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Scaling arguments are used to constrain the angular spectrum of distortions on boundaries of
macroscopic causal diamonds, produced by Planck scale vacuum fluctuations of causally coherent
quantum gravity. The small-angle spectrum of displacement is derived from a form of scale invariance: The
variance and fluctuation rate of distortions normal to the surface of a causal diamond of radius R at
transverse physical separation cτ ≪ R should depend only on τ, with a normalization set by the Planck time
tP, and should not depend on R. For measurements on scale R, the principle leads to universal scaling for
variance on angular scaleΘ, hδτ2iΘ ≃ τtp ∼ ΘRtP=c and angular power spectrum Cl ∼ ðRlPÞ=l3 at l ≫ 1.
This spectrum is consistent with a relational model of holographic noise based on causally coherent virtual
null gravitational shocks, a general picture conjectured for all l. The high l scaling is contrasted with that
predicted in some other quantum models, which differ by one power of angular wave number l and are
shown to predict excessive blurring of images from distant sources.
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I. INTRODUCTION

There is no widely accepted theory of how quantum
gravity works [1,2]. It is generally agreed that standard
relativity and quantum mechanics become inconsistent
below the Planck scale tP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c5

p
, determined by

Planck’s constant ℏ, Newton’s constant G, and the speed
of light c. However, there is no consensus on large-scale
phenomenology of quantum geometry, apart from the
requirement that any theory must agree with classical
gravity on large scales. The standard quantization of
linearized gravity, based on quantum field theory, is not
causally coherent and cannot form the foundation of a
complete consistent theory, even on large scales [1,2].
A key breakthrough would be to identify a uniquely

identifiable large-scale phenomenon associated with quan-
tum gravitational effects. Such a research program may be
possible if quantum states of geometry are nonlocally
coherent on null surfaces, which leads to observable
correlations even on macroscopic scales. Predictions of
causally coherent macroscopic effects from Planck scale
fluctuations have been derived from semiclassical models
of holographic noise [3–7] and from more formal quantum
theories of causal fluctuations [8–12].
In these scenarios, macroscopic null surfaces acquire

large-scale distortions due to Planck scale quantum fluc-
tuations, with an amplitude much larger than the Planck
time. In principle, their correlations may be observable,
either in the signals of suitable configured interferometers
[3–7,10–14] or in the relic cosmic perturbations measured
in the cosmic microwave background [15–17].
In this paper, we use scale invariance to make a model-

independent estimate of the small-scale angular spectrum

of macroscopic corrugations of causal diamond surfaces
and horizons due to coherent Planck scale quantum
gravitational vacuum fluctuations.

II. ANGULAR SPECTRUM
AND CORRELATION

Consider distortions of the spherical boundary of a
causal diamond of radius R with displacement in time
δτ, measured for example as displacements of clocks (as
considered in, e.g., Ref. [6]). In general, the displacement is
relational, specific to the vantage point of the world line that
defines the causal diamond.
We adopt standard notation from the CMB literature

(see, e.g., Refs. [15,16]). A function on a unit sphere with
directions Ω⃗ labeled by standard polar coordinates θ;ϕ is
decomposed into spherical harmonics Ylm:

δτðΩ⃗Þ ¼
X
l

X
m

Ylmðθ;ϕÞalm; ð1Þ

where alm are the harmonic coefficients of the discrete 2D
angular spectrum. The angular power spectrum is related to
the harmonic coefficients by

Cl ¼ 1

2lþ 1

Xm¼þl

m¼−l
jalmj2: ð2Þ

The angular correlation function is defined as

CðΘÞ ¼ hδτ1δτ2iΘ; ð3Þ
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where the average is taken over all points on the sphere
with angular separation Θ ¼ jΩ⃗1 − Ω⃗2j. It is related to the
angular power spectrum by

CðΘÞ ¼ 1

4π

X
l

ð2lþ 1ÞClPlðcosΘÞ; ð4Þ

where Pl are the Legendre polynomials.

III. CAUSALLY COHERENT NOISE

Our main aim is to derive general scaling laws forCl and
CðΘÞ applicable to scaling of Planckian quantum noise in
the high-l limit. Extrapolation to low l is affected by
causal symmetries, whose main features can be captured in
a geometrical model of coherent distortions on intersecting
spherical null surfaces, as described in the example in the
Appendix.
We will consider anisotropy generated in a broad class of

models based on the principle that quantum gravitational
vacuum fluctuation states are coherent in causal diamonds.
This general construction allows states of space-time to
have coherent causal structures consistent with particles
they couple to. A theory that obeys the correspondence
principle can have geometrical states that match the
coherent angular pattern of distortions on a spherical null
surface produced by classical gravity.
Consider quantum states of geometry that are coherent

on causal diamonds, with holographic granularity at the
Planck scale. Vacuum fluctuations produce directional
causal distortions with nonlocal angular coherence on
the surface of every causal diamond. A causally coherent
model leads to vacuum fluctuations with variance and
coherence similar to that generated by displacements by
coherent gravitational shock waves that would be produced
by a classical gas of many pointlike photons with randomly
oriented Planck scale momenta [4–7,18], whose number
density saturates gravitational bounds. For harmonic dis-
tortions that add in quadrature, the total variance of
distortion on the surface of a causal diamond of radius
R is of order [6]

hδτ2i ∼ RtP=c: ð5Þ

This semiclassical estimate corresponds to the total holo-
graphic noise in the emergence of relational positions among
world lines from a Planck scale quantum system with causal
coherence and agrees with the standard quantum limit for
such a system. Approximately the same overall variance has
been derived more formally from a conformal field theory of
near-horizon vacuum states [8–12].

IV. SMALL-ANGLE SCALING INVARIANCE

In a scale-invariant theory, holographic distortions mea-
sured locally in a region of size ≪ R should not depend on

the scale R. This property imposes general constraints on
how the variance in Eq. (5) is distributed among different
angular scales in a system of size R.
At very small angular separation, we can ignore the

curvature of a causal diamond surface. A causal diamond
that intersects a small patch of the surface contributes the
same physical fluctuation in the normal direction to any
much larger diamond, independent of its size. This property
leads to the following form of scale-invariance symmetry
for the spectrum: On small angular scales, correlations of
physical displacement corrugations δτ in the normal
direction to a null surface at transverse spacelike separa-
tion cτ, which fluctuate coherently on timescale τ, should
not depend on the total radial propagation distance R, only
on the transverse separation scale cτ. With this kind of
invariance, measured fluctuations only depend on the
causal diamonds encompassed by an actual measurement,
not on much larger systems it is embedded in.
Scale invariance means that the variance of corrugation

in patches of physical size τ matches the variance of causal
diamonds of that size [Eq. (5)]:

hδτ2iτ ≃ τtP: ð6Þ

The contribution to total variance from patches of size
Θ ≪ 1 is given by Eq. (3), so scaling invariance in the small
angle limit

l ∼ π=Θ ∼ πR=cτ ≫ 1 ð7Þ

leads to variance in patches of size Θ

Cð0Þ − CðΘÞ ∼ hδτ2iΘ ∼ τtp ∼ ΘRtP=c; ð8Þ

and an equivalent scaling of the power spectrum

Cl ∼ Cð< ΘÞ=l2 ∼ τtP=l2 ∼ l−3RtP=c: ð9Þ

With this scaling, the bulk of the total anisotropy is
always dominated by the large angular scales and low-
order modes. It agrees with scaling computed in concrete
examples, for example, the angular spectrum of gravita-
tional shock waves from photons emitted in directionally
indeterminate S decay in an EPR experiment [6].
In general, the angular spectrum at low l, and the

correlation function at large Θ, have nontrivial structure
that depart from these scalings due to the curvature in null
shock fronts not accounted for in this argument. A specific
illustration of a complete causally coherent candidate
model spectrum is presented in the Appendix.
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V. SMALL-ANGLE SPECTRUM IN THE
GEONTROPIC MODEL

The scale-invariant spectrum contrasts with that of the
“pixellon” in the Verlinde-Zurek geontropic model [10–12],
which yields a variance that grows at small angles:

hδτ2iΘ ¼ ðRtP=
ffiffiffiffiffiffiffi
8π3

p
cÞ logðπ=ΘÞ; ð10Þ

and leads to a different high-l scaling,

Cl ∝ l−2: ð11Þ

{See, for example, Eqs. (27) and (28) of Ref. [10], Eq. (30) of
Ref. [11], or Eq. (57) of Ref. [12]}.
The geontropic model shows approximately the same

magnitude for the macroscopic variance as the scale-
invariant, causally coherent holographic noise model just
described, but with contributions spread out slightly more
evenly in angular scale. This spectrum is not consistent
with our conjectured scale invariance since the variation in
a causal diamond increases with the size of other causal
diamonds in which it is embedded.
As seen in Eq. (10), the VZ geontropic spectrum leads to

a variance hδτ2i that decreases only logarithmically on
scales less than R. With this spectrum, wave front displace-
ments randomly vary across the aperture of size A ∼ πR=l
by an amount

hc2δτ2i ∼ ðRlPÞ= logðR=AÞ: ð12Þ

This scaling requires correlations of wave front corru-
gations with a small transverse separation but large R to
“remember” that they have been travelling for a long time.
We regard this as implausible because it violates the scale
invariance described above. Unlike the spectrum derived
from scale invariance, the variation in a patch depends on R
as well as A.
The difference in angular spectrum matters for exper-

imental design. While both spectra have comparable total
variance, the fluctuation power in the geontropic model is
approximately evenly divided over logarithmic intervals of
scale. One consequence is that the signal fluctuation power
predicted with the geontropic model in interferometer
experiments is typically reduced by a factor ∼1= logðR=lPÞ.

VI. BLURRING OF DISTANT IMAGES

The shallower spectrum in Eq. (11) leads to an observ-
able physical effect, a blurring of images from distant
astronomical sources (as noted in Ref. [7]). A distortion of
causal structure should lead to a comparable distortion in
the wave fronts of light propagating from distant sources.
The tilt of a wave front changes the apparent angular
position of a distant point source. This effect of coherent
geometrical distortions is not the same as previous models

of blurring based on local interactions of quantum space-
time “foam” with propagating photons [19].
Consider the displacement of wave fronts entering a

telescope aperture A from a source at distance D. The
source appears in the image plane in a direction normal to
the mean wave front entering the aperture. Fluctuations in
mean wave front tilt lead to an effect analogous to
atmospheric seeing: the apparent location of a source
fluctuates on the sky, with an angular variance

hδΘ2i ∼ c2hδτ2iΘ¼A=D=A
2; ð13Þ

and a timescale τ ∼ A=c. In the image plane, a pointlike
source appears to be a point jittering very fast in an angular
patch of area hδΘ2i around its expected location. As
expected from scale invariance, the jitter does not depend
on the distance to a source, only on the size of the causal
diamonds determined by the size of the measurement
apparatus, A ∼ cτ.
Let us estimate the blurring produced in the VZ geo-

ntropic model. For a source with angular size distance D ∼
1 Gpc typical of a source at high redshift, the variance of
angular position, which appears as a blurring in a time
averaged image, is

hδΘ2i ∼ DctPffiffiffiffiffiffiffi
8π3

p
A2

logðD=AÞ ∼
�
5 μm
A

�
2
�

D
1 Gpc

�
: ð14Þ

The geontropic blurring does not depend on the wavelength
of photons, only the aperture used to image them. Since
standard diffraction of a photon wave produces images of
angular size ∼λ=A, geontropic blurring dominates diffrac-
tion at wavelengths shorter than few microns for sources at
cosmological distances.
Distortions of this magnitude would have prevented

high resolution imaging of cosmologically distant point
sources at infrared and shorter wavelengths. Contemporary
astronomers routinely obtain subarcsecond images
(θ < 5 × 10−6) of distant QSOs with apertures of the order
of a meter, which rules out such blurring. To choose one
example, the Hubble Space Telescope (A ¼ 2.4 m) makes
diffraction-limited UV images of cosmologically distant
objects as small as

ffiffiffiffiffiffiffiffiffiffiffiffi
hδΘ2i

p
∼ 1.5 × 10−7, an order of

magnitude smaller than the expected geontropic blurring.
The predicted blurring for the scale-invariant l−3 spec-

trum is smaller by a very large factor since the amount of
variation on every scale is determined by causal diamonds
of size A, not DH:

hδΘ2i ∼ ðAlPÞ=A2 ∼ lP=A; ð15Þ

which produces a negligible effect on images. In this case,
the wave front tilt is of the same magnitude as the relational
holographic displacement of mirrors in interferometers.
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VII. CONCLUSION

We have derived constraints of a general character on the
angular structure of large-scale causal distortions from
coherent quantum gravity. Different models of holographic
coherent quantum gravity lead to different predictions for
angular spectra, some of which are constrained by existing
astronomical data. These constraints complement infer-
ences from primordial perturbations and from direct inter-
ferometric experiments.

APPENDIX: SPECTRAL MODELS
WITH COHERENT NULL SHOCKS

In recent previous work [16], a classical noise model was
developed to analyze holographic correlations of large-
angle cosmic microwave background (CMB) anisotropy,
based on virtual relational shock displacements at inter-
sections of inflationary horizons. It is instructive to adapt
this approach to estimate the large-angle spectrum of causal
distortions on constant-time surfaces in flat space-time.
In the model, a single coherent shock produces coherent

displacements on circular intersections of null spheres,
described by an axially symmetric kernel δτðθÞ that
depends on the polar angle θ from the shock axis. A noise
realization is a sum of N ≫ 1 distortions from shocks in
different directions Ω⃗i:

δτtotalðΩ⃗Þ ¼
XN
i

δi δτðθ ¼ jΩ⃗ − Ω⃗ijÞ=c; ðA1Þ

whereδi represents a randomvariablewith zeromean andunit
variance. For a model with holographic gravitational entropy,
N ≃ ðR=ctPÞ2 and hδτ2i ∼ t2P, which leads to distortions on
macroscopic causal surfaces given by Eq. (5). Since the
shocks map onto a duration R=c, the total variation corre-
sponds to a Planck variance per Planck time, like a random
walk [4–7,18]. For large N, the sum of many such shocks
produces a universal holographic angular power spectrum via
Eq. (2), determined by the transform of the kernel:

al0 ¼ 2π

Z
π

0

dθ sinðθÞY�
l0ðθÞ δτðθÞ: ðA2Þ

For the CMB :[16], a geometrical model for δτðθÞ was
constructed based on causal projections and axial displace-
ments appropriate for slow-roll inflation (Fig. 1). The back-
ground curvature affects the high-l spectrum since classical
displacements stretch along with the comoving background
outside the inflationary horizon.
Flat space-time and inflation have the same conformal

causal structure, so many elements of the model construc-
tion apply to both cases. For flat space-time, we write the
kernel as

δτðθÞ ∝ PABCðθÞdABðθÞ: ðA3Þ

The two factors represent an axial displacement PABC and a
projection function dAB for causal diamond surface inter-
sections of world lines A, B, Cwith angular relationships as
shown in Fig. 2.

FIG. 1. Angular power spectra of causal distortions on spacelike spheres. Causally coherent model spectra are shown for constant-time
surfaces in slow-roll inflation (fromRef. [16]) and in flat space-time (fromformulas in the text).As a reference, the dashedcurve approximately
follows aCl ∝ l−3 power law, which is the scale invariant limit at high l in the flat case. For comparison, the standard expectation for CMB
temperature anisotropy is also shown, as well as CMB data for various Galaxy-subtracted maps and their average [15,16].
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We adopt the same candidate form for dAB as the CMB
model in Ref. [16], which has the same conformal causal
structure:

dABðθÞ ¼ cosðθÞ cosð2θÞ
�
cosðθÞ − 1

2
sinð2θÞ

�
: ðA4Þ

This expression is an approximate interpolation that
accounts for the coherent projections and displacements
of causal shocks as viewed from the center of a causal
diamond.
The PABC term in flat space is not the same as inflation

but is constrained to agree with the invariant scaling derived
above. The variance of distortion for diamonds centered on
the surface of the distorted sphere is proportional to
duration, so the axial displacement is

PABCðθÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθ=2Þ

p
: ðA5Þ

As shown in Fig. 1, the flat space-time spectrum
reproduces the power law scaling expected at high l. At
l≲ 7, the model resembles the spectrum measured on the
CMB sky, with significant extra power in odd modes,
especially l ¼ 3, 5, and 7. Both features are also consistent
with the spectrum posited in a previous white paper,
Ref. [7]. These features could be important in the design
and interpretation of laboratory experiments.
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FIG. 2. Azimuthal angles associated with intersections of ABC
spheres along an axis, which represent boundaries of causal
diamonds entangled with shocks in the polar direction.
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