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We present forecasts for constraints on the Hu and Sawicki fðRÞ modified gravity model using realistic
mock data representative of future cluster and weak lensing surveys. We create mock thermal Sunyaev-
Zel’dovich effect selected cluster samples for SPT-3G and CMB-S4 and the corresponding weak
gravitational lensing data from next-generation weak-lensing (ngWL) surveys like Euclid and Rubin.
We employ a state-of-the-art Bayesian likelihood approach that includes all observational effects and
systematic uncertainties to obtain constraints on the fðRÞ gravity parameter log10 jfR0j. In this analysis we
vary the cosmological parameters ½Ωm;Ωνh2; h; As; ns; log10 jfR0j�, which allows us to account for possible
degeneracies between cosmological parameters and fðRÞmodified gravity. The analysis accounts for fðRÞ
gravity via its effect on the halo mass function which is enhanced on cluster mass scales compared to the
expectations within general relativity (GR). Assuming a fiducial GR model, the upcoming cluster dataset
SPT-3G × ngWL is expected to obtain an upper limit of log10 jfR0j < −5.95 at 95% credibility, which
significantly improves upon the current best bounds. The CMB-S4 × ngWL dataset is expected to improve
this even further to log10 jfR0j < −6.23. Furthermore, fðRÞ gravity models with log10 jfR0j ≥ −6, which
have larger numbers of clusters, would be distinguishable from GR with both datasets. We also report
degeneracies between log10 jfR0j and Ωm as well as σ8 for log10 jfR0j > −6 and log10 jfR0j > −5
respectively. Our forecasts indicate that future cluster abundance studies of fðRÞ gravity will enable
substantially improved constraints that are competitive with other cosmological probes.
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I. INTRODUCTION

The cause of the late-time accelerated expansion of the
Universe is one of the most pertinent and challenging
questions in cosmology [1,2]. The phenomenon can be
explained within the framework of general relativity (GR)
if a fluid with negative pressure is introduced, or alter-
natively if a cosmological constant Λ is added to the
Einstein-Hilbert action. The latter scenario is known as the
Λ cold dark matter model, ΛCDM. An alternative approach
to explain cosmic acceleration is through the modification
of the Einstein-Hilbert action, in a manner which seeks to

avoid the addition of a cosmological constant, referred to as
modified gravity. A key feature of modified gravity is that
the clustering of matter is in general different from that of
GR [see, e.g., [3–5], for reviews]. This means that studies
of the growth of structure can be a useful test of GR on
cosmic scales, which may then shed light on the underlying
cause of the late-time acceleration.
One of the most popular modified gravity models alters

the Einstein-Hilbert action using a nonlinear function fðRÞ
of the scalar curvature R [6]. This leads to an additional,
gravitational-strength, fifth force. This fifth force affects
structure formation, introducing a scale-dependence and
enhancing the structure growth on galaxy cluster scales. A
further feature of fðRÞ gravity models is the chameleon
screening mechanism, which suppresses the modification
in high-density regions [7], ensuring that fðRÞ remains
consistent with tests of GR in the Solar system [8]. In this
work we use the widely studied fðRÞ model of Hu and
Sawicki [9] with n ¼ 1 for which self-consistent N-body
simulations [10–13] as well as semianalytical models for
the halo mass function [14,15] exist.
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The abundance of massive galaxy clusters and their
evolution over cosmic time has long been recognized as a
powerful probe of the cosmic acceleration [16,17]. Cluster
surveys have been used to constrain ΛCDM [18–24] as
well as modified gravity models [25–30]. The abundance of
collapsed haloes is described by the halo mass function
(HMF), which, through the scale-dependent structure
growth, depends on the strength of the fðRÞ gravity model,
where the strength of the model is encoded in the single
parameter fR0. This, together with the nonlinear screening
mechanism, results in a mass-dependent enhancement
of the HMF. We incorporate this via a prefactor which
depends on the critical overdensity of halo collapse in fðRÞ
gravity [27]. The critical overdensity in fðRÞ gravity can
be calculated via a semianalytical model [14,31]. In this
approach, the critical overdensity is computed for each halo
mass and redshift by solving a system of coupled differ-
ential equations. This makes the calculation computation-
ally expensive, and so we construct an emulator to make the
computation more efficient.
In practice, the mass of a galaxy cluster, and hence the

HMF is not measured directly. Instead, observable signa-
tures are used to infer the cluster mass. These observables
are measured and then mapped to the halo mass through
observable-mass relations, which are generally of power-
law form in mass and redshift and include a model of the
scatter in the observable at a fixed halo mass and redshift.
To calibrate these relations, a robust mass measurement is
needed. In this analysis, we employ weak gravitational
lensing data (WL) for the mass calibration of the cluster
ensemble. The advantage of using the WL signal to
calibrate the halo masses is that the WL data provide mass
constraints with well-characterized and controllable biases
and associated uncertainties on those biases. Moreover, no
assumption of hydrostatic or virial equilibrium is required.
One way to detect massive galaxy clusters is through

the thermal Sunyaev-Zel’dovich effect (tSZE) [32]. This
phenomenon arises from the upscattering of the cosmic
microwave background (CMB) photons by energetic elec-
trons within the intracluster medium (ICM). The resulting
spectral distortion of the CMB is redshift independent,
whereas the observable signature is approximately inde-
pendent of redshift. This contributes to the fact that tSZE
surveys provide a clean probe to study the growth of
structure up to the highest redshifts where massive clusters
exist (i.e., z ≃ 2).
Ongoing and planned tSZE surveys such as those from

SPT-3G [33], conducted with the South Pole Telescope
(SPT) [34], Simons Observatory [35], or CMB-S4 [36]
will detect thousands to tens of thousands of galaxy
clusters [37]. Datasets from next-generation galaxy weak-
lensing (hereafter ngWL) surveys as from the ongoing
Euclid mission [38,39] or the Vera C. Rubin Observatory
[40,41] will allow for improved and more robust measure-
ments of cluster halo masses. Therefore, combining future

cluster tSZE survey data with ngWL data will yield
powerful probes of cosmology and modified gravity,
greatly improving upon the existing constraints from
cluster abundance analyses.
Modified gravity models such as fðRÞ in general not

only modify the halo mass function, but also the observ-
able-mass relation [42] and the halo profiles [43]. This
results in slightly different values of the weak-lensing mass
to halo mass relation parameters, relative to those in GR.
For the models considered in this work, these effects are
small, and we therefore assume that they are accounted for
within the systematic uncertainty budget assigned to the
weak-lensing mass calibration.
In this work, we make realistic forecasts for the con-

straining power of weak-lensing informed galaxy cluster
abundance studies on fðRÞ gravity. We use tSZE surveys
from SPT-3G and CMB-S4 combined with cluster mass
calibration constraints from ngWL datasets similar to those
expected from Euclid and Rubin. For this, we create mock
cluster and WL data for different values of log10 jfR0j as
well as for a GR cosmology. We analyze the mock datasets
with a cluster-by-cluster likelihood approach in two steps.
First, we use the ngWL dataset for the full cluster sample to
constrain the observable-mass relation parameters, and then
we adopt the posteriors from that first calculation as priors
and employ the cluster abundance likelihood to obtain
constraints on the fðRÞ gravity parameter log10 jfR0j and
other cosmological parameters of interest.
The analysis presented in this work employs the state-of-

the-art framework developed for the cosmological analyses
of galaxy clusters selected in the SPT-SZ and SPTpol
surveys, with weak-lensing mass calibration using data
from the Dark Energy Survey data and the Hubble Space
Telescope (HST) [44]. This analysis framework and dataset
was used to obtain competitive cosmological constraints on
ΛCDM and wCDM cosmologies [24]. Constraining fðRÞ
gravity using SPT clusters with DES and HST weak-
lensing is in progress and will presented in a future work.
The paper is organized as follows. Section II presents the

fðRÞmodified gravity model, briefly describing the Hu and
Sawicki model and discusses the semianalytical spherical
collapse model used to calculate the critical overdensity
and subsequently quantify how the HMF changes with
respect to the GR version. Moreover, we present emulators
which are used to speed up the calculation of the critical
overdensity and its derivative with respect to lnM. We
describe in Sec. III the different cosmological surveys we
use for the forecasts. The observable-mass relations used in
our analysis are summarized in Sec. IV. The generation of
the mocks is described in Sec. V. We present the likelihood
and the analysis method in Sec. VI. The results of our
analysis are presented in Sec. VII. Finally, Sec. VIII gives a
brief summary of our work.
Throughout this paper Uða; bÞ denotes a uniform dis-

tribution between limits a and b, andN ðμ; σÞ is a Gaussian
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distribution with mean μ and standard deviation σ. In this
analysis we adopt the halo mass definition M200c, which is
the mass within the cluster region where the enclosed mean
density is 200 times the critical density.

II. f ðRÞ MODIFIED GRAVITY

In fðRÞ gravity models the Einstein-Hilbert action of
general relativity (GR) is modified to include an arbitrary
function fðRÞ of the scalar curvature R [6]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ fðRÞ
16πG

þ Lm

�
: ð1Þ

Here g is the determinant of the GR metric tensor gμν, G the
gravitational constant and Lm is the matter Lagrangian.
Note, that we use natural units c ¼ ℏ ¼ 1. The field
equation for fðRÞ gravity can be obtained by varying
the action with respect to the metric tensor

GμνþfRRμν −
�
f
2
−□fR

�
gμν−∇μ∇νfR ¼ 8πGTμν; ð2Þ

where Gμν denotes the Einstein tensor, Rμν represents the
Ricci tensor, Tμν is the energy-momentum tensor and fR ¼
dfðRÞ=dR which behaves as an additional scalar degree of
freedom and is named the scalaron field.
Under the quasistatic and weak-field approximation,

the trace of the field equation gives the equation of motion
for fR

∇2δfR ¼ 1

3
ðδR − 8πGδρÞ; ð3Þ

with δρ ¼ ρ − ρ̄. The modified Poisson equation is
obtained from the time-time component of Eq. (2)

∇2Φ ¼ 16πG
3

δρ −
1

6
δR; ð4Þ

with δR ¼ R − R̄ and the Newtonian potential Φ is defined
via 2Φ ¼ δg00=g00. Combining these two equations gives
for the modified Poisson equation

∇2Φ ¼ 4πGδρ −
1

2
∇2δfR: ð5Þ

So, in fðRÞ gravity the Poisson equation includes an extra
term directly proportional to ∇2δfR.
To be effective at late times and large scales in cosmo-

logy, fðRÞ has to be a decreasing function of R, so that
fR < 0. Depending on the field value fR we can distinguish
two different regimes: the large-field regime where
jfRj ≫ jΦj, which corresponds to low curvature, and the
small-field regime, i.e., jfRj ≪ jΦj and thus is related to
high curvature [see [9,12] for a detailed explanation]. In the

first case, δR ≪ 8πGδρ and the Poisson equation (4)
corresponds to an enhancement of Φ, and hence gravita-
tional forces, by a factor of 4=3. On the other hand, in the
small field regime, i.e., large curvature, we have δR ≈
8πGδρ and thus Eq. (4) reduces to the GR Poisson equation.
Hence, structure growth becomes scale-dependent. The
recovery of the GR Poisson equation in the high curvature
regimes in fðRÞ gravity is induced by the so-called chame-
leon screening mechanism [7] which makes fðRÞ gravity
models consistent with solar system tests [8].
In this paper we use the Hu and Sawicki form for the

function fðRÞ which is given by [9]

fðRÞ ¼ −m2
c1
�
R
m2

�
n

c2
�
R
m2

�
n þ 1

; ð6Þ

with m2 ¼ ΩmH2
0, the free parameters n, c1, c2 and H0 the

Hubble constant. When c1=n2 R=m2 ≫ 1, the above equation
is approximately

fðRÞ ≈ −m2
c1
c2

−
fR0R

nþ1
0

nRn ; ð7Þ

where R0 is the present background curvature and fR0 ≔
fRðR0Þ which is a parameter that quantifies the strength of
the fðRÞ gravity model. Note that fR0 < 0. This approxi-
mation is correct up to order ∼ðfR0Þ2; since current
constraints are already at the level of jfR0j ≲ 10−4 or
better, Eq. (7) is entirely sufficient. Since we do not have
a strong theory prior on a particular scale of fR0, we choose
to work with log10 jfR0j for numerical convenience. Wewill
also impose a uniform prior on log10 jfR0j in our analysis.
Since we recover GR in the limit jfR0j → 0, we obtain

from Eq. (1)

c1
c2

¼ 6
ΩΛ

Ωm
: ð8Þ

In this paper, we further adopt n ¼ 1, as this is by far the
most widely studied fðRÞ scenario; see Ref. [45] for an
approach to approximately rescale constraints from n ¼ 1
to other values of n.

A. Spherical collapse in f ðRÞ gravity
As described in the previous section, structure growth is

scale-dependent in fðRÞ gravity, and consequently the
formation of dark matter halos is too. For the formation
of clusters we use a spherical collapse model developed and
described in detail elsewhere [12,14,31].
We approximate a dark matter halo as a spherical top-hat

overdensity, with a radius RTH and constant density inside
ρin and outside ρout. The mass and environment dependence
of the spherical collapse model [31] with the chameleon
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screening effect is implemented through the thin-shell
approximation [7].
The physical radius of the spherical top-hat halo is

defined as ξðaÞ, where ξðaiÞ ¼ aiRTH at initial scale ai.
Due to the nonlinear evolution of the overdensity, the radius
ξðaÞ deviates from the linear relation for larger scale factor
a and we define the variable y to be the deviation from this
linear relation, yðaÞ ¼ ξðaÞ=aRTH. Note that due to mass
conservation, we have ρ=ρ̄ ¼ y−3. The equation of motion
for the spherical shell is given by [14,31,46]

ξ̈

ξ
¼ −

4πG
3

ðρ̄m − 2ρ̄λÞ −
4πG
3

ð1þ FÞδρm; ð9Þ

where dots denote derivatives with respect to time. Here F
is the extra force from modified gravity and is given by the
thin-shell approximation [7,12,14]

F

�
Δξ
ξ

�
¼ 1

3
min

�
3
Δξ
ξ

− 3

�
Δξ
ξ

�
2

þ
�
Δξ
ξ

�
3

; 1

�
: ð10Þ

Here Δξ
ξ is the thickness of the thin shell and can be

expressed as [see [7,14] ]

Δξ
ξ

≈
jfR0ja3nþ4

ΩmðH0RTHÞ2
yh

" 
1þ 4 ΩΛ

Ωm

y−3env þ 4 ΩΛ
Ωm

a3

!
nþ1

−

 
1þ 4 ΩΛ

Ωm

y−3h þ 4 ΩΛ
Ωm

a3

!
nþ1
#
; ð11Þ

where y−3h , y−3env track the inner and outer overdensities
respectively and n ¼ 1 due to our choice of the Hu and
Sawicki model. The evolution for the inner overdensity y−3h
can be expressed as [see [14] ]:

y00h þ
�
2−

3

2
ΩmðaÞ

�
y0h þ

1

2
ΩmðaÞð1þFÞðy−3h − 1Þyh ¼ 0;

ð12Þ

with primes denoting derivatives with respect to ln a. For
the outer overdensity, we assume that it follows a GR
evolution, thus F → 0 and one obtains [14]

y00env þ
�
2 −

3

2
ΩmðaÞ

�
y0env þ

1

2
ΩmðaÞðy−3env − 1Þyenv ¼ 0:

ð13Þ

Because the equation of motion for the inner region of the
top-hat region depends on F and thus by Eq. (11) on the
outer region, Eqs. (12) and (13) are a system of coupled
differential equations. The initial conditions at ai ≪ 1 are
in the matter-dominated regime and given by

yh=env;i ¼ 1 −
δh=env;i

3
; ð14Þ

y0h=env;i ¼ −
δh=env;i

3
: ð15Þ

If we want to find the critical overdensity δcrit which causes
spherical collapse at scale factor ac, we have to choose
the initial conditions yh;i and y0h;i such that the solution of
Eq. (12) gives yhðacÞ ¼ 0 with the requirement yhðaÞ > 0
for a < ac. The critical overdensity is then defined as
the linearly extrapolated value of δh=env;i, i.e., δcrit ¼
DðaÞ=DðaiÞδh=env;i with the linear growth factor DðaÞ.
The initial overdensity δenv;i of the outer region is set by

the peak of the probability distribution of an Eulerian
environmental density δenv with an Eulerian (physical)
radius ξ ¼ 5h−1 Mpc [for more details see [14,47] ] and
is derived from a physical model to be [47]

PξðδenvÞ ¼
βω=2ffiffiffiffiffiffi
2π

p
�
1þ ðω − 1Þ δenv

δcrit;GR

��
1 −

δenv
δcrit;Λ

�
ω=2−1

× exp

�
−

βωδenv
2ð1 − δenv=δcrit;GRÞω

�
; ð16Þ

with β ¼ ðξ=8Þ3=δcrit;GRðσGR8 Þ−2=ω, δcrit;GR the linear extrapo-
lated GR overdensity and ω ¼ δcrit;GRγ with

γ ¼ ns þ 3

3
: ð17Þ

In fðRÞ gravity the critical overdensity for halo collapse
δcrit is a function of the mass of the spherical overdensity
M ¼ 4=3πρ̄mR3

RT via Eqs. (10) and (11) and the local
overdensity of the environment δenv is given by Eq. (16).
Figure 1 shows the critical overdensity as a function of
mass for different values of log10 jfR0j for the Planck

FIG. 1. The critical overdensity δcrit for spherical collapse in
fðRÞ gravity [Eq. (12)] for different values of log10 jfR0j at
collapse redshift zc ¼ 0 in colored solid lines. The dashed black
line represents δcrit in a corresponding GR cosmology [Eq. (13)].
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cosmology given in Table I [[48], hereafter Planck2018].
For reference, Fig. 1 also shows the constant critical over-
density in a corresponding GR universe. Note that the
critical overdensity in fðRÞ gravity approaches the GR
value for high halo masses, because Δξ

ξ → 0 for high masses
and thus F → 0. The critical overdensity in fðRÞ gravity
and in GR as well as the derivative of δcrit with respect to
dlnM are used to calculate the halo mass function in fðRÞ
gravity models.

B. Halo mass function in f ðRÞ gravity
To study and forecast cosmological constraints with

cluster surveys we have to understand the distribution of
halos in mass and redshift, i.e., the (differential) HMF. We
model the HMF in an fðRÞ gravity cosmology with two
components. The first component is the GR HMF, and the
second is the enhancement (or suppression) factor of the
GR HMF due to fðRÞ gravity. This factor accounts for
the scale-dependent clustering of matter [27,49]. We adopt
the GR halo mass function from [50], which is given by

dn
d lnM

				
T
¼ −

ρ̄m
2M

fðσÞT
d ln σ2

d lnM
: ð18Þ

Here fðσÞT is the multiplicity function [50]

fðσÞT ¼ Ã

��
σ

b̃

�
−ã

þ 1

�
e−

c̃
σ2 ; ð19Þ

where Ã; ã; b̃ and c̃ are parameters calibrated using N-body
simulations [see [50], Table 2] and σ ¼ σðMÞ is the vari-
ance of the overdensity on a mass scale M in the corres-
ponding GR cosmology.
For the ratio of the HMF in fðRÞ gravity to GR we use

the Sheth and Tormen halo mass function [51], which can

account for the scale-dependent collapse through δcrit.
Furthermore, Refs. [14,46] showed that the Sheth and
Tormen prescription with modified collapse thresholds
provides a good fit to the HMF in N-body simulations
of fðRÞ gravity. The Sheth and Tormen HMF is given by

dn
d lnM

				
ST

¼ ρ̄m
M

fðνÞST
�
d ln δcrit
d lnM

−
1

2

d ln σ2

d lnM

�
; ð20Þ

with ν ¼ δcrit=σ the peak height and fðνÞST the Sheth and
Tormen multiplicity function, which is parametrized as

fðνÞST ¼ A

ffiffiffiffiffiffi
aν
2π

r 

1þ ðaν2Þ−p�e−aν2

2 ; ð21Þ

where A, a, p are free parameters. We adopt fitting
formulas for these parameters of Ref. [52]. This allows
one to calculate the HMF for different halo overdensities
Δc, i.e., different halo definitions MΔc

¼ 4=3πΔcρ̄critR3.
The fitting formulas are given by

A ¼ −0.1362xþ 0.3292;

a ¼ 0.4332x2 þ 0.2263xþ 0.7665;

p ¼ −0.1151x2 þ 0.2554xþ 0.2488: ð22Þ

Here xðzÞ ¼ log10ðΔ=ΔvirðzÞÞ and ΔvirðzÞ is the virial
overdensity. In this model we use an effective virial
overdensity from the corresponding GR cosmology which
is given by [53]

Δc;virðzÞ ¼ 18π2− 82


1−ΩmðzÞ

�
− 39



1−ΩmðzÞ

�
2: ð23Þ

The difference between the Sheth and Tormen HMF in
fðRÞ gravity and GR is completely encoded in the critical
overdensity coming from Eqs. (12) and (13). Therefore,
we use an effective variance σ ¼ σðMÞ and thus employ in
both cases the GR value for the variance [14,15]. Further-
more, if we include massive neutrinos, the shape of the
HMF is more universal if only the cold dark matter
and the baryon power spectrum is used to calculate the
variance [54]. We adopt this also in the case of an fðRÞ
gravity cosmology to account for the effect of massive
neutrinos, which assumes that neutrinos behave the same in
modified gravity. This approach was followed in other
studies [29,30]. We vary also the mass of the neu-
trinos because there is a known degeneracy between the
fðRÞ gravity parameter and massive neutrinos [see, e.g.,
[55–57] ]. In summary, our fðRÞ HMF has the follow-
ing form

TABLE I. Fiducial cosmological parameters and their values
for the flat Planck 2018 cosmology [[48], Table 2, column 4]. Ωm

is the matter density parameter, Ωbh2 is the reduced baryon
density, h is the Hubble parameter, Neff is the effective number of
relativistic species,

P
mν ¼ Ωνh2 · 94 eV is the sum of neutrino

masses, As is the power spectrum amplitude parameter, σGR8 is the
amplitude of the linear power spectrum at a scale 8h−1 Mpc at
redshift z ¼ 0 and ns is the scalar spectral index.

Parameter Fiducial value

Ωm 0.3166
Ωbh2 0.02236
h 0.6727
Neff 3.046
Σmν [eV] 0.06
lnð1010AsÞ 3.045
σGR8 0.812
ns 0.9649
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dn
d lnM

¼ dn
d lnM

				
T
×R;

with R ¼
dn

d lnM

		
ST;fðRÞ

dn
d lnM

		
ST;GR

: ð24Þ

The difference between the HMF in an fðRÞ gravity
model to GR for different values of log10 jfR0j, i.e., the ratio
R from Eq. (24), is shown in Fig. 2. Generally, fðRÞ
gravity enhances the growth of structure and thus fðRÞ
gravity predicts more clusters compared to a GR cosmo-
logy. As expected, models with larger jfR0j show larger
differences in the HMF. Moreover, the shape of the
enhancement depends on the strength of the fðRÞ model.
If the value of jfR0j is comparable to the cosmological
potential Φ of massive dark matter halos [see Eq. (5)],
the fifth force is screened within these halos, so that the
abundance of high mass halos is not increased substan-
tially. This is the case for jfR0j ≤ 10−6. In the case of
log10 jfR0j ¼ −5, a high enhancement for the most massive
halos is seen, because for this the value of fR0 even massive
halos are at most partially screened. Furthermore, Fig. 2
shows that the HMF enhancement is weaker for smaller
fR0. Consequently, distinguishing between such weak
modified gravity models and GR using a cluster abundance
analysis will be challenging (see Sec. VI B 2).

C. Emulating the critical overdensity quantities

The computational bottleneck in our HMF calculation is
the computation of the critical overdensity in fðRÞ gravity
and GR as well as the derivative of δcrit with respect to lnM.
These quantities are obtained by solving a system of
coupled differential equations for each mass and redshift
individually in the range where we need the HMF and
thus a lot of computations must be performed to obtain
the HMF. To speed up the calculations of δcrit, dδcrit=d lnM

and δcrit;GR we create three separate emulators for these
quantities
We choose to emulate the critical density and its

derivative rather than the HMF directly, because a direct
emulation of the HMF would require us to additionally
sample baryon and neutrino density parameters, thereby
making the emulation more complex. In the end, executing
our emulators and computing the HMF is essentially as fast
as emulating the HMF.
We use Gaussian processes regression (GPR), a super-

vised learning method, to build the emulators. The emu-
lators are trained on a data set that samples the desired
parameter space and then verified on an independent
validation dataset to assess the performance of the emu-
lators. The parameter space of δcrit and dδcrit=d lnM that we
sample is seven-dimensional, with five cosmological
parameters together with the halo mass M and redshift
z. This allows us to emulate the behavior of the coupled
system of differential equations (12) and (13). The ranges
we choose for the parameters are

z∈ ½0; 2�;
log10M∈ ½13; 16�;

Ωm ∈ ½0.11; 0.4�;
h∈ ½0.6; 0.82�;
ns ∈ ½0.8; 1.1�;

σGR8 ∈ ½0.6; 0.9�;
log10 jfR0j∈ ½−7;−3�: ð25Þ

The ranges for the cosmological parameters are large
enough to ensure that we are not hitting the boundaries
in our likelihood sampling, see Sec. VI B. In the case of
the halo mass and redshift, we choose ranges such that
we cover the interval of masses and redshifts of clusters
detectable with the surveys from SPT-3G and CMB-S4.
The parameter space for δcrit;GR is only two-dimensional

with the parameters Ωm and z, because the spherical
collapse equation, Eq. (13), for GR only depends on these
two quantities. The ranges for these parameters are the
same as for the two other emulators.
We sample the points in the parameter space with a Sobol

sequence algorithm. This algorithm ensures that we sample
the parameter space efficiently without duplicating values
of any parameter in the sample, and thus it is a better choice
than a uniform random or grid sampling algorithm. We
sample 210 ¼ 1024 points and use the first half for training
and the second half for validating the emulator. Both data-
sets are evenly distributed in the parameter space and are
disjoint (i.e., no point in the parameter space can appear in
both datasets), as guaranteed by the Sobol sequence
algorithm. Figure 3 shows the parameter space with train-
ing data in blue and the validation set in orange; the

FIG. 2. The ratio R of the fðRÞ HMF and the GR Sheth and
Tormen HMF in Eq. (20), for different values of the fðRÞ
parameter log10 jfR0j in colored lines.
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characteristic pattern for the Sobol sequence algorithm can
be seen.
The performance of the emulator is quantified by the

normalized median absolute deviation (nMAD), which
is a robust estimator of the scatter around the true value.
The nMAD is a better quantity for the deviation from the
average than the standard deviation if the dataset shows a
large scatter.
Our validation tests show emulator accuracy for δcrit,

dδcrit=d lnM, and δcrit;GR of 0.2%, 22.9%, and 0.0002%,
respectively. Thus, the critical overdensity in fðRÞ gravity
and GR computed with the emulator is accurate at the
subpercent level. However, the logarithmic mass derivative
of the critical overdensity can only be predicted at the
∼25% accuracy level by the emulator.
We test also whether increasing the accuracy of the

dδcrit=d lnM emulator by reducing the dynamical range
of the quantity and emulating lnðdδcrit=d lnMÞ instead.
Unfortunately, this approach does not increase the accuracy
of the emulator. The relatively high inaccuracy can be
explained by the inherent complexity of dδcrit=d lnM,
which is the halo mass as a free parameter, along with a
quantity that is emulated while involving differentiation
with respect to the halo mass. We can reach a higher
accuracy by either using more points in the training dataset
or by further developing or replacing the GPR emulator
used to emulate dδcrit=d lnM. However, our forecast
depends on the accuracy of the HMF rather than the
accuracy of the critical overdensity and derivative. As
discussed in the next section, the error of the emulated

HMF is mainly driven by the error of δcrit, and the error of
dδcrit=d lnM does not have a big impact.

D. HMF validation

Because we use the emulated critical overdensities in
fðRÞ gravity and GR as well as the logarithmic derivative
with respect to mass, we examine the impact of inaccur-
acies in the emulation on the fðRÞ HMF, Eq. (24). We
compute the ratio R, Eq. (24), for the points in the
validation dataset once with the analytical result and
compare them to the results using the emulated values.
Figure 4 shows the ratio Rtrue=Remu of the semianalyt-

ical and the emulator results for the validation points as a
function of mass. These validation points span the full
range of redshift over which the emulators were trained.
One can see that as the mass increases the scatter in the ratio
Rtrue=Remu also increases, indicating a greater character-
istic uncertainty in the HMF emulation for higher masses.
Moreover, the accuracy of the HMF is worse for locations
where the amplitude of the halo mass function is lower
(as indicated by the color bar). We quantify the accuracy of
the emulated HMF by the nMAD in six mass bins evenly
spaced in logspace between ½1013; 1016�h−1M⊙ and we
obtain nMAD ¼ ð0.7; 0.5; 0.7; 0.8; 0.9; 3.0Þ%. Note that
the nMAD is computed from the test set which is sampled
in redshift, mass and cosmological parameters and thus
averaged over the entire ranges of redshift and cosmologi-
cal parameters. As seen the nMAD in the last mass bin, i.e.,
½15.5; 16� log½M=ðh−1M⊙Þ�, is significantly larger than that
of the other bins. However, these ultra-high mass clusters
are exceedingly rare in the Universe, and therefore the
statistical uncertainties due to shot noise are larger than the
two to five percent inaccuracies of the HMF in this regime.

FIG. 3. The 7-dimensional parameter space for the emulation of
δcrit and dδcrit=d lnM drawn from a Sobol sequence algorithm. In
total 1024 points are sampled. The training set (first half of the
points) is marked in blue and the validation data are shown in
orange. The ranges of the parameters are given in Eq. (25).

FIG. 4. Ratio of the true HMF to the HMF calculated using the
emulator values of δcrit;GR, δcrit and dδcrit=d lnM. The ratio is
calculated for the validation dataset and shown as a function of
halo mass; the validation dataset spans the full range of redshift,
mass and cosmological parameters adopted for the emulation. The
gray dashed and dotted lines represent the one and two σ (actually
nMAD) median absolute differences within six mass bins.

CONSTRAINING fðRÞ GRAVITY USING FUTURE GALAXY … PHYS. REV. D 109, 123503 (2024)

123503-7



Furthermore, Fig. 4 shows that the relatively large
uncertainty in the derivative of the fðRÞ critical overdensity
with respect to dlnM does not significantly affect the
accuracy of the HMF. This is expected. First, the expo-
nential form in the overdensity of the multiplicity function,
Eq. (21), is sensitive to the absolute difference of the
emulated and semianalytical result of δcrit. And second, δcrit
has a much lower dynamical range than σ, i.e., dδcrit=d lnM
is smaller than dσ=d lnM in the Sheth and Tormen HMF,
Eq. (20) and therefore makes only a small contribution to
the HMF.
The semianalytical HMF has previously been shown to

be consistent with simulations at the level of 20% [14].
New results from the FORGE HMF emulator show agree-
ment with the semianalytical HMF at the 15% level [43].
Therefore, the inaccuracy in our HMF due to employing an
emulator for the critical overdensities and logarithmic mass
derivative is not a limiting factor in our analysis.
The calculation of the HMF with the emulator in a mass

and redshift grid of twenty times twenty points and a
Planck 2018 cosmology with log10 jfR0j ¼ −6 is more than
three orders of magnitude faster in comparison to employ-
ing the semianalytic model directly. In the case of a single
core on a typical Linux computing cluster, this improve-
ment reduces the computation time from half an hour to
roughly 1.4 seconds.

III. COSMOLOGICAL SURVEYS

In this analysis, we focus on the constraining power on
fðRÞ gravity of two different galaxy cluster samples when
combined with weak gravitational lensing mass calibration.
We describe here the two galaxy cluster samples, which are
representative of SPT-3G and CMB-S4, and the ngWL
weak lensing dataset needed for mass calibration, which
could come from either the Euclid satellite or Rubin
observatory.

A. tSZE-selected cluster catalogs

This section describes the cluster survey specifics for
SPT-3G and CMB-S4, which are used to forecast con-
straints on fðRÞ gravity. In modeling the cluster samples we
follow the approach adopted in the recent SPT × DES
cluster cosmological analysis [24]. The massive galaxy
clusters in the two samples are selected using their thermal
SZE signature (tSZE). A matched filter tuned to detect the
cluster tSZE is applied to the multifrequency maps over a
broad range of cluster core radii [58,59] to identify peaks.
Given the noise in the maps and the amplitude of the tSZE
peak, an associated detection significance ζ̂ is assigned.
The approach produces a candidate list of tSZE selected
clusters with an initial contamination fraction. The ζ̂
observable serves as a mass proxy for the cluster analysis
as described in Sec. IV.

Each cluster candidate is then confirmed by applying a
matched-filter technique to the optical and near-infrared
(NIR) galaxy catalog at the location of each cluster
[e.g., [60–62] ]. In this process, each cluster is assigned
a redshift z and a cluster richness λ̂, which corresponds to
the color and position weighted number of passive galaxies
within the cluster. For follow-up tools like the multi-
component matched filter [MCMF; [62,63] ], the chance
that each candidate is a random superposition of a tSZE
noise fluctuation and a physically unassociated optical/NIR
system is also quantified. With this approach it is possible
to exclude the likely contaminants from the tSZE selected
list, producing a catalog with a specific targeted contami-
nation (typically percent level).
Each confirmed cluster then has three observables used

for the selection: tSZE significance ζ̂, richness λ̂ and
redshift z, and the sample for analysis is defined by the
selection thresholds ζ̂min, λ̂minðzÞ and zmin < z < zmax.
Here the redshift dependent richness selection comes from
MCMF and is required to reduce the contamination in the
tSZE candidate cluster list. The values of these thresholds
depend on the cluster survey and are therefore specified in
the next sections.
In our analysis, each cluster has a fourth observable,

which is the weak lensing inferred mass, which we discuss
further below.

1. SPT-3G cluster survey

The South Pole Telescope (SPT) is a 10 m telescope
operating in the microwave wavelength and is located near
the Amundsen-Scott South Pole Station [34]. Since 2018
the SPT has been equipped with a new, third-generation
camera, SPT-3G [33], which has been used to detect
approximately an order of magnitude more clusters per
sky solid angle than from the previous SPT surveys:
SPT-SZ [61,64], SPTpol ECS [65] and SPTpol 500d [66].
In this work, we consider a 4;000 deg2 survey by SPT-3G
that consists of two regions: a deep 1;500 deg2 field for
which we model the selected cluster sample to be those
with detection significance ζ̂ > 4.25, and a shallower
2;500 deg2 field for which we adopt a selection ζ̂ > 5.
Despite its smaller survey area, there are more detected
clusters in the deep field because of its greater depth.
For the sample analyzed here, we assume that the full

survey from SPT-3G is covered by the upcoming ngWL
survey datasets similar to those that will be available from
Euclid and Rubin. These datasets are crucial not only for
the weak-lensing information to calibrate cluster masses,
but also for the optical/NIR confirmation of SPT-3G cluster
candidates in the range z∈ ½0.25; 2�.1 The selection thresh-
old associated with the MCMF exclusion of contaminants

1We adopt the same lower redshift limit as adopted in previous
cosmological analyses of SPT clusters [21,22,24].
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is λ̂minðzÞ, which we take to be the same as that used in the
recent SPT × DES analysis [24,44]. These thresholds are
chosen to lead to a contamination fraction in the final
SPT-3G confirmed cluster sample at the percent level,
where no explicit modeling of the contaminants will be
required.

2. CMB-S4 cluster survey

CMB-S4 is a future cosmic microwave background
survey currently in the design and construction phase that
will start operation at the end of this decade [36]. The
survey will cover roughly 50% of the sky, and the resulting
mm-wave maps will be ideal for the detection of tens of
thousands of clusters through their tSZE signatures, as
shown in a recent forecast for CMB-S4 [37].
Following this previous forecast, we adopt a cluster

redshift range z∈ ½0.1; 3� and a tSZE detection significance
limit ζ̂ > 5. Note that this sample extends to lower redshift
than the SPT samples because CMB-S4 has more fre-
quency bands, enabling greater reliance on frequency
filtering to remove the primary CMB anisotropies which
affects cluster detection at low redshift if unmitigated. We
only consider clusters up to redshift z ¼ 2 for the following
two reasons. First, follow-up of clusters at z > 2 is not yet
demonstrated and well understood. As previously noted,
we expect the deep ngWL imaging datasets in the optical/
NIR to be sufficient for follow-up to z ¼ 2. Second, we
have chosen the Tinker HMF [Eq. (18)] for the mock
generation, and it is only calibrated at z≲ 2.
We adopt a survey area corresponding to the overlap

between CMB-S4 and the upcoming ngWL survey from
the Euclid satellite. We use only the overlapping region
to ensure that every confirmed CMB-S4 cluster will
have available weak-lensing data. This is a conservative
approach, because the HMF constraints from cluster
samples do not require that each individual cluster have
available weak-lensing data. With a Euclid-like footprint
for our ngWL dataset the overlapping region is roughly
10;100 deg2 [37,39]. The Rubin coverage would be even
larger and would enhance the CMB-S4 sample relative to
what we adopt here. For the optical/NIR selection λ̂minðzÞ
from MCMF, we adopt also the selection thresholds
recently used in the SPT × DES analysis [24,44].

B. Next-generation weak-lensing (ngWL) data

Next-generation weak-lensing surveys will collect an
order of magnitude more lensing data than current WL
surveys and will thus provide improved constraints on the
parameters of the observable-mass relation relative to what
is possible today.
In this analysis, we focus on ngWL data similar to that

which we expect from the Euclid mission [38,39]. Note that
a similar analysis could be carried out for other ngWL
surveys like the Legacy Survey of Space and Time

conducted with the Vera C. Rubin Observatory [41].
Given the similarities of the weak-lensing datasets and
photometric redshifts between the two surveys, we carry
out a single analysis.
The most significant expected advantage in constraining

power for Rubin compared to Euclid comes from the
survey footprint. In the case of Rubin, the overlap with
CMB-S4 is expected to be∼25% larger than for Euclid, and
thus constraints would be approximately 10% tighter. For
SPT-3G both Euclid and Rubin fully cover the planned
survey region, and so there would be no expected signifi-
cant differences in constraining power.
We assume a lensing source density of 30 arcmin−2, a

shape noise of 0.3, and a source redshift distribution with a
median redshift zm ¼ 0.9 [38]. These characteristics are
similar to the adopted goals for the ngWL surveys from
Euclid and Rubin. We assume an uncertainty in source
redshifts of σz ¼ 0.06 [38], and bin the lensing source
galaxies into ten tomographic bins evenly spaced in redshift
between z ¼ 0 and z ¼ 2, and add an eleventh bin in the
redshift range 2.0–2.6. Figure 5 shows the redshift dis-
tributions of the ngWL source galaxies and of the CMB-S4
clusters.

IV. OBSERVABLE-MASS RELATIONS

Galaxy cluster ensembles exhibit considerable regularity,
shown first in tight observable-observable scaling relation-
ships involving the x-ray sizes, temperatures and ICM
masses [67,68] and then more recently in observable-mass
scaling relations calibrated using weak lensing data [e.g.,
[69–72] ]. Because galaxy clusters are typically identified
and selected using their observable properties, while the
HMF is expressed in terms of halo mass and redshift,
scientific analyses of cluster samples usually rely on the
existence of these observable-mass scaling relations. The
analysis method we employ here is based on an empirical
calibration of the observable-mass scaling relations using

FIG. 5. Normalized redshift distribution of the ngWL sources
and the CMB-S4 cluster sample. The full ngWL source redshift
distribution is split up into eleven tomographic bins. Colors are
used to delineate redshifts.
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information from weak gravitational lensing based mass
estimates as previously demonstrated with tSZE selected
cluster samples from SPT [22,24,44].
As mentioned in the introduction, while fðRÞ gravity, in

general, modifies the dynamics and hence also the tSZE
signal, it does not affect gravitational lensing directly.
To be precise, the lensing signal is rescaled by a factor
of ð1þ jfR0jÞ−1 [73,74], which for the range of fR0 we
consider is negligible, and we can thus assume that
gravitational lensing is the same in fðRÞ gravity and
GR. Hence, we assume in the following that all modified
gravity effects on the mass proxy are calibrated via the
weak-lensing mass calibration. In this work, we assume
that fðRÞ gravity does not strongly affect the halo shapes
and that the GR-based weak-lensing mass calibration we
will introduce in Sec. IV C is valid. A fully self-consistent
approach will require fðRÞ numerical simulations to
properly account for the impact of halo shape changes on
the inferred weak-lensing masses. We defer such an
analysis to future work.
Here we summarize the observable-mass scaling rela-

tions relevant for our forecasts.

A. tSZE ζ-mass relation

We assume the following relation for the mean intrinsic
tSZE galaxy cluster detection significance ζ

hln ζi ¼ ln ζ0 þ ζM ln

�
M200c

3 × 1014h−1M⊙

�

þ ζz ln

�
EðzÞ
Eð0.6Þ

�
: ð26Þ

Here ζ0, ζM and ζz are the parameters corresponding to the
normalization, mass trend and redshift trend of the relation
and EðzÞ ¼ HðzÞ=H0. We assume that the intrinsic detec-
tion significance ζ scatters around the mean relation in a
log-normal fashion with a width described by σln ζ.
The intrinsic detection significance is given for a survey

of a fiducial depth. To account for field-to-field variation in
the survey noise level and to use the cluster data from
multiple fields of different depths to constrain the under-
lying ζ-mass relation, we rescale the normalization ζ0
of Eq. (26) using a factor γ; γ ¼ 1 corresponds to the
average depth of a specific field within the SPT-SZ
survey [21,65,66]. Scaling up from the existing SPT-SZ
and SPTpol cluster surveys, we adopt γ ¼ 3.5 for the
deep SPT-3G field and γ ¼ 1.5 for the shallower field.
For CMB-S4 we adopt a scale factor γ ¼ 4. This factor is
similar to the SPT-3G main field because at the depths of
SPT-3G and CMB-S4 we expect the noise to be dominated
by the cosmic infrared background. We find that with this
scale factor, we recover similar numbers of clusters as in a
previous forecast [75].

The tSZE observed detection significance ζ̂ is related
to the intrinsic detection significance ζ by a normal
distribution2

Pðζ̂jζÞ ¼ N
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 þ 3
p

; 1
�
: ð27Þ

The normal distribution is due to the Gaussian noise in the
survey maps, and the bias correction of 3 accounts for a
noise bias introduced in the matched-filter search for peaks
within three dimensions: location on the sky (2 parameters)
and effective core radius of the tSZE signature [76].

B. Cluster richness λ-mass relation

The mean intrinsic richness λ-mass scaling relation is
described by a power law in mass and redshift

hln λi ¼ ln λ0 þ λM ln

�
M200c

3 × 1014h−1M⊙

�
þ λz ln

�
1þ z
1.6

�
;

ð28Þ

with λ0, λM, and λz describing the normalization, mass trend
and redshift trend. We assume that the cluster intrinsic
richness scatters around this relation in a log-normal
fashion described by its RMS variation σln λ.
The observed richness λ̂ is related to the intrinsic

richness λ by

Pðλ̂jλÞ ¼ N ðλ;
ffiffiffi
λ

p
Þ; ð29Þ

which posits the Poisson sampling noise associated with
the realization of a particular number of observed galaxies λ̂
in a galaxy cluster with an intrinsic richness λ. This
expression is the Gaussian approximation to Poisson noise
that we assume to be valid for λ≳ 10.

C. Weak lensing MWL-mass relation

The six scaling-relation parameters and the two intrinsic
scatter parameters describing the ζ-mass and λ-mass
relations described above are calibrated using weak-lensing
data, which have well characterized and controllable biases
and uncertainties. TheWL observable for each cluster is the
reduced tangential shear gtðRÞ or a collection of shear
profiles, each associated with a different tomographic bin
of weak lensing source galaxies. This observable is not
employed in the cluster selection, but it is used to extract a
weak-lensing halo mass MWL by fitting the reduced shear
profile to a Navarro-Frenk-White profile [NFW; [77] ] in
the radial range 500h−1 kpc < R < 3.2=ð1þ zÞh−1 Mpc.

2Note that in many past SPT analyses, the observed detection
significance ζ̂ has been designated ξ. As we move to multi-
observable analyses, we find it simplest to create observed-
intrinsic pairs of observables using a single variable name with
and without the hat.
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The lower bound of the radial ranges ensures that the
complex inner structure of the halo has minimal impact on
our analysis.
The derived WL massMWL will differ from the true halo

mass, taken here to be M200c, due to model uncertainties
and observational noise. The model uncertainties represent
systematic uncertainties that do not average down with
increasing number of weak lensing source galaxies.
Therefore, we track these systematics by introducing an
additional observable-mass scaling relation relating the WL
and halo masses [78–80].�

ln

�
MWL

2 × 1014h−1M⊙

�

¼ lnMWL0
þMWLM

ln

�
M200c

2 × 1014h−1M⊙

�
; ð30Þ

where lnMWL0
is the logarithmic mass bias normalization

and MWLM
is the mass trend in this bias. We discuss the

redshift dependence in Sec. V B. In addition, the weak
lensing mass MWL exhibits a mass dependent log-normal
scatter about the mean relation given by the variance σ2lnWL

lnσ2lnWL ¼ lnσ2lnWL0
þ σ2lnWLM

ln

�
M200c

2× 1014h−1M⊙

�
; ð31Þ

where ln σ2lnWL0
is the normalization and σ2lnWLM

is the mass
trend. The determination of the posterior distributions
of the parameters of these two relations is discussed
in Sec. V B.

V. GENERATING MOCK DATA

The mock catalogs used in this work are created by
drawing the data from our model, and thus we consider all
statistical and systematic uncertainties. The model we have
adopted is fully consistent with the recently analyzed
SPT × DES dataset [24,44], and therefore we expect it to
be an excellent baseline description of these future cluster
and weak-lensing datasets. In the following two sections, we
describe in detail how we create the galaxy mock catalogs
and the follow-up next-generation weak-lensing data.

A. Mock cluster catalog

Mock tSZE catalogs in a fiducial cosmology are created
by first computing the HMF in the mass range M200c ∈
½1013; 1016�h−1M⊙ and in the redshift range of the given
survey. We scale this HMF by the appropriate redshift-
dependent volume, creating a function containing the
expected number of halos of a given mass and redshift
within mass and redshift bins:

hNðM; zÞi ≃ dnðp;M; zÞ
dM

dVðp; zÞ
dz

dMdz; ð32Þ

where the first factor is the HMF and the second factor is
the survey solid angle Ωs dependent differential volume.
We then create clusters of particular mass and redshift by
drawing a Poisson realization of the expected number of
halos within each mass and redshift bin.
For each halo we assign a tSZE intrinsic detection

significance ζ and an intrinsic optical richness λ using
the observable-mass relations Eqs. (26) and (28) together
with the associated log-normal scatter. For the mock
catalog, the parameters of the observable-mass relations
are fixed to the values ðln ζ0; ζM; ζz; σln ζÞ ¼ ð0.96; 1.5;
0.5; 0.2Þ for the ζ-mass relation and ðln λ0; λM; λz; σln λÞ ¼
ð4.25; 1.0; 0.0; 0.2Þ for the λ-mass relation. The observed
tSZE detection significance ζ̂ and the observed richness λ̂
are then drawn using the intrinsic values and the measure-
ment and sampling noise described in Eqs. (27) and (29),
respectively.
Finally, we produce the cluster sample, modeling the

selection by applying the appropriate lower thresholds in
the tSZE detection significance ζ̂min and observed richness
λ̂minðzÞ within the redshift range adopted for each survey.
The threshold value in tSZE detection significance and the
redshift range for each survey are presented in Secs. III A 1
and III A 2.
The minimum richness threshold as a function of red-

shift adopted here is modeled on the MCMF follow-up
method [62] and follows from the recent SPT × DES
analysis [24,44]. Because that analysis only contains the
minimum richness threshold up to z ¼ 1.79, we extrapolate
using λ̂minðzÞ equal to the value of λ̂min at z ¼ 1.79 for all
higher redshifts considered in these forecasts.
We check the sensitivity of the cluster sample to different

richness cuts by assuming a constant λ̂min for all redshifts
with values of 10, 5, and 1. The number of clusters only
varies by a few percent among these samples, similar to the
variation we see when creating mocks with different
random seeds. This is an indication that the tSZE signifi-
cance selection threshold ζ̂min is dominating the selection,
and that the richness threshold has only a weak impact on
the mock sampling and therefore the exact values we adopt
are not important for our forecasts.
To create fðRÞ gravity mocks we use the HMF described

in Eq. (24). Here the number of clusters depends also on the
strength of the gravity modification, with more clusters
being obtained for stronger fðRÞ models, as demonstrated
in the enhancement of the HMF visible in Fig. 2. Figure 6
shows the distribution and abundance of clusters in mass
for different values of log10 jfR0j for our two different
mock surveys, which we refer to as SPT-3G × ngWL and
CMB-S4 × ngWL.
As we can see from Fig. 6, cluster catalogs with a GR

cosmology and fðRÞ gravity with log10 jfR0j ¼ −7 have
close to the same number of clusters. This is in agreement
with the difference in the HMF of these two models, which
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is only a few percent in the lower mass range (see Fig. 2).
Therefore, we assume in our analysis that an fðRÞ gravity
model with log10 jfR0j ¼ −7 is indistinguishable from GR,
and we choose the lower bound of log10 jfR0j in the
emulators described in Sec. II C to be log10 jfR0j ¼ −7.

B. Mock ngWL data

We create mock cluster lensing data following the
approach taken in the recent SPT × DES analysis [44].
The first step is to use Eqs. (30) and (31) to assign a weak-
lensing mass MWL to each tSZE selected cluster in the
mock sample. Doing so ensures that we include the fact that
the weak-lensing mass is not the same as the halo mass. We
then use this weak-lensing mass and the corresponding
NFW profile to create a tangential shear profile gtðRÞ for
each background tomographic bin (a detailed computation
is shown in Refs. [24,44] on which our analysis is based).
Source galaxy number densities and their redshift distri-
bution are presented in Sec. III B.
In addition, we add cluster member contamination, con-

sistent with the recent measurement in DES data [44].
This process produces realistically noisy and biased tan-
gential shear profiles for each cluster. Specifically, these

shear profiles include all the known systematic and
stochastic effects needed to model cluster shear profiles
in DES data.
The parameters describing the MWL-M200c relations

[Eqs. (30) and (31)] are derived through the application
of our mass measurement technique to hydrodynamical
simulations of clusters. Following a previous work [80],
the weak-lensing mass is extracted from hydrodynamical
simulations of clusters, and associated N-body simulations
are used to determine the corresponding true halo masses.
Given both masses, the model for the MWL–M200c relation
and its scatter is calibrated. The true halo masses adopted
need to match those that are used to calibrate the HMF
and its dependence on cosmology. In general, systematic
uncertainties in the shear and photometric redshift esti-
mates of the source galaxies can also play an important role
in this weak-lensing to halo mass relation [44].
Crucial in this process of parameter estimation for the

weak-lensing to halo mass relation is that there are remaining
uncertainties represented by the parameter posteriors. These
represent an effective systematic error floor in our ability to
estimate cluster halo masses using weak-lensing data. The
uncertainties on the bias and scatter parameters, Δ lnMWL0

,
ΔMWLM

, Δ ln σ2lnWL0
and Δσ2lnWLM

, are then marginalized
over during the mass calibration analysis to properly include
the impact of weak lensing systematic uncertainties on the
cluster observable-mass relations.
Table II contains the parameter values of the weak-

lensing mass to halo mass relation that are adopted for the
creation of the mock shear profiles and for the analysis
results presented below. We use as a baseline the results
from the DES weak-lensing calibration adopted in the
recent SPT × DES analysis [44]. We assume no redshift
dependence in any of the MWL–M200c scaling relation
parameters in our analysis here because that dependence is
largely driven by uncertainties in the photometric redshift
biases in the DES shear catalog. The photometric redshift
requirements for both Euclid and Rubin are so tight that
related systematic uncertainties will be subdominant in an
ngWL mass calibration analyses.
Compared to the current state-of-the-art, the ngWL

datasets will include improvements in photometric redshift

TABLE II. Priors on the weak-lensing mass to halo mass
relation parameters and parameter uncertainties [see Eqs. (30)
and (31)]. The mean values are adopted from a recent SPT × DES
analysis [44], and the uncertainties are assumed to be two times
smaller.

Parameter Prior Uncertainty Prior

lnMWL;0 −0.050 Δ lnMWL0
0.010

MWLM
1.029 ΔMWLM

0.009
ln σ2lnWL0

−3.100 Δ ln σ2lnWL0
0.120

σ2lnWLM
−0.226 Δσ2lnWLM

0.300

FIG. 6. Mass distribution of the SPT-3G × ngWL (above) and
CMB-S4 × ngWL (below) mock catalogs for different fðRÞ
gravity models in yellow, light green and dark green as well
as for the GR Planck 2018 cosmology in dark violet.
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biases, shear measurement biases, and the understanding of
the baryonic physics impact on the cluster mass profiles.
Therefore, we assume that the uncertainties on the
MWL–M200c parameters will improve by a factor of two
compared to DES. We view this as a relatively conservative
choice for the improvement of the WL uncertainties
because in addition to better characterization of the cluster
population through simulations, we can alter our analysis
approach to reduce sensitivity to certain systematics
(e.g., avoiding more of the cluster core where the baryonic
effects are most important and selecting background source
galaxies conservatively to dramatically reduce the cluster
member contamination).
In Appendix A, we discuss the impact of adopting more

optimistic parameter uncertainties for ngWL surveys that
are a factor of 10 smaller than those in the recent DES
analysis; interestingly, moving from 2 times to 10 times
reduction in systematic uncertainties has a minimal impact
on the ngWL mass calibration. This suggests that at the
level of weak lensing systematics adopted in our ngWL
forecast, our observable-mass relation parameter posteriors
are shape noise dominated.

VI. LIKELIHOOD AND ANALYSIS

The analysis method we employ in this work is based
on the state-of-the-art SPT × DES cosmological analysis
[24,44]. We summarize in this section the abundance
and mass calibration likelihood and how we analyze our
mock data for the SPT-3G × ngWL and CMB-S4 × ngWL
sample.

A. Abundance and mass calibration likelihood

The multiobservable likelihood used in this forecast is
given by

lnLðpÞ ¼
X
i

ln
Z

∞

λ̂min

dλ̂
d3NðpÞ
dζ̂dλ̂dz

				
ζ̂i;zi

−
Z

zmax

zmin

dz
Z

∞

ζ̂min

dζ̂

×
Z

∞

λ̂min

dλ̂
d3NðpÞ
dζ̂dλ̂dz

þ
X
i

ln

d4NðpÞ
dζ̂dλ̂dgtdz

		
ζ̂i;λ̂i;gt;i;ziR

∞
λ̂min

dλ̂ d3NðpÞ
dζ̂dλ̂dz

		
ζ̂i;zi

þ const: ð33Þ

where both sums run over all clusters i.3 The vector p
contains the cosmological and scaling relation parameters,
and the observables are tSZE detection significance ζ̂,
richness λ̂, tangential shear profile gt and redshift z. The
first two terms of the above equation represent the Poisson
likelihood associated with the cluster abundance, which is
independent of the weak-lensing data, while the last term

represents the information from the mass calibration with
the WL data.
The differential cluster number d3N

dobs that appears in the
first two terms is the differential halo observable function
HOF in the observable space ζ̂ − λ̂ − z

d3NðpÞ
dζ̂dλ̂dz

¼
Z

dΩs

ZZZ
dMdλdζPðζ̂jζÞPðλ̂jλÞPðζ; λjM;z; pÞ

×
d2NðM;z;pÞ

dMdV
d2Vðz; pÞ
dzdΩs

: ð34Þ

Here Pðζ̂jζÞ and Pðλ̂jλÞ follow from Eqs. (27) and (29),
respectively, whereas Pðζ; λjM; z; pÞ is obtained from
Eqs. (26) and (28), Ωs is the survey solid angle, and the

factors d2NðM;z;pÞ
dMdz and d2Vðz;pÞ

dzdΩs
are the HMF and the differential

volume element for the corresponding cosmology. The
other differential cluster number in the observable space
ζ̂ − λ̂ − gt − z is given by

d4NðpÞ
dζ̂dλ̂dgtdz

¼
Z

dΩs

Z Z Z Z
dMdζdλdMWL

× PðgtjMWL; pÞPðζ̂jζÞPðλ̂jλÞ

× Pðζ; λ;MWLjM; z; pÞ d
2NðM; z; pÞ
dMdV

×
d2Vðz; pÞ
dzdΩs

; ð35Þ

Where Pðζ; λ;MWLjM; z; pÞ follows from Eqs. (26), (28),
and (30) and PðgtjMWL; pÞ is given by the product of
Gaussian probabilities in each radial bin i of the tangential
shear profiles (see Sec. V B)

PðgtjMWL; pÞ ¼
Y
i

� ffiffiffiffiffiffi
2π

p
Δgt;i

�−1
× exp

�
−
1

2

�
gt;i − gt;iðMWL; pÞ

Δgt;i

�
2
�
; ð36Þ

with the shape noise Δgt;i.

B. Analysis

The analysis presented in this work is done with
CosmoSIS

4 [81] using the Multinest and Nautilus samplers
[82,83]. In our analysis we separate the cluster abundance
and mass calibration elements into independent MCMC
chains. The mass calibration likelihood is first used to
quantify posterior distributions on the parameters of the
observable-mass relations at a fixed cosmology. Thereafter,
we adopt these parameter constraints as Gaussian priors on
the parameters of the observable-mass relation parameters

3More details and motivation of the likelihood approach can be
found in Ref. [44]. 4https://cosmosis.readthedocs.io/.
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when evaluating cosmological constraints with the cluster
abundance likelihood. The advantage of this approach is
that it simplifies and dramatically speeds up the likelihood
calculation. The downside is that the cosmological sensi-
tivity of the mass calibration element (primarily due to Ωm
sensitivity of the distance-redshift relation) is not correctly
captured. As discussed in Appendix B, this separation of
the analysis has little impact on our forecast cosmological
or scaling relation parameter posteriors.

1. Mass calibration

The main bottleneck in our mass calibration likelihood is
the four-dimensional convolution integral from Eq. (35),
which has to be evaluated for each cluster in our current
implementation. In the calculation of this integral, we use
an efficient Monte-Carlo integration method [44]; however,
the total number of clusters is so large that it is not possible
to complete a mass calibration chain for either mock cluster
sample in a reasonable amount of time. One approach to
speed up the calculation would be to adopt a stacked
analysis of cluster shear profiles [84], but for this analysis,
we use an approximate approach employing the likelihood
in Eq. (33) to infer the observable-mass relation parameter
posteriors. In this approach, we use 1000 randomly selected
clusters from each tSZE survey to calculate the mass
calibration likelihood and then scale up the weights of each
selected cluster by a factor α that accounts for the number of
missing clusters from the full sample. To up-weight the
clusters we reduce the shape noise Δgt by a factor of 1=

ffiffiffi
α

p
where α is the rescaling factor to the total number of
clusters N, i.e., N ¼ α1000. This impacts the probability
PðgtjMWL; pÞ [defined in Eq. (36)] of observing a particular
reduced shear profile given the WL mass, appropriately
rescaling the third term in the likelihood in Eq. (33) to
account for the full sample of clusters in the survey.
Because we assume that the mass calibration analysis is

independent of the underlying cosmology, we adopt fixed
cosmological parameters that equal those used in generat-
ing the mocks and uniform priors on the eight observable-
mass scaling relation parameters. The ranges for our flat
priors are chosen such that they are larger than the 5σ
results of the observable mass relations from previous
analyses [22,85]. Importantly, we account for the uncer-
tainties in the weak-lensing mass to halo mass relation
[see Eqs. (30) and (31)] by adopting mean parameter values
and parameter uncertainties as listed in Table II and then
marginalizing over those uncertainties.

2. Cluster abundance

We adopt the posterior parameter distributions for the
observable-mass scaling relation parameters that are listed
in Table III as priors for the abundance analysis. In the
cluster abundance likelihood analysis [see Eq. (33)] we vary
the cosmological parameters Ωm;Ωνh2; h; lnð1010AsÞ; ns,
and log10 jfR0j. Note that σGR8 is a derived parameter. It is

important to note here that the σGR8 quantity is the GR value
as we use the linear power spectrum in the corresponding
GR cosmology to calculate the HMF (see Sec. II B).
The goal of this work is to test the constraining power

from cluster data with weak-lensing mass calibration alone,
and thus we adopt flat priors on all cosmological param-
eters. However, as mentioned in Sec. II B, it is difficult to
distinguish between very weak modified gravity models
and GR. Thus, efficiently sampling the likelihood for these
weak models is challenging. Therefore, we combine the
cluster abundance dataset with the primary CMB Planck
2018 (TT, TE, EE) data for the analysis of GR and the
log10 jfR0j ¼ −7 mock catalogs. This allows us to achieve
convergence on a significantly more reasonable timescale.
Note that we do not include future primary CMB results in
this work. We account for the modified gravity sensitivity
of the Planck 2018 data by using the CMB power spectrum
from fðRÞ gravity in this part of the likelihood. The cluster
abundance data and Planck 2018 data can be combined,
because the mock catalogs are generated for a Planck 2018
cosmology. Thus, there is no tension between the datasets.
The Planck 2018 likelihood is publicly available and
implemented in CosmoSIS. For the joint analysis we multiply
the CMB likelihood with the cluster abundance likelihood.
Note that constraints on fðRÞ gravity from Planck 2018

primary CMB are of the order of log10 jfR0j ≲ −3 [48,86],

TABLE III. Priors on the parameters of our cluster abundance
analysis for the SPT-3G × ngWL (second column) and
CMB-S4 × ngWL (third column) cluster samples. For the scaling
relation parameters, the mean values are the same as the mock
inputs, and the uncertainties are sampled from the posteriors of
the correspondingmass calibrationMCMC chain (see Sec. VI B 1).
The prior on Ωνh2 corresponds to a prior on the sum of neutrino
masses

P
mν ∼ Uð0; 0.6Þ eV.

Parameter SPT-3G × ngWL CMB-S4 × ngWL

Cosmology

Ωm Uð0.232; 0.4Þ Uð0.232; 0.4Þ
Ωνh2 Uð0; 0.00644Þ Uð0; 0.00644Þ
h Uð0.6; 0.8Þ Uð0.6; 0.8Þ
lnð1010AsÞ Uð1; 4Þ Uð1; 4Þ
ns Uð0.94; 1:Þ Uð0.94; 1:Þ
log10 jfR0j Uð−7;−3Þ Uð−7;−3Þ

tSZE ζ-mass relation [Eqs. (26) and (27)]

ln ζ0 N ð0.96; 0.03Þ N ð0.960; 0.021Þ
ζM N ð1.50; 0.04Þ N ð1.50; 0.03Þ
ζz N ð0.50; 0.17Þ N ð0.50; 0.09Þ
σln ζ N ð0.200; 0.026Þ N ð0.200; 0.018Þ

Richness λ-mass relation [Eqs. (28) and (29)]

ln λ0 N ð4.250; 0.019Þ N ð4.250; 0.014Þ
λM N ð1.00; 0.03Þ N ð1.000; 0.025Þ
λz N ð0.00; 0.16Þ N ð0.00; 0.06Þ
σln λ N ð0.200; 0.012Þ N ð0.200; 0.008Þ
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and thus our constraints are dominated by the cluster
abundance. The primary CMB data help to anchor the
standard cosmological parameters.
Table III summarizes the priors on the cosmological and

scaling relation parameters for the SPT-3G × ngWL and
the CMB-S4 × ngWL forecasts. Note that we do not apply
the lower bound from oscillation experiments for the
massive neutrinos. The neutrino mass can only be con-
strained when combining with primary CMB data, and thus
the upper bound for the neutrino prior is chosen based on
the Planck 2018 results.
Note that when the mock input value of the fðRÞ

parameter lies on the lower boundary of the log10 jfR0j
prior, the credibility limits are computed from the lower
boundary, and we present only upper bounds. We apply this
to the mock catalog with log10 jfR0j ¼ −7 and the GR
mock. Furthermore, the GR limit with jfR0j ¼ 0 is not
reachable in a log prior and thus would add an infinitely
large volume below our lower bound. To avoid dependence
of the parameter upper limits on the choice of the prior
lower boundary, we calculate the upper bounds in linear
jfR0j space by transforming the parameter space from
logarithmic to linear. In linear space the volume between
0 and 10−7 is negligible.

VII. RESULTS

In this section, we summarize and discuss our results from
the mass calibration and cluster abundance analyses for the
future SPT-3G × ngWL and CMB-S4 × ngWL datasets.

A. ngWL mass calibration

We expect that SPTwill detect around 6,000 clusters in a
Planck 2018 cosmology with the SPT-3G camera. Applying
the up-weighting approach described in Sec. VI B 1 with
α ¼ 6 for the mass calibration, we obtain constraints for the
uncertainties of the observable-mass scaling relation param-
eters as shown in the second column of Table III. For the
∼32;000 CMB-S4 clusters, we use the up-weighting
approach with α ¼ 32. The resulting parameter constraints
for CMB-S4 × ngWL are shown in the third column of
Table III. We note that the mean recovered parameters are in
agreement with the mock inputs within the uncertainties,
confirming the validity of our analysis pipeline.
The tighter posteriors for the CMB-S4 × ngWL analysis

are expected because SPT-3G × ngWL has roughly five
times fewer clusters (and therefore much less ngWL
information). Furthermore, the CMB-S4 dataset includes
clusters at z > 0.1, while for the SPT-3G dataset we adopt
z > 0.25 (see Sec. III A). We see the largest improvement
in the uncertainty on the ζz and λz parameters because these
two parameters model the redshift dependence of the
observables at fixed mass.
We use the uncertainties from the mass calibration

analyses presented here in the cluster abundance analyses

presented in the next section. Note that in the cluster
abundance analyses we set the mean parameter values to
be equal to the input values of the mocks. In addition, note
that we have ignored the impact of modified gravity on
the halo profile in our mass calibration analysis for this
forecast, but it could be included in the analysis of the real
datasets.

B. Cosmology constraints

We now present the main results of the paper: the
constraints on fðRÞ modified gravity models for the future
datasets SPT-3G × ngWL and CMB-S4 × ngWL. We ana-
lyze four different models with our cluster abundance
pipeline: values of log10 jfR0j ¼ f−7;−6;−5g, denoted
as F7, F6, and F5, respectively, as well as GR. The F7
model is assumed to be equivalent to GR in our framework
(see Sec. V), and the comparison of the F7 and GR datasets
allows us to test this assumption.
In the sections that follow we compare our results with

the 95% upper bound constraint of log10 jfR0j < −4.79
found from clusters of galaxies combined with CMB data,
CMB lensing, baryon acoustic oscillations (BAO) and type
Ia supernova data [27]. This constraint is also comparable
to the upper end of the range of fR0 constraints obtained
from the Planck tSZE cluster sample [28], where it is
emphasized that uncertainties in the HMF prediction they
adopted contribute significantly to their final constraint on
fR0. As discussed in previous sections, we have attempted
to fold HMF uncertainties into our constraints.

1. SPT-3G × ngWL forecast

In this section we present our SPT-3G × ngWL fore-
casts for the four different models. Figure 7 shows the
posterior distribution of the log10 jfR0j parameter of the
four models tested. The full posteriors of all cosmological
parameters from the SPT-3G × ngWL dataset are presented
in Appendix C. In fact, we have created three statistically
independent mocks for each model to test the sensitivity of
our conclusions to the statistical fluctuations that arise
through the Poisson sampling of the HMF and sources of
scatter in the observable-mass relations. As expected, no
statistically significant difference is found between the
three realizations per model, and we hence only show the
posterior for one of the mock realizations here.
Table IV shows the constraints of the log10 jfR0j param-

eter for the four analyzed models. The results of the 95%
upper bounds show very similar constraining power for
the GR and F7 models and thus validate our choice of
log10 jfR0j ¼ −7 as a lower limit within the context of the
SPT-3G dataset. Our analysis shows that an SPT-3G ×
ngWL dataset can be used to distinguish GR and fðRÞ
modified gravity models down to log10 jfR0j < −5.97
(95% upper bound).
The 95% credibility constraints from the F6 mock

show that this cluster abundance and weak-lensing dataset
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without Planck 2018 data can differentiate between GR and
F6 models. Note, however, that models with a higher
log10 jfR0j value predict more clusters when leaving all
other cosmological parameters unchanged (see Fig. 6) and
these increased numbers translate into tighter constraints,
as expected. Moreover, the SPT-3G × ngWL dataset with
Planck 2018 data improves over the constraint from
Ref. [27] by 25%. Finally, the analysis of the F5 model
shows that such modified gravity models could be distin-
guished from GR and from fðRÞ gravity models with
log10 jfR0j < −5.97 at 95% credibility.
As seen in Fig. 7, our analysis shows an asymmetric

posterior distribution for log10 jfR0j in the F5 model. An
explanation for this asymmetric shape is given by the fact
that the HMFs of weak modified gravity models are
harder to distinguish because the differences are smaller.
There is effectively less information on the fðRÞ gravity
parameter encoded in the HMF as one moves to weaker
fðRÞ models. Therefore, one expects a wider distribution
or weaker constraints when going to smaller values of
log10 jfR0j.
Figure 8 shows the degeneracy between log10 jfR0j and

Ωm for the F6 and F5 models. In the F6 model, the
degeneracy is mild and vanishes when approaching smaller
values of log10 jfR0j. The degeneracy between the two
parameters is much stronger in the F5 model.

In addition, the analysis of the F5 model shows a de-
generacy between log10 jfR0j and σGR8 as seen in Fig. 9.
This degeneracy vanishes for low log10 jfR0j values for the
SPT-3G × ngWL dataset and the degeneracies are not seen
in the analysis of the GR, F7 and F6 models.
The degeneracies between these parameters have been

previously noted in, e.g., studies of fðRÞ gravity using the
weak-lensing power spectrum [87]. These degeneracies
arise from the fact that the three quantities log10 jfR0jΩm

and σGR8 all change the amplitude of the HMF, enhancing
the number of clusters for higher parameter values. The de-
generacies are broken for small log10 jfR0j values because
the enhancement of the HMF in such fðRÞ gravity models
is very small to the point that the HMF is difficult to
distinguish from GR.
As stated in Sec. II B there is a known degeneracy

between the fðRÞ gravity parameter and massive neutrinos
[see, e.g., [55–57] ]. Our analysis of the SPT-3G × ngWL
dataset on the other hand shows no degeneracy between
these parameters for all four examined models. This is
owing to the fact that in our analysis, the sum of neutrino
masses is much smaller than the values considered in
Refs. [55–57], as we include the primary CMB constraint
via our prior on Ωνh2, and the impact of such low neutrino
masses on the HMF is negligible.

2. CMB-S4 × ngWL forecast

This section summarizes the results of our CMB-S4 ×
ngWL mock catalog analysis. As with the SPT-3G ×
ngWL analysis, we analyze three statistically independent
mocks and find no statistically significant differences.
Figure 7 shows the posterior distribution of the log10 jfR0j
parameter of the four models for one mock realization
in blue. The full constraints in the cosmological para-
meters from the CMB-S4 × ngWL dataset are presented in
Appendix C
The log10 jR0j posteriors for the four analyzed models are

shown in Table IV. One can see that the log10 jfR0j upper

TABLE IV. Parameter posteriors for log10 jfR0j in the four
analyzed models in the two different clusters surveys SPT-3G ×
ngWL and CMB-S4 × ngWL. For models F7 and GR we present
95% upper limits whereas mean and 68% credible intervals are
shown for F6 and F5 models.

Model SPT-3G × ngWL CMB-S4 × ngWL

GR < −5.97 < −6.23
F7 < −5.98 < −5.93
F6 −6.12� 0.44 −6.18� 0.31
F5 −5.09� 0.43 −5.13� 0.17

FIG. 7. log10 jfR0j posterior distributions from the cluster abundance analysis for SPT-3G × ngWL (red) and CMB-S4 × ngWL (blue)
datasets. For each survey one of the three independent mocks was chosen randomly. For the analyses of the GR and F7 models, the
Planck 2018 anisotropy data were included.
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limit for the GR model is slightly tighter (roughly 5%) than
for the F7 model. This indicates that with the larger cluster
sample of CMB-S4 × ngWL the few percent difference in
the HMF as seen in Fig. 2 starts to play a role. In an actual
analysis of the CMB-S4 cluster sample, one should thus
extend the sampling range to lower values of log10 jfR0j.
Our results show that CMB-S4 × ngWL combined with

Planck 2018 data can rule out fðRÞ gravity models down to
log10 jfR0j < −6.23 at the 95% upper limit. These models
are currently still viable based on current published con-
straints. In fact, this forecast constraint represents an

improvement of more than an order of magnitude compared
to previously published cluster constraints [27]. Moreover,
the analysis of the F6 model shows that a CMB-S4 ×
ngWL dataset can distinguish log10 jfR0j ¼ −6 cosmology
from a GR cosmology at the 95% credible interval. The
tightest constraints from the CMB-S4 × ngWL mock data-
set are for the F5 model because stronger modified gravity
models predict more clusters.
Figure 8 indicates a degeneracy between log10 jfR0j

and Ωm in the F6 and F5 models. In the case of the F5
model analysis, the degeneracy is mild and the direction is
orthogonal to that from the analysis of the F6 model. The
change in the degeneracy direction compared to the one in
the F6 model can be explained by the behavior of the HMF
at the high mass end for log10 jfR0j ¼ −5 fðRÞ gravity
models. The change in the degeneracy is not seen in the F5
model for SPT-3G × ngWL mock data because the con-
tours are wider and leak into the low log10 jfR0j region
where the degeneracy changes direction. Furthermore the
F5 model exhibits a degeneracy between log10 jfR0j and
σGR8 as seen in Fig. 9. As in the SPT-3G × ngWL analysis,
the F7 and GR models do not show these two degeneracies,
because the enhancement of the HMF vanishes for low
values of log10 jfR0j as discussed in Sec. VII B 1. In
addition, the analysis of the CMB-S4 × ngWL datasets
results in no significant degeneracy between log10 jfR0j and
Ωνh2 for all models.

FIG. 9. Joint constraints on log10 jfR0j and σGR8 of the F5 model
from the cluster abundance analysis for SPT-3G × ngWL (red)
and CMB-S4 × ngWL (blue) datasets. The parameter degeneracy
indicates that the more numerous clusters in stronger fðRÞ
models can be offset to some degree by a reduction in σGR8 .
This degeneracy is not seen in the F6, F7 and GR models for both
datasets. We tested the convergence of MCMC chain by running
multiple chains with different settings and no shifts were seen.

FIG. 8. Constraints on log10 jfR0j and Ωm for the F6 model
(above) and F5 model (below) from the cluster abundance
analysis for SPT-3G × ngWL (red) and CMB-S4 × ngWL (blue)
datasets. The parameter degeneracy that is clearly visible in the
F6 panel arises due to enhanced cluster numbers in stronger fðRÞ
models being offset partially by lower Ωm. In the F5 panel the
degeneracy is still apparent at some level in the SPT-3G × ngWL
case and only mild but with orthogonal direction for the more
constraining CMB-S4 × ngWL dataset. We tested the conver-
gence of MCMC chain by running multiple chains with different
settings and no shifts were seen.
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As we show in the last two sections, cluster data with
weak-lensing informed mass calibration and with addi-
tional Planck 2018 data in the weakest two fðRÞ models
will improve upon the best current constraints from cluster
plus Planck data.

VIII. CONCLUSIONS

In this work, we present a forecast of cluster abundance
constraints with weak-lensing informed mass calibration
for a Hu and Sawicki fðRÞ model in two future surveys. In
fðRÞ gravity models, the clustering of matter is enhanced
compared to the GR model due to a fifth force mediated by
an extra scalar degree of freedom. Thus, the growth of
structure is scale-dependent, and the collapse threshold for
halos is correspondingly mass-dependent. We account for
this in our analysis with a different HMF, which is given
by the GR HMF scaled by an enhancement factor R
involving the critical overdensity in fðRÞ gravity δcrit, and
GR δcrit;GR as well as its derivative with respect to lnM
dδcrit=d lnM calculated with a semianalytical model.
The calculation of the critical overdensities and deriv-

atives is computationally expensive and thus is not feasible
for a cosmological analysis. Therefore, we build emulators
for the three quantities needed to calculate the enhancement
factor for the HMF. We show that the emulation error of
the HMF is at the percent level and hence subdominant
compared to other limitations. Using the emulators speeds
up our calculation by more than three orders of magnitude.
Using the fðRÞ gravity HMF we analyze galaxy cluster

datasets, which are a powerful cosmological probe able
to distinguish between GR and fðRÞ gravity due to the
enhanced structure formation in fðRÞ gravity. We create
mock catalogs for the future tSZE cluster surveys repre-
sentative of SPT-3G and CMB-S4, and we include weak-
lensing mass calibration information from next-generation
weak-lensing data from Euclid or Rubin. For each survey,
we create three fðRÞ gravity models with log10 jfR0j∈
½−7;−6;−5� (F7, F6 and F5 respectively) and a fourth GR
model. We assume in our analysis that the F7 and GR
models are indistinguishable because the HMF of the two
models only differs by a few percent in the low mass
regime, which is not easily distinguishable by either of
these two future cluster surveys. In the case of the F7 and
GR models, we add the Planck 2018 CMB anisotropy data
to improve the constraints.
Our analysis consists of two steps. First, we carry out a

weak-lensing mass calibration analysis of the observable-
mass relations at a fixed, fiducial cosmology. Then we adopt
the parameter posteriors from that analysis as priors on a
cluster abundance analysis with the goal of deriving cos-
mological parameter posteriors. We test the robustness of our
pipeline by analyzing three statistically independent mock
datasets for each of the models and find no statistically
significant difference. The analysis of the four models of an
SPT-3 × ngWL dataset gives the following results:

(i) Cluster data from SPT-3G × ngWL combined with
primary CMB Planck 2018 data improves the
current best constraints from cluster data to
log10 jfR0j < −5.95 at 95% upper limit.

(ii) The analysis of the F7 and GR model verifies that
the two models are indistinguishable within the
statistical uncertainties in the data.

(iii) Our analysis shows that the F6 model is distinguish-
able from GR at the 95% credible level.

(iv) Modified gravity models with log10 jfR0j ¼ −5 are
distinguishable from GR and from fðRÞ gravity
models below log10 jfR0j ¼ −5.97 at the 95% credi-
ble level.

(v) We observe degeneracies between log10 jfR0j and
Ωm as well as σGR8 . These are broken for values of
jfR0j below 10−6 and 10−5 respectively.

The results of the CMB-S4 × ngWL mock data are the
following:

(i) CMB-S4 × ngWL data plus Planck 2018 data can
rule out fðRÞ gravity models above log10 jfR0j ¼
−6.23 at 95% upper bound. They not only improve
upon the current best constraints from cluster data,
but yield constraints on jfR0j that are lower by a
factor of 0.38 than the one from the SPT-3G ×
ngWL dataset.

(ii) Modified gravity models with log10 jfR0j ¼ −6 and
log10 jfR0j ¼ −5 are distinguishable from GR at the
95% credible interval.

(iii) The analysis of the F6 and F5 models show de-
generacy between log10 jfR0j andΩm as well as σGR8 .

(iv) The degeneracy between log10 jfR0j and Ωm in the
analysis of the F5 model changes direction com-
pared to the one in the F6 model. This is due to the
different behavior of the HMF at the high mass end
for the F5 model.

Overall our analysis shows that upcoming tSZE-selected
cluster samples of thousands to tens of thousands of
systems, combined with next-generation weak-lensing
survey data such as that from Euclid or Rubin, will enable
substantially improved constraints on modified gravity
models. Furthermore, the analysis shows that constraints
on fðRÞ gravity from cluster and WL surveys are strongly
competitive with other cosmological probes [27,88–92].
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APPENDIX A: THE IMPACT OF IMPROVED WL
SYSTEMATIC UNCERTAINTIES
ON THE MASS CALIBRATION

In this appendix, we investigate the dependence of our
results on the assumptions made about systematics in the
weak lensing mass estimates. Next-generation weak-lensing
surveys as expected from the Euclid satellite and the Vera
Rubin Observatory will collect a much higher amount of
data compared to current surveys like DES, KiDS and HSC
SSP [93]. Therefore, much work will be done to improve the
systematic uncertainties to take advantage of the increasing
amount of data for the mass calibration analysis.
For photometric redshift and shear systematics, we

simply adopt the requirements for the ngWL surveys,
which are dramatically tighter than what has been achieved
in the ongoing surveys. But, as discussed in Sec. V, there
are also systematics associated with how we use the
observed source galaxy shear profiles to determine the
weak-lensing mass MWL, and we model these in the so-
called weak-lensing to halo mass relation [Eqs. (30) and
(31)]. The exact uncertainties in the parameters of this
relation are estimated for the ngWL surveys based on the
current DES results [44].
We assume a baseline (conservative) approach where the

uncertainties on the parameters in Eqs. (30) and (31) would

be improved by a factor of two as compared to DES, and an
optimistic scenario where the uncertainties would be
reduced by a factor of ten compared to DES.
The comparison of the conservative baseline and our

optimistic scenario is shown in Fig. 10. One can see that
the reduction of the WL uncertainties (corresponding to a
kind of systematic floor) by a factor of five between our
conservative and optimistic scenarios does not significantly
impact the scaling relation parameter posteriors. We do see
an improvement of around 5% in the constraints on the
parameters ln ζ0 and ln λ0, which indicates that the sys-
tematic floor in our conservative baseline is having some
impact. Qualitatively, we expect this by looking at the
contours of Fig. 10 between the scaling relation parameters
and the WL uncertainties. Besides the contours of lnMWL0

and ln ζ0 or ln λ0 respectively, the contours are horizontally
orientated. This is an indication that an improvement of the
WL uncertainties, which only shrinks the contours in the
horizontal directions, will not lead to better constraints on
the scaling parameters. In the case of the two amplitude
parameters, the contour plot shows a small degeneracy
between lnMWL0

and ln ζ0 or ln λ0, respectively, which
helps explain the small improvement of these two ampli-
tude parameters when reducing the systematic floor by a
factor of five.
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APPENDIX B: COSMOLOGY-DEPENDENCE
OF MASS CALIBRATION

As mentioned in Sec. VII A we assume that the ngWL
based mass calibration analysis can be separated from
the SPT-3G and CMB-S4 abundance analysis without
introducing any important biases. This assumption is driven
by our need to avoid running the mass calibration, which is

the bottleneck in the current version of our code, many
different times. We verify this statement by running the
mass calibration analysis with both fixed and free matter
density parameter Ωm with our standard Planck 2018
priors. Freedom inΩm has the most important cosmological
impact on our mass calibration analysis because the
mapping from shear profiles to halo mass depends on

FIG. 10. Mass calibration analysis with two different choices on the weak-lensing uncertainties (WL systematic floor) for the ngWL
survey. The conservative choice in red has a factor of two improvement in WL systematics compared to DES, while the optimistic case is
a factor of ten better than DES. The posteriors on the observable mass scaling relation parameters are hardly impacted, indicating that in
neither case are the posteriors dominated by the systematic uncertainties in the weak-lensing analysis.
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the distance-redshift relation. In addition, we analyze a GR
mock with a WMAP7 cosmology [94], i.e., Ωm ¼ 0.27,
Ωb ¼ 0.0469, h ¼ 0.7, lnð1010AsÞ ¼ 3.155 and ns ¼ 0.95
with Ωm fixed or free. This tests whether there is sensiti-
vity to the precise input value of the cosmological para-
meters.

The results for the mass calibration for all four runs
give the same constraints on the observable-mass scaling
relation parameters. Figure 11 includes the posteriors
from these four runs (color coded as marked in the figure).
There is no tension among the four sets of posteriors, aside
from the Ωm posterior where the input Planck 2018 and

FIG. 11. Mass calibration analysis with two different cosmologies: Planck 2018 (green and red) and WMAP7 (gray and blue). For
each cosmology, we execute a chain with Ωm fixed (red and blue) and free (green and gray). Dashed lines indicate input values, for Ωm
the input value is represented in green for the Planck 2018 mock and in gray for the WMAP7 mock. The consistency of the observable-
mass scaling relation parameter posteriors indicates that neither the exact input value of Ωm used in the mocks nor fixing it or fitting Ωm
have an important impact.
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WMAP7 values are indeed different. This behavior motivates our assumption that the mass calibration is independent of the
cosmology and therefore validates our approach of separating the mass calibration and cosmology chains in the analyses we
present here.

APPENDIX C: FULL RESULTS FOR THE SPT-3G × ngWL AND CMB-S4 × ngWL DATASETS

In Fig. 12 we show the constraints on all cosmological parameters for all four examined models for the SPT-3G × ngWL
and CMB-S4 × ngWL datasets in red and blue, respectively.

FIG. 12. Posterior distributions of the cluster abundance analysis for SPT-3G × ngWL (red) and CMB-S4 × ngWL (blue) datasets.
For the analyses of the GR and F7 models, the Planck 2018 anisotropy data were included.
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