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We discuss the challenges of motivating, constructing, and quantizing a canonically normalized
inflationary perturbation in spatially curved universes. We show that this has historically proved
challenging due to the interaction of nonadiabaticity with spatial curvature. We construct a novel curvature
perturbation that is canonically normalized in the sense of its equation of motion and is unique up to a
single scalar parameter. With this construction it becomes possible to set initial conditions invariant under
canonical transformations, overcoming known ambiguities in the literature. This corrected quantization has
potentially observational consequences via modifications to the primordial power spectrum at large angular
scales, as well as theoretical implications for quantization procedures in curved cosmologies filled with a
scalar field.
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I. INTRODUCTION

Cosmological inflation [1–4] provides explanatory
power for observations of cosmic microwave background
(CMB) anisotropies [5–8], by yielding the quantum
fluctuations that seed large scale structure today [9].
Additionally, inflation also resolves the horizon and cur-
vature problems, both of which can be thought of as initial
conditions for the universe [10]. From a theoretical stand-
point, it is inconsistent to assume a flat universe at the start
of inflation, and instead one could consider inflation as
starting in a general KΛCDM (cold dark matter with a
cosmological constant and spatial curvature) universe
[11–15]. Such investigations are further motivated in light
of the conversation in the literature regarding the statistical
significance (or lack thereof) of the preference in CMB and
baryon acoustic oscillation (BAO) data for present-day
curvature [16–21], and it is undeniably true that any

observation of present-day curvature would have profound
implications for theories of inflation [22–25].
The imprint of quantum perturbations on the CMB as

anisotropies is described by the power spectrum for the
gauge-invariant comoving curvature perturbation variable
R. Thus, toward the goal of computing the power spectrum
forR in a curved inflationary spacetime, Ref. [26] finds the
Mukhanov-Sasaki equation of motion forR for nonzero K,
in analogy with standard inflationary calculations, previ-
ously also derived in [27]. Introducing curvature markedly
complicates the equation of motion for R, which only
simplifies in two important cases: First, when K ¼ 0;
second, when one takes the matter field to be either a
scalar field without potential (i.e., a stiff fluid) or hydro-
dynamical matter [9,28]. During very early evolution the
inflaton can be approximated as a stiff fluid, and during
slow roll as hydrodynamical matter [29], thus simplifying
the equation of motion. However, this does not occur in the
period between the two regimes, which we show is due to
the interaction of nonadiabatic perturbations with curva-
ture. This motivates the need for a novel inflationary
perturbation variable, which we introduce.
The purpose of this paper is twofold. First, we construct

a field satisfying a canonical wave equation, which in the
limit K ¼ 0 recovers the standard Mukhanov variable,
allowing one to use the existing analysis of scalar fields
in spaces with a Friedmann-Lemaître-Robertson-Walker
(FLRW) metric. Second, we use the proposed construction
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to derive initial conditions on the curvature perturbation,
which are covariant and canonically invariant.
To compute the power spectrum, the curvature pertur-

bation variable must be evolved according to its equation of

motion from some initial conditions. In flat spacetimes,
initial conditions from the Bunch-Davies vacuum set
arbitrarily far back in the past are typically used. It is
nontrivial to generalize such quantization schemes to a

FIG. 1. Timeline of a KΛCDM cosmology using Planck best-fit parameters [7] with plikTTTEEEþ lensing for a cosmology
including spatial curvature and VðϕÞ ∝ ϕ4=3 potential with instant reheating [23]. The universe begins in a kinetically dominated pre-
inflationary epoch [42–56], with the comoving horizon 1

aH and curvature ΩK ¼ − K
ðaHÞ2 parameters growing. Inflation begins when the

scale factor of the universe reaches about 105 Planck lengths, acting to flatten the universe and dramatically shrinking the comoving
horizon through a period of slow roll. At a scale factor of about 1 mm the inflaton reaches the bottom of its potential, with oscillations
about the minima simulating a matter dominated universe. At some point in between 10 mm and 10 m the universe undergoes a reheating
phase which we model as instantaneous, but can easily be extended to allow greater freedom [23]. The universe then grows in a
protracted radiation-dominated phase, undergoing several phase transitions until recombination at about the time that the universe
transitions into a matter dominated epoch when the scale factor is about 0.1 Gly. Post recombination/CMB the universe eventually enters
into a late time dark energy dominated epoch and the curvature and comoving horizon start to shrink again, until we reach a universe
today with radius a0 ≈ 50 Gpc. The best-fit parameters today even with a small amount of curvature place strong constraints on
inflationary potential consistent with this history, and only a relatively small range of primordial curvatures prove compatible. For more
detail, consult Hergt et al. [23]. (H0 ¼ 64.03 kms−1 Mpc−1, Ωm ¼ 0.3453, ΩK ¼ −0.0092, log 1010As ¼ 3.0336, ns ¼ 0.9699,
z� ¼ 1089.61.)
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curved inflationary spacetime on two counts: In the first
instance, eternal inflation is impossible in the context of
curvature [23]; refer further to Fig. 1 for a timeline of
inflationary KΛCDM cosmology. In the second, tradition-
ally posed methods such as the Bunch-Davies vacuum,
Danielsson vacuum, α-vacua, and Hamiltonian diagonal-
ization lack canonical invariance. Many works have pre-
viously analyzed cosmological perturbations in the
presence of curvature and attempted to answer the question
of setting initial conditions, e.g., [30,31] or in the context of
bouncing inflationary models [32–34], especially high-
lighting issues with the usual generalization of the
Mukhanov-Sasaki variable for setting initial conditions;
see, e.g., [35]. However, various assumptions have to be
used in order to select the “correct” vacuum, whether by
asymptotic considerations, or by analogy with the flat case,
without addressing existing issues of lack of canonical
invariance of such selections [36–41]. While canonical
transformations preserve the (classical or quantum
mechanical) evolution, they may lead to different initial
states and, consequently, to different corrections in the
power spectrum.
More recently a method of setting initial conditions

through minimization of the renormalized stress-energy
tensor (RSET) has been proposed in [57], which avoids
making assumptions about the asymptotic behavior of the
inflationary spacetime. RSET initial conditions are similar
to the instantaneous vacuum and adiabatic regularization
[58,59], but unlike the latter, only require the RSET to be
minimized, rather than vanish. RSET initial conditions have
since been applied to inflationary collapse models [60],
where until now, initial conditions were selected only
according to their backreaction [37]. Moreover, such initial
conditions have been shown to be canonically invariant in
flat universes [38].
The paper is structured as follows. For clarity, we start by

summarizing known results in Secs. II and III: in Sec. II we
introduce standard cosmological perturbation theory gen-
eralized to curved spacetimes, set up generalized equations
for R, and discuss vacuum selection; Sec. III provides
formalism clarifying what prevents R from having a
canonically normalized wave equation of motion in the
presence of curvature. This motivates Sec. IV, in which we
propose a novel curvature perturbation variable that admits
an equation of motion of a simple harmonic oscillator. This
allows for connections to established work in quantum
fields in curved spacetimes, in addition to allowing this
variable to be easily quantized by the minimized-RSET
procedure given in Sec. V, which is a generalization of the
procedure proposed by Ref. [57]. These calculations are as
general as possible, written in terms of inflationary sound
speed, allowing for extensions to nonstandard inflationary
Lagrangians. Finally, Sec. VI discusses the use of this novel
variable as a means of setting initial conditions, not only
for R but for any first order scalar perturbation variable.

The resulting power spectrum for R is plotted, and we
discuss and draw conclusions in Sec. VII.

II. BACKGROUND

We begin with a discussion of the relevant inflationary
perturbation theory setup, summarizing previous results
before motivating the need for both an alternate curvature
perturbation variable and a more robust method of
quantization.
By convention, we will work in conformal time η, where

we will denote 0≡d=dη, and use the conformal Hubble
parameter H ¼ aH ¼ a0=a.

A. Perturbation theory setup

To leading order, both spacetime and the inflaton field
can be taken to be homogeneous and isotropic, i.e.,
dependent only on η. We will consider the background
to be a general FLRW spacetime, whose metric is given by

ds2 ¼ a2ðηÞfdη2 − cijdxidxjg; ð1Þ

with the spatial metric

cijdxidxj ¼
dr2

1 − Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ: ð2Þ

This background is then subject to scalar perturbations

ds2 ¼ a2ðηÞfð1þ 2ΦÞdη2 − ðð1 − 2ΨÞcijÞdxix
˙

jg; ð3Þ

where we have picked the Newtonian gauge and omitted
vector and tensor perturbations as they decouple from the
scalar perturbations. See Ref. [10] for a more in-depth
discussion of gauge choices. We restrict our attention to
scalars in this instance since vectors generically decay
during inflation, and tensors are already canonically nor-
malized, even for K ≠ 0 [26].
The inflaton is taken to be a scalar field minimally

coupled to the curved spacetime,

S ¼
Z

½̇4�x
ffiffiffiffiffi
jgj

p �
1

2
Rþ 1

2
∇μϕ∇μϕ − VðϕÞ

�
; ð4Þ

which is homogeneous and isotropic to zeroth order and is
perturbed by δϕðη;xÞ. The usual background inflation
dynamics are given by

H2 ¼ a2

3
ρ − K; ð5Þ

H0 ¼ H2 þ K −
a2

2
ðρþ pÞ; ð6Þ

where (5) and (6) are the Friedmann and Raychaudhuri
equations, respectively. The background energy density ρ
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and pressure p for the inflaton are

ρ ¼ 1

2a2
ðϕ0Þ2 þ VðϕÞ; ð7Þ

p ¼ 1

2a2
ðϕ0Þ2 − VðϕÞ: ð8Þ

B. Gauge-invariant curvature perturbation

Typical analyses now proceed by defining the gauge-
invariant comoving curvature perturbation,

R ¼ ΨþH
ϕ0 δϕ: ð9Þ

R is of interest as it controls the perturbations to spatial
curvature, as seen from the spatial Ricci scalar

Rð3Þ ¼ 6
K
a2

þ 4

a2
ð∇2 þ 3KÞR: ð10Þ

These perturbations are directly related to CMB anisotro-
pies, as variations in curvature at the time of the last
scattering will correspond to the scattered photons being
more or less redshifted, resulting in the CMB temperature
distribution [10,61].
As derived in standard Ref. [10], the resulting equation

of motion for R when K ¼ 0 is

ðzRÞ00 − ð∇2 þ z00

z
ÞðzRÞ ¼ 0; ð11Þ

z ¼ aϕ0

H
: ð12Þ

Note that here∇2 ≡ cij∇i∇j refers to the Laplacian defined
by the curved spatial metric cij.
However, for K ≠ 0, by expanding the Einstein and

conservation equations to first order in the perturbation
variables, Ref. [26] shows that R obeys the second-order
Mukhanov-Sasaki equation

0 ¼ ðD2 − KEÞR00 þ 2

�
z0

z
D2 − KHE

�
R0

þ
�
K

�
1þ E −

2

H
z0

z

�
D2 þ K2E −D4

�
R; ð13Þ

D2 ¼ ∇2 þ 3K; E ¼ a2ðρþ pÞ
2H2

: ð14Þ

This can be written more concisely by first mode-decom-
posing into Fourier space, namely writing

∇2YkðxÞ ¼ −κ2ðkÞYkðxÞ ð15Þ

for YkðxÞ the appropriate hyperspherical Bessel functions
[61,62] that give the eigenspectrum of the spatially curved
Laplacian. Thus, we identify D2 with −κ2ðkÞ þ 3K, where

κ2ðkÞ ¼ k2; k∈R; k > 0∶ K ¼ 0;−1;

κ2ðkÞ ¼ kðkþ 2Þ; k∈Z; k > 2∶ K ¼ þ1; ð16Þ

Define wave-number-dependent Z as

Z ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

D2 − KE

s
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2E

D2 − KE

s
: ð17Þ

Equation (13) can be recast as

ðZRkÞ00 þ
�
κ2 −

Z00

Z
− 2K −

2KZ0

HZ

�
ðZRkÞ ¼ 0; ð18Þ

where RkðηÞ is the Fourier component of Rðη;xÞ with
wave number of magnitude k.
To connect this theoretical framework to observation,

we must compute the primordial power spectrum fromR at
the horizon crossing. This is an initial value problem:R can
be numerically computed according to its equations of
motion Eqs. (13) and (18) from some initial conditions
Rðη0Þ;R0ðη0Þ, or equivalently, a vacuum state for the
corresponding quantized variable. The correct theoretical
choice for initial conditions in this case is far from clear
[10,39,40]; we will now discuss possible vacuum choices.

C. Vacuum choice

For quantum fields on a curved spacetime, the choice of
vacuum state is either physically unclear or ambiguous. At
zeroth order, the slow-roll inflaton mimics a positive
cosmological constant, and thus, the background dynamics
of an inflationary FLRW spacetime are well-described by
de Sitter space. This is true for general K. Since de Sitter
space is maximally symmetric, there exists a natural choice
of vacuum for a scalar field in this spacetime by means of
the Bunch-Davies (BD) vacuum [63], which is invariant
under all isometries of de Sitter space. This motivates the
BD vacuum as a physically reasonable choice. An alter-
native choice is setting initial conditions by means of
Hamiltonian diagonalization (HD). However, it is ques-
tionable whether this choice of vacuum is physically
meaningful in an expanding spacetime as the time-dependent
Hamiltonian will yield infinite particle density after the
instant the vacuum is set [39,40].
In the K ¼ 0 case, the BD vacuum can be painlessly

applied to quantize the Mukhanov variable zR, as its
equation of motion (11) is analogous to the resulting Klein-
Gordon equation of motion for a scalar field, with a time-
dependent mass term given by z. However, applying the BD
vacuum to quantize perturbations in inflation requires the
spacetime to be quasi–de Sitter at the time of quantization,
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which is not possible for theories of finite inflation
[23,51,55]. This can be seen further in Fig. 1, which
illustrates a period of kinetic dominance of the inflaton.
Further, in the curved case, R no longer possesses a

canonically normalized action nor equation of motion; i.e.,
it does not behave like a simple harmonic oscillator (SHO)
as Eq. (11). This can be seen from the k-dependence ofZ in
Eq. (18). As such, we can make no connections to the large
body of work on quantum fields in curved spacetime in
order to provide insight on what initial conditions to use.
Almost all existing literature regarding second quantization
in curved spacetimes deal with a massive scalar field with
constant coupling to gravity [39,64], admitting an SHO-
like equation of motion to then quantize the scalar field by
analogy with the time-independent quantum harmonic
oscillator. Thus, the first step in generalizing inflationary
theories to nonflat primordial curvature is to find a
curvature perturbation variable that obeys an analogous
SHO equation of motion, unlike R.
Additionally, as shown by Ref. [38] for K ¼ 0, neither

the BD vacuum nor the vacuum from HD are robust against
canonical transformations. Namely, under a canonical
transformation of phase space preserving the field’s equa-
tion of motion, these vacuum setting procedures yield
ambiguous vacuum initial conditions that would be obser-
vationally distinguishable. Another potential vacuum
choice is the one proposed by Danielsson [65]. This
vacuum is derived in the Heisenberg picture for the field
operators, and initial conditions are set by considering the
time at which each mode reaches Planckian lengths.
Unfortunately, this choice is also not invariant under
canonical transformations when K ¼ 0.
However, as proposed in Ref. [57], one can instead set

the vacuum by minimizing the RSET. This formulation
avoids consideration of the tricky concept of particles.
Furthermore, it does not require any assumptions about the
asymptotic behavior of the inflationary spacetime, and so
allows for noneternal theories of inflation. More crucially,
this method yields canonically invariant vacuum conditions
[38] when K ¼ 0. Based on calculations in Sec. V and
Appendix A, this persists even for the case of K ≠ 0, which
motivates our calculations of initial conditions resulting
from this procedure.
As discussed by Fulling [39], computing the correct form

of the RSET for a given field subject to a general action is
challenging, and in the case of R, is virtually intractable
due to the convoluted form of its action [26],

Sð2ÞR ¼ 1

2

Z
dηd½3�xa

ffiffiffiffiffi
jcj

p ðϕ0Þ2
H2

�
RD2R

þ
�
R0 − K

R
H

�
D2

D2 − KE

�
R0 − K

R
H

��
: ð19Þ

As discussed further in Sec. V, a more feasible task is
finding the RSET for a massless, minimally coupled scalar

field ψ on a curved spacetime, with resulting equation of
motion

ðaψÞ00 −
�
∇2 þ a00

a

�
ðaψÞ ¼ 0 ð20Þ

for which the renormalized stress-energy tensor has been
derived by Birrell and Davies [62]. As proposed and
discussed in Ref. [57], when K ¼ 0, an analogy can be
drawn between Eq. (20) and the equation of motion (11) for
R in flat space, by noting that during flat slow-roll inflation

a00

a
≈
z00

z
: ð21Þ

Thus, aψ and zR share an equation of motion, and so R
can be quantized directly through the minimized RSET
conditions for this arbitrary scalar field ψ .
However, forK ≠ 0,R cannot yet be quantized using the

minimized-RSET proceedure as above, since it does not
have the equation of motion of a SHO. Thus, in what
follows, we will motivate and derive a novel perturbation
variable that obeys a canonically normalized wave equation
of motion. Finally, we will derive initial conditions for this
variable in Sec. V by means of the minimized-RSET
procedure in Ref. [57], which we have generalized to
curved spacetimes.

III. MOTIVATION FOR A NEW VARIABLE

As discussed above, we aim to construct a scalar
perturbation variable obeying a SHO equation of motion
analogous to Eq. (11) in order to make connections with the
existing literature concerning quantum fields in curved
spacetime and their quantization, and further, to be able to
apply minimized RSET as a well-motivated choice of
vacuum selection.
Progress toward finding a canonically normalized pertur-

bationvariable has beenmade byBrechet et al. [66], inwhich
the proposed variable obeys an equation of motion that
recovers the wave equation seen for R in the K ¼ 0 case.
To understand the results of this paper as they relate to

curved inflation, let us set up again a perturbed spacetime,
filled instead by a perfect fluid. Note that, with care, a scalar
field can be seen as a special case of a perfect fluid to zeroth
order [67]. The stress-energy tensor for this component
fluid can be expanded to first order as

T0
0 ¼ −ρ − δρ;

Tj
i ¼ −ðpþ δpÞδji : ð22Þ

Again, we consider a perturbed spacetime in the
Newtonian gauge,
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ds2 ¼ ð1þ 2ΦÞdt2 − a2ð1 − 2ΨÞcijdxidxj: ð23Þ

Following Unnikrishnan and Sriramkumar [68], by
expanding the Einstein field and conservation equations
to first order in perturbation variables δρ; δp;Φ;Ψ, given
component tensor Eq. (22) and metric Eq. (23), we find the
Bardeen equation of motion for Bardeen potential Φ to be

Φ00 þ 3Hð1þ c2aÞΦ0 − c2a∇2Φ

þ ½ð1þ 3c2aÞH2 − Kð1þ 3c2aÞ þ 2H0�Φ ¼ 0; ð24Þ

where

c2a ≡ p0

ρ0
ð25Þ

is the adiabatic sound speed.
Adapted to the notation used above, Brechet et al. [66]

then defines an alternate comoving curvature perturbation
scalar

ζPF ¼ R −
2K

a2ðρþ pÞΦ: ð26Þ

Note briefly that ζPF ¼ R when K ¼ 0, and that c2a ≈ −1
during slow-roll inflation.
The equation of motion for ζPF can then be found simply

by writing ζPF in terms of Φ as

ζPF ¼ Φþ 2H
a2ðρþ pÞ ðHΦþΦ0Þ − 2K

a2ðρþ pÞΦ: ð27Þ

Equation (24) then reduces to the wave equation

ðz0ζPFÞ00 −
�
c2a∇2vþ z000

z0

�
ðz0ζPFÞ ¼ 0; ð28Þ

z0 ¼
a2

ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ p

p
caH

: ð29Þ

Thus, given the above canonically normalized wave equa-
tion of motion for ζPF, we can canonically quantize
curvature perturbations for a perfect fluid on a curved
spacetime, and set initial conditions using minimized RSET
as discussed in Sec. V.
This framework can then be applied to the specific case

of the inflaton, by calculating ρϕ; pϕ; δρϕ; δpϕ; δΣϕ from
the stress-energy tensor for a perturbed inflationary scalar
field ϕðηÞ þ δϕðη;xÞ.
For the sake of generality, we consider the following

extension of action Eq. (4):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R − PðX;ϕÞ

�
; ð30Þ

where

X ¼ 1

2
gμν∇μϕ∇νϕ: ð31Þ

A more general treatment of inflationary PðX;ϕÞ theo-
ries can be seen in Refs. [28,29]. Applying the results in
this paper to alternate-Lagrangian theories of inflation, such
as Dirac-Born-Infeld (DBI) inflation, could be a fruitful
future extension of this work.
Then, following Garriga and Mukhanov [28], we define

the inflationary sound speed, or the effective sound speed
of the perturbations,

c2s ≡ ∂XP
∂XPþ 2X∂XXP

: ð32Þ

Note that the inflaton is typically described by a standard
Lagrangian

PðX;ϕÞ ¼ X − VðϕÞ: ð33Þ

Thus, usually c2s ¼ 1.
Equation (32) allows us to recast the equivalent non-

adiabatic pressure perturbation for a scalar field as

δpen ¼
2

a2
ðc2s − c2aÞD2Φ: ð34Þ

Equations (32) and (34) allow us to write the Bardeen
equation of motion for a scalar field as

Φ00 þ 3Hð1þ c2aÞΦ0 − c2a∇2Φ

þ½ð1þ 3c2aÞH2 − Kð1þ 3c2aÞ þ 2H0�Φ ¼ a2

2
δpen: ð35Þ

We highlight that this only differs from Eq. (24), the
Bardeen equation of motion for a spacetime with compo-
nent perfect fluid, by the addition of the entropic pressure
term a2

2
δpen on the right-hand side (RHS).

Given Φ described by Eq. (24), i.e., for the toy universe
filled with a perfect fluid, we have

ζ0PF ¼
2Hc2a

a2ðρþ pÞ∇
2Φ: ð36Þ

However, for a perturbed FLRW universe filled instead
with the inflationary scalar field, where Φ is described by
Eq. (35),

ζ0PF ¼
2Hc2s

a2ðρþ pÞ∇
2Φþ 6

KHðc2s − c2aÞ
a2ðρþ pÞ Φ: ð37Þ

The discrepancy between Eqs. (36) and (37) suggests
that a SHO wave equation of motion is impossible for this
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variable unless K ¼ 0 or c2a ¼ c2s. Writing Eq. (37) more
explicitly as

ζ0PF ¼
2Hc2a

a2ðρþ pÞ∇
2Φþ 2H

ρþ p
δpen; ð38Þ

we see that the term preventing the desired equation of
motion is proportional to the entropic pressure perturbation,
which is dependent on spatial curvature through D.

IV. NOVEL CURVATURE VARIABLE

First, the Bardeen equation (35), which fully describes
the evolution of perturbations in a curved FLRW spacetime
with a perturbed inflaton, is equivalent to

Φ00 þ 3Hð1þ c2aÞΦ0 − c2s∇2Φ

þ ½ð1þ 3c2aÞH2 − Kð1þ 3c2sÞ þ 2H0�Φ ¼ 0: ð39Þ

We aim to define a variable whose dynamics simplify to
a canonically normalizable wave equation under Eq. (39).
Thus, consider

ζ ¼ gðηÞΦþ 2HgðηÞ
a2ðρþ pÞ ðHΦþΦ0Þ − 2KfðηÞ

a2ðρþ pÞΦ; ð40Þ

where we recall

R ¼ Φþ 2H
a2ðρþ pÞ ðHΦþΦ0Þ; ð41Þ

ζPF ¼ Φþ 2H
a2ðρþ pÞ ðHΦþΦ0Þ − 2K

a2ðρþ pÞΦ: ð42Þ

So far, gðηÞ and fðηÞ are yet unspecified functions, and
so ζ can represent any linear combination of Φ;Φ0, i.e., of
the form AðηÞΦþ BðηÞΦ0. Note that currently this is the
most general form for ζ, since it must be a first order
perturbation, and thus a linear combination of other gauge-
invariant quantities.
We can see that under Eq. (39), the derivative of ζ

simplifies as

ζ0 ¼ 2Hg
a2ðρþ pÞ

�
c2sD2ΦþΦ0

�
K
H

−
f
g
K
H

þ g0

g

�

þΦ
�
K þ g0

g

�
Hþ a2ðρþ pÞ

2H

�

þ K
H

f
g

�
2Hþ ðρþ pÞ0

ðρþ pÞ −
f0

f

���
: ð43Þ

Now, by inspection of Eq. (43) and by analogy with
Eq. (36), we will want an ansatz where ζ0 is proportional to
only D2Φ, and not to Φ or Φ0,

ζ0 ¼ g
2Hc2s

a2ðρþ pÞD
2Φ: ð44Þ

Once this is picked as an ansatz, we are guaranteed to arrive
at a wave equation, as long as we can solve equations
specifying functions fðηÞ, gðηÞ:

fðηÞ ¼ g0
H
K

þ g; ð45Þ

f0

f
¼ K þ g0

g

�
Hþ a2ðρþ pÞ

2H

�
þ K
H

f
g

�
2Hþ ðρþ pÞ0

ðρþ pÞ
�
:

ð46Þ

Both of these equations can be rewritten to simplify by
taking G, b such that

G ¼ b0

b
; ð47Þ

G2 − G0 ¼ H2 −H0 þ K; ð48Þ

and setting

gðηÞ ¼ a
H

G
b
; ð49Þ

fðηÞ ¼ g0
H
K

þ g; ð50Þ

which we will use as the definition for our functions fðηÞ
and gðηÞ. We further motivate the ansatz Eq. (44) in
Appendix B.
For ζ defined such that Eq. (44) holds, the resulting

equation of motion simplifies to

ðzgζÞ00 þ
�
c2sD2 −

z00g
zg

�
ðzgζÞ ¼ 0; ð51Þ

zgðηÞ ¼
z
g
¼ a2ðρþ pÞ12

gcsH
; ð52Þ

as expected from Sec. III. The only thing left is to see
whether a solution G satisfying Eq. (48) exists. By rewriting
Eq. (48) using Eq. (47), we can see that we have a linear
second order differential equation for 1=b:

b
�
1

b

�00
¼ a

�
1

a

�00
þ K: ð53Þ

Unfortunately, Eq. (53) does not have a closed form
solution, unless K ¼ 0. We can solve it numerically,
however. To justify a selection of initial conditions for
this differential equation, we should note that there is an
overall scaling freedom in the definition of b, and therefore
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there is only one effective degree of freedom. Furthermore,
the selection of initial conditions on b and ḃ at some initial
time t0 is equivalent to picking initial values of f and g at
time t0 as can be seen from

ḃ0 ¼
g0H0

a0
b20; ð54Þ

b0 ¼ a0
Ḣ0 − K

a2
0

K
a2
0

ðf0 − g0Þ þ g0Ḣ0

; ð55Þ

where subscript 0 corresponds to the value at initial time t0.
Therefore, picking which initial conditions to consider for
the variable ζ is equivalent to asking which variable we
want to quantize at t0. Note that the question of global
existence of solutions to Eq. (53) is not obvious; however,
for Sec. VI only the local existence is of interest for the
derivation of the initial conditions.
With the wave equation in place, we can discuss a few

things of note about the new variable. First of all, ζ defined
via Eqs. (40) and (47)–(50) has an overall arbitrary scaling,
due to a scaling freedom of both g and f. However, the
resultant Mukhanov variable v ¼ zgζ does not, and fur-
thermore it always collapses to the original flat Mukhanov
variable vflat ¼ zR when K ¼ 0, even when we pick b=∝a
as the solution to Eq. (53).
We have thus constructed ζ, such that the equation of

motion for ζ has canonically normalizable wave equation
form, and can be quantized using the minimized-RSET
vacuum conditions derived in Sec. V.

V. VACUUM CONDITIONS VIA RSET

In what follows, we will demonstrate how to apply
minimized RSET to quantize ζ with k-space equation of
motion

ðzgζkÞ00 þ
�
c2sðηÞκ2DðkÞ −

z00g
zg

�
ðzgζkÞ ¼ 0; ð56Þ

where κD gives the wave space decomposition of the D2

operator

−D2 ↔ κ2DðkÞ ¼ κ2ðkÞ − 3K: ð57Þ

We highlight that none of the following calculations are
particular to the definitions of zg, ζ, and cs, so this
procedure is easily applicable for the quantization of a
wider class of variables with a comparable equation of
motion.
Compare Eq. (56) with a massless minimally coupled

scalar field given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffi
jgj

p
ðgμν∇μψ∇νψÞ: ð58Þ

Note that this is not the inflaton scalar field, but is merely
introduced for computational convenience; the RSET for
such ψ have been calculated by Birrell and Davies [62],
while such a calculation for ζ is not yet obvious. ψ has an
equation of motion in k-space given by

ðaψkÞ00 þ
�
κ2ðkÞ − a00

a

�
ðaψkÞ ¼ 0; ð59Þ

i.e., another wave equation of motion with a mass function
given by the scale factor. As discussed in depth in
Appendix A, and in analogy with Ref. [38], we introduce
4 extra degrees of freedom in the form of time redefinitions
and field rescalings

η ⟶ ηζ; ð60Þ

ζ ⟶ χζ ¼
ζðηζÞ
hζðηζÞ

; ð61Þ

η ⟶ ηψ ; ð62Þ

ψ ⟶ χψ ¼ ψðηψÞ
hψðηψÞ

: ð63Þ

We show there exist unique hζ, hψ , ηζ, ηψ such that the
redefined χ fields corresponding to ζ and ψ have identical
wave equations of motion. With this, we can map modes of
ζ onto modes of ψ , and thus map initial conditions of ψ
onto initial conditions of ζ. More details can be found in
Appendix A. Thus, generalizing the calculations performed
in Ref. [38], we find initial conditions for ζ at η ¼ η0 to be

jζðη0Þj2 ¼
1

2csðη0Þz2gðη0ÞκD
;

ζ0

ζ
ðη0Þ ¼ −iκD þ a0

a
ðη0Þ −

z0g
zg
ðη0Þ −

1

2

c0s
cs

ðη0Þ; ð64Þ

or in normal time at t ¼ t0 by

jζðt0Þj2 ¼
1

2csðt0Þz2gðt0ÞκD
;

ζ̇

ζ
ðt0Þ ¼ −i

1

aðt0Þ
κD þ ȧ

a
ðt0Þ −

żg
zg
ðt0Þ −

1

2

ċs
cs

ðt0Þ: ð65Þ

VI. POWER SPECTRUM AND RESULTS

To ascertain whether the addition of spatial curvature
provides a better description of observations, we aim to
compute the power forR. We can writeR,R0 in terms of ζ
and ζ0 as

R ¼ ζ

g
þ K
H

f
g2c2sD2

ζ0; ð66Þ
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R0 ¼ 1

gD2

�
K2f
gc2sH2

þðD2−KEÞ
�
ζ0 þ K

gH
ζ ð67Þ

for E as in Eq. (14). Now note that ζ still describes a
family of functions, as ζ is formulated in terms of a
family of functions f and g, which are defined by the
second-order differential Eq. (53). For this section, rather

than considering ζ as a physically meaningful perturba-
tion variable in its own right, we shall use it as a means of
setting well-motivated initial conditions for R: if one
takes fðη0Þ ¼ 0 and gðη0Þ ¼ 1, then R ¼ ζ at η0. Thus, it
is appropriate to define initial conditions from R from
the minimized-RSET initial conditions for one such
choice in the ζ family, defined at η ¼ η0 by fðη0Þ ¼ 0

FIG. 2. Left: representative best-fit primordial power spectra corresponding to a range of allowed primordial curvatures. Right:
corresponding low-l effects on the CMB power spectrum.

FIG. 3. Comparison of the effect of initial conditions on the power spectrum of R. Initial conditions considered are the novel initial
conditions Eq. (68) forR by means of generalized RSETon ζ; a naive application of flat-space RSET conditions computed in Ref. [57];
and Bunch-Davies ICs. The power spectrum is computed for minimum and maximum primordial curvature cases. Note that in the
maximum case (right-hand graph) the BD condition solution numerically coincides with the naive-flat condition.
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and gðη0Þ ¼ 1. Equations (64), (66), and (67) together
yield

R0

R

				
η0

¼
�
1þ Kz2

2a2κ2D

��
−iκDþ

a0

a
−
z0

z
−

c0s
2cs

−
K
H

�
þK
H

				
η0

;

jRðη0Þj2¼
1

2csκDz2

				
η0

; ð68Þ

written in terms of the usual mass variable z ¼ gzg.
Of note is the independence of Eq. (68) on b, since it was

only introduced as a mathematical tool to construct the
desired equation of motion. Furthermore, this result is
consistent with the expected physical behavior of coincid-
ing with the flat case and other initial conditions [30,31] in
the limit of κD → ∞.
We highlight that this technique would generalize easily,

as any perturbation scalar can be written in terms of Φ and
Φ0, and thus equivalently, in terms of ζ, ζ0. Thus, for an
appropriate choice of initial f, g values, we can set initial
conditions for any perturbation scalar by means of mini-
mized RSET on ζ.
Using an oscillatory solver [69] and approximating slow

roll withVðϕÞ ∝ ϕ4=3, one can numerically evolveR from t0
to the time of mode reentry using Eq. (68) and equation of
motion (13). For the standard KΛCDM universe, we take a
parametric form for the primordial power spectrum given by

PKΛCDM
R ðkÞ ¼ As

�
k
k�

�
ns−1

: ð69Þ

The resulting power spectrum for R using minimized-
RSET initial conditions is given in Fig. 2.
We can compare this with a naive application of the flat-

case minimized-RSET conditions, as given in
Refs. [23,26,57], as well as with the Bunch-Davies vacuum
conditions [10,26]. This is shown in Fig. 3, where we see a
clear increase in power spectrum oscillations when using
the new minimized-RSET conditions derived in this paper,
thus hopefully corresponding to better detectability. We
also highlight that the differences between vacuum choices
is particularly pronounced for larger values of primordial
curvature and for lower k modes (where the presence
curvature is more relevant), as expected.

VII. CONCLUSION

We began by introducing the relevant setup, highlighting
work by Ref. [26] in deriving the K ≠ 0 Mukhanov-Sasaki
equation of motion for the gauge-invariant comoving
curvature perturbation R. We discussed why this equation
of motion prevents setting initial conditions forR in a well-
defined and physically motivated way, and motivated the
method of minimized RSET.
We then propose a novel perturbation scalar ζ, inspired

by the case of a perfect-fluid filled universe as in Ref. [66],

and with particular emphasis on Eq. (37). Under the
Bardeen equation of motion (39), describing the evolution
of perturbation scalars in our inflationary universe, the
equation of motion for ζ collapses to the desired canoni-
cally normalizable wave equation (51) [i.e., of the same
form as the typically considered equation of motion (11) for
R when K ¼ 0]. We believe this variable will be an
important catalyst for further work on the subject of
inflation in curved spacetimes, as its SHO form allows
for connection to standard inflationary and quantum field
theory literature.
Building on calculations in Ref. [38], we generalize the

minimized-RSET vacuum-setting procedure proposed in
Ref. [57] to curved spacetimes, allowing us to quantize ζ
(and any variable with an analogous equation of motion).
Finally, we demonstrate how to use the family of ζ variables
to construct a well-motivated set of initial conditions forR,
allowing us to plot the resulting power spectrum. We see
changes in△χ2 in all cases compared to previously studied
BD and flat-RSET conditions, particularly noting an
increase in power spectrum oscillatory behavior.
This work, however, leaves several questions open. First,

what is the correct choice of variable for quantization?
Ideally there would be a unique, well-motivated theoretical
choice, though of course given its impact on the primordial
power spectrum, the single degree of freedom in choice of ζ
could also be fit for. Second, the link between curvature and
nonadiabaticity given by Eqs. (34), (35), and (38) should be
further analytically explored in the directions of explaining
the nonlocality of action Eq. (19) and identifying the degree
of uniqueness of the variable ζ. Finally, it remains to be
seen to what extent (if at all) these vacuum states can be
constrained using modern cosmological data.
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APPENDIX A: GENERAL MINIMIZED RSET
CALCULATIONS FOR WAVELIKE FIELDS

In this appendix, we aim to relate the equations of motion
for ζ to a free scalar field ϕ in the same background, so that
we can set initial conditions for ζ through initial conditions
for ϕ by RSET. The procedure is invariant to the trans-
formations we use to map ζ equation of motion (EOM) to ϕ
EOM, as we will see later in this calculation. Thus, we aim
to relate
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ðzgζkÞ00 þ
�
c2sðηÞκ2DðkÞ −

zgðηÞ00
zgðηÞ

�
ðzgζkÞ ¼ 0 ðA1Þ

to

ðaψkÞ00 þ
�
κ2ðkÞ − a00

a

�
ðaψkÞ ¼ 0; ðA2Þ

by means of time redefinition and field rescaling defined in
Eqs. (60)–(63).
Time redefinition from η to ηζ gives

d
dη

¼ η0ζ
d
dηζ

; ðA3Þ

d2

dη2
¼ ðη0ζÞ2

d2

dη2ζ
þ η00ζ

d
dηζ

; ðA4Þ

where 0 denotes differentiation with respect to conformal
time η. Then Eq. (A1) becomes the equivalent equation of
motion for χζ given by

0¼ ∂ηψηψ χζþ∂ηζ χζ

�
η00ζ

ðη0ζÞ2
þ2

∂ηζhζ
hζ

þ2
∂ηζzg
zg

�

þχζ

�
∂
2
ηζhζ
hζ

þ η00ζ
ðη0ζÞ2

∂ηζhζ
hζ

þ2
∂ηζhζ
hζ

∂ηζzg
zg

þ c2sκ2D
ðη0ζÞ2

�
: ðA5Þ

We aim to have an equation of motion with no ∂ηζ χζ
terms; i.e., we want to choose hζ, ηζ such that

0 ¼ η00ζ
ðη0ζÞ2

þ 2
∂ηζhζ
hζ

þ 2
∂ηζzg
zg

¼ ∂ηζðC2
ζÞ

C2
ζ

ðA6Þ

for

C2
ζ ¼ η0ζh

2
ζz

2
g: ðA7Þ

Thus, we fix C2
ζ to be constant. Then

0 ¼ ∂ηζηζχζ þ χζ

��
csðηζÞκDðkÞh2ζz2g

C2
ζ

�2

þ ∂ηζηζhζ
hζ

−2
�
∂ηζhζ
hζ

�
2
�
: ðA8Þ

The equivalent formulation for the rescaled and time-
redefined ψ field is

0¼ ∂ηψηψ χψ þχψ

��
κðkÞh2ψa2

C2
ψ

�
2

þ∂ηψηψhψ
hψ

−2

�
∂ηψhψ
hψ

�
2
�

ðA9Þ

for constant

C2
ψ ¼ η0ψh2ψa2: ðA10Þ

As argued in Ref. [38],

∂ηψηψhψ
hψ

− 2

�
∂ηψhψ
hψ

�
2

¼ ∂ηζηζhζ
hζ

− 2

�
∂ηζhζ
hζ

�
2

ðA11Þ

can always be made to be true for suitable choices of hζ, ηζ,
hψ , ηψ .
Hence the only remaining condition to be fixed is

ffiffiffiffiffi
cs

p
hζzg
Cζ

¼ hψa

Cψ
; ðA12Þ

having shifted the wave number for ψ so that

κDðkshiftÞ ¼ κðkÞ: ðA13Þ
Now promote χψ to an operator, as is standard in

canonical quantization; then ψ may be expanded in terms
of creation and annihilation operators as

ψ ¼
Z 3

˙ k
ð2πÞ3hψ ðηψ Þðâkχψ ;kYkðxÞþ â†kχ

�
ψ ;kY

�
kðxÞÞ; ðA14Þ

where YkðxÞ is the eigenfunction of the curved spatial
Laplacian, namely

∇2YkðxÞ ¼ −κ2ðkÞYkðxÞ: ðA15Þ
The renormalized T00 component is then given by

h0jT00jiren ¼ lim
x→x0

D00Gðx;x0Þ − T̃; ðA16Þ

where

Gðx;x0Þ ¼ 1

2
h0jψðxÞψðx0Þ þ ψðx0ÞψðxÞj0i: ðA17Þ

Crucially, the de-Witt Schwinger geometrical terms given
by T̃ are independent of the field variables χψ (or ψ), shown
in Birrell and Davies [62] (Chap. 6, Sec. VI.4). Thus, we
expand

2Gðx;x0Þ ¼
Z 3

˙ k
ð2πÞ3 hðηψÞhðη

0
ψ Þχðηψ Þχ�ðη0ψÞYðxÞY�ðx0Þ

þ hðηψÞhðη0ψ Þχðη0ψÞχ�ðηψ ÞYðx0ÞY�ðxÞÞ;
ðA18Þ
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where for brevity h ¼ hψ, χ ¼ χψ ;k, and Y ¼ Yk. Then

h0jT00jiren ¼ T̃ þ 1

2

Z 3
˙ k

ð2πÞ3
h2κ2

ð∂ηηψÞ2
χχ�YY�

þ h2
�
∂ηψ χ þ

∂ηψh

h
χ

��
∂ηψ χ

� þ ∂ηψh

h
χ�
�
YY�:

ðA19Þ

The spherical-harmonic-like functions YkðxÞ are normal-
ized as

Z
3
˙ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðcijÞ

q
YkðxÞYpðxÞ ¼ δðk − pÞ ðA20Þ

so that the canonical commutation relation for the redefined
field is given by

ð∂ηψ χψ ;kÞχ�ψ ;k − ð∂ηψ χ�ψ ;kÞχψ ;k ¼ −
i
C2
ψ
: ðA21Þ

Finally, minimizing Eq. (A19) with respect to field vari-
ables χψ ;k; χ�ψ ;k and their derivatives ∂ηψ χψ ;k; ∂ηψ χ

�
ψ ;k subject

to the constraint Eq. (A21) gives

∂ηψ lnðχψ ;kÞ ¼ −
iκðkÞ
η0ψ

− ∂ηψ lnðhψÞ; ðA22Þ

jχ2ψ ;kj ¼
1

2κh2ψa2
: ðA23Þ

The equation of motion for χζ in terms of ηζ at kshiftðkÞ is
now identical to the equation of motion for χψ in terms of
ηψ at k. Thus, we have equivalence of solutions

χψðkÞ ¼ χζðkshiftÞ: ðA24Þ

Substituting χψðkÞ ¼ χζðkshiftÞ, using hψ for hζ, and
converting to conformal time gives

ζ0

ζ
¼ −iκD þ a0

a
−
z0g
zg

−
1

2

c0s
cs

: ðA25Þ

Introducing 2 arbitrary time redefinitions and 2 arbitrary
field rescalings gives 4 degrees of freedom. Thus far, we
still have one remaining degree of freedom: Eqs. (A11) and
(A12) each fix 1 degree of freedom, and Eqs. (A7)
and (A10) together fix another degree of freedom (as
the values of Cζ, Cψ are arbitrary). Thus, we are free to set
Cζ ¼ Cψ . In conclusion, we can initialize ζ at η ¼ η0 by

jζðη0Þj2 ¼
1

2csðη0Þz2gðη0ÞκD
;

ζ0

ζ
ðη0Þ ¼ −iκD þ a0

a
ðη0Þ −

z0g
zg
ðη0Þ −

1

2

c0s
cs

ðη0Þ; ðA26Þ

or at t ¼ t0 by

jζðt0Þj2 ¼
1

2csðt0Þz2gðt0ÞκD
;

ζ̇

ζ
ðt0Þ ¼ −i

1

aðt0Þ
κD þ ȧ

a
ðt0Þ −

żg
zg
ðt0Þ −

1

2

ċs
cs

ðt0Þ: ðA27Þ

The forms of these equations do not depend on the
canonical transformations used to relate ζ to ϕ, i.e.,
ηζ; ηϕ; hζ; hϕ, which proves that initial conditions set by
RSET are invariant under such transformations even in the
K ≠ 0 case.

APPENDIX B: MOTIVATION AND
CONSTRUCTION OF ζ

The starting point of this section is Eq. (39). For the rest
of this section we will denote with capital letters functions
of η and indicate x (or k) dependence by subscripts. With
this in mind, we write Eq. (39) as

Φ00 þ A1Φ0 þ B1Φ −DkΦ ¼ 0: ðB1Þ

Then, we would like to construct a variable

ζ ¼ AΦþ BΦ0; ðB2Þ

for which we will require the following:
(i) A and B are not to have any x (or k) dependence.
(ii) The resulting equation for zeta is to be of the form

ζ00 þMζ0 þD2;kζ ¼ 0; ðB3Þ

where, for the time being, we do not require D2;k to
be the same as Dk.

Based on these requirements we can write

ζ ¼ AΦþ BΦ0; ðB4Þ

ζ0 ¼ CΦþ PΦ0 − BDkΦ; ðB5Þ

ζ00 ¼ NΦþ LΦ0 − PDkΦ − B0DkΦ − BD0
kΦ − BDkΦ0;

ðB6Þ

where we have defined

C ¼ A0 − BB1; ðB7Þ

P ¼ Aþ B0 − BA1; ðB8Þ
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N ¼ C0 − PB1; ðB9Þ

L ¼ Cþ P0 − PA1: ðB10Þ

Substituting this into Eq. (B3), then matching coefficients
of Φ;Φ0, and separately the coefficients of the k-dependent
components of Φ;Φ0, we have

N ¼ −MC; ðB11Þ

L ¼ −MP; ðB12Þ

BD2;k ¼ BDk; ðB13Þ

0 ¼ −PD − B0D − BD0 þ AD2;k −MBD: ðB14Þ

Therefore, we must have that D2;k is the same as Dk.
However, we had a degree of freedom in choosingDk when
writing down Eq. (B1). But from Eq. (B14) we have

A −MB − P − B0 ¼ B
D0

k

Dk
; ðB15Þ

meaning that we must have Dk being a product of a
function of η by a function of k. For example, when writing
down Eq. (B1), we could pick Dk ¼ c2sD2 or c2s∇2, but not
Dk ¼ c2s∇2 þ K. The above asserts D2;k to be the same as
Dk; therefore, all that is needed to find the form of the wave
equation is identifying M while satisfying Eqs. (B11),
(B12), and (B14). Let M ¼ 2ðzδÞ0

zδ , i.e., a mass rescaling for
our new variable. Then, from Eqs. (B8) and (B14), we have

2B0

B
¼ −M þ A1 −

D0
k

Dk
: ðB16Þ

If we pick Eq. (40) as the general form for our equation, i.e.,
swap from A and B to g and f, we must have that δ ¼ 1

g. We
can further simplify Eqs. (B11) and (B12) to be the
following two equations that are linear in C and P:

�
Cz2

g2

�0
¼ −

Pz2

g2
ðρþ pÞ0
ρþ p

; ðB17Þ

�
Pz2ðρþ pÞ

g2

�0
¼ Cz2ðρþ pÞ

g2
; ðB18Þ

where for the specific choice of Dk ¼ c2sD2

P ¼ K
H

−
f
g
K
H

þ g0

g
; ðB19Þ

C ¼ K þ g0

g

�
Hþ a2ðρþ pÞ

2H

�

þ K
H

f
g

�
2Hþ ðρþ pÞ0

ðρþ pÞ −
f0

f

�
: ðB20Þ

Solving these equations in general is rather difficult, since
they are two coupled, nonlinear, second order differential
equations for f and g. We will aim to simplify our
calculations by making an ansatz. If we are to pick f
and g, such that P ¼ C ¼ 0, then Eqs. (B17) and (B18) are
trivially satisfied. This gives us exactly two restrictions on
our functions f and g:

f ¼ g0
H
K

þ g; ðB21Þ

f0

f
¼ K þ g0

g

�
Hþ a2ðρþ pÞ

2H

�
þ K
H

f
g

�
2Hþ ðρþ pÞ0

ðρþ pÞ
�
:

ðB22Þ

Thus, if we can find solutions to Eqs. (B21) and (B22), then
the equation collapses to the required wave equation (51).
Setting

gðηÞ ¼ a
H

b0

b2
ðB23Þ

reduces Eq. (B22) to

b

�
1

b

�00
¼ a

�
1

a

�00
þ K; ðB24Þ

which gives a one-parameter family of solutions for ζ, since
one of the free parameters in this second order differential
equation is due to arbitrary scaling of b (or equivalently g).
We can see from this that this ansatz is sufficient for a SHO
equation for ζ, but it remains an open question whether it is
necessary—i.e., whether P ¼ C ¼ 0 are the only solutions
to Eqs. (B17) and (B18).
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