ≲ 3.66, potentially exceeding the valid
application range of Eq. (A1). Upon reading Ref. [46], it remains
ambiguous whether the validity regime of Eq. (A1) is Psσ ≲ 5.79
or Psσ ≲ 1.41. Regardless, the conclusion that the results from
MCMC simulations like Eq. (A1) are unsuitable for estimating
the PBHs abundance remains the same.
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The number of cubes in the central triaxis blue cross is
6brþ 0.5c þ 1. The remaining number of cubes in those
three orthogonal layer outside the three-axis cross is

4
Pbrc

i¼0 ⌈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ðiþ 0.5Þ2

p
þ 0.5⌉. Finally, accounting for

the remaining cubes in the eight octants outside the three
internal layers gives

sball;2ðrÞ ¼ 6brþ 0.5cþ 1

þ 4
Xbrc
i¼0

⌈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ðiþ 0.5Þ2

q
þ 0.5⌉

þ 8
Xbrc
j¼0

Xb
ffiffiffiffiffiffiffiffiffi
r2−j2

p
c

i¼0

⌈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ðiþ 0.5Þ2− ðjþ 0.5Þ2

q
⌉:

ðB2Þ
The minimal number of cubes to fully cover a ball

obtained from the analytical sums of this appendix is

slattballðrÞ ¼ Min½sball;1ðrÞ; sball;2ðrÞ�: ðB3Þ
The function slattballðrÞ with r ¼ R=L is shown with a green
line in Fig. 5. We find that at small radius ≳1, it is close to
its upper limit shown in red for which the ball is replaced by
its outer cube of length 2r

slattballðrÞ≳ ⌈2r⌉3: ðB4Þ
At large radius r ≫ 1, the number of cubes asymptotes the
perfect-packing (lower) limit shown in blue for which the
tiny cubes smoothly fit inside the ball:

slattballðrÞ≲ ⌈4πr3
3

⌉: ðB5Þ

APPENDIX C: BBN BOUND

DWs form a component of the total energy density of the
Universe. As such, they contribute to increase the expan-
sion rate of the Universe that makes neutron freeze-out
earlier, increase the n=p ratio which in turn increases the
Helium abundance [126]. The presence of DWs can be
described in terms of an extra number of neutrino species

Neff ¼
8

7

�
ρDW
ργ

��
11

4

�
4=3

; ðC1Þ

where ργ is the photon number density. We introduce the
DW energy fraction in unit of radiation energy density at
annihilation temperature

αDWðTÞ ¼
ρDWðTÞ

π2

30
g⋆ðTÞT4

: ðC2Þ

where T is the SM photon temperature. From Eqs. (C1) and
(C2), the maximal DW contribution to Neff occurs at
annihilation temperature

ΔNeffðTÞ ¼
8

7

�
g�ðTÞ
2

��
11

4

�
4=3

αDWðTÞ: ðC3Þ

To apply the BBN bound ΔNeff ≲ 0.3 [86,87], the effective
number of extra relativistic degrees of freedom must be
evaluated below the neutrino decoupling temperature
where g⋆ðT < TdecÞ≡ 2þ ð7=8Þ · 2 · Neff · ð4=11Þ4=3 ≃
3.38 where we used Neff ≃ 3.045 [109,110]. Hence, we
obtain

ΔNeff ¼ 7.4αGW ≲ 0.4; ðC4Þ

FIG. 8. We consider two possible way to pave a ball with cubes, according to whether the ball center is at the center or a corner of a
cube, whose 2D projections are shown in the left and right panel, respectively. The corresponding numbers of cubes fully covering the
ball are denoted sball;1ðrÞ and sball;2ðrÞ.
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which is slightly different from [127]. As discussed in the main text, we must distinguish the scenario in which DWs reheat
to dark radiation, in which case Eq. (C4) is the BBN constraints, from the scenario in which DWs reheat to SM, in which
case Eq. (C4) applies only if DWs annihilate below the neutrino decoupling temperature Tann ≲ 1 MeV.
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